mesa/src/freedreno/vulkan/tu_pipeline.c
Rob Clark ebcf3545db freedreno/ir3: split kill from no_earlyz
Unlike other conditions which prevent early-discard of fragments, kill
does not prevent early LRZ test.  Split `has_kill` from `no_earlyz` so
we can take advantage of this.

Signed-off-by: Rob Clark <robdclark@chromium.org>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/5298>
2020-06-04 02:34:54 +00:00

2839 lines
99 KiB
C

/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "tu_private.h"
#include "ir3/ir3_nir.h"
#include "main/menums.h"
#include "nir/nir.h"
#include "nir/nir_builder.h"
#include "spirv/nir_spirv.h"
#include "util/debug.h"
#include "util/mesa-sha1.h"
#include "util/u_atomic.h"
#include "vk_format.h"
#include "vk_util.h"
#include "tu_cs.h"
/* Emit IB that preloads the descriptors that the shader uses */
static inline uint32_t
tu6_vkstage2opcode(VkShaderStageFlags stage)
{
switch (stage) {
case VK_SHADER_STAGE_VERTEX_BIT:
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
case VK_SHADER_STAGE_GEOMETRY_BIT:
return CP_LOAD_STATE6_GEOM;
case VK_SHADER_STAGE_FRAGMENT_BIT:
case VK_SHADER_STAGE_COMPUTE_BIT:
return CP_LOAD_STATE6_FRAG;
default:
unreachable("bad shader type");
}
}
static enum a6xx_state_block
tu6_tex_stage2sb(VkShaderStageFlags stage)
{
switch (stage) {
case VK_SHADER_STAGE_VERTEX_BIT:
return SB6_VS_TEX;
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
return SB6_HS_TEX;
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
return SB6_DS_TEX;
case VK_SHADER_STAGE_GEOMETRY_BIT:
return SB6_GS_TEX;
case VK_SHADER_STAGE_FRAGMENT_BIT:
return SB6_FS_TEX;
case VK_SHADER_STAGE_COMPUTE_BIT:
return SB6_CS_TEX;
default:
unreachable("bad shader stage");
}
}
static enum a6xx_state_block
tu6_ubo_stage2sb(VkShaderStageFlags stage)
{
switch (stage) {
case VK_SHADER_STAGE_VERTEX_BIT:
return SB6_VS_SHADER;
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
return SB6_HS_SHADER;
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
return SB6_DS_SHADER;
case VK_SHADER_STAGE_GEOMETRY_BIT:
return SB6_GS_SHADER;
case VK_SHADER_STAGE_FRAGMENT_BIT:
return SB6_FS_SHADER;
case VK_SHADER_STAGE_COMPUTE_BIT:
return SB6_CS_SHADER;
default:
unreachable("bad shader stage");
}
}
static void
emit_load_state(struct tu_cs *cs, unsigned opcode, enum a6xx_state_type st,
enum a6xx_state_block sb, unsigned base, unsigned offset,
unsigned count)
{
/* Note: just emit one packet, even if count overflows NUM_UNIT. It's not
* clear if emitting more packets will even help anything. Presumably the
* descriptor cache is relatively small, and these packets stop doing
* anything when there are too many descriptors.
*/
tu_cs_emit_pkt7(cs, opcode, 3);
tu_cs_emit(cs,
CP_LOAD_STATE6_0_STATE_TYPE(st) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_BINDLESS) |
CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
CP_LOAD_STATE6_0_NUM_UNIT(MIN2(count, 1024-1)));
tu_cs_emit_qw(cs, offset | (base << 28));
}
static unsigned
tu6_load_state_size(struct tu_pipeline_layout *layout, bool compute)
{
const unsigned load_state_size = 4;
unsigned size = 0;
for (unsigned i = 0; i < layout->num_sets; i++) {
struct tu_descriptor_set_layout *set_layout = layout->set[i].layout;
for (unsigned j = 0; j < set_layout->binding_count; j++) {
struct tu_descriptor_set_binding_layout *binding = &set_layout->binding[j];
unsigned count = 0;
/* Note: some users, like amber for example, pass in
* VK_SHADER_STAGE_ALL which includes a bunch of extra bits, so
* filter these out by using VK_SHADER_STAGE_ALL_GRAPHICS explicitly.
*/
VkShaderStageFlags stages = compute ?
binding->shader_stages & VK_SHADER_STAGE_COMPUTE_BIT :
binding->shader_stages & VK_SHADER_STAGE_ALL_GRAPHICS;
unsigned stage_count = util_bitcount(stages);
switch (binding->type) {
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
/* IBO-backed resources only need one packet for all graphics stages */
if (stages & ~VK_SHADER_STAGE_COMPUTE_BIT)
count += 1;
if (stages & VK_SHADER_STAGE_COMPUTE_BIT)
count += 1;
break;
case VK_DESCRIPTOR_TYPE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
/* Textures and UBO's needs a packet for each stage */
count = stage_count;
break;
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
/* Because of how we pack combined images and samplers, we
* currently can't use one packet for the whole array.
*/
count = stage_count * binding->array_size * 2;
break;
default:
unreachable("bad descriptor type");
}
size += count * load_state_size;
}
}
return size;
}
static void
tu6_emit_load_state(struct tu_pipeline *pipeline, bool compute)
{
unsigned size = tu6_load_state_size(pipeline->layout, compute);
if (size == 0)
return;
struct tu_cs cs;
tu_cs_begin_sub_stream(&pipeline->cs, size, &cs);
struct tu_pipeline_layout *layout = pipeline->layout;
for (unsigned i = 0; i < layout->num_sets; i++) {
struct tu_descriptor_set_layout *set_layout = layout->set[i].layout;
for (unsigned j = 0; j < set_layout->binding_count; j++) {
struct tu_descriptor_set_binding_layout *binding = &set_layout->binding[j];
unsigned base = i;
unsigned offset = binding->offset / 4;
/* Note: some users, like amber for example, pass in
* VK_SHADER_STAGE_ALL which includes a bunch of extra bits, so
* filter these out by using VK_SHADER_STAGE_ALL_GRAPHICS explicitly.
*/
VkShaderStageFlags stages = compute ?
binding->shader_stages & VK_SHADER_STAGE_COMPUTE_BIT :
binding->shader_stages & VK_SHADER_STAGE_ALL_GRAPHICS;
unsigned count = binding->array_size;
if (count == 0 || stages == 0)
continue;
switch (binding->type) {
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
base = MAX_SETS;
offset = (layout->input_attachment_count +
layout->set[i].dynamic_offset_start +
binding->dynamic_offset_offset) * A6XX_TEX_CONST_DWORDS;
/* fallthrough */
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
/* IBO-backed resources only need one packet for all graphics stages */
if (stages & ~VK_SHADER_STAGE_COMPUTE_BIT) {
emit_load_state(&cs, CP_LOAD_STATE6, ST6_SHADER, SB6_IBO,
base, offset, count);
}
if (stages & VK_SHADER_STAGE_COMPUTE_BIT) {
emit_load_state(&cs, CP_LOAD_STATE6_FRAG, ST6_IBO, SB6_CS_SHADER,
base, offset, count);
}
break;
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
base = MAX_SETS;
offset = (layout->set[i].input_attachment_start +
binding->input_attachment_offset) * A6XX_TEX_CONST_DWORDS;
case VK_DESCRIPTOR_TYPE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: {
unsigned stage_log2;
for_each_bit(stage_log2, stages) {
VkShaderStageFlags stage = 1 << stage_log2;
emit_load_state(&cs, tu6_vkstage2opcode(stage),
binding->type == VK_DESCRIPTOR_TYPE_SAMPLER ?
ST6_SHADER : ST6_CONSTANTS,
tu6_tex_stage2sb(stage), base, offset, count);
}
break;
}
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
base = MAX_SETS;
offset = (layout->input_attachment_count +
layout->set[i].dynamic_offset_start +
binding->dynamic_offset_offset) * A6XX_TEX_CONST_DWORDS;
/* fallthrough */
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: {
unsigned stage_log2;
for_each_bit(stage_log2, stages) {
VkShaderStageFlags stage = 1 << stage_log2;
emit_load_state(&cs, tu6_vkstage2opcode(stage), ST6_UBO,
tu6_ubo_stage2sb(stage), base, offset, count);
}
break;
}
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: {
unsigned stage_log2;
for_each_bit(stage_log2, stages) {
VkShaderStageFlags stage = 1 << stage_log2;
/* TODO: We could emit less CP_LOAD_STATE6 if we used
* struct-of-arrays instead of array-of-structs.
