mesa/src/intel/perf/gen_perf_query.c
Lionel Landwerlin ec1fa1d51f intel/perf: fix raw query kernel metric selection
The raw query is meant to be used with MDAPI [1]. When using this
metric without this library, we usually selected the TestOa metric to
provide some default sensible values (instead of undefined).
Historically this TestOa metric lived in the kernel at ID=1. We
removed all metrics from the kernel in kernel commit 9aba9c188da136
("drm/i915/perf: remove generated code").

This fixes the Mesa code to use a valid metric set ID (1 could work
some of the time, but not guaranteed).

[1] : https://github.com/intel/metrics-discovery

v2: Store fallback metric at init time

v3: Drop TestOa lookout

v4: Skip the existing queries (Marcin)

Signed-off-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
CC: <mesa-stable@lists.freedesktop.org>
Tested-by: Marcin Ślusarz <marcin.slusarz@intel.com> (v1)
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/6438>
2020-08-24 18:52:23 +00:00

1600 lines
53 KiB
C

/*
* Copyright © 2019 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <unistd.h>
#include "common/gen_gem.h"
#include "dev/gen_debug.h"
#include "dev/gen_device_info.h"
#include "perf/gen_perf.h"
#include "perf/gen_perf_mdapi.h"
#include "perf/gen_perf_private.h"
#include "perf/gen_perf_query.h"
#include "perf/gen_perf_regs.h"
#include "drm-uapi/i915_drm.h"
#include "util/u_math.h"
#define FILE_DEBUG_FLAG DEBUG_PERFMON
#define MI_RPC_BO_SIZE 4096
#define MI_FREQ_START_OFFSET_BYTES (3072)
#define MI_RPC_BO_END_OFFSET_BYTES (MI_RPC_BO_SIZE / 2)
#define MI_FREQ_END_OFFSET_BYTES (3076)
#define MAP_READ (1 << 0)
#define MAP_WRITE (1 << 1)
/**
* Periodic OA samples are read() into these buffer structures via the
* i915 perf kernel interface and appended to the
* perf_ctx->sample_buffers linked list. When we process the
* results of an OA metrics query we need to consider all the periodic
* samples between the Begin and End MI_REPORT_PERF_COUNT command
* markers.
*
* 'Periodic' is a simplification as there are other automatic reports
* written by the hardware also buffered here.
*
* Considering three queries, A, B and C:
*
* Time ---->
* ________________A_________________
* | |
* | ________B_________ _____C___________
* | | | | | |
*
* And an illustration of sample buffers read over this time frame:
* [HEAD ][ ][ ][ ][ ][ ][ ][ ][TAIL ]
*
* These nodes may hold samples for query A:
* [ ][ ][ A ][ A ][ A ][ A ][ A ][ ][ ]
*
* These nodes may hold samples for query B:
* [ ][ ][ B ][ B ][ B ][ ][ ][ ][ ]
*
* These nodes may hold samples for query C:
* [ ][ ][ ][ ][ ][ C ][ C ][ C ][ ]
*
* The illustration assumes we have an even distribution of periodic
* samples so all nodes have the same size plotted against time:
*
* Note, to simplify code, the list is never empty.
*
* With overlapping queries we can see that periodic OA reports may
* relate to multiple queries and care needs to be take to keep
* track of sample buffers until there are no queries that might
* depend on their contents.
*
* We use a node ref counting system where a reference ensures that a
* node and all following nodes can't be freed/recycled until the
* reference drops to zero.
*
* E.g. with a ref of one here:
* [ 0 ][ 0 ][ 1 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ]
*
* These nodes could be freed or recycled ("reaped"):
* [ 0 ][ 0 ]
*
* These must be preserved until the leading ref drops to zero:
* [ 1 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ]
*
* When a query starts we take a reference on the current tail of
* the list, knowing that no already-buffered samples can possibly
* relate to the newly-started query. A pointer to this node is
* also saved in the query object's ->oa.samples_head.
*
* E.g. starting query A while there are two nodes in .sample_buffers:
* ________________A________
* |
*
* [ 0 ][ 1 ]
* ^_______ Add a reference and store pointer to node in
* A->oa.samples_head
*
* Moving forward to when the B query starts with no new buffer nodes:
* (for reference, i915 perf reads() are only done when queries finish)
* ________________A_______
* | ________B___
* | |
*
* [ 0 ][ 2 ]
* ^_______ Add a reference and store pointer to
* node in B->oa.samples_head
*
* Once a query is finished, after an OA query has become 'Ready',
* once the End OA report has landed and after we we have processed
* all the intermediate periodic samples then we drop the
* ->oa.samples_head reference we took at the start.
*
* So when the B query has finished we have:
* ________________A________
* | ______B___________
* | | |
* [ 0 ][ 1 ][ 0 ][ 0 ][ 0 ]
* ^_______ Drop B->oa.samples_head reference
*
* We still can't free these due to the A->oa.samples_head ref:
* [ 1 ][ 0 ][ 0 ][ 0 ]
*
* When the A query finishes: (note there's a new ref for C's samples_head)
* ________________A_________________
* | |
* | _____C_________
* | | |
* [ 0 ][ 0 ][ 0 ][ 0 ][ 1 ][ 0 ][ 0 ]
* ^_______ Drop A->oa.samples_head reference
*
* And we can now reap these nodes up to the C->oa.samples_head:
* [ X ][ X ][ X ][ X ]
* keeping -> [ 1 ][ 0 ][ 0 ]
*
* We reap old sample buffers each time we finish processing an OA
* query by iterating the sample_buffers list from the head until we
* find a referenced node and stop.
*
* Reaped buffers move to a perfquery.free_sample_buffers list and
* when we come to read() we first look to recycle a buffer from the
* free_sample_buffers list before allocating a new buffer.
*/
struct oa_sample_buf {
struct exec_node link;
int refcount;
int len;
uint8_t buf[I915_PERF_OA_SAMPLE_SIZE * 10];
uint32_t last_timestamp;
};
/**
* gen representation of a performance query object.
*
* NB: We want to keep this structure relatively lean considering that
* applications may expect to allocate enough objects to be able to
* query around all draw calls in a frame.
*/
struct gen_perf_query_object
{
const struct gen_perf_query_info *queryinfo;
/* See query->kind to know which state below is in use... */
union {
struct {
/**
* BO containing OA counter snapshots at query Begin/End time.
