mesa/src/amd/compiler/aco_print_asm.cpp
Timur Kristóf 2ff1267959 aco: Only include nir.h in instruction selection.
Don't recompile entire ACO when something changes in NIR.
Instead, only use some headers which are actually needed,
include these in ACO files instead of relying on nir.h to
include them.

Signed-off-by: Timur Kristóf <timur.kristof@gmail.com>
Reviewed-by: Rhys Perry <pendingchaos02@gmail.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/22241>
2023-04-10 20:01:28 +00:00

458 lines
14 KiB
C++

/*
* Copyright © 2018 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "aco_ir.h"
#include "util/u_debug.h"
#ifdef LLVM_AVAILABLE
#if defined(_MSC_VER) && defined(restrict)
#undef restrict
#endif
#include "llvm/ac_llvm_util.h"
#include "llvm-c/Disassembler.h"
#include <llvm/ADT/StringRef.h>
#include <llvm/MC/MCDisassembler/MCDisassembler.h>
#endif
#include <array>
#include <iomanip>
#include <vector>
namespace aco {
namespace {
std::vector<bool>
get_referenced_blocks(Program* program)
{
std::vector<bool> referenced_blocks(program->blocks.size());
referenced_blocks[0] = true;
for (Block& block : program->blocks) {
for (unsigned succ : block.linear_succs)
referenced_blocks[succ] = true;
}
return referenced_blocks;
}
void
print_block_markers(FILE* output, Program* program, const std::vector<bool>& referenced_blocks,
unsigned* next_block, unsigned pos)
{
while (*next_block < program->blocks.size() && pos == program->blocks[*next_block].offset) {
if (referenced_blocks[*next_block])
fprintf(output, "BB%u:\n", *next_block);
(*next_block)++;
}
}
void
print_instr(FILE* output, const std::vector<uint32_t>& binary, char* instr, unsigned size,
unsigned pos)
{
fprintf(output, "%-60s ;", instr);
for (unsigned i = 0; i < size; i++)
fprintf(output, " %.8x", binary[pos + i]);
fputc('\n', output);
}
void
print_constant_data(FILE* output, Program* program)
{
if (program->constant_data.empty())
return;
fputs("\n/* constant data */\n", output);
for (unsigned i = 0; i < program->constant_data.size(); i += 32) {
fprintf(output, "[%.6u]", i);
unsigned line_size = std::min<size_t>(program->constant_data.size() - i, 32);
for (unsigned j = 0; j < line_size; j += 4) {
unsigned size = std::min<size_t>(program->constant_data.size() - (i + j), 4);
uint32_t v = 0;
memcpy(&v, &program->constant_data[i + j], size);
fprintf(output, " %.8x", v);
}
fputc('\n', output);
}
}
/**
* Determines the GPU type to use for CLRXdisasm
*/
const char*
to_clrx_device_name(amd_gfx_level gfx_level, radeon_family family)
{
switch (gfx_level) {
case GFX6:
switch (family) {
case CHIP_TAHITI: return "tahiti";
case CHIP_PITCAIRN: return "pitcairn";
case CHIP_VERDE: return "capeverde";
case CHIP_OLAND: return "oland";
case CHIP_HAINAN: return "hainan";
default: return nullptr;
}
case GFX7:
switch (family) {
case CHIP_BONAIRE: return "bonaire";
case CHIP_KAVERI: return "gfx700";
case CHIP_HAWAII: return "hawaii";
default: return nullptr;
}
case GFX8:
switch (family) {
case CHIP_TONGA: return "tonga";
case CHIP_ICELAND: return "iceland";
case CHIP_CARRIZO: return "carrizo";
case CHIP_FIJI: return "fiji";
case CHIP_STONEY: return "stoney";
case CHIP_POLARIS10: return "polaris10";
case CHIP_POLARIS11: return "polaris11";
case CHIP_POLARIS12: return "polaris12";
case CHIP_VEGAM: return "polaris11";
default: return nullptr;
}
case GFX9:
switch (family) {
case CHIP_VEGA10: return "vega10";
case CHIP_VEGA12: return "vega12";
case CHIP_VEGA20: return "vega20";
case CHIP_RAVEN: return "raven";
default: return nullptr;
}
case GFX10:
switch (family) {
case CHIP_NAVI10: return "gfx1010";
case CHIP_NAVI12: return "gfx1011";
default: return nullptr;
}
case GFX10_3:
case GFX11: return nullptr;
default: unreachable("Invalid chip class!"); return nullptr;
}
}
bool
get_branch_target(char** output, Program* program, const std::vector<bool>& referenced_blocks,
char** line_start)
{
unsigned pos;