*/
for (unsigned i = 0; i < count; i++) {
unsigned tex_offset = offset + 2 * i * A6XX_TEX_CONST_DWORDS;
unsigned sam_offset = offset + (2 * i + 1) * A6XX_TEX_CONST_DWORDS;
emit_load_state(&cs, tu6_vkstage2opcode(stage),
ST6_CONSTANTS, tu6_tex_stage2sb(stage),
base, tex_offset, 1);
emit_load_state(&cs, tu6_vkstage2opcode(stage),
ST6_SHADER, tu6_tex_stage2sb(stage),
base, sam_offset, 1);
}
}
break;
}
default:
unreachable("bad descriptor type");
}
}
}
pipeline->load_state.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &cs);
}
struct tu_pipeline_builder
{
struct tu_device *device;
struct tu_pipeline_cache *cache;
struct tu_pipeline_layout *layout;
const VkAllocationCallbacks *alloc;
const VkGraphicsPipelineCreateInfo *create_info;
struct tu_shader *shaders[MESA_SHADER_STAGES];
uint32_t shader_offsets[MESA_SHADER_STAGES];
uint32_t binning_vs_offset;
uint32_t shader_total_size;
bool rasterizer_discard;
/* these states are affectd by rasterizer_discard */
VkSampleCountFlagBits samples;
bool use_color_attachments;
bool use_dual_src_blend;
uint32_t color_attachment_count;
VkFormat color_attachment_formats[MAX_RTS];
VkFormat depth_attachment_format;
uint32_t render_components;
};
static enum tu_dynamic_state_bits
tu_dynamic_state_bit(VkDynamicState state)
{
switch (state) {
case VK_DYNAMIC_STATE_VIEWPORT:
return TU_DYNAMIC_VIEWPORT;
case VK_DYNAMIC_STATE_SCISSOR:
return TU_DYNAMIC_SCISSOR;
case VK_DYNAMIC_STATE_LINE_WIDTH:
return TU_DYNAMIC_LINE_WIDTH;
case VK_DYNAMIC_STATE_DEPTH_BIAS:
return TU_DYNAMIC_DEPTH_BIAS;
case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
return TU_DYNAMIC_BLEND_CONSTANTS;
case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
return TU_DYNAMIC_DEPTH_BOUNDS;
case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
return TU_DYNAMIC_STENCIL_COMPARE_MASK;
case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
return TU_DYNAMIC_STENCIL_WRITE_MASK;
case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
return TU_DYNAMIC_STENCIL_REFERENCE;
case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT:
return TU_DYNAMIC_SAMPLE_LOCATIONS;
default:
unreachable("invalid dynamic state");
return 0;
}
}
static gl_shader_stage
tu_shader_stage(VkShaderStageFlagBits stage)
{
switch (stage) {
case VK_SHADER_STAGE_VERTEX_BIT:
return MESA_SHADER_VERTEX;
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
return MESA_SHADER_TESS_CTRL;
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
return MESA_SHADER_TESS_EVAL;
case VK_SHADER_STAGE_GEOMETRY_BIT:
return MESA_SHADER_GEOMETRY;
case VK_SHADER_STAGE_FRAGMENT_BIT:
return MESA_SHADER_FRAGMENT;
case VK_SHADER_STAGE_COMPUTE_BIT:
return MESA_SHADER_COMPUTE;
default:
unreachable("invalid VkShaderStageFlagBits");
return MESA_SHADER_NONE;
}
}
static bool
tu_logic_op_reads_dst(VkLogicOp op)
{
switch (op) {
case VK_LOGIC_OP_CLEAR:
case VK_LOGIC_OP_COPY:
case VK_LOGIC_OP_COPY_INVERTED:
case VK_LOGIC_OP_SET:
return false;
default:
return true;
}
}
static VkBlendFactor
tu_blend_factor_no_dst_alpha(VkBlendFactor factor)
{
/* treat dst alpha as 1.0 and avoid reading it */
switch (factor) {
case VK_BLEND_FACTOR_DST_ALPHA:
return VK_BLEND_FACTOR_ONE;
case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
return VK_BLEND_FACTOR_ZERO;
default:
return factor;
}
}
static bool tu_blend_factor_is_dual_src(VkBlendFactor factor)
{
switch (factor) {
case VK_BLEND_FACTOR_SRC1_COLOR:
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
case VK_BLEND_FACTOR_SRC1_ALPHA:
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
return true;
default:
return false;
}
}
static bool
tu_blend_state_is_dual_src(const VkPipelineColorBlendStateCreateInfo *info)
{
if (!info)
return false;
for (unsigned i = 0; i < info->attachmentCount; i++) {
const VkPipelineColorBlendAttachmentState *blend = &info->pAttachments[i];
if (tu_blend_factor_is_dual_src(blend->srcColorBlendFactor) ||
tu_blend_factor_is_dual_src(blend->dstColorBlendFactor) ||
tu_blend_factor_is_dual_src(blend->srcAlphaBlendFactor) ||
tu_blend_factor_is_dual_src(blend->dstAlphaBlendFactor))
return true;
}
return false;
}
static enum pc_di_primtype
tu6_primtype(VkPrimitiveTopology topology)
{
switch (topology) {
case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
return DI_PT_POINTLIST;
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
return DI_PT_LINELIST;
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
return DI_PT_LINESTRIP;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
return DI_PT_TRILIST;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
return DI_PT_TRISTRIP;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
return DI_PT_TRIFAN;
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
return DI_PT_LINE_ADJ;
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
return DI_PT_LINESTRIP_ADJ;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
return DI_PT_TRI_ADJ;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
return DI_PT_TRISTRIP_ADJ;
case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
default:
unreachable("invalid primitive topology");
return DI_PT_NONE;
}
}
static enum adreno_compare_func
tu6_compare_func(VkCompareOp op)
{
switch (op) {
case VK_COMPARE_OP_NEVER:
return FUNC_NEVER;
case VK_COMPARE_OP_LESS:
return FUNC_LESS;
case VK_COMPARE_OP_EQUAL:
return FUNC_EQUAL;
case VK_COMPARE_OP_LESS_OR_EQUAL:
return FUNC_LEQUAL;
case VK_COMPARE_OP_GREATER:
return FUNC_GREATER;
case VK_COMPARE_OP_NOT_EQUAL:
return FUNC_NOTEQUAL;
case VK_COMPARE_OP_GREATER_OR_EQUAL:
return FUNC_GEQUAL;
case VK_COMPARE_OP_ALWAYS:
return FUNC_ALWAYS;
default:
unreachable("invalid VkCompareOp");
return FUNC_NEVER;
}
}
static enum adreno_stencil_op
tu6_stencil_op(VkStencilOp op)
{
switch (op) {
case VK_STENCIL_OP_KEEP:
return STENCIL_KEEP;
case VK_STENCIL_OP_ZERO:
return STENCIL_ZERO;
case VK_STENCIL_OP_REPLACE:
return STENCIL_REPLACE;
case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
return STENCIL_INCR_CLAMP;
case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
return STENCIL_DECR_CLAMP;
case VK_STENCIL_OP_INVERT:
return STENCIL_INVERT;
case VK_STENCIL_OP_INCREMENT_AND_WRAP:
return STENCIL_INCR_WRAP;
case VK_STENCIL_OP_DECREMENT_AND_WRAP:
return STENCIL_DECR_WRAP;
default:
unreachable("invalid VkStencilOp");
return STENCIL_KEEP;
}
}
static enum a3xx_rop_code
tu6_rop(VkLogicOp op)
{
switch (op) {
case VK_LOGIC_OP_CLEAR:
return ROP_CLEAR;
case VK_LOGIC_OP_AND:
return ROP_AND;
case VK_LOGIC_OP_AND_REVERSE:
return ROP_AND_REVERSE;
case VK_LOGIC_OP_COPY:
return ROP_COPY;
case VK_LOGIC_OP_AND_INVERTED:
return ROP_AND_INVERTED;
case VK_LOGIC_OP_NO_OP:
return ROP_NOOP;
case VK_LOGIC_OP_XOR:
return ROP_XOR;
case VK_LOGIC_OP_OR:
return ROP_OR;
case VK_LOGIC_OP_NOR:
return ROP_NOR;
case VK_LOGIC_OP_EQUIVALENT:
return ROP_EQUIV;
case VK_LOGIC_OP_INVERT:
return ROP_INVERT;
case VK_LOGIC_OP_OR_REVERSE:
return ROP_OR_REVERSE;
case VK_LOGIC_OP_COPY_INVERTED:
return ROP_COPY_INVERTED;
case VK_LOGIC_OP_OR_INVERTED:
return ROP_OR_INVERTED;
case VK_LOGIC_OP_NAND:
return ROP_NAND;
case VK_LOGIC_OP_SET:
return ROP_SET;
default:
unreachable("invalid VkLogicOp");
return ROP_NOOP;
}
}
static enum adreno_rb_blend_factor
tu6_blend_factor(VkBlendFactor factor)
{
switch (factor) {
case VK_BLEND_FACTOR_ZERO:
return FACTOR_ZERO;
case VK_BLEND_FACTOR_ONE:
return FACTOR_ONE;
case VK_BLEND_FACTOR_SRC_COLOR:
return FACTOR_SRC_COLOR;
case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
return FACTOR_ONE_MINUS_SRC_COLOR;
case VK_BLEND_FACTOR_DST_COLOR:
return FACTOR_DST_COLOR;
case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
return FACTOR_ONE_MINUS_DST_COLOR;
case VK_BLEND_FACTOR_SRC_ALPHA:
return FACTOR_SRC_ALPHA;
case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
return FACTOR_ONE_MINUS_SRC_ALPHA;
case VK_BLEND_FACTOR_DST_ALPHA:
