mesa/ir.h
Eric Anholt 894ea972a4 Put function bodies under function signatures, instead of flat in the parent.
This will let us know the length of function bodies for the purpose of
inlining (among other uses).
2010-04-07 17:23:23 -07:00

730 lines
14 KiB
C++

/* -*- c++ -*- */
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#pragma once
#ifndef IR_H
#define IR_H
#include "list.h"
#include "ir_visitor.h"
struct ir_program {
void *bong_hits;
};
/**
* Base class of all IR instructions
*/
class ir_instruction : public exec_node {
public:
const struct glsl_type *type;
class ir_constant *constant_expression_value();
virtual void accept(ir_visitor *) = 0;
/**
* \name IR instruction downcast functions
*
* These functions either cast the object to a derived class or return
* \c NULL if the object's type does not match the specified derived class.
* Additional downcast functions will be added as needed.
*/
/*@{*/
virtual class ir_variable * as_variable() { return NULL; }
virtual class ir_dereference * as_dereference() { return NULL; }
virtual class ir_rvalue * as_rvalue() { return NULL; }
virtual class ir_loop * as_loop() { return NULL; }
/*@}*/
protected:
ir_instruction()
{
/* empty */
}
};
class ir_rvalue : public ir_instruction {
public:
virtual ir_rvalue * as_rvalue()
{
return this;
}
virtual bool is_lvalue()
{
return false;
}
protected:
ir_rvalue() : ir_instruction() { }
};
enum ir_variable_mode {
ir_var_auto = 0,
ir_var_uniform,
ir_var_in,
ir_var_out,
ir_var_inout
};
enum ir_varaible_interpolation {
ir_var_smooth = 0,
ir_var_flat,
ir_var_noperspective
};
class ir_variable : public ir_instruction {
public:
ir_variable(const struct glsl_type *, const char *);
virtual ir_variable *as_variable()
{
return this;
}
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
/**
* Duplicate an IR variable
*
* \note
* This will probably be made \c virtual and moved to the base class
* eventually.
*/
ir_variable *clone() const
{
ir_variable *var = new ir_variable(type, name);
var->max_array_access = this->max_array_access;
var->read_only = this->read_only;
var->centroid = this->centroid;
var->invariant = this->invariant;
var->mode = this->mode;
var->interpolation = this->interpolation;
return var;
}
const char *name;
/**
* Highest element accessed with a constant expression array index
*
* Not used for non-array variables.
*/
unsigned max_array_access;
unsigned read_only:1;
unsigned centroid:1;
unsigned invariant:1;
unsigned mode:3;
unsigned interpolation:2;
/**
* Flag that the whole array is assignable
*
* In GLSL 1.20 and later whole arrays are assignable (and comparable for
* equality). This flag enables this behavior.
*/
unsigned array_lvalue:1;
/**
* Emit a warning if this variable is accessed.
*/
const char *warn_extension;
/**
* Value assigned in the initializer of a variable declared "const"
*/
ir_constant *constant_value;
};
class ir_label : public ir_instruction {
public:
ir_label(const char *label, ir_function_signature *signature);
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
const char *label;
ir_function_signature *signature;
};
/*@{*/
class ir_function_signature : public ir_instruction {
/* An ir_function_signature will be part of the list of signatures in
* an ir_function.
*/
public:
ir_function_signature(const glsl_type *return_type);
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
/**
* Get the name of the function for which this is a signature
*/
const char *function_name() const;
/**
* Function return type.
*
* \note This discards the optional precision qualifier.
*/
const struct glsl_type *return_type;
/**
* List of ir_variable of function parameters.
*
* This represents the storage. The paramaters passed in a particular
* call will be in ir_call::actual_paramaters.
*/
struct exec_list parameters;
/**
* Pointer to the label that begins the function definition.
*/
ir_label *definition;
/** Body of instructions in the function. */
struct exec_list body;
private:
/** Function of which this signature is one overload. */
class ir_function *function;
friend class ir_function;
};
/**
* Header for tracking functions in the symbol table
*/
class ir_function : public ir_instruction {
public:
ir_function(const char *name);
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
void add_signature(ir_function_signature *sig)
{
sig->function = this;
signatures.push_tail(sig);
}
/**
* Get an iterator for the set of function signatures
*/
exec_list_iterator iterator()
{
return signatures.iterator();
}
/**
* Find a signature that matches a set of actual parameters.