*/
void *bo;
/**
* Address of mapped of @bo
*/
void *map;
/**
* The MI_REPORT_PERF_COUNT command lets us specify a unique
* ID that will be reflected in the resulting OA report
* that's written by the GPU. This is the ID we're expecting
* in the begin report and the the end report should be
* @begin_report_id + 1.
*/
int begin_report_id;
/**
* Reference the head of the brw->perfquery.sample_buffers
* list at the time that the query started (so we only need
* to look at nodes after this point when looking for samples
* related to this query)
*
* (See struct brw_oa_sample_buf description for more details)
*/
struct exec_node *samples_head;
/**
* false while in the unaccumulated_elements list, and set to
* true when the final, end MI_RPC snapshot has been
* accumulated.
*/
bool results_accumulated;
/**
* Frequency of the GT at begin and end of the query.
*/
uint64_t gt_frequency[2];
/**
* Accumulated OA results between begin and end of the query.
*/
struct gen_perf_query_result result;
} oa;
struct {
/**
* BO containing starting and ending snapshots for the
* statistics counters.
*/
void *bo;
} pipeline_stats;
};
};
struct gen_perf_context {
struct gen_perf_config *perf;
void * ctx; /* driver context (eg, brw_context) */
void * bufmgr;
const struct gen_device_info *devinfo;
uint32_t hw_ctx;
int drm_fd;
/* The i915 perf stream we open to setup + enable the OA counters */
int oa_stream_fd;
/* An i915 perf stream fd gives exclusive access to the OA unit that will
* report counter snapshots for a specific counter set/profile in a
* specific layout/format so we can only start OA queries that are
* compatible with the currently open fd...
*/
int current_oa_metrics_set_id;
int current_oa_format;
/* List of buffers containing OA reports */
struct exec_list sample_buffers;
/* Cached list of empty sample buffers */
struct exec_list free_sample_buffers;
int n_active_oa_queries;
int n_active_pipeline_stats_queries;
/* The number of queries depending on running OA counters which
* extends beyond brw_end_perf_query() since we need to wait until
* the last MI_RPC command has parsed by the GPU.
*
* Accurate accounting is important here as emitting an
* MI_REPORT_PERF_COUNT command while the OA unit is disabled will
* effectively hang the gpu.
*/
int n_oa_users;
/* To help catch an spurious problem with the hardware or perf
* forwarding samples, we emit each MI_REPORT_PERF_COUNT command
* with a unique ID that we can explicitly check for...
*/
int next_query_start_report_id;
/**
* An array of queries whose results haven't yet been assembled
* based on the data in buffer objects.
*
* These may be active, or have already ended. However, the
* results have not been requested.
*/
struct gen_perf_query_object **unaccumulated;
int unaccumulated_elements;
int unaccumulated_array_size;
/* The total number of query objects so we can relinquish
* our exclusive access to perf if the application deletes
* all of its objects. (NB: We only disable perf while
* there are no active queries)
*/
int n_query_instances;
};
static bool
inc_n_users(struct gen_perf_context *perf_ctx)
{
if (perf_ctx->n_oa_users == 0 &&
gen_ioctl(perf_ctx->oa_stream_fd, I915_PERF_IOCTL_ENABLE, 0) < 0)
{
return false;
}
++perf_ctx->n_oa_users;
return true;
}
static void
dec_n_users(struct gen_perf_context *perf_ctx)
{
/* Disabling the i915 perf stream will effectively disable the OA
* counters. Note it's important to be sure there are no outstanding
* MI_RPC commands at this point since they could stall the CS
* indefinitely once OACONTROL is disabled.
*/
--perf_ctx->n_oa_users;
if (perf_ctx->n_oa_users == 0 &&
gen_ioctl(perf_ctx->oa_stream_fd, I915_PERF_IOCTL_DISABLE, 0) < 0)
{
DBG("WARNING: Error disabling gen perf stream: %m\n");
}
}
static void
gen_perf_close(struct gen_perf_context *perfquery,
const struct gen_perf_query_info *query)
{
if (perfquery->oa_stream_fd != -1) {
close(perfquery->oa_stream_fd);
perfquery->oa_stream_fd = -1;
}
if (query->kind == GEN_PERF_QUERY_TYPE_RAW) {
struct gen_perf_query_info *raw_query =
(struct gen_perf_query_info *) query;
raw_query->oa_metrics_set_id = 0;
}
}
#define NUM_PERF_PROPERTIES(array) (ARRAY_SIZE(array) / 2)
static bool
gen_perf_open(struct gen_perf_context *perf_ctx,
int metrics_set_id,
int report_format,
int period_exponent,
int drm_fd,
uint32_t ctx_id)
{
uint64_t properties[] = {
/* Single context sampling */
DRM_I915_PERF_PROP_CTX_HANDLE, ctx_id,
/* Include OA reports in samples */
DRM_I915_PERF_PROP_SAMPLE_OA, true,
/* OA unit configuration */
DRM_I915_PERF_PROP_OA_METRICS_SET, metrics_set_id,
DRM_I915_PERF_PROP_OA_FORMAT, report_format,
DRM_I915_PERF_PROP_OA_EXPONENT, period_exponent,
/* SSEU configuration */
DRM_I915_PERF_PROP_GLOBAL_SSEU, to_user_pointer(&perf_ctx->perf->sseu),
};
struct drm_i915_perf_open_param param = {
.flags = I915_PERF_FLAG_FD_CLOEXEC |
I915_PERF_FLAG_FD_NONBLOCK |
I915_PERF_FLAG_DISABLED,
.num_properties = perf_ctx->perf->i915_perf_version >= 4 ?
NUM_PERF_PROPERTIES(properties) :
NUM_PERF_PROPERTIES(properties) - 1,
.properties_ptr = (uintptr_t) properties,
};
int fd = gen_ioctl(drm_fd, DRM_IOCTL_I915_PERF_OPEN, &param);
if (fd == -1) {
DBG("Error opening gen perf OA stream: %m\n");
return false;
}
perf_ctx->oa_stream_fd = fd;
perf_ctx->current_oa_metrics_set_id = metrics_set_id;
perf_ctx->current_oa_format = report_format;
return true;
}
static uint64_t
get_metric_id(struct gen_perf_config *perf,
const struct gen_perf_query_info *query)
{
/* These queries are know not to ever change, their config ID has been
* loaded upon the first query creation. No need to look them up again.
*/
if (query->kind == GEN_PERF_QUERY_TYPE_OA)
return query->oa_metrics_set_id;
assert(query->kind == GEN_PERF_QUERY_TYPE_RAW);
/* Raw queries can be reprogrammed up by an external application/library.