return FACTOR_DST_ALPHA;
case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
return FACTOR_ONE_MINUS_DST_ALPHA;
case VK_BLEND_FACTOR_CONSTANT_COLOR:
return FACTOR_CONSTANT_COLOR;
case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
return FACTOR_ONE_MINUS_CONSTANT_COLOR;
case VK_BLEND_FACTOR_CONSTANT_ALPHA:
return FACTOR_CONSTANT_ALPHA;
case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
return FACTOR_ONE_MINUS_CONSTANT_ALPHA;
case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
return FACTOR_SRC_ALPHA_SATURATE;
case VK_BLEND_FACTOR_SRC1_COLOR:
return FACTOR_SRC1_COLOR;
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
return FACTOR_ONE_MINUS_SRC1_COLOR;
case VK_BLEND_FACTOR_SRC1_ALPHA:
return FACTOR_SRC1_ALPHA;
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
return FACTOR_ONE_MINUS_SRC1_ALPHA;
default:
unreachable("invalid VkBlendFactor");
return FACTOR_ZERO;
}
}
static enum a3xx_rb_blend_opcode
tu6_blend_op(VkBlendOp op)
{
switch (op) {
case VK_BLEND_OP_ADD:
return BLEND_DST_PLUS_SRC;
case VK_BLEND_OP_SUBTRACT:
return BLEND_SRC_MINUS_DST;
case VK_BLEND_OP_REVERSE_SUBTRACT:
return BLEND_DST_MINUS_SRC;
case VK_BLEND_OP_MIN:
return BLEND_MIN_DST_SRC;
case VK_BLEND_OP_MAX:
return BLEND_MAX_DST_SRC;
default:
unreachable("invalid VkBlendOp");
return BLEND_DST_PLUS_SRC;
}
}
static uint32_t
emit_xs_config(const struct ir3_shader_variant *sh)
{
if (sh->instrlen) {
return A6XX_SP_VS_CONFIG_ENABLED |
COND(sh->bindless_tex, A6XX_SP_VS_CONFIG_BINDLESS_TEX) |
COND(sh->bindless_samp, A6XX_SP_VS_CONFIG_BINDLESS_SAMP) |
COND(sh->bindless_ibo, A6XX_SP_VS_CONFIG_BINDLESS_IBO) |
COND(sh->bindless_ubo, A6XX_SP_VS_CONFIG_BINDLESS_UBO);
} else {
return 0;
}
}
static void
tu6_emit_vs_config(struct tu_cs *cs, struct tu_shader *shader,
const struct ir3_shader_variant *vs)
{
uint32_t sp_vs_ctrl =
A6XX_SP_VS_CTRL_REG0_THREADSIZE(FOUR_QUADS) |
A6XX_SP_VS_CTRL_REG0_FULLREGFOOTPRINT(vs->info.max_reg + 1) |
A6XX_SP_VS_CTRL_REG0_MERGEDREGS |
A6XX_SP_VS_CTRL_REG0_BRANCHSTACK(vs->branchstack);
if (vs->need_pixlod)
sp_vs_ctrl |= A6XX_SP_VS_CTRL_REG0_PIXLODENABLE;
if (vs->need_fine_derivatives)
sp_vs_ctrl |= A6XX_SP_VS_CTRL_REG0_DIFF_FINE;
tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_CTRL_REG0, 1);
tu_cs_emit(cs, sp_vs_ctrl);
tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_CONFIG, 2);
tu_cs_emit(cs, emit_xs_config(vs));
tu_cs_emit(cs, vs->instrlen);
tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_VS_CNTL, 1);
tu_cs_emit(cs, A6XX_HLSQ_VS_CNTL_CONSTLEN(align(vs->constlen, 4)) |
A6XX_HLSQ_VS_CNTL_ENABLED);
}
static void
tu6_emit_hs_config(struct tu_cs *cs, struct tu_shader *shader,
const struct ir3_shader_variant *hs)
{
tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_UNKNOWN_A831, 1);
tu_cs_emit(cs, 0);
tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_CONFIG, 2);
tu_cs_emit(cs, emit_xs_config(hs));
tu_cs_emit(cs, hs->instrlen);
tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_HS_CNTL, 1);
tu_cs_emit(cs, A6XX_HLSQ_HS_CNTL_CONSTLEN(align(hs->constlen, 4)));
}
static void
tu6_emit_ds_config(struct tu_cs *cs, struct tu_shader *shader,
const struct ir3_shader_variant *ds)
{
tu_cs_emit_pkt4(cs, REG_A6XX_SP_DS_CONFIG, 2);
tu_cs_emit(cs, emit_xs_config(ds));
tu_cs_emit(cs, ds->instrlen);
tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_DS_CNTL, 1);
tu_cs_emit(cs, A6XX_HLSQ_DS_CNTL_CONSTLEN(align(ds->constlen, 4)));
}
static void
tu6_emit_gs_config(struct tu_cs *cs, struct tu_shader *shader,
const struct ir3_shader_variant *gs)
{
bool has_gs = gs->type != MESA_SHADER_NONE;
tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_PRIM_SIZE, 1);
tu_cs_emit(cs, 0);
tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_CONFIG, 2);
tu_cs_emit(cs, emit_xs_config(gs));
tu_cs_emit(cs, gs->instrlen);
tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_GS_CNTL, 1);
tu_cs_emit(cs, COND(has_gs, A6XX_HLSQ_GS_CNTL_ENABLED) |
A6XX_HLSQ_GS_CNTL_CONSTLEN(align(gs->constlen, 4)));
}
static void
tu6_emit_fs_config(struct tu_cs *cs, struct tu_shader *shader,
const struct ir3_shader_variant *fs)
{
uint32_t sp_fs_ctrl =
A6XX_SP_FS_CTRL_REG0_THREADSIZE(FOUR_QUADS) | 0x1000000 |
A6XX_SP_FS_CTRL_REG0_FULLREGFOOTPRINT(fs->info.max_reg + 1) |
A6XX_SP_FS_CTRL_REG0_MERGEDREGS |
A6XX_SP_FS_CTRL_REG0_BRANCHSTACK(fs->branchstack);
if (fs->total_in > 0)
sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_VARYING;
if (fs->need_pixlod)
sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_PIXLODENABLE;
if (fs->need_fine_derivatives)
sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_DIFF_FINE;
tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_CTRL_REG0, 1);
tu_cs_emit(cs, sp_fs_ctrl);
tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_CONFIG, 2);
tu_cs_emit(cs, emit_xs_config(fs));
tu_cs_emit(cs, fs->instrlen);
tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_FS_CNTL, 1);
tu_cs_emit(cs, A6XX_HLSQ_FS_CNTL_CONSTLEN(align(fs->constlen, 4)) |
A6XX_HLSQ_FS_CNTL_ENABLED);
}
static void
tu6_emit_cs_config(struct tu_cs *cs, const struct tu_shader *shader,
const struct ir3_shader_variant *v)
{
tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1);
tu_cs_emit(cs, 0xff);
unsigned constlen = align(v->constlen, 4);
tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CS_CNTL, 1);
tu_cs_emit(cs, A6XX_HLSQ_CS_CNTL_CONSTLEN(constlen) |
A6XX_HLSQ_CS_CNTL_ENABLED);
tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_CONFIG, 2);
tu_cs_emit(cs, emit_xs_config(v));
tu_cs_emit(cs, v->instrlen);
tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_CTRL_REG0, 1);
tu_cs_emit(cs, A6XX_SP_CS_CTRL_REG0_THREADSIZE(FOUR_QUADS) |
A6XX_SP_CS_CTRL_REG0_FULLREGFOOTPRINT(v->info.max_reg + 1) |
A6XX_SP_CS_CTRL_REG0_MERGEDREGS |
A6XX_SP_CS_CTRL_REG0_BRANCHSTACK(v->branchstack) |
COND(v->need_pixlod, A6XX_SP_CS_CTRL_REG0_PIXLODENABLE) |
COND(v->need_fine_derivatives, A6XX_SP_CS_CTRL_REG0_DIFF_FINE));
tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_UNKNOWN_A9B1, 1);
tu_cs_emit(cs, 0x41);
uint32_t local_invocation_id =
ir3_find_sysval_regid(v, SYSTEM_VALUE_LOCAL_INVOCATION_ID);
uint32_t work_group_id =
ir3_find_sysval_regid(v, SYSTEM_VALUE_WORK_GROUP_ID);
tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CS_CNTL_0, 2);
tu_cs_emit(cs,
A6XX_HLSQ_CS_CNTL_0_WGIDCONSTID(work_group_id) |
A6XX_HLSQ_CS_CNTL_0_UNK0(regid(63, 0)) |
A6XX_HLSQ_CS_CNTL_0_UNK1(regid(63, 0)) |
A6XX_HLSQ_CS_CNTL_0_LOCALIDREGID(local_invocation_id));
tu_cs_emit(cs, 0x2fc); /* HLSQ_CS_UNKNOWN_B998 */
}
static void
tu6_emit_vs_system_values(struct tu_cs *cs,
const struct ir3_shader_variant *vs,
const struct ir3_shader_variant *gs,
bool primid_passthru)
{
const uint32_t vertexid_regid =
ir3_find_sysval_regid(vs, SYSTEM_VALUE_VERTEX_ID);
const uint32_t instanceid_regid =
ir3_find_sysval_regid(vs, SYSTEM_VALUE_INSTANCE_ID);
const uint32_t primitiveid_regid = gs->type != MESA_SHADER_NONE ?
ir3_find_sysval_regid(gs, SYSTEM_VALUE_PRIMITIVE_ID) :
regid(63, 0);
const uint32_t gsheader_regid = gs->type != MESA_SHADER_NONE ?
ir3_find_sysval_regid(gs, SYSTEM_VALUE_GS_HEADER_IR3) :
regid(63, 0);
tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_1, 6);
tu_cs_emit(cs, A6XX_VFD_CONTROL_1_REGID4VTX(vertexid_regid) |
A6XX_VFD_CONTROL_1_REGID4INST(instanceid_regid) |
A6XX_VFD_CONTROL_1_REGID4PRIMID(primitiveid_regid) |
0xfc000000);
tu_cs_emit(cs, 0x0000fcfc); /* VFD_CONTROL_2 */
tu_cs_emit(cs, 0xfcfcfcfc); /* VFD_CONTROL_3 */
tu_cs_emit(cs, 0x000000fc); /* VFD_CONTROL_4 */
tu_cs_emit(cs, A6XX_VFD_CONTROL_5_REGID_GSHEADER(gsheader_regid) |
0xfc00); /* VFD_CONTROL_5 */
tu_cs_emit(cs, COND(primid_passthru, A6XX_VFD_CONTROL_6_PRIMID_PASSTHRU)); /* VFD_CONTROL_6 */
}
/* Add any missing varyings needed for stream-out. Otherwise varyings not
* used by fragment shader will be stripped out.