*/
const ir_function_signature *matching_signature(exec_list *actual_param);
/**
* Name of the function.
*/
const char *name;
private:
/**
* List of ir_function_signature for each overloaded function with this name.
*/
struct exec_list signatures;
};
inline const char *ir_function_signature::function_name() const
{
return function->name;
}
/*@}*/
/**
* IR instruction representing high-level if-statements
*/
class ir_if : public ir_instruction {
public:
ir_if(ir_rvalue *condition)
: condition(condition)
{
/* empty */
}
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
ir_rvalue *condition;
/** List of ir_instruction for the body of the then branch */
exec_list then_instructions;
/** List of ir_instruction for the body of the else branch */
exec_list else_instructions;
};
/**
* IR instruction representing a high-level loop structure.
*/
class ir_loop : public ir_instruction {
public:
ir_loop() : from(NULL), to(NULL), increment(NULL), counter(NULL)
{
/* empty */
}
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_loop *as_loop()
{
return this;
}
/**
* Get an iterator for the instructions of the loop body
*/
exec_list_iterator iterator()
{
return body_instructions.iterator();
}
/** List of ir_instruction that make up the body of the loop. */
exec_list body_instructions;
/**
* \name Loop counter and controls
*/
/*@{*/
ir_rvalue *from;
ir_rvalue *to;
ir_rvalue *increment;
ir_variable *counter;
/*@}*/
};
class ir_assignment : public ir_rvalue {
public:
ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition);
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
/**
* Left-hand side of the assignment.
*/
ir_rvalue *lhs;
/**
* Value being assigned
*/
ir_rvalue *rhs;
/**
* Optional condition for the assignment.
*/
ir_rvalue *condition;
};
/* Update ir_expression::num_operands() and ir_print_visitor.cpp when
* updating this list.
*/
enum ir_expression_operation {
ir_unop_bit_not,
ir_unop_logic_not,
ir_unop_neg,
ir_unop_abs,
ir_unop_rcp,
ir_unop_rsq,
ir_unop_sqrt,
ir_unop_exp,
ir_unop_log,
ir_unop_exp2,
ir_unop_log2,
ir_unop_f2i, /**< Float-to-integer conversion. */
ir_unop_i2f, /**< Integer-to-float conversion. */
ir_unop_f2b, /**< Float-to-boolean conversion */
ir_unop_b2f, /**< Boolean-to-float conversion */
ir_unop_i2b, /**< int-to-boolean conversion */
ir_unop_b2i, /**< Boolean-to-int conversion */
ir_unop_u2f, /**< Unsigned-to-float conversion. */
/**
* \name Unary floating-point rounding operations.
*/
/*@{*/
ir_unop_trunc,
ir_unop_ceil,
ir_unop_floor,
/*@}*/
ir_binop_add,
ir_binop_sub,
ir_binop_mul,
ir_binop_div,
ir_binop_mod,
/**
* \name Binary comparison operators
*/
/*@{*/
ir_binop_less,
ir_binop_greater,
ir_binop_lequal,
ir_binop_gequal,
ir_binop_equal,
ir_binop_nequal,
/*@}*/
/**
* \name Bit-wise binary operations.
*/
/*@{*/
ir_binop_lshift,
ir_binop_rshift,
ir_binop_bit_and,
ir_binop_bit_xor,
ir_binop_bit_or,
/*@}*/
ir_binop_logic_and,
ir_binop_logic_xor,
ir_binop_logic_or,
ir_binop_dot,
ir_binop_min,
ir_binop_max,
ir_binop_pow
};
class ir_expression : public ir_rvalue {
public:
ir_expression(int op, const struct glsl_type *type,
ir_rvalue *, ir_rvalue *);
unsigned int get_num_operands(void);
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
ir_expression_operation operation;
ir_rvalue *operands[2];
};
/**
* IR instruction representing a function call
*/
class ir_call : public ir_rvalue {
public:
ir_call(const ir_function_signature *callee, exec_list *actual_parameters)
: ir_rvalue(), callee(callee)
{
assert(callee->return_type != NULL);
type = callee->return_type;
actual_parameters->move_nodes_to(& this->actual_parameters);
}
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
/**
* Get a generic ir_call object when an error occurs
*/
static ir_call *get_error_instruction();
/**
* Get an iterator for the set of acutal parameters
*/
exec_list_iterator iterator()
{
return actual_parameters.iterator();
}
/**
* Get the name of the function being called.
