mesa/src/compiler/nir/nir_opt_vectorize.c
Eric Anholt f25e169897 nir/opt_vectorize: Add a callback for filtering of vectorizing.
For NIR-to-TGSI, we don't want to revectorize 64-bit ops that we split to
scalar beyond vec2 width.  We even have some ops that we would rather
retain as scalar due to TGSI opcodes being scalar, or having more unusual
requirements.

This could be used to do the vectorize_vec2_16bit filtering, but that
shader compiler option is also used in algebraic so leave it in place for
now.

Reviewed-by: Marek Olšák <marek.olsak@amd.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/6567>
2020-09-02 09:59:17 -07:00

495 lines
15 KiB
C

/*
* Copyright © 2015 Connor Abbott
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "nir.h"
#include "nir_vla.h"
#include "nir_builder.h"
#include "util/u_dynarray.h"
#define HASH(hash, data) XXH32(&data, sizeof(data), hash)
static uint32_t
hash_src(uint32_t hash, const nir_src *src)
{
assert(src->is_ssa);
void *hash_data = nir_src_is_const(*src) ? NULL : src->ssa;
return HASH(hash, hash_data);
}
static uint32_t
hash_alu_src(uint32_t hash, const nir_alu_src *src)
{
assert(!src->abs && !src->negate);
/* intentionally don't hash swizzle */
return hash_src(hash, &src->src);
}
static uint32_t
hash_alu(uint32_t hash, const nir_alu_instr *instr)
{
hash = HASH(hash, instr->op);
hash = HASH(hash, instr->dest.dest.ssa.bit_size);
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
hash = hash_alu_src(hash, &instr->src[i]);
return hash;
}
static uint32_t
hash_instr(const nir_instr *instr)
{
uint32_t hash = 0;
switch (instr->type) {
case nir_instr_type_alu:
return hash_alu(hash, nir_instr_as_alu(instr));
default:
unreachable("bad instruction type");
}
}
static bool
srcs_equal(const nir_src *src1, const nir_src *src2)
{
assert(src1->is_ssa);
assert(src2->is_ssa);
return src1->ssa == src2->ssa ||
nir_src_is_const(*src1) == nir_src_is_const(*src2);
}
static bool
alu_srcs_equal(const nir_alu_src *src1, const nir_alu_src *src2)
{
assert(!src1->abs);
assert(!src1->negate);
assert(!src2->abs);
assert(!src2->negate);
return srcs_equal(&src1->src, &src2->src);
}
static bool
instrs_equal(const nir_instr *instr1, const nir_instr *instr2)
{
switch (instr1->type) {
case nir_instr_type_alu: {
nir_alu_instr *alu1 = nir_instr_as_alu(instr1);
nir_alu_instr *alu2 = nir_instr_as_alu(instr2);
if (alu1->op != alu2->op)
return false;
if (alu1->dest.dest.ssa.bit_size != alu2->dest.dest.ssa.bit_size)
return false;
for (unsigned i = 0; i < nir_op_infos[alu1->op].num_inputs; i++) {
if (!alu_srcs_equal(&alu1->src[i], &alu2->src[i]))
return false;
}
return true;
}
default:
unreachable("bad instruction type");
}
}
static bool
instr_can_rewrite(nir_instr *instr)
{
switch (instr->type) {
case nir_instr_type_alu: {
nir_alu_instr *alu = nir_instr_as_alu(instr);
/* Don't try and vectorize mov's. Either they'll be handled by copy
* prop, or they're actually necessary and trying to vectorize them
* would result in fighting with copy prop.
*/
if (alu->op == nir_op_mov)
return false;
if (nir_op_infos[alu->op].output_size != 0)
return false;
for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
if (nir_op_infos[alu->op].input_sizes[i] != 0)
return false;
}
return true;
}
/* TODO support phi nodes */
default:
break;
}
return false;
}
/*
* Tries to combine two instructions whose sources are different components of
* the same instructions into one vectorized instruction. Note that instr1
* should dominate instr2.
*/
static nir_instr *
instr_try_combine(struct nir_shader *nir, nir_instr *instr1, nir_instr *instr2,
nir_opt_vectorize_cb filter, void *data)
{
assert(instr1->type == nir_instr_type_alu);
assert(instr2->type == nir_instr_type_alu);
nir_alu_instr *alu1 = nir_instr_as_alu(instr1);
nir_alu_instr *alu2 = nir_instr_as_alu(instr2);
assert(alu1->dest.dest.ssa.bit_size == alu2->dest.dest.ssa.bit_size);
unsigned alu1_components = alu1->dest.dest.ssa.num_components;
unsigned alu2_components = alu2->dest.dest.ssa.num_components;
unsigned total_components = alu1_components + alu2_components;
if (total_components > 4)
return NULL;
if (nir->options->vectorize_vec2_16bit &&
(total_components > 2 || alu1->dest.dest.ssa.bit_size != 16))
return NULL;
if (filter && !filter(&alu1->instr, &alu2->instr, data))
return NULL;
nir_builder b;
nir_builder_init(&b, nir_cf_node_get_function(&instr1->block->cf_node));
b.cursor = nir_after_instr(instr1);
nir_alu_instr *new_alu = nir_alu_instr_create(b.shader, alu1->op);
nir_ssa_dest_init(&new_alu->instr, &new_alu->dest.dest,
total_components, alu1->dest.dest.ssa.bit_size, NULL);
new_alu->dest.write_mask = (1 << total_components) - 1;
for (unsigned i = 0; i < nir_op_infos[alu1->op].num_inputs; i++) {
/* handle constant merging case */
if (alu1->src[i].src.ssa != alu2->src[i].src.ssa) {
nir_const_value *c1 = nir_src_as_const_value(alu1->src[i].src);
nir_const_value *c2 = nir_src_as_const_value(alu2->src[i].src);
assert(c1 && c2);
nir_const_value value[4];
unsigned bit_size = alu1->src[i].src.ssa->bit_size;
for (unsigned j = 0; j < total_components; j++) {
value[j].u64 = j < alu1_components ?
