mesa/glsl_types.cpp
Eric Anholt fbc7c0b8f2 Make function bodies rely on the parameter variable declarations.
Previously, generating inlined function bodies was going to be
difficult, as there was no mapping between the body's declaration of
variables where parameter values were supposed to live and the
parameter variables that a caller would use in paramater setup.
Presumably this also have been a problem for actual codegen.
2010-04-07 17:23:23 -07:00

674 lines
19 KiB
C++

/*
* Copyright © 2009 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <cstdio>
#include <stdlib.h>
#include "glsl_symbol_table.h"
#include "glsl_parser_extras.h"
#include "glsl_types.h"
#include "builtin_types.h"
#include "hash_table.h"
hash_table *glsl_type::array_types = NULL;
static void
add_types_to_symbol_table(glsl_symbol_table *symtab,
const struct glsl_type *types,
unsigned num_types, bool warn)
{
(void) warn;
for (unsigned i = 0; i < num_types; i++) {
symtab->add_type(types[i].name, & types[i]);
}
}
static void
generate_110_types(glsl_symbol_table *symtab)
{
add_types_to_symbol_table(symtab, builtin_core_types,
Elements(builtin_core_types),
false);
add_types_to_symbol_table(symtab, builtin_structure_types,
Elements(builtin_structure_types),
false);
add_types_to_symbol_table(symtab, builtin_110_deprecated_structure_types,
Elements(builtin_110_deprecated_structure_types),
false);
add_types_to_symbol_table(symtab, & void_type, 1, false);
}
static void
generate_120_types(glsl_symbol_table *symtab)
{
generate_110_types(symtab);
add_types_to_symbol_table(symtab, builtin_120_types,
Elements(builtin_120_types), false);
}
static void
generate_130_types(glsl_symbol_table *symtab)
{
generate_120_types(symtab);
add_types_to_symbol_table(symtab, builtin_130_types,
Elements(builtin_130_types), false);
}
static void
generate_ARB_texture_rectangle_types(glsl_symbol_table *symtab, bool warn)
{
add_types_to_symbol_table(symtab, builtin_ARB_texture_rectangle_types,
Elements(builtin_ARB_texture_rectangle_types),
warn);
}
void
_mesa_glsl_initialize_types(struct _mesa_glsl_parse_state *state)
{
switch (state->language_version) {
case 110:
generate_110_types(state->symbols);
break;
case 120:
generate_120_types(state->symbols);
break;
case 130:
generate_130_types(state->symbols);
break;
default:
/* error */
break;
}
if (state->ARB_texture_rectangle_enable) {
generate_ARB_texture_rectangle_types(state->symbols,
state->ARB_texture_rectangle_warn);
}
}
const glsl_type *glsl_type::get_base_type() const
{
switch (base_type) {
case GLSL_TYPE_UINT:
return uint_type;
case GLSL_TYPE_INT:
return int_type;
case GLSL_TYPE_FLOAT:
return float_type;
case GLSL_TYPE_BOOL:
return bool_type;
default:
return error_type;
}
}
ir_function *
glsl_type::generate_constructor_prototype(glsl_symbol_table *symtab) const
{
/* FINISHME: Add support for non-array types. */
assert(base_type == GLSL_TYPE_ARRAY);
/* Generate the function name and add it to the symbol table.
*/
ir_function *const f = new ir_function(name);
bool added = symtab->add_function(name, f);
assert(added);
ir_function_signature *const sig = new ir_function_signature(this);
f->add_signature(sig);
for (unsigned i = 0; i < length; i++) {
char *const param_name = (char *) malloc(10);
snprintf(param_name, 10, "p%08X", i);
ir_variable *var = new ir_variable(fields.array, param_name);
var->mode = ir_var_in;
sig->parameters.push_tail(var);
}
return f;
}
/**
* Generate the function intro for a constructor
*
* \param type Data type to be constructed
* \param count Number of parameters to this concrete constructor. Most
* types have at least two constructors. One will take a
* single scalar parameter and the other will take "N"
* scalar parameters.
* \param parameters Storage for the list of parameters. These are
* typically stored in an \c ir_function_signature.
* \param instructions Storage for the preamble and body of the function.
* \param declarations Pointers to the variable declarations for the function
* parameters. These are used later to avoid having to use
* the symbol table.