*/
const char *callee_name() const
{
return callee->function_name();
}
private:
ir_call()
: ir_rvalue(), callee(NULL)
{
/* empty */
}
const ir_function_signature *callee;
/* List of ir_rvalue of paramaters passed in this call. */
exec_list actual_parameters;
};
/**
* \name Jump-like IR instructions.
*
* These include \c break, \c continue, \c return, and \c discard.
*/
/*@{*/
class ir_jump : public ir_instruction {
protected:
ir_jump()
: ir_instruction()
{
/* empty */
}
};
class ir_return : public ir_jump {
public:
ir_return()
: value(NULL)
{
/* empty */
}
ir_return(ir_rvalue *value)
: value(value)
{
/* empty */
}
ir_rvalue *get_value() const
{
return value;
}
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
private:
ir_rvalue *value;
};
/**
* Jump instructions used inside loops
*
* These include \c break and \c continue. The \c break within a loop is
* different from the \c break within a switch-statement.
*
* \sa ir_switch_jump
*/
class ir_loop_jump : public ir_jump {
public:
enum jump_mode {
jump_break,
jump_continue
};
ir_loop_jump(ir_loop *loop, jump_mode mode)
: loop(loop), mode(mode)
{
/* empty */
}
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
bool is_break() const
{
return mode == jump_break;
}
bool is_continue() const
{
return mode == jump_continue;
}
private:
/** Loop containing this break instruction. */
ir_loop *loop;
/** Mode selector for the jump instruction. */
enum jump_mode mode;
};
/*@}*/
struct ir_swizzle_mask {
unsigned x:2;
unsigned y:2;
unsigned z:2;
unsigned w:2;
/**
* Number of components in the swizzle.
*/
unsigned num_components:3;
/**
* Does the swizzle contain duplicate components?
*
* L-value swizzles cannot contain duplicate components.
*/
unsigned has_duplicates:1;
};
class ir_swizzle : public ir_rvalue {
public:
ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
unsigned count);
/**
* Construct an ir_swizzle from the textual representation. Can fail.
*/
static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
bool is_lvalue()
{
return val->is_lvalue() && !mask.has_duplicates;
}
ir_rvalue *val;
ir_swizzle_mask mask;
};
class ir_dereference : public ir_rvalue {
public:
ir_dereference(struct ir_instruction *);
ir_dereference(ir_instruction *variable, ir_rvalue *array_index);
virtual ir_dereference *as_dereference()
{
return this;
}
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
bool is_lvalue();
enum {
ir_reference_variable,
ir_reference_array,
ir_reference_record
} mode;
/**
* Object being dereferenced.
*
* Must be either an \c ir_variable or an \c ir_rvalue.
*/
ir_instruction *var;
union {
ir_rvalue *array_index;
const char *field;
} selector;
};
class ir_constant : public ir_rvalue {
public:
ir_constant(const struct glsl_type *type, const void *data);
ir_constant(bool b);
ir_constant(unsigned int u);
ir_constant(int i);
ir_constant(float f);
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
/**
* Value of the constant.
*
* The field used to back the values supplied by the constant is determined
* by the type associated with the \c ir_instruction. Constants may be
* scalars, vectors, or matrices.
*/
union {
unsigned u[16];
int i[16];
float f[16];
bool b[16];
} value;
};
void
visit_exec_list(exec_list *list, ir_visitor *visitor);
extern void
_mesa_glsl_initialize_variables(exec_list *instructions,
struct _mesa_glsl_parse_state *state);
extern void
_mesa_glsl_initialize_functions(exec_list *instructions,
struct _mesa_glsl_parse_state *state);
#endif /* IR_H */