* When a raw query is used for the first time it's id is set to a value !=
* 0. When it stops being used the id returns to 0. No need to reload the
* ID when it's already loaded.
*/
if (query->oa_metrics_set_id != 0) {
DBG("Raw query '%s' guid=%s using cached ID: %"PRIu64"\n",
query->name, query->guid, query->oa_metrics_set_id);
return query->oa_metrics_set_id;
}
struct gen_perf_query_info *raw_query = (struct gen_perf_query_info *)query;
if (!gen_perf_load_metric_id(perf, query->guid,
&raw_query->oa_metrics_set_id)) {
DBG("Unable to read query guid=%s ID, falling back to test config\n", query->guid);
raw_query->oa_metrics_set_id = perf->fallback_raw_oa_metric;
} else {
DBG("Raw query '%s'guid=%s loaded ID: %"PRIu64"\n",
query->name, query->guid, query->oa_metrics_set_id);
}
return query->oa_metrics_set_id;
}
static struct oa_sample_buf *
get_free_sample_buf(struct gen_perf_context *perf_ctx)
{
struct exec_node *node = exec_list_pop_head(&perf_ctx->free_sample_buffers);
struct oa_sample_buf *buf;
if (node)
buf = exec_node_data(struct oa_sample_buf, node, link);
else {
buf = ralloc_size(perf_ctx->perf, sizeof(*buf));
exec_node_init(&buf->link);
buf->refcount = 0;
}
buf->len = 0;
return buf;
}
static void
reap_old_sample_buffers(struct gen_perf_context *perf_ctx)
{
struct exec_node *tail_node =
exec_list_get_tail(&perf_ctx->sample_buffers);
struct oa_sample_buf *tail_buf =
exec_node_data(struct oa_sample_buf, tail_node, link);
/* Remove all old, unreferenced sample buffers walking forward from
* the head of the list, except always leave at least one node in
* the list so we always have a node to reference when we Begin
* a new query.
*/
foreach_list_typed_safe(struct oa_sample_buf, buf, link,
&perf_ctx->sample_buffers)
{
if (buf->refcount == 0 && buf != tail_buf) {
exec_node_remove(&buf->link);
exec_list_push_head(&perf_ctx->free_sample_buffers, &buf->link);
} else
return;
}
}
static void
free_sample_bufs(struct gen_perf_context *perf_ctx)
{
foreach_list_typed_safe(struct oa_sample_buf, buf, link,
&perf_ctx->free_sample_buffers)
ralloc_free(buf);
exec_list_make_empty(&perf_ctx->free_sample_buffers);
}
struct gen_perf_query_object *
gen_perf_new_query(struct gen_perf_context *perf_ctx, unsigned query_index)
{
const struct gen_perf_query_info *query =
&perf_ctx->perf->queries[query_index];
struct gen_perf_query_object *obj =
calloc(1, sizeof(struct gen_perf_query_object));
if (!obj)
return NULL;
obj->queryinfo = query;
perf_ctx->n_query_instances++;
return obj;
}
int
gen_perf_active_queries(struct gen_perf_context *perf_ctx,
const struct gen_perf_query_info *query)
{
assert(perf_ctx->n_active_oa_queries == 0 || perf_ctx->n_active_pipeline_stats_queries == 0);
switch (query->kind) {
case GEN_PERF_QUERY_TYPE_OA:
case GEN_PERF_QUERY_TYPE_RAW:
return perf_ctx->n_active_oa_queries;
break;
case GEN_PERF_QUERY_TYPE_PIPELINE:
return perf_ctx->n_active_pipeline_stats_queries;
break;
default:
unreachable("Unknown query type");
break;
}
}
const struct gen_perf_query_info*
gen_perf_query_info(const struct gen_perf_query_object *query)
{
return query->queryinfo;
}
struct gen_perf_context *
gen_perf_new_context(void *parent)
{
struct gen_perf_context *ctx = rzalloc(parent, struct gen_perf_context);
if (! ctx)
fprintf(stderr, "%s: failed to alloc context\n", __func__);
return ctx;
}
struct gen_perf_config *
gen_perf_config(struct gen_perf_context *ctx)
{
return ctx->perf;
}
void
gen_perf_init_context(struct gen_perf_context *perf_ctx,
struct gen_perf_config *perf_cfg,
void * ctx, /* driver context (eg, brw_context) */
void * bufmgr, /* eg brw_bufmgr */
const struct gen_device_info *devinfo,
uint32_t hw_ctx,
int drm_fd)
{
perf_ctx->perf = perf_cfg;
perf_ctx->ctx = ctx;
perf_ctx->bufmgr = bufmgr;
perf_ctx->drm_fd = drm_fd;
perf_ctx->hw_ctx = hw_ctx;
perf_ctx->devinfo = devinfo;
perf_ctx->unaccumulated =
ralloc_array(ctx, struct gen_perf_query_object *, 2);
perf_ctx->unaccumulated_elements = 0;
perf_ctx->unaccumulated_array_size = 2;
exec_list_make_empty(&perf_ctx->sample_buffers);
exec_list_make_empty(&perf_ctx->free_sample_buffers);
/* It's convenient to guarantee that this linked list of sample
* buffers is never empty so we add an empty head so when we
* Begin an OA query we can always take a reference on a buffer
* in this list.
*/
struct oa_sample_buf *buf = get_free_sample_buf(perf_ctx);
exec_list_push_head(&perf_ctx->sample_buffers, &buf->link);
perf_ctx->oa_stream_fd = -1;
perf_ctx->next_query_start_report_id = 1000;
}
/**
* Add a query to the global list of "unaccumulated queries."
*
* Queries are tracked here until all the associated OA reports have
* been accumulated via accumulate_oa_reports() after the end
* MI_REPORT_PERF_COUNT has landed in query->oa.bo.
*/
static void
add_to_unaccumulated_query_list(struct gen_perf_context *perf_ctx,
struct gen_perf_query_object *obj)
{
if (perf_ctx->unaccumulated_elements >=
perf_ctx->unaccumulated_array_size)
{
perf_ctx->unaccumulated_array_size *= 1.5;
perf_ctx->unaccumulated =
reralloc(perf_ctx->ctx, perf_ctx->unaccumulated,
struct gen_perf_query_object *,
perf_ctx->unaccumulated_array_size);
}
perf_ctx->unaccumulated[perf_ctx->unaccumulated_elements++] = obj;
}
/**
* Emit MI_STORE_REGISTER_MEM commands to capture all of the
* pipeline statistics for the performance query object.