c1[alu1->src[i].swizzle[j]].u64 :
c2[alu2->src[i].swizzle[j - alu1_components]].u64;
}
nir_ssa_def *def = nir_build_imm(&b, total_components, bit_size, value);
new_alu->src[i].src = nir_src_for_ssa(def);
for (unsigned j = 0; j < total_components; j++)
new_alu->src[i].swizzle[j] = j;
continue;
}
new_alu->src[i].src = alu1->src[i].src;
for (unsigned j = 0; j < alu1_components; j++)
new_alu->src[i].swizzle[j] = alu1->src[i].swizzle[j];
for (unsigned j = 0; j < alu2_components; j++) {
new_alu->src[i].swizzle[j + alu1_components] =
alu2->src[i].swizzle[j];
}
}
nir_builder_instr_insert(&b, &new_alu->instr);
unsigned swiz[4] = {0, 1, 2, 3};
nir_ssa_def *new_alu1 = nir_swizzle(&b, &new_alu->dest.dest.ssa, swiz,
alu1_components);
for (unsigned i = 0; i < alu2_components; i++)
swiz[i] += alu1_components;
nir_ssa_def *new_alu2 = nir_swizzle(&b, &new_alu->dest.dest.ssa, swiz,
alu2_components);
nir_foreach_use_safe(src, &alu1->dest.dest.ssa) {
if (src->parent_instr->type == nir_instr_type_alu) {
/* For ALU instructions, rewrite the source directly to avoid a
* round-trip through copy propagation.
*/
nir_instr_rewrite_src(src->parent_instr, src,
nir_src_for_ssa(&new_alu->dest.dest.ssa));
} else {
nir_instr_rewrite_src(src->parent_instr, src,
nir_src_for_ssa(new_alu1));
}
}
nir_foreach_if_use_safe(src, &alu1->dest.dest.ssa) {
nir_if_rewrite_condition(src->parent_if, nir_src_for_ssa(new_alu1));
}
assert(list_is_empty(&alu1->dest.dest.ssa.uses));
assert(list_is_empty(&alu1->dest.dest.ssa.if_uses));
nir_foreach_use_safe(src, &alu2->dest.dest.ssa) {
if (src->parent_instr->type == nir_instr_type_alu) {
/* For ALU instructions, rewrite the source directly to avoid a
* round-trip through copy propagation.
*/
nir_alu_instr *use = nir_instr_as_alu(src->parent_instr);
unsigned src_index = 5;
for (unsigned i = 0; i < nir_op_infos[use->op].num_inputs; i++) {
if (&use->src[i].src == src) {
src_index = i;
break;
}
}
assert(src_index != 5);
nir_instr_rewrite_src(src->parent_instr, src,
nir_src_for_ssa(&new_alu->dest.dest.ssa));
for (unsigned i = 0;
i < nir_ssa_alu_instr_src_components(use, src_index); i++) {
use->src[src_index].swizzle[i] += alu1_components;
}
} else {
nir_instr_rewrite_src(src->parent_instr, src,
nir_src_for_ssa(new_alu2));
}
}
nir_foreach_if_use_safe(src, &alu2->dest.dest.ssa) {
nir_if_rewrite_condition(src->parent_if, nir_src_for_ssa(new_alu2));
}
assert(list_is_empty(&alu2->dest.dest.ssa.uses));
assert(list_is_empty(&alu2->dest.dest.ssa.if_uses));
nir_instr_remove(instr1);
nir_instr_remove(instr2);
return &new_alu->instr;
}
/*
* Use an array to represent a stack of instructions that are equivalent.
*
* We push and pop instructions off the stack in dominance order. The first
* element dominates the second element which dominates the third, etc. When
* trying to add to the stack, first we try and combine the instruction with
* each of the instructions on the stack and, if successful, replace the
* instruction on the stack with the newly-combined instruction.
