mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-24 11:00:11 +01:00
Using multiply and reciprocal for integer division involves potentially lossy floating point conversions. This is okay for older GPUs that represent integers as floating point, but undesirable for GPUs with native integer division instructions. TGSI, for example, has UDIV/IDIV instructions for integer division, so it makes sense to handle this directly. Likewise for i965. Reviewed-by: Ian Romanick <ian.d.romanick@intel.com> Signed-off-by: Bryan Cain <bryancain3@gmail.com> Signed-off-by: Kenneth Graunke <kenneth@whitecape.org>
312 lines
9.3 KiB
C++
312 lines
9.3 KiB
C++
/*
|
|
* Copyright © 2010 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
/**
|
|
* \file lower_instructions.cpp
|
|
*
|
|
* Many GPUs lack native instructions for certain expression operations, and
|
|
* must replace them with some other expression tree. This pass lowers some
|
|
* of the most common cases, allowing the lowering code to be implemented once
|
|
* rather than in each driver backend.
|
|
*
|
|
* Currently supported transformations:
|
|
* - SUB_TO_ADD_NEG
|
|
* - DIV_TO_MUL_RCP
|
|
* - INT_DIV_TO_MUL_RCP
|
|
* - EXP_TO_EXP2
|
|
* - POW_TO_EXP2
|
|
* - LOG_TO_LOG2
|
|
* - MOD_TO_FRACT
|
|
*
|
|
* SUB_TO_ADD_NEG:
|
|
* ---------------
|
|
* Breaks an ir_binop_sub expression down to add(op0, neg(op1))
|
|
*
|
|
* This simplifies expression reassociation, and for many backends
|
|
* there is no subtract operation separate from adding the negation.
|
|
* For backends with native subtract operations, they will probably
|
|
* want to recognize add(op0, neg(op1)) or the other way around to
|
|
* produce a subtract anyway.
|
|
*
|
|
* DIV_TO_MUL_RCP and INT_DIV_TO_MUL_RCP:
|
|
* --------------------------------------
|
|
* Breaks an ir_unop_div expression down to op0 * (rcp(op1)).
|
|
*
|
|
* Many GPUs don't have a divide instruction (945 and 965 included),
|
|
* but they do have an RCP instruction to compute an approximate
|
|
* reciprocal. By breaking the operation down, constant reciprocals
|
|
* can get constant folded.
|
|
*
|
|
* DIV_TO_MUL_RCP only lowers floating point division; INT_DIV_TO_MUL_RCP
|
|
* handles the integer case, converting to and from floating point so that
|
|
* RCP is possible.
|
|
*
|
|
* EXP_TO_EXP2 and LOG_TO_LOG2:
|
|
* ----------------------------
|
|
* Many GPUs don't have a base e log or exponent instruction, but they
|
|
* do have base 2 versions, so this pass converts exp and log to exp2
|
|
* and log2 operations.
|
|
*
|
|
* POW_TO_EXP2:
|
|
* -----------
|
|
* Many older GPUs don't have an x**y instruction. For these GPUs, convert
|
|
* x**y to 2**(y * log2(x)).
|
|
*
|
|
* MOD_TO_FRACT:
|
|
* -------------
|
|
* Breaks an ir_unop_mod expression down to (op1 * fract(op0 / op1))
|
|
*
|
|
* Many GPUs don't have a MOD instruction (945 and 965 included), and
|
|
* if we have to break it down like this anyway, it gives an
|
|
* opportunity to do things like constant fold the (1.0 / op1) easily.