*/
static void
snapshot_statistics_registers(struct gen_perf_context *ctx,
struct gen_perf_query_object *obj,
uint32_t offset_in_bytes)
{
struct gen_perf_config *perf = ctx->perf;
const struct gen_perf_query_info *query = obj->queryinfo;
const int n_counters = query->n_counters;
for (int i = 0; i < n_counters; i++) {
const struct gen_perf_query_counter *counter = &query->counters[i];
assert(counter->data_type == GEN_PERF_COUNTER_DATA_TYPE_UINT64);
perf->vtbl.store_register_mem(ctx->ctx, obj->pipeline_stats.bo,
counter->pipeline_stat.reg, 8,
offset_in_bytes + counter->offset);
}
}
static void
snapshot_freq_register(struct gen_perf_context *ctx,
struct gen_perf_query_object *query,
uint32_t bo_offset)
{
struct gen_perf_config *perf = ctx->perf;
const struct gen_device_info *devinfo = ctx->devinfo;
if (devinfo->gen == 8 && !devinfo->is_cherryview)
perf->vtbl.store_register_mem(ctx->ctx, query->oa.bo, GEN7_RPSTAT1, 4, bo_offset);
else if (devinfo->gen >= 9)
perf->vtbl.store_register_mem(ctx->ctx, query->oa.bo, GEN9_RPSTAT0, 4, bo_offset);
}
bool
gen_perf_begin_query(struct gen_perf_context *perf_ctx,
struct gen_perf_query_object *query)
{
struct gen_perf_config *perf_cfg = perf_ctx->perf;
const struct gen_perf_query_info *queryinfo = query->queryinfo;
/* XXX: We have to consider that the command parser unit that parses batch
* buffer commands and is used to capture begin/end counter snapshots isn't
* implicitly synchronized with what's currently running across other GPU
* units (such as the EUs running shaders) that the performance counters are
* associated with.
*
* The intention of performance queries is to measure the work associated
* with commands between the begin/end delimiters and so for that to be the
* case we need to explicitly synchronize the parsing of commands to capture
* Begin/End counter snapshots with what's running across other parts of the
* GPU.
*
* When the command parser reaches a Begin marker it effectively needs to
* drain everything currently running on the GPU until the hardware is idle
* before capturing the first snapshot of counters - otherwise the results
* would also be measuring the effects of earlier commands.
*
* When the command parser reaches an End marker it needs to stall until
* everything currently running on the GPU has finished before capturing the
* end snapshot - otherwise the results won't be a complete representation
* of the work.
*
* To achieve this, we stall the pipeline at pixel scoreboard (prevent any
* additional work to be processed by the pipeline until all pixels of the
* previous draw has be completed).
*
* N.B. The final results are based on deltas of counters between (inside)
* Begin/End markers so even though the total wall clock time of the
* workload is stretched by larger pipeline bubbles the bubbles themselves
* are generally invisible to the query results. Whether that's a good or a
* bad thing depends on the use case. For a lower real-time impact while
* capturing metrics then periodic sampling may be a better choice than
* INTEL_performance_query.
*
*
* This is our Begin synchronization point to drain current work on the
* GPU before we capture our first counter snapshot...
*/
perf_cfg->vtbl.emit_stall_at_pixel_scoreboard(perf_ctx->ctx);
switch (queryinfo->kind) {
case GEN_PERF_QUERY_TYPE_OA:
case GEN_PERF_QUERY_TYPE_RAW: {
/* Opening an i915 perf stream implies exclusive access to the OA unit
* which will generate counter reports for a specific counter set with a
* specific layout/format so we can't begin any OA based queries that
* require a different counter set or format unless we get an opportunity
* to close the stream and open a new one...
*/
uint64_t metric_id = get_metric_id(perf_ctx->perf, queryinfo);
if (perf_ctx->oa_stream_fd != -1 &&
perf_ctx->current_oa_metrics_set_id != metric_id) {
if (perf_ctx->n_oa_users != 0) {
DBG("WARNING: Begin failed already using perf config=%i/%"PRIu64"\n",
perf_ctx->current_oa_metrics_set_id, metric_id);
return false;
} else
gen_perf_close(perf_ctx, queryinfo);
}
/* If the OA counters aren't already on, enable them. */
if (perf_ctx->oa_stream_fd == -1) {
const struct gen_device_info *devinfo = perf_ctx->devinfo;
/* The period_exponent gives a sampling period as follows:
* sample_period = timestamp_period * 2^(period_exponent + 1)
*
* The timestamps increments every 80ns (HSW), ~52ns (GEN9LP) or
* ~83ns (GEN8/9).
*
* The counter overflow period is derived from the EuActive counter
* which reads a counter that increments by the number of clock
* cycles multiplied by the number of EUs. It can be calculated as:
*
* 2^(number of bits in A counter) / (n_eus * max_gen_freq * 2)
*
* (E.g. 40 EUs @ 1GHz = ~53ms)
*
* We select a sampling period inferior to that overflow period to
* ensure we cannot see more than 1 counter overflow, otherwise we
* could loose information.
*/
int a_counter_in_bits = 32;
if (devinfo->gen >= 8)
a_counter_in_bits = 40;
uint64_t overflow_period = pow(2, a_counter_in_bits) / (perf_cfg->sys_vars.n_eus *
/* drop 1GHz freq to have units in nanoseconds */
2);
DBG("A counter overflow period: %"PRIu64"ns, %"PRIu64"ms (n_eus=%"PRIu64")\n",
overflow_period, overflow_period / 1000000ul, perf_cfg->sys_vars.n_eus);
int period_exponent = 0;
uint64_t prev_sample_period, next_sample_period;
for (int e = 0; e < 30; e++) {
prev_sample_period = 1000000000ull * pow(2, e + 1) / devinfo->timestamp_frequency;
next_sample_period = 1000000000ull * pow(2, e + 2) / devinfo->timestamp_frequency;
/* Take the previous sampling period, lower than the overflow
* period.