if (sscanf(*line_start, ".L%d_0", &pos) != 1)
return false;
pos /= 4;
*line_start = strchr(*line_start, '_') + 2;
for (Block& block : program->blocks) {
if (referenced_blocks[block.index] && block.offset == pos) {
*output += sprintf(*output, "BB%u", block.index);
return true;
}
}
return false;
}
bool
print_asm_clrx(Program* program, std::vector<uint32_t>& binary, unsigned exec_size, FILE* output)
{
#ifdef _WIN32
return true;
#else
char path[] = "/tmp/fileXXXXXX";
char line[2048], command[128];
FILE* p;
int fd;
const char* gpu_type = to_clrx_device_name(program->gfx_level, program->family);
/* Dump the binary into a temporary file. */
fd = mkstemp(path);
if (fd < 0)
return true;
for (unsigned i = 0; i < exec_size; i++) {
if (write(fd, &binary[i], 4) == -1)
goto fail;
}
sprintf(command, "clrxdisasm --gpuType=%s -r %s", gpu_type, path);
p = popen(command, "r");
if (p) {
if (!fgets(line, sizeof(line), p)) {
fprintf(output, "clrxdisasm not found\n");
pclose(p);
goto fail;
}
std::vector<bool> referenced_blocks = get_referenced_blocks(program);
unsigned next_block = 0;
char prev_instr[2048];
unsigned prev_pos = 0;
do {
char* line_start = line;
if (strncmp(line_start, "/*", 2))
continue;
unsigned pos;
if (sscanf(line_start, "/*%x*/", &pos) != 1)
continue;
pos /= 4u; /* get the dword position */
while (strncmp(line_start, "*/", 2))
line_start++;
line_start += 2;
while (line_start[0] == ' ')
line_start++;
*strchr(line_start, '\n') = 0;
if (*line_start == 0)
continue; /* not an instruction, only a comment */
if (pos != prev_pos) {
/* Print the previous instruction, now that we know the encoding size. */
print_instr(output, binary, prev_instr, pos - prev_pos, prev_pos);
prev_pos = pos;
}
print_block_markers(output, program, referenced_blocks, &next_block, pos);
char* dest = prev_instr;
*(dest++) = '\t';
while (*line_start) {
if (!strncmp(line_start, ".L", 2) &&
get_branch_target(&dest, program, referenced_blocks, &line_start))
continue;
*(dest++) = *(line_start++);
}
*(dest++) = 0;
} while (fgets(line, sizeof(line), p));
if (prev_pos != exec_size)
print_instr(output, binary, prev_instr, exec_size - prev_pos, prev_pos);
pclose(p);
print_constant_data(output, program);
}
return false;
fail:
close(fd);
unlink(path);
return true;
#endif
}
#ifdef LLVM_AVAILABLE
std::pair<bool, size_t>
disasm_instr(amd_gfx_level gfx_level, LLVMDisasmContextRef disasm, uint32_t* binary,
unsigned exec_size, size_t pos, char* outline, unsigned outline_size)
{
size_t l =
LLVMDisasmInstruction(disasm, (uint8_t*)&binary[pos], (exec_size - pos) * sizeof(uint32_t),
pos * 4, outline, outline_size);
if (gfx_level >= GFX10 && l == 8 && ((binary[pos] & 0xffff0000) == 0xd7610000) &&
((binary[pos + 1] & 0x1ff) == 0xff)) {
/* v_writelane with literal uses 3 dwords but llvm consumes only 2 */
l += 4;
}
bool invalid = false;
size_t size;
if (!l &&
((gfx_level >= GFX9 &&
(binary[pos] & 0xffff8000) == 0xd1348000) || /* v_add_u32_e64 + clamp */
(gfx_level >= GFX10 &&
(binary[pos] & 0xffff8000) == 0xd7038000) || /* v_add_u16_e64 + clamp */
(gfx_level <= GFX9 &&
(binary[pos] & 0xffff8000) == 0xd1268000) || /* v_add_u16_e64 + clamp */
(gfx_level >= GFX10 && (binary[pos] & 0xffff8000) == 0xd76d8000) || /* v_add3_u32 + clamp */
(gfx_level == GFX9 && (binary[pos] & 0xffff8000) == 0xd1ff8000)) /* v_add3_u32 + clamp */) {
strcpy(outline, "\tinteger addition + clamp");
bool has_literal = gfx_level >= GFX10 && (((binary[pos + 1] & 0x1ff) == 0xff) ||
(((binary[pos + 1] >> 9) & 0x1ff) == 0xff));
size = 2 + has_literal;
} else if (gfx_level >= GFX10 && l == 4 && ((binary[pos] & 0xfe0001ff) == 0x020000f9)) {
strcpy(outline, "\tv_cndmask_b32 + sdwa");
size = 2;
} else if (!l) {
strcpy(outline, "(invalid instruction)");
size = 1;
invalid = true;
} else {
assert(l % 4 == 0);
size = l / 4;
}
#if LLVM_VERSION_MAJOR <= 14
/* See: https://github.com/GPUOpen-Tools/radeon_gpu_profiler/issues/65 and