|
|
*/
|
|
|
|
#include "main/core.h" /* for M_LOG2E */
|
|
#include "glsl_types.h"
|
|
#include "ir.h"
|
|
#include "ir_optimization.h"
|
|
|
|
class lower_instructions_visitor : public ir_hierarchical_visitor {
|
|
public:
|
|
lower_instructions_visitor(unsigned lower)
|
|
: progress(false), lower(lower) { }
|
|
|
|
ir_visitor_status visit_leave(ir_expression *);
|
|
|
|
bool progress;
|
|
|
|
private:
|
|
unsigned lower; /** Bitfield of which operations to lower */
|
|
|
|
void sub_to_add_neg(ir_expression *);
|
|
void div_to_mul_rcp(ir_expression *);
|
|
void int_div_to_mul_rcp(ir_expression *);
|
|
void mod_to_fract(ir_expression *);
|
|
void exp_to_exp2(ir_expression *);
|
|
void pow_to_exp2(ir_expression *);
|
|
void log_to_log2(ir_expression *);
|
|
};
|
|
|
|
/**
|
|
* Determine if a particular type of lowering should occur
|
|
*/
|
|
#define lowering(x) (this->lower & x)
|
|
|
|
bool
|
|
lower_instructions(exec_list *instructions, unsigned what_to_lower)
|
|
{
|
|
lower_instructions_visitor v(what_to_lower);
|
|
|
|
visit_list_elements(&v, instructions);
|
|
return v.progress;
|
|
}
|
|
|
|
void
|
|
lower_instructions_visitor::sub_to_add_neg(ir_expression *ir)
|
|
{
|
|
ir->operation = ir_binop_add;
|
|
ir->operands[1] = new(ir) ir_expression(ir_unop_neg, ir->operands[1]->type,
|
|
ir->operands[1], NULL);
|
|
this->progress = true;
|
|
}
|
|
|
|
void
|
|
lower_instructions_visitor::div_to_mul_rcp(ir_expression *ir)
|
|
{
|
|
assert(ir->operands[1]->type->is_float());
|
|
|
|
/* New expression for the 1.0 / op1 */
|
|
ir_rvalue *expr;
|
|
expr = new(ir) ir_expression(ir_unop_rcp,
|
|
ir->operands[1]->type,
|
|
ir->operands[1]);
|
|
|
|
/* op0 / op1 -> op0 * (1.0 / op1) */
|
|
ir->operation = ir_binop_mul;
|
|
ir->operands[1] = expr;
|
|
|
|
this->progress = true;
|
|
}
|
|
|
|
void
|
|
lower_instructions_visitor::int_div_to_mul_rcp(ir_expression *ir)
|
|
{
|
|
assert(ir->operands[1]->type->is_integer());
|
|
|
|
/* Be careful with integer division -- we need to do it as a
|
|
* float and re-truncate, since rcp(n > 1) of an integer would
|
|
* just be 0.
|
|
*/
|
|
ir_rvalue *op0, *op1;
|
|
const struct glsl_type *vec_type;
|
|
|
|
vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
|
|
ir->operands[1]->type->vector_elements,
|
|
ir->operands[1]->type->matrix_columns);
|
|
|
|
if (ir->operands[1]->type->base_type == GLSL_TYPE_INT)
|
|
op1 = new(ir) ir_expression(ir_unop_i2f, vec_type, ir->operands[1], NULL);
|
|
else
|
|
op1 = new(ir) ir_expression(ir_unop_u2f, vec_type, ir->operands[1], NULL);
|
|
|
|
op1 = new(ir) ir_expression(ir_unop_rcp, op1->type, op1, NULL);
|
|
|
|
vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
|
|
ir->operands[0]->type->vector_elements,
|
|
ir->operands[0]->type->matrix_columns);
|
|
|
|
if (ir->operands[0]->type->base_type == GLSL_TYPE_INT)
|
|
op0 = new(ir) ir_expression(ir_unop_i2f, vec_type, ir->operands[0], NULL);
|
|
else
|
|
op0 = new(ir) ir_expression(ir_unop_u2f, vec_type, ir->operands[0], NULL);
|
|
|
|
vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
|
|
ir->type->vector_elements,
|
|
ir->type->matrix_columns);
|
|
|
|
op0 = new(ir) ir_expression(ir_binop_mul, vec_type, op0, op1);
|
|
|
|
if (ir->operands[1]->type->base_type == GLSL_TYPE_INT) {