*/
static void
tu6_link_streamout(struct ir3_shader_linkage *l,
const struct ir3_shader_variant *v)
{
const struct ir3_stream_output_info *info = &v->shader->stream_output;
/*
* First, any stream-out varyings not already in linkage map (ie. also
* consumed by frag shader) need to be added:
*/
for (unsigned i = 0; i < info->num_outputs; i++) {
const struct ir3_stream_output *out = &info->output[i];
unsigned compmask =
(1 << (out->num_components + out->start_component)) - 1;
unsigned k = out->register_index;
unsigned idx, nextloc = 0;
/* psize/pos need to be the last entries in linkage map, and will
* get added link_stream_out, so skip over them:
*/
if (v->outputs[k].slot == VARYING_SLOT_PSIZ ||
v->outputs[k].slot == VARYING_SLOT_POS)
continue;
for (idx = 0; idx < l->cnt; idx++) {
if (l->var[idx].regid == v->outputs[k].regid)
break;
nextloc = MAX2(nextloc, l->var[idx].loc + 4);
}
/* add if not already in linkage map: */
if (idx == l->cnt)
ir3_link_add(l, v->outputs[k].regid, compmask, nextloc);
/* expand component-mask if needed, ie streaming out all components
* but frag shader doesn't consume all components:
*/
if (compmask & ~l->var[idx].compmask) {
l->var[idx].compmask |= compmask;
l->max_loc = MAX2(l->max_loc, l->var[idx].loc +
util_last_bit(l->var[idx].compmask));
}
}
}
static void
tu6_setup_streamout(const struct ir3_shader_variant *v,
struct ir3_shader_linkage *l, struct tu_streamout_state *tf)
{
const struct ir3_stream_output_info *info = &v->shader->stream_output;
memset(tf, 0, sizeof(*tf));
tf->prog_count = align(l->max_loc, 2) / 2;
debug_assert(tf->prog_count < ARRAY_SIZE(tf->prog));
/* set stride info to the streamout state */
for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++)
tf->stride[i] = info->stride[i];
for (unsigned i = 0; i < info->num_outputs; i++) {
const struct ir3_stream_output *out = &info->output[i];
unsigned k = out->register_index;
unsigned idx;
/* Skip it, if there's an unused reg in the middle of outputs. */
if (v->outputs[k].regid == INVALID_REG)
continue;
tf->ncomp[out->output_buffer] += out->num_components;
/* linkage map sorted by order frag shader wants things, so
* a bit less ideal here..
*/
for (idx = 0; idx < l->cnt; idx++)
if (l->var[idx].regid == v->outputs[k].regid)
break;
debug_assert(idx < l->cnt);
for (unsigned j = 0; j < out->num_components; j++) {
unsigned c = j + out->start_component;
unsigned loc = l->var[idx].loc + c;
unsigned off = j + out->dst_offset; /* in dwords */
if (loc & 1) {
tf->prog[loc/2] |= A6XX_VPC_SO_PROG_B_EN |
A6XX_VPC_SO_PROG_B_BUF(out->output_buffer) |
A6XX_VPC_SO_PROG_B_OFF(off * 4);
} else {
tf->prog[loc/2] |= A6XX_VPC_SO_PROG_A_EN |
A6XX_VPC_SO_PROG_A_BUF(out->output_buffer) |
A6XX_VPC_SO_PROG_A_OFF(off * 4);
}
}
}
tf->vpc_so_buf_cntl = A6XX_VPC_SO_BUF_CNTL_ENABLE |
COND(tf->ncomp[0] > 0, A6XX_VPC_SO_BUF_CNTL_BUF0) |
COND(tf->ncomp[1] > 0, A6XX_VPC_SO_BUF_CNTL_BUF1) |
COND(tf->ncomp[2] > 0, A6XX_VPC_SO_BUF_CNTL_BUF2) |
COND(tf->ncomp[3] > 0, A6XX_VPC_SO_BUF_CNTL_BUF3);
}
static void
tu6_emit_const(struct tu_cs *cs, uint32_t opcode, uint32_t base,
enum a6xx_state_block block, uint32_t offset,
uint32_t size, uint32_t *dwords) {
assert(size % 4 == 0);
tu_cs_emit_pkt7(cs, opcode, 3 + size);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(block) |
CP_LOAD_STATE6_0_NUM_UNIT(size / 4));
tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
dwords = (uint32_t *)&((uint8_t *)dwords)[offset];
tu_cs_emit_array(cs, dwords, size);
}
static void
tu6_emit_link_map(struct tu_cs *cs,
const struct ir3_shader_variant *producer,
const struct ir3_shader_variant *consumer) {
const struct ir3_const_state *const_state = &consumer->shader->const_state;
uint32_t base = const_state->offsets.primitive_map;
uint32_t patch_locs[MAX_VARYING] = { }, num_loc;
num_loc = ir3_link_geometry_stages(producer, consumer, patch_locs);
int size = DIV_ROUND_UP(num_loc, 4);
size = (MIN2(size + base, consumer->constlen) - base) * 4;
if (size <= 0)
return;
tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, base, SB6_GS_SHADER, 0, size,
patch_locs);
}
static uint16_t
gl_primitive_to_tess(uint16_t primitive) {
switch (primitive) {
case GL_POINTS:
return TESS_POINTS;
case GL_LINE_STRIP:
return TESS_LINES;
case GL_TRIANGLE_STRIP:
return TESS_CW_TRIS;
default:
unreachable("");
}
}
static void
tu6_emit_vpc(struct tu_cs *cs,
const struct ir3_shader_variant *vs,
const struct ir3_shader_variant *gs,
const struct ir3_shader_variant *fs,
bool binning_pass,
struct tu_streamout_state *tf)
{
bool has_gs = gs->type != MESA_SHADER_NONE;
const struct ir3_shader_variant *last_shader = has_gs ? gs : vs;
struct ir3_shader_linkage linkage = { 0 };
ir3_link_shaders(&linkage, last_shader, fs, true);
if (last_shader->shader->stream_output.num_outputs)
tu6_link_streamout(&linkage, last_shader);
/* We do this after linking shaders in order to know whether PrimID
* passthrough needs to be enabled.
*/
bool primid_passthru = linkage.primid_loc != 0xff;
tu6_emit_vs_system_values(cs, vs, gs, primid_passthru);
tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VAR_DISABLE(0), 4);
tu_cs_emit(cs, ~linkage.varmask[0]);
tu_cs_emit(cs, ~linkage.varmask[1]);
tu_cs_emit(cs, ~linkage.varmask[2]);
tu_cs_emit(cs, ~linkage.varmask[3]);
/* a6xx finds position/pointsize at the end */
const uint32_t position_regid =
ir3_find_output_regid(last_shader, VARYING_SLOT_POS);
const uint32_t pointsize_regid =
ir3_find_output_regid(last_shader, VARYING_SLOT_PSIZ);
const uint32_t layer_regid = has_gs ?