*/
static ir_label *
generate_constructor_intro(const glsl_type *type, unsigned parameter_count,
ir_function_signature *const signature,
exec_list *instructions,
ir_variable **declarations)
{
/* Names of parameters used in vector and matrix constructors
*/
static const char *const names[] = {
"a", "b", "c", "d", "e", "f", "g", "h",
"i", "j", "k", "l", "m", "n", "o", "p",
};
assert(parameter_count <= Elements(names));
const glsl_type *const parameter_type = type->get_base_type();
ir_label *const label = new ir_label(type->name, signature);
instructions->push_tail(label);
for (unsigned i = 0; i < parameter_count; i++) {
ir_variable *var = new ir_variable(parameter_type, names[i]);
var->mode = ir_var_in;
signature->parameters.push_tail(var);
declarations[i] = var;
}
ir_variable *retval = new ir_variable(type, "__retval");
signature->body.push_tail(retval);
declarations[16] = retval;
return label;
}
/**
* Generate the body of a vector constructor that takes a single scalar
*/
static void
generate_vec_body_from_scalar(exec_list *instructions,
ir_variable **declarations)
{
ir_instruction *inst;
/* Generate a single assignment of the parameter to __retval.x and return
* __retval.xxxx for however many vector components there are.
*/
ir_dereference *const lhs_ref = new ir_dereference(declarations[16]);
ir_dereference *const rhs = new ir_dereference(declarations[0]);
ir_swizzle *lhs = new ir_swizzle(lhs_ref, 0, 0, 0, 0, 1);
inst = new ir_assignment(lhs, rhs, NULL);
instructions->push_tail(inst);
ir_dereference *const retref = new ir_dereference(declarations[16]);
ir_swizzle *retval = new ir_swizzle(retref, 0, 0, 0, 0,
declarations[16]->type->vector_elements);
inst = new ir_return(retval);
instructions->push_tail(inst);
}
/**
* Generate the body of a vector constructor that takes multiple scalars
*/
static void
generate_vec_body_from_N_scalars(exec_list *instructions,
ir_variable **declarations)
{
ir_instruction *inst;
const glsl_type *const vec_type = declarations[16]->type;
/* Generate an assignment of each parameter to a single component of
* __retval.x and return __retval.
*/
for (unsigned i = 0; i < vec_type->vector_elements; i++) {
ir_dereference *const lhs_ref = new ir_dereference(declarations[16]);
ir_dereference *const rhs = new ir_dereference(declarations[i]);
ir_swizzle *lhs = new ir_swizzle(lhs_ref, 1, 0, 0, 0, 1);
inst = new ir_assignment(lhs, rhs, NULL);
instructions->push_tail(inst);
}
ir_dereference *retval = new ir_dereference(declarations[16]);
inst = new ir_return(retval);
instructions->push_tail(inst);
}
/**
* Generate the body of a matrix constructor that takes a single scalar
*/
static void
generate_mat_body_from_scalar(exec_list *instructions,
ir_variable **declarations)
{
ir_instruction *inst;
/* Generate an assignment of the parameter to the X component of a
* temporary vector. Set the remaining fields of the vector to 0. The
* size of the vector is equal to the number of rows of the matrix.
*
* Set each column of the matrix to a successive "rotation" of the
* temporary vector. This fills the matrix with 0s, but writes the single
* scalar along the matrix's diagonal.
*
* For a mat4x3, this is equivalent to:
*
* vec3 tmp;
* mat4x3 __retval;
* tmp.x = a;
* tmp.y = 0.0;
* tmp.z = 0.0;
* __retval[0] = tmp.xyy;
* __retval[1] = tmp.yxy;
* __retval[2] = tmp.yyx;
* __retval[3] = tmp.yyy;
*/
const glsl_type *const column_type = declarations[16]->type->column_type();
const glsl_type *const row_type = declarations[16]->type->row_type();
ir_variable *const column = new ir_variable(column_type, "v");
instructions->push_tail(column);
ir_dereference *const lhs_ref = new ir_dereference(column);
ir_dereference *const rhs = new ir_dereference(declarations[0]);
ir_swizzle *lhs = new ir_swizzle(lhs_ref, 0, 0, 0, 0, 1);
inst = new ir_assignment(lhs, rhs, NULL);
instructions->push_tail(inst);
const float z = 0.0f;
ir_constant *const zero = new ir_constant(glsl_type::float_type, &z);
for (unsigned i = 1; i < column_type->vector_elements; i++) {
ir_dereference *const lhs_ref = new ir_dereference(column);
ir_swizzle *lhs = new ir_swizzle(lhs_ref, i, 0, 0, 0, 1);
inst = new ir_assignment(lhs, zero, NULL);
instructions->push_tail(inst);
}
for (unsigned i = 0; i < row_type->vector_elements; i++) {
static const unsigned swiz[] = { 1, 1, 1, 0, 1, 1, 1 };
ir_dereference *const rhs_ref = new ir_dereference(column);
/* This will be .xyyy when i=0, .yxyy when i=1, etc.