*/
static struct util_dynarray *
vec_instr_stack_create(void *mem_ctx)
{
struct util_dynarray *stack = ralloc(mem_ctx, struct util_dynarray);
util_dynarray_init(stack, mem_ctx);
return stack;
}
/* returns true if we were able to successfully replace the instruction */
static bool
vec_instr_stack_push(struct nir_shader *nir, struct util_dynarray *stack,
nir_instr *instr,
nir_opt_vectorize_cb filter, void *data)
{
/* Walk the stack from child to parent to make live ranges shorter by
* matching the closest thing we can
*/
util_dynarray_foreach_reverse(stack, nir_instr *, stack_instr) {
nir_instr *new_instr = instr_try_combine(nir, *stack_instr, instr,
filter, data);
if (new_instr) {
*stack_instr = new_instr;
return true;
}
}
util_dynarray_append(stack, nir_instr *, instr);
return false;
}
static void
vec_instr_stack_pop(struct util_dynarray *stack, nir_instr *instr)
{
ASSERTED nir_instr *last = util_dynarray_pop(stack, nir_instr *);
assert(last == instr);
}
static bool
cmp_func(const void *data1, const void *data2)
{
const struct util_dynarray *arr1 = data1;
const struct util_dynarray *arr2 = data2;
const nir_instr *instr1 = *(nir_instr **)util_dynarray_begin(arr1);
const nir_instr *instr2 = *(nir_instr **)util_dynarray_begin(arr2);
return instrs_equal(instr1, instr2);
}
static uint32_t
hash_stack(const void *data)
{
const struct util_dynarray *stack = data;
const nir_instr *first = *(nir_instr **)util_dynarray_begin(stack);
return hash_instr(first);
}
static struct set *
vec_instr_set_create(void)
{
return _mesa_set_create(NULL, hash_stack, cmp_func);
}
static void
vec_instr_set_destroy(struct set *instr_set)
{
_mesa_set_destroy(instr_set, NULL);
}
static bool
vec_instr_set_add_or_rewrite(struct nir_shader *nir, struct set *instr_set,
nir_instr *instr,
nir_opt_vectorize_cb filter, void *data)
{
if (!instr_can_rewrite(instr))
return false;
struct util_dynarray *new_stack = vec_instr_stack_create(instr_set);
vec_instr_stack_push(nir, new_stack, instr, filter, data);
struct set_entry *entry = _mesa_set_search(instr_set, new_stack);
if (entry) {
ralloc_free(new_stack);
struct util_dynarray *stack = (struct util_dynarray *) entry->key;
return vec_instr_stack_push(nir, stack, instr, filter, data);
}
_mesa_set_add(instr_set, new_stack);
return false;
}
static void
vec_instr_set_remove(struct nir_shader *nir, struct set *instr_set,
nir_instr *instr, nir_opt_vectorize_cb filter, void *data)
{
if (!instr_can_rewrite(instr))
return;
/*
* It's pretty unfortunate that we have to do this, but it's a side effect
* of the hash set interfaces. The hash set assumes that we're only
* interested in storing one equivalent element at a time, and if we try to
* insert a duplicate element it will remove the original. We could hack up
* the comparison function to "know" which input is an instruction we
* passed in and which is an array that's part of the entry, but that
* wouldn't work because we need to pass an array to _mesa_set_add() in
* vec_instr_add_or_rewrite() above, and _mesa_set_add() will call our
* comparison function as well.
*/
struct util_dynarray *temp = vec_instr_stack_create(instr_set);
vec_instr_stack_push(nir, temp, instr, filter, data);
struct set_entry *entry = _mesa_set_search(instr_set, temp);
ralloc_free(temp);
if (entry) {
struct util_dynarray *stack = (struct util_dynarray *) entry->key;
if (util_dynarray_num_elements(stack, nir_instr *) > 1)
vec_instr_stack_pop(stack, instr);
else
_mesa_set_remove(instr_set, entry);
}
}
static bool
vectorize_block(struct nir_shader *nir, nir_block *block,
struct set *instr_set,
nir_opt_vectorize_cb filter, void *data)
{
bool progress = false;
nir_foreach_instr_safe(instr, block) {
if (vec_instr_set_add_or_rewrite(nir, instr_set, instr, filter, data))
progress = true;
}
for (unsigned i = 0; i < block->num_dom_children; i++) {
nir_block *child = block->dom_children[i];
progress |= vectorize_block(nir, child, instr_set, filter, data);
}
nir_foreach_instr_reverse(instr, block)
vec_instr_set_remove(nir, instr_set, instr, filter, data);
return progress;
}
static bool
nir_opt_vectorize_impl(struct nir_shader *nir, nir_function_impl *impl,
nir_opt_vectorize_cb filter, void *data)
{
struct set *instr_set = vec_instr_set_create();
nir_metadata_require(impl, nir_metadata_dominance);
bool progress = vectorize_block(nir, nir_start_block(impl), instr_set,
filter, data);
if (progress)
nir_metadata_preserve(impl, nir_metadata_block_index |
nir_metadata_dominance);
vec_instr_set_destroy(instr_set);
return progress;
}
bool
nir_opt_vectorize(nir_shader *shader, nir_opt_vectorize_cb filter,
void *data)
{
bool progress = false;
nir_foreach_function(function, shader) {
if (function->impl)
progress |= nir_opt_vectorize_impl(shader, function->impl, filter, data);
}
return progress;
}