ir3_find_output_regid(gs, VARYING_SLOT_LAYER) : regid(63, 0);
uint32_t pointsize_loc = 0xff, position_loc = 0xff, layer_loc = 0xff;
if (layer_regid != regid(63, 0)) {
layer_loc = linkage.max_loc;
ir3_link_add(&linkage, layer_regid, 0x1, linkage.max_loc);
}
if (position_regid != regid(63, 0)) {
position_loc = linkage.max_loc;
ir3_link_add(&linkage, position_regid, 0xf, linkage.max_loc);
}
if (pointsize_regid != regid(63, 0)) {
pointsize_loc = linkage.max_loc;
ir3_link_add(&linkage, pointsize_regid, 0x1, linkage.max_loc);
}
if (last_shader->shader->stream_output.num_outputs)
tu6_setup_streamout(last_shader, &linkage, tf);
/* map outputs of the last shader to VPC */
assert(linkage.cnt <= 32);
const uint32_t sp_out_count = DIV_ROUND_UP(linkage.cnt, 2);
const uint32_t sp_vpc_dst_count = DIV_ROUND_UP(linkage.cnt, 4);
uint32_t sp_out[16];
uint32_t sp_vpc_dst[8];
for (uint32_t i = 0; i < linkage.cnt; i++) {
((uint16_t *) sp_out)[i] =
A6XX_SP_VS_OUT_REG_A_REGID(linkage.var[i].regid) |
A6XX_SP_VS_OUT_REG_A_COMPMASK(linkage.var[i].compmask);
((uint8_t *) sp_vpc_dst)[i] =
A6XX_SP_VS_VPC_DST_REG_OUTLOC0(linkage.var[i].loc);
}
if (has_gs)
tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_OUT_REG(0), sp_out_count);
else
tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_OUT_REG(0), sp_out_count);
tu_cs_emit_array(cs, sp_out, sp_out_count);
if (has_gs)
tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_VPC_DST_REG(0), sp_vpc_dst_count);
else
tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_VPC_DST_REG(0), sp_vpc_dst_count);
tu_cs_emit_array(cs, sp_vpc_dst, sp_vpc_dst_count);
tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMID_CNTL, 1);
tu_cs_emit(cs, COND(primid_passthru, A6XX_PC_PRIMID_CNTL_PRIMID_PASSTHRU));
tu_cs_emit_pkt4(cs, REG_A6XX_VPC_CNTL_0, 1);
tu_cs_emit(cs, A6XX_VPC_CNTL_0_NUMNONPOSVAR(fs->total_in) |
(fs->total_in > 0 ? A6XX_VPC_CNTL_0_VARYING : 0) |
A6XX_VPC_CNTL_0_PRIMIDLOC(linkage.primid_loc) |
A6XX_VPC_CNTL_0_UNKLOC(0xff));
tu_cs_emit_pkt4(cs, REG_A6XX_VPC_PACK, 1);
tu_cs_emit(cs, A6XX_VPC_PACK_POSITIONLOC(position_loc) |
A6XX_VPC_PACK_PSIZELOC(pointsize_loc) |
A6XX_VPC_PACK_STRIDE_IN_VPC(linkage.max_loc));
if (has_gs) {
tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_CTRL_REG0, 1);
tu_cs_emit(cs, A6XX_SP_GS_CTRL_REG0_THREADSIZE(TWO_QUADS) |
A6XX_SP_GS_CTRL_REG0_FULLREGFOOTPRINT(gs->info.max_reg + 1) |
A6XX_SP_GS_CTRL_REG0_BRANCHSTACK(gs->branchstack) |
COND(gs->need_pixlod, A6XX_SP_GS_CTRL_REG0_PIXLODENABLE));
tu6_emit_link_map(cs, vs, gs);
uint32_t primitive_regid =
ir3_find_sysval_regid(gs, SYSTEM_VALUE_PRIMITIVE_ID);
tu_cs_emit_pkt4(cs, REG_A6XX_VPC_PACK_GS, 1);
tu_cs_emit(cs, A6XX_VPC_PACK_GS_POSITIONLOC(position_loc) |
A6XX_VPC_PACK_GS_PSIZELOC(pointsize_loc) |
A6XX_VPC_PACK_GS_STRIDE_IN_VPC(linkage.max_loc));
tu_cs_emit_pkt4(cs, REG_A6XX_VPC_UNKNOWN_9105, 1);
tu_cs_emit(cs, A6XX_VPC_UNKNOWN_9105_LAYERLOC(layer_loc) | 0xff00);
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_809C, 1);
tu_cs_emit(cs, CONDREG(layer_regid,
A6XX_GRAS_UNKNOWN_809C_GS_WRITES_LAYER));
uint32_t flags_regid = ir3_find_output_regid(gs,
VARYING_SLOT_GS_VERTEX_FLAGS_IR3);
tu_cs_emit_pkt4(cs, REG_A6XX_SP_PRIMITIVE_CNTL_GS, 1);
tu_cs_emit(cs, A6XX_SP_PRIMITIVE_CNTL_GS_GSOUT(linkage.cnt) |
A6XX_SP_PRIMITIVE_CNTL_GS_FLAGS_REGID(flags_regid));
tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_2, 1);
tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_2_STRIDE_IN_VPC(linkage.max_loc) |
CONDREG(pointsize_regid, A6XX_PC_PRIMITIVE_CNTL_2_PSIZE) |
CONDREG(layer_regid, A6XX_PC_PRIMITIVE_CNTL_2_LAYER) |
CONDREG(primitive_regid, A6XX_PC_PRIMITIVE_CNTL_2_PRIMITIVE_ID));
uint32_t vertices_out = gs->shader->nir->info.gs.vertices_out - 1;
uint16_t output =
gl_primitive_to_tess(gs->shader->nir->info.gs.output_primitive);
uint32_t invocations = gs->shader->nir->info.gs.invocations - 1;
tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_5, 1);
tu_cs_emit(cs,
A6XX_PC_PRIMITIVE_CNTL_5_GS_VERTICES_OUT(vertices_out) |
A6XX_PC_PRIMITIVE_CNTL_5_GS_OUTPUT(output) |
A6XX_PC_PRIMITIVE_CNTL_5_GS_INVOCATIONS(invocations));
tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_3, 1);
tu_cs_emit(cs, 0);
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8003, 1);
tu_cs_emit(cs, 0);
tu_cs_emit_pkt4(cs, REG_A6XX_VPC_UNKNOWN_9100, 1);
tu_cs_emit(cs, 0xff);
tu_cs_emit_pkt4(cs, REG_A6XX_VPC_UNKNOWN_9102, 1);
tu_cs_emit(cs, 0xffff00);
/* Size of per-primitive alloction in ldlw memory in vec4s. */
uint32_t vec4_size =
gs->shader->nir->info.gs.vertices_in *
DIV_ROUND_UP(vs->shader->output_size, 4);
tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 1);
tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_6_STRIDE_IN_VPC(vec4_size));
tu_cs_emit_pkt4(cs, REG_A6XX_PC_UNKNOWN_9B07, 1);
tu_cs_emit(cs, 0);
tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_PRIM_SIZE, 1);
tu_cs_emit(cs, vs->shader->output_size);
}
tu_cs_emit_pkt4(cs, REG_A6XX_SP_PRIMITIVE_CNTL, 1);
tu_cs_emit(cs, A6XX_SP_PRIMITIVE_CNTL_VSOUT(linkage.cnt));
tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_1, 1);
tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_1_STRIDE_IN_VPC(linkage.max_loc) |
(last_shader->writes_psize ? A6XX_PC_PRIMITIVE_CNTL_1_PSIZE : 0));
}
static int
tu6_vpc_varying_mode(const struct ir3_shader_variant *fs,
uint32_t index,
uint8_t *interp_mode,
uint8_t *ps_repl_mode)
{
enum
{
INTERP_SMOOTH = 0,
INTERP_FLAT = 1,
INTERP_ZERO = 2,
INTERP_ONE = 3,
};
enum
{
PS_REPL_NONE = 0,
PS_REPL_S = 1,
PS_REPL_T = 2,
PS_REPL_ONE_MINUS_T = 3,
};
const uint32_t compmask = fs->inputs[index].compmask;
/* NOTE: varyings are packed, so if compmask is 0xb then first, second, and
* fourth component occupy three consecutive varying slots
*/
int shift = 0;
*interp_mode = 0;
*ps_repl_mode = 0;
if (fs->inputs[index].slot == VARYING_SLOT_PNTC) {
if (compmask & 0x1) {
*ps_repl_mode |= PS_REPL_S << shift;
shift += 2;
}
if (compmask & 0x2) {
*ps_repl_mode |= PS_REPL_T << shift;
shift += 2;
}
if (compmask & 0x4) {
*interp_mode |= INTERP_ZERO << shift;
shift += 2;
}
if (compmask & 0x8) {
*interp_mode |= INTERP_ONE << 6;
shift += 2;
}
} else if ((fs->inputs[index].interpolate == INTERP_MODE_FLAT) ||
fs->inputs[index].rasterflat) {
for (int i = 0; i < 4; i++) {
if (compmask & (1 << i)) {
*interp_mode |= INTERP_FLAT << shift;
shift += 2;
}
}
}
return shift;
}
static void
tu6_emit_vpc_varying_modes(struct tu_cs *cs,
const struct ir3_shader_variant *fs,
bool binning_pass)
{
uint32_t interp_modes[8] = { 0 };
uint32_t ps_repl_modes[8] = { 0 };
if (!binning_pass) {
for (int i = -1;
(i = ir3_next_varying(fs, i)) < (int) fs->inputs_count;) {
/* get the mode for input i */
uint8_t interp_mode;
uint8_t ps_repl_mode;
const int bits =
tu6_vpc_varying_mode(fs, i, &interp_mode, &ps_repl_mode);
/* OR the mode into the array */
const uint32_t inloc = fs->inputs[i].inloc * 2;
uint32_t n = inloc / 32;
uint32_t shift = inloc % 32;
interp_modes[n] |= interp_mode << shift;
ps_repl_modes[n] |= ps_repl_mode << shift;
if (shift + bits > 32) {
n++;
shift = 32 - shift;
interp_modes[n] |= interp_mode >> shift;
ps_repl_modes[n] |= ps_repl_mode >> shift;
}
}
}
tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_INTERP_MODE(0), 8);
tu_cs_emit_array(cs, interp_modes, 8);
tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_PS_REPL_MODE(0), 8);
tu_cs_emit_array(cs, ps_repl_modes, 8);
}
static void
tu6_emit_fs_inputs(struct tu_cs *cs, const struct ir3_shader_variant *fs)
{
uint32_t face_regid, coord_regid, zwcoord_regid, samp_id_regid;
uint32_t ij_pix_regid, ij_samp_regid, ij_cent_regid, ij_size_regid;
uint32_t smask_in_regid;
bool sample_shading = fs->per_samp; /* TODO | key->sample_shading; */
bool enable_varyings = fs->total_in > 0;