*/
if (prev_sample_period < overflow_period &&
next_sample_period > overflow_period)
period_exponent = e + 1;
}
if (period_exponent == 0) {
DBG("WARNING: enable to find a sampling exponent\n");
return false;
}
DBG("OA sampling exponent: %i ~= %"PRIu64"ms\n", period_exponent,
prev_sample_period / 1000000ul);
if (!gen_perf_open(perf_ctx, metric_id, queryinfo->oa_format,
period_exponent, perf_ctx->drm_fd,
perf_ctx->hw_ctx))
return false;
} else {
assert(perf_ctx->current_oa_metrics_set_id == metric_id &&
perf_ctx->current_oa_format == queryinfo->oa_format);
}
if (!inc_n_users(perf_ctx)) {
DBG("WARNING: Error enabling i915 perf stream: %m\n");
return false;
}
if (query->oa.bo) {
perf_cfg->vtbl.bo_unreference(query->oa.bo);
query->oa.bo = NULL;
}
query->oa.bo = perf_cfg->vtbl.bo_alloc(perf_ctx->bufmgr,
"perf. query OA MI_RPC bo",
MI_RPC_BO_SIZE);
#ifdef DEBUG
/* Pre-filling the BO helps debug whether writes landed. */
void *map = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->oa.bo, MAP_WRITE);
memset(map, 0x80, MI_RPC_BO_SIZE);
perf_cfg->vtbl.bo_unmap(query->oa.bo);
#endif
query->oa.begin_report_id = perf_ctx->next_query_start_report_id;
perf_ctx->next_query_start_report_id += 2;
/* Take a starting OA counter snapshot. */
perf_cfg->vtbl.emit_mi_report_perf_count(perf_ctx->ctx, query->oa.bo, 0,
query->oa.begin_report_id);
snapshot_freq_register(perf_ctx, query, MI_FREQ_START_OFFSET_BYTES);
++perf_ctx->n_active_oa_queries;
/* No already-buffered samples can possibly be associated with this query
* so create a marker within the list of sample buffers enabling us to
* easily ignore earlier samples when processing this query after
* completion.
*/
assert(!exec_list_is_empty(&perf_ctx->sample_buffers));
query->oa.samples_head = exec_list_get_tail(&perf_ctx->sample_buffers);
struct oa_sample_buf *buf =
exec_node_data(struct oa_sample_buf, query->oa.samples_head, link);
/* This reference will ensure that future/following sample
* buffers (that may relate to this query) can't be freed until
* this drops to zero.
*/
buf->refcount++;
gen_perf_query_result_clear(&query->oa.result);
query->oa.results_accumulated = false;
add_to_unaccumulated_query_list(perf_ctx, query);
break;
}
case GEN_PERF_QUERY_TYPE_PIPELINE:
if (query->pipeline_stats.bo) {
perf_cfg->vtbl.bo_unreference(query->pipeline_stats.bo);
query->pipeline_stats.bo = NULL;
}
query->pipeline_stats.bo =
perf_cfg->vtbl.bo_alloc(perf_ctx->bufmgr,
"perf. query pipeline stats bo",
STATS_BO_SIZE);
/* Take starting snapshots. */
snapshot_statistics_registers(perf_ctx, query, 0);
++perf_ctx->n_active_pipeline_stats_queries;
break;
default:
unreachable("Unknown query type");
break;
}
return true;
}
void
gen_perf_end_query(struct gen_perf_context *perf_ctx,
struct gen_perf_query_object *query)
{
struct gen_perf_config *perf_cfg = perf_ctx->perf;
/* Ensure that the work associated with the queried commands will have
* finished before taking our query end counter readings.
*
* For more details see comment in brw_begin_perf_query for
* corresponding flush.
*/
perf_cfg->vtbl.emit_stall_at_pixel_scoreboard(perf_ctx->ctx);
switch (query->queryinfo->kind) {
case GEN_PERF_QUERY_TYPE_OA:
case GEN_PERF_QUERY_TYPE_RAW:
/* NB: It's possible that the query will have already been marked
* as 'accumulated' if an error was seen while reading samples
* from perf. In this case we mustn't try and emit a closing
* MI_RPC command in case the OA unit has already been disabled
*/
if (!query->oa.results_accumulated) {
/* Take an ending OA counter snapshot. */
snapshot_freq_register(perf_ctx, query, MI_FREQ_END_OFFSET_BYTES);
perf_cfg->vtbl.emit_mi_report_perf_count(perf_ctx->ctx, query->oa.bo,
MI_RPC_BO_END_OFFSET_BYTES,
query->oa.begin_report_id + 1);
}
--perf_ctx->n_active_oa_queries;
/* NB: even though the query has now ended, it can't be accumulated
* until the end MI_REPORT_PERF_COUNT snapshot has been written
* to query->oa.bo
*/
break;
case GEN_PERF_QUERY_TYPE_PIPELINE:
snapshot_statistics_registers(perf_ctx, query,
STATS_BO_END_OFFSET_BYTES);
--perf_ctx->n_active_pipeline_stats_queries;
break;
default:
unreachable("Unknown query type");
break;
}
}
enum OaReadStatus {
OA_READ_STATUS_ERROR,
OA_READ_STATUS_UNFINISHED,
OA_READ_STATUS_FINISHED,
};
static enum OaReadStatus
read_oa_samples_until(struct gen_perf_context *perf_ctx,
uint32_t start_timestamp,
uint32_t end_timestamp)
{
struct exec_node *tail_node =
exec_list_get_tail(&perf_ctx->sample_buffers);
struct oa_sample_buf *tail_buf =
exec_node_data(struct oa_sample_buf, tail_node, link);
uint32_t last_timestamp =
tail_buf->len == 0 ? start_timestamp : tail_buf->last_timestamp;
while (1) {
struct oa_sample_buf *buf = get_free_sample_buf(perf_ctx);
uint32_t offset;
int len;
while ((len = read(perf_ctx->oa_stream_fd, buf->buf,
sizeof(buf->buf))) < 0 && errno == EINTR)
;
if (len <= 0) {
exec_list_push_tail(&perf_ctx->free_sample_buffers, &buf->link);
if (len == 0) {
DBG("Spurious EOF reading i915 perf samples\n");
return OA_READ_STATUS_ERROR;
}
if (errno != EAGAIN) {
DBG("Error reading i915 perf samples: %m\n");
return OA_READ_STATUS_ERROR;
}
if ((last_timestamp - start_timestamp) >= INT32_MAX)
return OA_READ_STATUS_UNFINISHED;
if ((last_timestamp - start_timestamp) <
(end_timestamp - start_timestamp))
return OA_READ_STATUS_UNFINISHED;
return OA_READ_STATUS_FINISHED;
}
buf->len = len;
exec_list_push_tail(&perf_ctx->sample_buffers, &buf->link);
/* Go through the reports and update the last timestamp. */
offset = 0;
while (offset < buf->len) {
const struct drm_i915_perf_record_header *header =
(const struct drm_i915_perf_record_header *) &buf->buf[offset];
uint32_t *report = (uint32_t *) (header + 1);
if (header->type == DRM_I915_PERF_RECORD_SAMPLE)
last_timestamp = report[1];
offset += header->size;
}
buf->last_timestamp = last_timestamp;
}
unreachable("not reached");
return OA_READ_STATUS_ERROR;
}
/**
* Try to read all the reports until either the delimiting timestamp
* or an error arises.