*/
ir_swizzle *rhs = new ir_swizzle(rhs_ref, swiz[3 - i], swiz[4 - i],
swiz[5 - i], swiz[6 - i],
column_type->vector_elements);
ir_constant *const idx = new ir_constant(glsl_type::int_type, &i);
ir_dereference *const lhs = new ir_dereference(declarations[16], idx);
inst = new ir_assignment(lhs, rhs, NULL);
instructions->push_tail(inst);
}
ir_dereference *const retval = new ir_dereference(declarations[16]);
inst = new ir_return(retval);
instructions->push_tail(inst);
}
/**
* Generate the body of a vector constructor that takes multiple scalars
*/
static void
generate_mat_body_from_N_scalars(exec_list *instructions,
ir_variable **declarations)
{
ir_instruction *inst;
const glsl_type *const row_type = declarations[16]->type->row_type();
const glsl_type *const column_type = declarations[16]->type->column_type();
/* Generate an assignment of each parameter to a single component of
* of a particular column of __retval and return __retval.
*/
for (unsigned i = 0; i < column_type->vector_elements; i++) {
for (unsigned j = 0; j < row_type->vector_elements; j++) {
ir_constant *row_index = new ir_constant(glsl_type::int_type, &i);
ir_dereference *const row_access =
new ir_dereference(declarations[16], row_index);
ir_dereference *const component_access_ref =
new ir_dereference(row_access);
ir_swizzle *component_access = new ir_swizzle(component_access_ref,
j, 0, 0, 0, 1);
const unsigned param = (i * row_type->vector_elements) + j;
ir_dereference *const rhs = new ir_dereference(declarations[param]);
inst = new ir_assignment(component_access, rhs, NULL);
instructions->push_tail(inst);
}
}
ir_dereference *retval = new ir_dereference(declarations[16]);
inst = new ir_return(retval);
instructions->push_tail(inst);
}
/**
* Generate the constructors for a set of GLSL types
*
* Constructor implementations are added to \c instructions, and the symbols
* are added to \c symtab.
*/
static void
generate_constructor(glsl_symbol_table *symtab, const struct glsl_type *types,
unsigned num_types, exec_list *instructions)
{
ir_variable *declarations[17];
for (unsigned i = 0; i < num_types; i++) {
/* Only numeric and boolean vectors and matrices get constructors here.
* Structures need to be handled elsewhere. It is expected that scalar
* constructors are never actually called, so they are not generated.
*/
if (!types[i].is_numeric() && !types[i].is_boolean())
continue;
if (types[i].is_scalar())
continue;
/* Generate the function name and add it to the symbol table.
*/
ir_function *const f = new ir_function(types[i].name);
bool added = symtab->add_function(types[i].name, f);
assert(added);
/* Each type has several basic constructors. The total number of forms
* depends on the derived type.
*
* Vectors: 1 scalar, N scalars
* Matrices: 1 scalar, NxM scalars
*
* Several possible types of constructors are not included in this list.
*
* Scalar constructors are not included. The expectation is that the
* IR generator won't actually generate these as constructor calls. The
* expectation is that it will just generate the necessary type
* conversion.
*
* Matrix contructors from matrices are also not included. The
* expectation is that the IR generator will generate a call to the
* appropriate from-scalars constructor.