|
|
ir->operation = ir_unop_f2i;
|
|
ir->operands[0] = op0;
|
|
} else {
|
|
ir->operation = ir_unop_i2u;
|
|
ir->operands[0] = new(ir) ir_expression(ir_unop_f2i, op0);
|
|
}
|
|
ir->operands[1] = NULL;
|
|
|
|
this->progress = true;
|
|
}
|
|
|
|
void
|
|
lower_instructions_visitor::exp_to_exp2(ir_expression *ir)
|
|
{
|
|
ir_constant *log2_e = new(ir) ir_constant(float(M_LOG2E));
|
|
|
|
ir->operation = ir_unop_exp2;
|
|
ir->operands[0] = new(ir) ir_expression(ir_binop_mul, ir->operands[0]->type,
|
|
ir->operands[0], log2_e);
|
|
this->progress = true;
|
|
}
|
|
|
|
void
|
|
lower_instructions_visitor::pow_to_exp2(ir_expression *ir)
|
|
{
|
|
ir_expression *const log2_x =
|
|
new(ir) ir_expression(ir_unop_log2, ir->operands[0]->type,
|
|
ir->operands[0]);
|
|
|
|
ir->operation = ir_unop_exp2;
|
|
ir->operands[0] = new(ir) ir_expression(ir_binop_mul, ir->operands[1]->type,
|
|
ir->operands[1], log2_x);
|
|
ir->operands[1] = NULL;
|
|
this->progress = true;
|
|
}
|
|
|
|
void
|
|
lower_instructions_visitor::log_to_log2(ir_expression *ir)
|
|
{
|
|
ir->operation = ir_binop_mul;
|
|
ir->operands[0] = new(ir) ir_expression(ir_unop_log2, ir->operands[0]->type,
|
|
ir->operands[0], NULL);
|
|
ir->operands[1] = new(ir) ir_constant(float(1.0 / M_LOG2E));
|
|
this->progress = true;
|
|
}
|
|
|
|
void
|
|
lower_instructions_visitor::mod_to_fract(ir_expression *ir)
|
|
{
|
|
ir_variable *temp = new(ir) ir_variable(ir->operands[1]->type, "mod_b",
|
|
ir_var_temporary);
|
|
this->base_ir->insert_before(temp);
|
|
|
|
ir_assignment *const assign =
|
|
new(ir) ir_assignment(new(ir) ir_dereference_variable(temp),
|
|
ir->operands[1], NULL);
|
|
|
|
this->base_ir->insert_before(assign);
|
|
|
|
ir_expression *const div_expr =
|
|
new(ir) ir_expression(ir_binop_div, ir->operands[0]->type,
|
|
ir->operands[0],
|
|
new(ir) ir_dereference_variable(temp));
|
|
|
|
/* Don't generate new IR that would need to be lowered in an additional
|
|
* pass.
|
|
*/
|
|
if (lowering(DIV_TO_MUL_RCP))
|
|
div_to_mul_rcp(div_expr);
|
|
|
|
ir_rvalue *expr = new(ir) ir_expression(ir_unop_fract,
|
|
ir->operands[0]->type,
|
|
div_expr,
|
|
NULL);
|
|
|
|
ir->operation = ir_binop_mul;
|
|
ir->operands[0] = new(ir) ir_dereference_variable(temp);
|
|
ir->operands[1] = expr;
|
|
this->progress = true;
|
|
}
|
|
|
|
ir_visitor_status
|
|
lower_instructions_visitor::visit_leave(ir_expression *ir)
|
|
{
|
|
switch (ir->operation) {
|
|
case ir_binop_sub:
|
|
if (lowering(SUB_TO_ADD_NEG))
|
|
sub_to_add_neg(ir);
|
|
break;
|
|
|
|
case ir_binop_div:
|
|
if (ir->operands[1]->type->is_integer() && lowering(INT_DIV_TO_MUL_RCP))
|
|
int_div_to_mul_rcp(ir);
|
|
else if (ir->operands[1]->type->is_float() && lowering(DIV_TO_MUL_RCP))
|
|
div_to_mul_rcp(ir);
|
|
break;
|
|
|
|
case ir_unop_exp:
|
|
if (lowering(EXP_TO_EXP2))
|
|
exp_to_exp2(ir);
|
|
break;
|
|
|
|
case ir_unop_log:
|
|
if (lowering(LOG_TO_LOG2))
|
|
log_to_log2(ir);
|
|
break;
|
|
|
|
case ir_binop_mod:
|
|
if (lowering(MOD_TO_FRACT) && ir->type->is_float())
|
|
mod_to_fract(ir);
|
|
break;
|
|
|
|
case ir_binop_pow:
|
|
if (lowering(POW_TO_EXP2))
|
|
pow_to_exp2(ir);
|
|
break;
|
|
|
|
default:
|
|
return visit_continue;
|
|
}
|
|
|
|
return visit_continue;
|
|
}
|