*/
static bool
read_oa_samples_for_query(struct gen_perf_context *perf_ctx,
struct gen_perf_query_object *query,
void *current_batch)
{
uint32_t *start;
uint32_t *last;
uint32_t *end;
struct gen_perf_config *perf_cfg = perf_ctx->perf;
/* We need the MI_REPORT_PERF_COUNT to land before we can start
* accumulate. */
assert(!perf_cfg->vtbl.batch_references(current_batch, query->oa.bo) &&
!perf_cfg->vtbl.bo_busy(query->oa.bo));
/* Map the BO once here and let accumulate_oa_reports() unmap
* it. */
if (query->oa.map == NULL)
query->oa.map = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->oa.bo, MAP_READ);
start = last = query->oa.map;
end = query->oa.map + MI_RPC_BO_END_OFFSET_BYTES;
if (start[0] != query->oa.begin_report_id) {
DBG("Spurious start report id=%"PRIu32"\n", start[0]);
return true;
}
if (end[0] != (query->oa.begin_report_id + 1)) {
DBG("Spurious end report id=%"PRIu32"\n", end[0]);
return true;
}
/* Read the reports until the end timestamp. */
switch (read_oa_samples_until(perf_ctx, start[1], end[1])) {
case OA_READ_STATUS_ERROR:
/* Fallthrough and let accumulate_oa_reports() deal with the
* error. */
case OA_READ_STATUS_FINISHED:
return true;
case OA_READ_STATUS_UNFINISHED:
return false;
}
unreachable("invalid read status");
return false;
}
void
gen_perf_wait_query(struct gen_perf_context *perf_ctx,
struct gen_perf_query_object *query,
void *current_batch)
{
struct gen_perf_config *perf_cfg = perf_ctx->perf;
struct brw_bo *bo = NULL;
switch (query->queryinfo->kind) {
case GEN_PERF_QUERY_TYPE_OA:
case GEN_PERF_QUERY_TYPE_RAW:
bo = query->oa.bo;
break;
case GEN_PERF_QUERY_TYPE_PIPELINE:
bo = query->pipeline_stats.bo;
break;
default:
unreachable("Unknown query type");
break;
}
if (bo == NULL)
return;
/* If the current batch references our results bo then we need to
* flush first...
*/
if (perf_cfg->vtbl.batch_references(current_batch, bo))
perf_cfg->vtbl.batchbuffer_flush(perf_ctx->ctx, __FILE__, __LINE__);
perf_cfg->vtbl.bo_wait_rendering(bo);
}
bool
gen_perf_is_query_ready(struct gen_perf_context *perf_ctx,
struct gen_perf_query_object *query,
void *current_batch)
{
struct gen_perf_config *perf_cfg = perf_ctx->perf;
switch (query->queryinfo->kind) {
case GEN_PERF_QUERY_TYPE_OA:
case GEN_PERF_QUERY_TYPE_RAW:
return (query->oa.results_accumulated ||
(query->oa.bo &&
!perf_cfg->vtbl.batch_references(current_batch, query->oa.bo) &&
!perf_cfg->vtbl.bo_busy(query->oa.bo)));
case GEN_PERF_QUERY_TYPE_PIPELINE:
return (query->pipeline_stats.bo &&
!perf_cfg->vtbl.batch_references(current_batch, query->pipeline_stats.bo) &&
!perf_cfg->vtbl.bo_busy(query->pipeline_stats.bo));
default:
unreachable("Unknown query type");
break;
}
return false;
}
/**
* Remove a query from the global list of unaccumulated queries once
* after successfully accumulating the OA reports associated with the
* query in accumulate_oa_reports() or when discarding unwanted query
* results.
*/
static void
drop_from_unaccumulated_query_list(struct gen_perf_context *perf_ctx,
struct gen_perf_query_object *query)
{
for (int i = 0; i < perf_ctx->unaccumulated_elements; i++) {
if (perf_ctx->unaccumulated[i] == query) {
int last_elt = --perf_ctx->unaccumulated_elements;
if (i == last_elt)
perf_ctx->unaccumulated[i] = NULL;
else {
perf_ctx->unaccumulated[i] =
perf_ctx->unaccumulated[last_elt];
}
break;
}
}
/* Drop our samples_head reference so that associated periodic
* sample data buffers can potentially be reaped if they aren't
* referenced by any other queries...
*/
struct oa_sample_buf *buf =
exec_node_data(struct oa_sample_buf, query->oa.samples_head, link);
assert(buf->refcount > 0);
buf->refcount--;
query->oa.samples_head = NULL;
reap_old_sample_buffers(perf_ctx);
}
/* In general if we see anything spurious while accumulating results,
* we don't try and continue accumulating the current query, hoping
* for the best, we scrap anything outstanding, and then hope for the
* best with new queries.
*/
static void
discard_all_queries(struct gen_perf_context *perf_ctx)
{
while (perf_ctx->unaccumulated_elements) {
struct gen_perf_query_object *query = perf_ctx->unaccumulated[0];
query->oa.results_accumulated = true;
drop_from_unaccumulated_query_list(perf_ctx, query);
dec_n_users(perf_ctx);
}
}
/* Looks for the validity bit of context ID (dword 2) of an OA report. */
static bool
oa_report_ctx_id_valid(const struct gen_device_info *devinfo,
const uint32_t *report)
{
assert(devinfo->gen >= 8);
if (devinfo->gen == 8)
return (report[0] & (1 << 25)) != 0;
return (report[0] & (1 << 16)) != 0;
}
/**
* Accumulate raw OA counter values based on deltas between pairs of
* OA reports.
*
* Accumulation starts from the first report captured via
* MI_REPORT_PERF_COUNT (MI_RPC) by brw_begin_perf_query() until the
* last MI_RPC report requested by brw_end_perf_query(). Between these
* two reports there may also some number of periodically sampled OA
* reports collected via the i915 perf interface - depending on the
* duration of the query.
*
* These periodic snapshots help to ensure we handle counter overflow
* correctly by being frequent enough to ensure we don't miss multiple
* overflows of a counter between snapshots. For Gen8+ the i915 perf
* snapshots provide the extra context-switch reports that let us
* subtract out the progress of counters associated with other
* contexts running on the system.