samp_id_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_ID);
smask_in_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_MASK_IN);
face_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRONT_FACE);
coord_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRAG_COORD);
zwcoord_regid = VALIDREG(coord_regid) ? coord_regid + 2 : regid(63, 0);
ij_pix_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL);
ij_samp_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE);
ij_cent_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID);
ij_size_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_SIZE);
if (fs->num_sampler_prefetch > 0) {
assert(VALIDREG(ij_pix_regid));
/* also, it seems like ij_pix is *required* to be r0.x */
assert(ij_pix_regid == regid(0, 0));
}
tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_PREFETCH_CNTL, 1 + fs->num_sampler_prefetch);
tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CNTL_COUNT(fs->num_sampler_prefetch) |
A6XX_SP_FS_PREFETCH_CNTL_UNK4(regid(63, 0)) |
0x7000); // XXX);
for (int i = 0; i < fs->num_sampler_prefetch; i++) {
const struct ir3_sampler_prefetch *prefetch = &fs->sampler_prefetch[i];
tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CMD_SRC(prefetch->src) |
A6XX_SP_FS_PREFETCH_CMD_SAMP_ID(prefetch->samp_id) |
A6XX_SP_FS_PREFETCH_CMD_TEX_ID(prefetch->tex_id) |
A6XX_SP_FS_PREFETCH_CMD_DST(prefetch->dst) |
A6XX_SP_FS_PREFETCH_CMD_WRMASK(prefetch->wrmask) |
COND(prefetch->half_precision, A6XX_SP_FS_PREFETCH_CMD_HALF) |
A6XX_SP_FS_PREFETCH_CMD_CMD(prefetch->cmd));
}
if (fs->num_sampler_prefetch > 0) {
tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_BINDLESS_PREFETCH_CMD(0), fs->num_sampler_prefetch);
for (int i = 0; i < fs->num_sampler_prefetch; i++) {
const struct ir3_sampler_prefetch *prefetch = &fs->sampler_prefetch[i];
tu_cs_emit(cs,
A6XX_SP_FS_BINDLESS_PREFETCH_CMD_SAMP_ID(prefetch->samp_bindless_id) |
A6XX_SP_FS_BINDLESS_PREFETCH_CMD_TEX_ID(prefetch->tex_bindless_id));
}
}
tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CONTROL_1_REG, 5);
tu_cs_emit(cs, 0x7);
tu_cs_emit(cs, A6XX_HLSQ_CONTROL_2_REG_FACEREGID(face_regid) |
A6XX_HLSQ_CONTROL_2_REG_SAMPLEID(samp_id_regid) |
A6XX_HLSQ_CONTROL_2_REG_SAMPLEMASK(smask_in_regid) |
A6XX_HLSQ_CONTROL_2_REG_SIZE(ij_size_regid));
tu_cs_emit(cs, A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_PIXEL(ij_pix_regid) |
A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_CENTROID(ij_cent_regid) |
0xfc00fc00);
tu_cs_emit(cs, A6XX_HLSQ_CONTROL_4_REG_XYCOORDREGID(coord_regid) |
A6XX_HLSQ_CONTROL_4_REG_ZWCOORDREGID(zwcoord_regid) |
A6XX_HLSQ_CONTROL_4_REG_BARY_IJ_PIXEL_PERSAMP(ij_samp_regid) |
0x0000fc00);
tu_cs_emit(cs, 0xfc);
tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UNKNOWN_B980, 1);
tu_cs_emit(cs, enable_varyings ? 3 : 1);
tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1);
tu_cs_emit(cs, 0xff); /* XXX */
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CNTL, 1);
tu_cs_emit(cs,
CONDREG(ij_pix_regid, A6XX_GRAS_CNTL_VARYING) |
CONDREG(ij_cent_regid, A6XX_GRAS_CNTL_CENTROID) |
CONDREG(ij_samp_regid, A6XX_GRAS_CNTL_PERSAMP_VARYING) |
COND(VALIDREG(ij_size_regid) && !sample_shading, A6XX_GRAS_CNTL_SIZE) |
COND(VALIDREG(ij_size_regid) && sample_shading, A6XX_GRAS_CNTL_SIZE_PERSAMP) |
COND(fs->fragcoord_compmask != 0, A6XX_GRAS_CNTL_SIZE |
A6XX_GRAS_CNTL_COORD_MASK(fs->fragcoord_compmask)) |
COND(fs->frag_face, A6XX_GRAS_CNTL_SIZE));
tu_cs_emit_pkt4(cs, REG_A6XX_RB_RENDER_CONTROL0, 2);
tu_cs_emit(cs,
CONDREG(ij_pix_regid, A6XX_RB_RENDER_CONTROL0_VARYING) |
CONDREG(ij_cent_regid, A6XX_RB_RENDER_CONTROL0_CENTROID) |
CONDREG(ij_samp_regid, A6XX_RB_RENDER_CONTROL0_PERSAMP_VARYING) |
COND(enable_varyings, A6XX_RB_RENDER_CONTROL0_UNK10) |
COND(VALIDREG(ij_size_regid) && !sample_shading, A6XX_RB_RENDER_CONTROL0_SIZE) |
COND(VALIDREG(ij_size_regid) && sample_shading, A6XX_RB_RENDER_CONTROL0_SIZE_PERSAMP) |
COND(fs->fragcoord_compmask != 0, A6XX_RB_RENDER_CONTROL0_SIZE |
A6XX_RB_RENDER_CONTROL0_COORD_MASK(fs->fragcoord_compmask)) |
COND(fs->frag_face, A6XX_RB_RENDER_CONTROL0_SIZE));
tu_cs_emit(cs,
CONDREG(smask_in_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEMASK) |
CONDREG(samp_id_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEID) |
CONDREG(ij_size_regid, A6XX_RB_RENDER_CONTROL1_SIZE) |
COND(fs->frag_face, A6XX_RB_RENDER_CONTROL1_FACENESS));
tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CNTL, 1);
tu_cs_emit(cs, COND(sample_shading, A6XX_RB_SAMPLE_CNTL_PER_SAMP_MODE));
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8101, 1);
tu_cs_emit(cs, COND(sample_shading, 0x6)); // XXX
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CNTL, 1);
tu_cs_emit(cs, COND(sample_shading, A6XX_GRAS_SAMPLE_CNTL_PER_SAMP_MODE));
}
static void
tu6_emit_fs_outputs(struct tu_cs *cs,
const struct ir3_shader_variant *fs,
uint32_t mrt_count, bool dual_src_blend,
uint32_t render_components)
{
uint32_t smask_regid, posz_regid;
posz_regid = ir3_find_output_regid(fs, FRAG_RESULT_DEPTH);
smask_regid = ir3_find_output_regid(fs, FRAG_RESULT_SAMPLE_MASK);
uint32_t fragdata_regid[8];
if (fs->color0_mrt) {
fragdata_regid[0] = ir3_find_output_regid(fs, FRAG_RESULT_COLOR);
for (uint32_t i = 1; i < ARRAY_SIZE(fragdata_regid); i++)
fragdata_regid[i] = fragdata_regid[0];
} else {
for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++)
fragdata_regid[i] = ir3_find_output_regid(fs, FRAG_RESULT_DATA0 + i);
}
tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_CNTL0, 2);
tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL0_DEPTH_REGID(posz_regid) |
A6XX_SP_FS_OUTPUT_CNTL0_SAMPMASK_REGID(smask_regid) |
COND(dual_src_blend, A6XX_SP_FS_OUTPUT_CNTL0_DUAL_COLOR_IN_ENABLE) |
0xfc000000);
tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL1_MRT(mrt_count));
tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_REG(0), 8);
for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++) {
// TODO we could have a mix of half and full precision outputs,
// we really need to figure out half-precision from IR3_REG_HALF
tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_REG_REGID(fragdata_regid[i]) |
(false ? A6XX_SP_FS_OUTPUT_REG_HALF_PRECISION : 0));
}
tu_cs_emit_regs(cs,
A6XX_SP_FS_RENDER_COMPONENTS(.dword = render_components));
tu_cs_emit_pkt4(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 2);
tu_cs_emit(cs, COND(fs->writes_pos, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_Z) |
COND(fs->writes_smask, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_SAMPMASK) |
COND(dual_src_blend, A6XX_RB_FS_OUTPUT_CNTL0_DUAL_COLOR_IN_ENABLE));
tu_cs_emit(cs, A6XX_RB_FS_OUTPUT_CNTL1_MRT(mrt_count));
tu_cs_emit_regs(cs,
A6XX_RB_RENDER_COMPONENTS(.dword = render_components));
uint32_t gras_su_depth_plane_cntl = 0;
uint32_t rb_depth_plane_cntl = 0;
if (fs->no_earlyz || fs->has_kill || fs->writes_pos) {
gras_su_depth_plane_cntl |= A6XX_GRAS_SU_DEPTH_PLANE_CNTL_FRAG_WRITES_Z;
rb_depth_plane_cntl |= A6XX_RB_DEPTH_PLANE_CNTL_FRAG_WRITES_Z;
}
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_DEPTH_PLANE_CNTL, 1);
tu_cs_emit(cs, gras_su_depth_plane_cntl);
tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_PLANE_CNTL, 1);
tu_cs_emit(cs, rb_depth_plane_cntl);
}
static void
tu6_emit_shader_object(struct tu_cs *cs,
gl_shader_stage stage,
const struct ir3_shader_variant *variant,
const struct tu_bo *binary_bo,
uint32_t binary_offset)
{
uint16_t reg;
uint8_t opcode;
enum a6xx_state_block sb;
switch (stage) {
case MESA_SHADER_VERTEX:
reg = REG_A6XX_SP_VS_OBJ_START_LO;
opcode = CP_LOAD_STATE6_GEOM;
sb = SB6_VS_SHADER;
break;
case MESA_SHADER_TESS_CTRL:
reg = REG_A6XX_SP_HS_OBJ_START_LO;
opcode = CP_LOAD_STATE6_GEOM;
sb = SB6_HS_SHADER;
break;
case MESA_SHADER_TESS_EVAL:
reg = REG_A6XX_SP_DS_OBJ_START_LO;
opcode = CP_LOAD_STATE6_GEOM;
sb = SB6_DS_SHADER;
break;
case MESA_SHADER_GEOMETRY:
reg = REG_A6XX_SP_GS_OBJ_START_LO;
opcode = CP_LOAD_STATE6_GEOM;
sb = SB6_GS_SHADER;
break;
case MESA_SHADER_FRAGMENT:
reg = REG_A6XX_SP_FS_OBJ_START_LO;
opcode = CP_LOAD_STATE6_FRAG;
sb = SB6_FS_SHADER;
break;
case MESA_SHADER_COMPUTE:
reg = REG_A6XX_SP_CS_OBJ_START_LO;
opcode = CP_LOAD_STATE6_FRAG;
sb = SB6_CS_SHADER;
break;
default:
unreachable("invalid gl_shader_stage");
opcode = CP_LOAD_STATE6_GEOM;
sb = SB6_VS_SHADER;
break;
}
if (!variant->instrlen) {
tu_cs_emit_pkt4(cs, reg, 2);
tu_cs_emit_qw(cs, 0);
return;
}
assert(variant->type == stage);
const uint64_t binary_iova = binary_bo->iova + binary_offset;
assert((binary_iova & 0xf) == 0);
/* note: it looks like HW might try to read a few instructions beyond the instrlen size
* of the shader. this could be a potential source of problems at some point
* possibly this doesn't happen if shader iova is aligned enough (to 4k for example)
*/
tu_cs_emit_pkt4(cs, reg, 2);
tu_cs_emit_qw(cs, binary_iova);
/* always indirect */
const bool indirect = true;
if (indirect) {
tu_cs_emit_pkt7(cs, opcode, 3);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
CP_LOAD_STATE6_0_NUM_UNIT(variant->instrlen));
tu_cs_emit_qw(cs, binary_iova);
} else {
const void *binary = binary_bo->map + binary_offset;
tu_cs_emit_pkt7(cs, opcode, 3 + variant->info.sizedwords);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
CP_LOAD_STATE6_0_NUM_UNIT(variant->instrlen));
tu_cs_emit_qw(cs, 0);
tu_cs_emit_array(cs, binary, variant->info.sizedwords);
}
}
static void
tu6_emit_immediates(struct tu_cs *cs, const struct ir3_shader_variant *v,
uint32_t opcode, enum a6xx_state_block block)
{
/* dummy variant */
if (!v->shader)
return;
const struct ir3_const_state *const_state = &v->shader->const_state;
uint32_t base = const_state->offsets.immediate;
int size = const_state->immediates_count;
/* truncate size to avoid writing constants that shader
* does not use:
*/
size = MIN2(size + base, v->constlen) - base;
if (size <= 0)
return;
tu_cs_emit_pkt7(cs, opcode, 3 + size * 4);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(block) |
CP_LOAD_STATE6_0_NUM_UNIT(size));
tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
for (unsigned i = 0; i < size; i++) {
tu_cs_emit(cs, const_state->immediates[i].val[0]);
tu_cs_emit(cs, const_state->immediates[i].val[1]);
tu_cs_emit(cs, const_state->immediates[i].val[2]);
tu_cs_emit(cs, const_state->immediates[i].val[3]);
}
}
static void
tu6_emit_geometry_consts(struct tu_cs *cs,
const struct ir3_shader_variant *vs,
const struct ir3_shader_variant *gs) {
unsigned num_vertices = gs->shader->nir->info.gs.vertices_in;
uint32_t params[4] = {
vs->shader->output_size * num_vertices * 4, /* primitive stride */
vs->shader->output_size * 4, /* vertex stride */
0,
0,
};
uint32_t vs_base = vs->shader->const_state.offsets.primitive_param;
tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, vs_base, SB6_VS_SHADER, 0,
ARRAY_SIZE(params), params);
uint32_t gs_base = gs->shader->const_state.offsets.primitive_param;
tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, gs_base, SB6_GS_SHADER, 0,
ARRAY_SIZE(params), params);
}
static void
tu6_emit_program(struct tu_cs *cs,
const struct tu_pipeline_builder *builder,
const struct tu_bo *binary_bo,
bool binning_pass,
struct tu_streamout_state *tf)
{
static const struct ir3_shader_variant dummy_variant = {
.type = MESA_SHADER_NONE
};
assert(builder->shaders[MESA_SHADER_VERTEX]);
const struct ir3_shader_variant *vs =
&builder->shaders[MESA_SHADER_VERTEX]->variants[0];
const struct ir3_shader_variant *hs =
builder->shaders[MESA_SHADER_TESS_CTRL]
? &builder->shaders[MESA_SHADER_TESS_CTRL]->variants[0]
: &dummy_variant;
const struct ir3_shader_variant *ds =
builder->shaders[MESA_SHADER_TESS_EVAL]
? &builder->shaders[MESA_SHADER_TESS_EVAL]->variants[0]
: &dummy_variant;
const struct ir3_shader_variant *gs =
builder->shaders[MESA_SHADER_GEOMETRY]
? &builder->shaders[MESA_SHADER_GEOMETRY]->variants[0]
: &dummy_variant;
const struct ir3_shader_variant *fs =
builder->shaders[MESA_SHADER_FRAGMENT]
? &builder->shaders[MESA_SHADER_FRAGMENT]->variants[0]
: &dummy_variant;
bool has_gs = gs->type != MESA_SHADER_NONE;
if (binning_pass) {
/* if we have streamout, use full VS in binning pass, as the
* binning pass VS will have outputs on other than position/psize
* stripped out:
*/
if (vs->shader->stream_output.num_outputs == 0)
vs = &builder->shaders[MESA_SHADER_VERTEX]->variants[1];
fs = &dummy_variant;
}
tu6_emit_vs_config(cs, builder->shaders[MESA_SHADER_VERTEX], vs);
tu6_emit_hs_config(cs, builder->shaders[MESA_SHADER_TESS_CTRL], hs);
tu6_emit_ds_config(cs, builder->shaders[MESA_SHADER_TESS_EVAL], ds);
tu6_emit_gs_config(cs, builder->shaders[MESA_SHADER_GEOMETRY], gs);
tu6_emit_fs_config(cs, builder->shaders[MESA_SHADER_FRAGMENT], fs);
tu6_emit_vpc(cs, vs, gs, fs, binning_pass, tf);
tu6_emit_vpc_varying_modes(cs, fs, binning_pass);
tu6_emit_fs_inputs(cs, fs);
tu6_emit_fs_outputs(cs, fs, builder->color_attachment_count,
builder->use_dual_src_blend,
builder->render_components);
tu6_emit_shader_object(cs, MESA_SHADER_VERTEX, vs, binary_bo,
binning_pass ? builder->binning_vs_offset : builder->shader_offsets[MESA_SHADER_VERTEX]);
if (has_gs)
tu6_emit_shader_object(cs, MESA_SHADER_GEOMETRY, gs, binary_bo,
builder->shader_offsets[MESA_SHADER_GEOMETRY]);
tu6_emit_shader_object(cs, MESA_SHADER_FRAGMENT, fs, binary_bo,
builder->shader_offsets[MESA_SHADER_FRAGMENT]);
tu6_emit_immediates(cs, vs, CP_LOAD_STATE6_GEOM, SB6_VS_SHADER);
if (has_gs) {
tu6_emit_immediates(cs, gs, CP_LOAD_STATE6_GEOM, SB6_GS_SHADER);
tu6_emit_geometry_consts(cs, vs, gs);
}
if (!binning_pass)
tu6_emit_immediates(cs, fs, CP_LOAD_STATE6_FRAG, SB6_FS_SHADER);
}
static void
tu6_emit_vertex_input(struct tu_cs *cs,
const struct ir3_shader_variant *vs,
const VkPipelineVertexInputStateCreateInfo *info,
uint8_t bindings[MAX_VERTEX_ATTRIBS],
uint32_t *count)
{
uint32_t vfd_fetch_idx = 0;
uint32_t vfd_decode_idx = 0;
uint32_t binding_instanced = 0; /* bitmask of instanced bindings */
for (uint32_t i = 0; i < info->vertexBindingDescriptionCount; i++) {
const VkVertexInputBindingDescription *binding =
&info->pVertexBindingDescriptions[i];
tu_cs_emit_regs(cs,
A6XX_VFD_FETCH_STRIDE(vfd_fetch_idx, binding->stride));
if (binding->inputRate == VK_VERTEX_INPUT_RATE_INSTANCE)
binding_instanced |= 1 << binding->binding;
bindings[vfd_fetch_idx] = binding->binding;
vfd_fetch_idx++;
}
/* TODO: emit all VFD_DECODE/VFD_DEST_CNTL in same (two) pkt4 */
for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) {
const VkVertexInputAttributeDescription *attr =
&info->pVertexAttributeDescriptions[i];
uint32_t binding_idx, input_idx;
for (binding_idx = 0; binding_idx < vfd_fetch_idx; binding_idx++) {
if (bindings[binding_idx] == attr->binding)
break;
}
assert(binding_idx < vfd_fetch_idx);
for (input_idx = 0; input_idx < vs->inputs_count; input_idx++) {
if ((vs->inputs[input_idx].slot - VERT_ATTRIB_GENERIC0) == attr->location)
break;
}
/* attribute not used, skip it */
if (input_idx == vs->inputs_count)
continue;
const struct tu_native_format format = tu6_format_vtx(attr->format);
tu_cs_emit_regs(cs,
A6XX_VFD_DECODE_INSTR(vfd_decode_idx,
.idx = binding_idx,
.offset = attr->offset,
.instanced = binding_instanced & (1 << attr->binding),
.format = format.fmt,
.swap = format.swap,
.unk30 = 1,
._float = !vk_format_is_int(attr->format)),
A6XX_VFD_DECODE_STEP_RATE(vfd_decode_idx, 1));
tu_cs_emit_regs(cs,
A6XX_VFD_DEST_CNTL_INSTR(vfd_decode_idx,
.writemask = vs->inputs[input_idx].compmask,
.regid = vs->inputs[input_idx].regid));
vfd_decode_idx++;
}
tu_cs_emit_regs(cs,