*/
ir_function_signature *const sig = new ir_function_signature(& types[i]);
f->add_signature(sig);
sig->definition =
generate_constructor_intro(& types[i], 1, sig,
instructions, declarations);
if (types[i].is_vector()) {
generate_vec_body_from_scalar(&sig->body, declarations);
ir_function_signature *const vec_sig =
new ir_function_signature(& types[i]);
f->add_signature(vec_sig);
vec_sig->definition =
generate_constructor_intro(& types[i], types[i].vector_elements,
vec_sig, instructions,
declarations);
generate_vec_body_from_N_scalars(&sig->body, declarations);
} else {
assert(types[i].is_matrix());
generate_mat_body_from_scalar(&sig->body, declarations);
ir_function_signature *const mat_sig =
new ir_function_signature(& types[i]);
f->add_signature(mat_sig);
mat_sig->definition =
generate_constructor_intro(& types[i],
(types[i].vector_elements
* types[i].matrix_columns),
mat_sig, instructions,
declarations);
generate_mat_body_from_N_scalars(instructions, declarations);
}
}
}
void
generate_110_constructors(glsl_symbol_table *symtab, exec_list *instructions)
{
generate_constructor(symtab, builtin_core_types,
Elements(builtin_core_types), instructions);
}
void
generate_120_constructors(glsl_symbol_table *symtab, exec_list *instructions)
{
generate_110_constructors(symtab, instructions);
generate_constructor(symtab, builtin_120_types,
Elements(builtin_120_types), instructions);
}
void
generate_130_constructors(glsl_symbol_table *symtab, exec_list *instructions)
{
generate_120_constructors(symtab, instructions);
generate_constructor(symtab, builtin_130_types,
Elements(builtin_130_types), instructions);
}
void
_mesa_glsl_initialize_constructors(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
switch (state->language_version) {
case 110:
generate_110_constructors(state->symbols, instructions);
break;
case 120:
generate_120_constructors(state->symbols, instructions);
break;
case 130:
generate_130_constructors(state->symbols, instructions);
break;
default:
/* error */
break;
}
}
glsl_type::glsl_type(const glsl_type *array, unsigned length) :
base_type(GLSL_TYPE_ARRAY),
sampler_dimensionality(0), sampler_shadow(0), sampler_array(0),
sampler_type(0),
vector_elements(0), matrix_columns(0),
name(NULL), length(length)
{
this->fields.array = array;
/* Allow a maximum of 10 characters for the array size. This is enough
* for 32-bits of ~0. The extra 3 are for the '[', ']', and terminating
* NUL.
*/
const unsigned name_length = strlen(array->name) + 10 + 3;
char *const n = (char *) malloc(name_length);
if (length == 0)
snprintf(n, name_length, "%s[]", array->name);
else
snprintf(n, name_length, "%s[%u]", array->name, length);
this->name = n;
}
const glsl_type *
glsl_type::get_instance(unsigned base_type, unsigned rows, unsigned columns)
{
if (base_type == GLSL_TYPE_VOID)
return &void_type;
if ((rows < 1) || (rows > 4) || (columns < 1) || (columns > 4))
return error_type;
/* Treat GLSL vectors as Nx1 matrices.
*/
if (columns == 1) {
switch (base_type) {
case GLSL_TYPE_UINT:
return uint_type + (rows - 1);
case GLSL_TYPE_INT:
return int_type + (rows - 1);
case GLSL_TYPE_FLOAT:
return float_type + (rows - 1);
case GLSL_TYPE_BOOL:
return bool_type + (rows - 1);
default:
return error_type;
}
} else {
if ((base_type != GLSL_TYPE_FLOAT) || (rows == 1))
return error_type;
/* GLSL matrix types are named mat{COLUMNS}x{ROWS}. Only the following
* combinations are valid:
*
* 1 2 3 4
* 1
* 2 x x x
* 3 x x x
* 4 x x x
*/
#define IDX(c,r) (((c-1)*3) + (r-1))
switch (IDX(columns, rows)) {
case IDX(2,2): return mat2_type;
case IDX(2,3): return mat2x3_type;
case IDX(2,4): return mat2x4_type;
case IDX(3,2): return mat3x2_type;
case IDX(3,3): return mat3_type;
case IDX(3,4): return mat3x4_type;
case IDX(4,2): return mat4x2_type;
case IDX(4,3): return mat4x3_type;
case IDX(4,4): return mat4_type;
default: return error_type;
}
}
assert(!"Should not get here.");
return error_type;
}
int
glsl_type::array_key_compare(const void *a, const void *b)
{
const glsl_type *const key1 = (glsl_type *) a;
const glsl_type *const key2 = (glsl_type *) b;
/* Return zero is the types match (there is zero difference) or non-zero
* otherwise.
*/
return ((key1->fields.array == key2->fields.array)
&& (key1->length == key2->length)) ? 0 : 1;
}
unsigned
glsl_type::array_key_hash(const void *a)
{
const glsl_type *const key = (glsl_type *) a;
const struct {
const glsl_type *t;
unsigned l;
char nul;
} hash_key = {
key->fields.array,
key->length,
'\0'
};
return hash_table_string_hash(& hash_key);
}
const glsl_type *
glsl_type::get_array_instance(const glsl_type *base, unsigned array_size)
{
const glsl_type key(base, array_size);
if (array_types == NULL) {
array_types = hash_table_ctor(64, array_key_hash, array_key_compare);
}
const glsl_type *t = (glsl_type *) hash_table_find(array_types, & key);
if (t == NULL) {
t = new glsl_type(base, array_size);
hash_table_insert(array_types, (void *) t, t);
}
assert(t->base_type == GLSL_TYPE_ARRAY);
assert(t->length == array_size);
assert(t->fields.array == base);
return t;
}