*/
static void
accumulate_oa_reports(struct gen_perf_context *perf_ctx,
struct gen_perf_query_object *query)
{
const struct gen_device_info *devinfo = perf_ctx->devinfo;
uint32_t *start;
uint32_t *last;
uint32_t *end;
struct exec_node *first_samples_node;
bool last_report_ctx_match = true;
int out_duration = 0;
assert(query->oa.map != NULL);
start = last = query->oa.map;
end = query->oa.map + MI_RPC_BO_END_OFFSET_BYTES;
if (start[0] != query->oa.begin_report_id) {
DBG("Spurious start report id=%"PRIu32"\n", start[0]);
goto error;
}
if (end[0] != (query->oa.begin_report_id + 1)) {
DBG("Spurious end report id=%"PRIu32"\n", end[0]);
goto error;
}
/* On Gen12+ OA reports are sourced from per context counters, so we don't
* ever have to look at the global OA buffer. Yey \o/
*/
if (perf_ctx->devinfo->gen >= 12) {
last = start;
goto end;
}
/* See if we have any periodic reports to accumulate too... */
/* N.B. The oa.samples_head was set when the query began and
* pointed to the tail of the perf_ctx->sample_buffers list at
* the time the query started. Since the buffer existed before the
* first MI_REPORT_PERF_COUNT command was emitted we therefore know
* that no data in this particular node's buffer can possibly be
* associated with the query - so skip ahead one...
*/
first_samples_node = query->oa.samples_head->next;
foreach_list_typed_from(struct oa_sample_buf, buf, link,
&perf_ctx->sample_buffers,
first_samples_node)
{
int offset = 0;
while (offset < buf->len) {
const struct drm_i915_perf_record_header *header =
(const struct drm_i915_perf_record_header *)(buf->buf + offset);
assert(header->size != 0);
assert(header->size <= buf->len);
offset += header->size;
switch (header->type) {
case DRM_I915_PERF_RECORD_SAMPLE: {
uint32_t *report = (uint32_t *)(header + 1);
bool report_ctx_match = true;
bool add = true;
/* Ignore reports that come before the start marker.
* (Note: takes care to allow overflow of 32bit timestamps)
*/
if (gen_device_info_timebase_scale(devinfo,
report[1] - start[1]) > 5000000000) {
continue;
}
/* Ignore reports that come after the end marker.
* (Note: takes care to allow overflow of 32bit timestamps)
*/
if (gen_device_info_timebase_scale(devinfo,
report[1] - end[1]) <= 5000000000) {
goto end;
}
/* For Gen8+ since the counters continue while other
* contexts are running we need to discount any unrelated
* deltas. The hardware automatically generates a report
* on context switch which gives us a new reference point
* to continuing adding deltas from.
*
* For Haswell we can rely on the HW to stop the progress
* of OA counters while any other context is acctive.
*/
if (devinfo->gen >= 8) {
/* Consider that the current report matches our context only if
* the report says the report ID is valid.
*/
report_ctx_match = oa_report_ctx_id_valid(devinfo, report) &&
report[2] == start[2];
if (report_ctx_match)
out_duration = 0;
else
out_duration++;
/* Only add the delta between <last, report> if the last report
* was clearly identified as our context, or if we have at most
* 1 report without a matching ID.
*
* The OA unit will sometimes label reports with an invalid
* context ID when i915 rewrites the execlist submit register
* with the same context as the one currently running. This
* happens when i915 wants to notify the HW of ringbuffer tail
* register update. We have to consider this report as part of
* our context as the 3d pipeline behind the OACS unit is still
* processing the operations started at the previous execlist
* submission.
*/
add = last_report_ctx_match && out_duration < 2;
}
if (add) {
gen_perf_query_result_accumulate(&query->oa.result,
query->queryinfo,
last, report);
} else {
/* We're not adding the delta because we've identified it's not
* for the context we filter for. We can consider that the
* query was split.
*/
query->oa.result.query_disjoint = true;
}
last = report;
last_report_ctx_match = report_ctx_match;
break;
}
case DRM_I915_PERF_RECORD_OA_BUFFER_LOST:
DBG("i915 perf: OA error: all reports lost\n");
goto error;
case DRM_I915_PERF_RECORD_OA_REPORT_LOST:
DBG("i915 perf: OA report lost\n");
break;
}
}
}
end:
gen_perf_query_result_accumulate(&query->oa.result, query->queryinfo,
last, end);
query->oa.results_accumulated = true;
drop_from_unaccumulated_query_list(perf_ctx, query);
dec_n_users(perf_ctx);
return;
error:
discard_all_queries(perf_ctx);
}
void
gen_perf_delete_query(struct gen_perf_context *perf_ctx,
struct gen_perf_query_object *query)
{
struct gen_perf_config *perf_cfg = perf_ctx->perf;
/* We can assume that the frontend waits for a query to complete
* before ever calling into here, so we don't have to worry about
* deleting an in-flight query object.
*/
switch (query->queryinfo->kind) {
case GEN_PERF_QUERY_TYPE_OA:
case GEN_PERF_QUERY_TYPE_RAW:
if (query->oa.bo) {
if (!query->oa.results_accumulated) {
drop_from_unaccumulated_query_list(perf_ctx, query);
dec_n_users(perf_ctx);
}
perf_cfg->vtbl.bo_unreference(query->oa.bo);
query->oa.bo = NULL;
}
query->oa.results_accumulated = false;
break;
case GEN_PERF_QUERY_TYPE_PIPELINE:
if (query->pipeline_stats.bo) {
perf_cfg->vtbl.bo_unreference(query->pipeline_stats.bo);
query->pipeline_stats.bo = NULL;
}
break;
default:
unreachable("Unknown query type");
break;
}
/* As an indication that the INTEL_performance_query extension is no
* longer in use, it's a good time to free our cache of sample
* buffers and close any current i915-perf stream.