* https://github.com/llvm/llvm-project/issues/38652
*/
if (invalid) {
/* do nothing */
} else if (gfx_level == GFX9 && (binary[pos] & 0xfc024000) == 0xc0024000) {
/* SMEM with IMM=1 and SOE=1: LLVM ignores SOFFSET */
size_t len = strlen(outline);
char imm[16] = {0};
while (outline[--len] != ' ') ;
strncpy(imm, outline + len + 1, sizeof(imm) - 1);
snprintf(outline + len, outline_size - len, " s%u offset:%s", binary[pos + 1] >> 25, imm);
} else if (gfx_level >= GFX10 && (binary[pos] & 0xfc000000) == 0xf4000000 &&
(binary[pos + 1] & 0xfe000000) != 0xfa000000) {
/* SMEM non-NULL SOFFSET: LLVM ignores OFFSET */
uint32_t offset = binary[pos + 1] & 0x1fffff;
if (offset) {
size_t len = strlen(outline);
snprintf(outline + len, outline_size - len, " offset:0x%x", offset);
}
}
#endif
return std::make_pair(invalid, size);
}
bool
print_asm_llvm(Program* program, std::vector<uint32_t>& binary, unsigned exec_size, FILE* output)
{
std::vector<bool> referenced_blocks = get_referenced_blocks(program);
std::vector<llvm::SymbolInfoTy> symbols;
std::vector<std::array<char, 16>> block_names;
block_names.reserve(program->blocks.size());
for (Block& block : program->blocks) {
if (!referenced_blocks[block.index])
continue;
std::array<char, 16> name;
sprintf(name.data(), "BB%u", block.index);
block_names.push_back(name);
symbols.emplace_back(block.offset * 4,
llvm::StringRef(block_names[block_names.size() - 1].data()), 0);
}
const char* features = "";
if (program->gfx_level >= GFX10 && program->wave_size == 64) {
features = "+wavefrontsize64";
}
LLVMDisasmContextRef disasm =
LLVMCreateDisasmCPUFeatures("amdgcn-mesa-mesa3d", ac_get_llvm_processor_name(program->family),
features, &symbols, 0, NULL, NULL);
size_t pos = 0;
bool invalid = false;
unsigned next_block = 0;
unsigned prev_size = 0;
unsigned prev_pos = 0;
unsigned repeat_count = 0;
while (pos < exec_size) {
bool new_block =
next_block < program->blocks.size() && pos == program->blocks[next_block].offset;
if (pos + prev_size <= exec_size && prev_pos != pos && !new_block &&
memcmp(&binary[prev_pos], &binary[pos], prev_size * 4) == 0) {
repeat_count++;
pos += prev_size;
continue;
} else {
if (repeat_count)
fprintf(output, "\t(then repeated %u times)\n", repeat_count);
repeat_count = 0;
}
print_block_markers(output, program, referenced_blocks, &next_block, pos);
char outline[1024];
std::pair<bool, size_t> res = disasm_instr(program->gfx_level, disasm, binary.data(),
exec_size, pos, outline, sizeof(outline));
invalid |= res.first;
print_instr(output, binary, outline, res.second, pos);
prev_size = res.second;
prev_pos = pos;
pos += res.second;
}
assert(next_block == program->blocks.size());
LLVMDisasmDispose(disasm);
print_constant_data(output, program);
return invalid;
}
#endif /* LLVM_AVAILABLE */
} /* end namespace */
bool
check_print_asm_support(Program* program)
{
#ifdef LLVM_AVAILABLE
if (program->gfx_level >= GFX8) {
/* LLVM disassembler only supports GFX8+ */
const char* name = ac_get_llvm_processor_name(program->family);
const char* triple = "amdgcn--";
LLVMTargetRef target = ac_get_llvm_target(triple);
LLVMTargetMachineRef tm = LLVMCreateTargetMachine(
target, triple, name, "", LLVMCodeGenLevelDefault, LLVMRelocDefault, LLVMCodeModelDefault);
bool supported = ac_is_llvm_processor_supported(tm, name);
LLVMDisposeTargetMachine(tm);
if (supported)
return true;
}
#endif
#ifndef _WIN32
/* Check if CLRX disassembler binary is available and can disassemble the program */
return to_clrx_device_name(program->gfx_level, program->family) &&
system("clrxdisasm --version") == 0;
#else
return false;
#endif
}
/* Returns true on failure */
bool
print_asm(Program* program, std::vector<uint32_t>& binary, unsigned exec_size, FILE* output)
{
#ifdef LLVM_AVAILABLE
if (program->gfx_level >= GFX8) {
return print_asm_llvm(program, binary, exec_size, output);
}
#endif
return print_asm_clrx(program, binary, exec_size, output);
}
} // namespace aco