*/
if (--perf_ctx->n_query_instances == 0) {
free_sample_bufs(perf_ctx);
gen_perf_close(perf_ctx, query->queryinfo);
}
free(query);
}
#define GET_FIELD(word, field) (((word) & field ## _MASK) >> field ## _SHIFT)
static void
read_gt_frequency(struct gen_perf_context *perf_ctx,
struct gen_perf_query_object *obj)
{
const struct gen_device_info *devinfo = perf_ctx->devinfo;
uint32_t start = *((uint32_t *)(obj->oa.map + MI_FREQ_START_OFFSET_BYTES)),
end = *((uint32_t *)(obj->oa.map + MI_FREQ_END_OFFSET_BYTES));
switch (devinfo->gen) {
case 7:
case 8:
obj->oa.gt_frequency[0] = GET_FIELD(start, GEN7_RPSTAT1_CURR_GT_FREQ) * 50ULL;
obj->oa.gt_frequency[1] = GET_FIELD(end, GEN7_RPSTAT1_CURR_GT_FREQ) * 50ULL;
break;
case 9:
case 10:
case 11:
case 12:
obj->oa.gt_frequency[0] = GET_FIELD(start, GEN9_RPSTAT0_CURR_GT_FREQ) * 50ULL / 3ULL;
obj->oa.gt_frequency[1] = GET_FIELD(end, GEN9_RPSTAT0_CURR_GT_FREQ) * 50ULL / 3ULL;
break;
default:
unreachable("unexpected gen");
}
/* Put the numbers into Hz. */
obj->oa.gt_frequency[0] *= 1000000ULL;
obj->oa.gt_frequency[1] *= 1000000ULL;
}
static int
get_oa_counter_data(struct gen_perf_context *perf_ctx,
struct gen_perf_query_object *query,
size_t data_size,
uint8_t *data)
{
struct gen_perf_config *perf_cfg = perf_ctx->perf;
const struct gen_perf_query_info *queryinfo = query->queryinfo;
int n_counters = queryinfo->n_counters;
int written = 0;
for (int i = 0; i < n_counters; i++) {
const struct gen_perf_query_counter *counter = &queryinfo->counters[i];
uint64_t *out_uint64;
float *out_float;
size_t counter_size = gen_perf_query_counter_get_size(counter);
if (counter_size) {
switch (counter->data_type) {
case GEN_PERF_COUNTER_DATA_TYPE_UINT64:
out_uint64 = (uint64_t *)(data + counter->offset);
*out_uint64 =
counter->oa_counter_read_uint64(perf_cfg, queryinfo,
query->oa.result.accumulator);
break;
case GEN_PERF_COUNTER_DATA_TYPE_FLOAT:
out_float = (float *)(data + counter->offset);
*out_float =
counter->oa_counter_read_float(perf_cfg, queryinfo,
query->oa.result.accumulator);
break;
default:
/* So far we aren't using uint32, double or bool32... */
unreachable("unexpected counter data type");
}
if (counter->offset + counter_size > written)
written = counter->offset + counter_size;
}
}
return written;
}
static int
get_pipeline_stats_data(struct gen_perf_context *perf_ctx,
struct gen_perf_query_object *query,
size_t data_size,
uint8_t *data)
{
struct gen_perf_config *perf_cfg = perf_ctx->perf;
const struct gen_perf_query_info *queryinfo = query->queryinfo;
int n_counters = queryinfo->n_counters;
uint8_t *p = data;
uint64_t *start = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->pipeline_stats.bo, MAP_READ);
uint64_t *end = start + (STATS_BO_END_OFFSET_BYTES / sizeof(uint64_t));
for (int i = 0; i < n_counters; i++) {
const struct gen_perf_query_counter *counter = &queryinfo->counters[i];
uint64_t value = end[i] - start[i];
if (counter->pipeline_stat.numerator !=
counter->pipeline_stat.denominator) {
value *= counter->pipeline_stat.numerator;
value /= counter->pipeline_stat.denominator;
}
*((uint64_t *)p) = value;
p += 8;
}
perf_cfg->vtbl.bo_unmap(query->pipeline_stats.bo);
return p - data;
}
void
gen_perf_get_query_data(struct gen_perf_context *perf_ctx,
struct gen_perf_query_object *query,
void *current_batch,
int data_size,
unsigned *data,
unsigned *bytes_written)
{
struct gen_perf_config *perf_cfg = perf_ctx->perf;
int written = 0;
switch (query->queryinfo->kind) {
case GEN_PERF_QUERY_TYPE_OA:
case GEN_PERF_QUERY_TYPE_RAW:
if (!query->oa.results_accumulated) {
/* Due to the sampling frequency of the OA buffer by the i915-perf
* driver, there can be a 5ms delay between the Mesa seeing the query
* complete and i915 making all the OA buffer reports available to us.
* We need to wait for all the reports to come in before we can do
* the post processing removing unrelated deltas.
* There is a i915-perf series to address this issue, but it's
* not been merged upstream yet.
*/
while (!read_oa_samples_for_query(perf_ctx, query, current_batch))
;
read_gt_frequency(perf_ctx, query);
uint32_t *begin_report = query->oa.map;
uint32_t *end_report = query->oa.map + MI_RPC_BO_END_OFFSET_BYTES;
gen_perf_query_result_read_frequencies(&query->oa.result,
perf_ctx->devinfo,
begin_report,
end_report);
accumulate_oa_reports(perf_ctx, query);
assert(query->oa.results_accumulated);
perf_cfg->vtbl.bo_unmap(query->oa.bo);
query->oa.map = NULL;
}
if (query->queryinfo->kind == GEN_PERF_QUERY_TYPE_OA) {
written = get_oa_counter_data(perf_ctx, query, data_size, (uint8_t *)data);
} else {
const struct gen_device_info *devinfo = perf_ctx->devinfo;
written = gen_perf_query_result_write_mdapi((uint8_t *)data, data_size,
devinfo, &query->oa.result,
query->oa.gt_frequency[0],
query->oa.gt_frequency[1]);
}
break;
case GEN_PERF_QUERY_TYPE_PIPELINE:
written = get_pipeline_stats_data(perf_ctx, query, data_size, (uint8_t *)data);
break;
default:
unreachable("Unknown query type");
break;
}
if (bytes_written)
*bytes_written = written;
}
void
gen_perf_dump_query_count(struct gen_perf_context *perf_ctx)
{
DBG("Queries: (Open queries = %d, OA users = %d)\n",
perf_ctx->n_active_oa_queries, perf_ctx->n_oa_users);
}
void
gen_perf_dump_query(struct gen_perf_context *ctx,
struct gen_perf_query_object *obj,
void *current_batch)
{
switch (obj->queryinfo->kind) {
case GEN_PERF_QUERY_TYPE_OA:
case GEN_PERF_QUERY_TYPE_RAW:
DBG("BO: %-4s OA data: %-10s %-15s\n",
obj->oa.bo ? "yes," : "no,",
gen_perf_is_query_ready(ctx, obj, current_batch) ? "ready," : "not ready,",
obj->oa.results_accumulated ? "accumulated" : "not accumulated");
break;
case GEN_PERF_QUERY_TYPE_PIPELINE:
DBG("BO: %-4s\n",
obj->pipeline_stats.bo ? "yes" : "no");
break;
default:
unreachable("Unknown query type");
break;
}
}