A6XX_VFD_CONTROL_0(
.fetch_cnt = vfd_fetch_idx,
.decode_cnt = vfd_decode_idx));
*count = vfd_fetch_idx;
}
static uint32_t
tu6_guardband_adj(uint32_t v)
{
if (v > 256)
return (uint32_t)(511.0 - 65.0 * (log2(v) - 8.0));
else
return 511;
}
void
tu6_emit_viewport(struct tu_cs *cs, const VkViewport *viewport)
{
float offsets[3];
float scales[3];
scales[0] = viewport->width / 2.0f;
scales[1] = viewport->height / 2.0f;
scales[2] = viewport->maxDepth - viewport->minDepth;
offsets[0] = viewport->x + scales[0];
offsets[1] = viewport->y + scales[1];
offsets[2] = viewport->minDepth;
VkOffset2D min;
VkOffset2D max;
min.x = (int32_t) viewport->x;
max.x = (int32_t) ceilf(viewport->x + viewport->width);
if (viewport->height >= 0.0f) {
min.y = (int32_t) viewport->y;
max.y = (int32_t) ceilf(viewport->y + viewport->height);
} else {
min.y = (int32_t)(viewport->y + viewport->height);
max.y = (int32_t) ceilf(viewport->y);
}
/* the spec allows viewport->height to be 0.0f */
if (min.y == max.y)
max.y++;
assert(min.x >= 0 && min.x < max.x);
assert(min.y >= 0 && min.y < max.y);
VkExtent2D guardband_adj;
guardband_adj.width = tu6_guardband_adj(max.x - min.x);
guardband_adj.height = tu6_guardband_adj(max.y - min.y);
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_VPORT_XOFFSET_0, 6);
tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XOFFSET_0(offsets[0]).value);
tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XSCALE_0(scales[0]).value);
tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YOFFSET_0(offsets[1]).value);
tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YSCALE_0(scales[1]).value);
tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZOFFSET_0(offsets[2]).value);
tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZSCALE_0(scales[2]).value);
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0, 2);
tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(min.x) |
A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(min.y));
tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(max.x - 1) |
A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(max.y - 1));
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ, 1);
tu_cs_emit(cs,
A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_HORZ(guardband_adj.width) |
A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_VERT(guardband_adj.height));
float z_clamp_min = MIN2(viewport->minDepth, viewport->maxDepth);
float z_clamp_max = MAX2(viewport->minDepth, viewport->maxDepth);
tu_cs_emit_regs(cs,
A6XX_GRAS_CL_Z_CLAMP_MIN(z_clamp_min),
A6XX_GRAS_CL_Z_CLAMP_MAX(z_clamp_max));
tu_cs_emit_regs(cs,
A6XX_RB_Z_CLAMP_MIN(z_clamp_min),
A6XX_RB_Z_CLAMP_MAX(z_clamp_max));
}
void
tu6_emit_scissor(struct tu_cs *cs, const VkRect2D *scissor)
{
const VkOffset2D min = scissor->offset;
const VkOffset2D max = {
scissor->offset.x + scissor->extent.width,
scissor->offset.y + scissor->extent.height,
};
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0, 2);
tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(min.x) |
A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(min.y));
tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(max.x - 1) |
A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(max.y - 1));
}
void
tu6_emit_sample_locations(struct tu_cs *cs, const VkSampleLocationsInfoEXT *samp_loc)
{
if (!samp_loc) {
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CONFIG, 1);
tu_cs_emit(cs, 0);
tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CONFIG, 1);
tu_cs_emit(cs, 0);
tu_cs_emit_pkt4(cs, REG_A6XX_SP_TP_SAMPLE_CONFIG, 1);
tu_cs_emit(cs, 0);
return;
}
assert(samp_loc->sampleLocationsPerPixel == samp_loc->sampleLocationsCount);
assert(samp_loc->sampleLocationGridSize.width == 1);
assert(samp_loc->sampleLocationGridSize.height == 1);
uint32_t sample_config =
A6XX_RB_SAMPLE_CONFIG_LOCATION_ENABLE;
uint32_t sample_locations = 0;
for (uint32_t i = 0; i < samp_loc->sampleLocationsCount; i++) {
sample_locations |=
(A6XX_RB_SAMPLE_LOCATION_0_SAMPLE_0_X(samp_loc->pSampleLocations[i].x) |
A6XX_RB_SAMPLE_LOCATION_0_SAMPLE_0_Y(samp_loc->pSampleLocations[i].y)) << i*8;
}
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CONFIG, 2);
tu_cs_emit(cs, sample_config);
tu_cs_emit(cs, sample_locations);
tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CONFIG, 2);
tu_cs_emit(cs, sample_config);
tu_cs_emit(cs, sample_locations);
tu_cs_emit_pkt4(cs, REG_A6XX_SP_TP_SAMPLE_CONFIG, 2);
tu_cs_emit(cs, sample_config);
tu_cs_emit(cs, sample_locations);
}
static void
tu6_emit_gras_unknowns(struct tu_cs *cs)
{
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8001, 1);
tu_cs_emit(cs, 0x0);
}
static void
tu6_emit_point_size(struct tu_cs *cs)
{
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POINT_MINMAX, 2);
tu_cs_emit(cs, A6XX_GRAS_SU_POINT_MINMAX_MIN(1.0f / 16.0f) |
A6XX_GRAS_SU_POINT_MINMAX_MAX(4092.0f));
tu_cs_emit(cs, A6XX_GRAS_SU_POINT_SIZE(1.0f).value);
}
static uint32_t
tu6_gras_su_cntl(const VkPipelineRasterizationStateCreateInfo *rast_info,
VkSampleCountFlagBits samples)
{
uint32_t gras_su_cntl = 0;
if (rast_info->cullMode & VK_CULL_MODE_FRONT_BIT)
gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_FRONT;
if (rast_info->cullMode & VK_CULL_MODE_BACK_BIT)
gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_BACK;
if (rast_info->frontFace == VK_FRONT_FACE_CLOCKWISE)
gras_su_cntl |= A6XX_GRAS_SU_CNTL_FRONT_CW;
/* don't set A6XX_GRAS_SU_CNTL_LINEHALFWIDTH */
if (rast_info->depthBiasEnable)
gras_su_cntl |= A6XX_GRAS_SU_CNTL_POLY_OFFSET;
if (samples > VK_SAMPLE_COUNT_1_BIT)
gras_su_cntl |= A6XX_GRAS_SU_CNTL_MSAA_ENABLE;
return gras_su_cntl;
}
void
tu6_emit_gras_su_cntl(struct tu_cs *cs,
uint32_t gras_su_cntl,
float line_width)
{
assert((gras_su_cntl & A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK) == 0);
gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(line_width / 2.0f);
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_CNTL, 1);
tu_cs_emit(cs, gras_su_cntl);
}
void
tu6_emit_depth_bias(struct tu_cs *cs,
float constant_factor,
float clamp,
float slope_factor)
{
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POLY_OFFSET_SCALE, 3);
tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_SCALE(slope_factor).value);
tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET(constant_factor).value);
tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET_CLAMP(clamp).value);
}
static void
tu6_emit_alpha_control_disable(struct tu_cs *cs)
{
tu_cs_emit_pkt4(cs, REG_A6XX_RB_ALPHA_CONTROL, 1);
tu_cs_emit(cs, 0);
}
static void
tu6_emit_depth_control(struct tu_cs *cs,
const VkPipelineDepthStencilStateCreateInfo *ds_info,
const VkPipelineRasterizationStateCreateInfo *rast_info)
{
assert(!ds_info->depthBoundsTestEnable);
uint32_t rb_depth_cntl = 0;
if (ds_info->depthTestEnable) {
rb_depth_cntl |=
A6XX_RB_DEPTH_CNTL_Z_ENABLE |
A6XX_RB_DEPTH_CNTL_ZFUNC(tu6_compare_func(ds_info->depthCompareOp)) |
A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE;
if (rast_info->depthClampEnable)
rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_CLAMP_ENABLE;
if (ds_info->depthWriteEnable)
rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_WRITE_ENABLE;
}
tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_CNTL, 1);
tu_cs_emit(cs, rb_depth_cntl);
}
static void
tu6_emit_stencil_control(struct tu_cs *cs,
const VkPipelineDepthStencilStateCreateInfo *ds_info)
{
uint32_t rb_stencil_control = 0;
if (ds_info->stencilTestEnable) {
const VkStencilOpState *front = &ds_info->front;
const VkStencilOpState *back = &ds_info->back;
rb_stencil_control |=
A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE |
A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE_BF |
A6XX_RB_STENCIL_CONTROL_STENCIL_READ |
A6XX_RB_STENCIL_CONTROL_FUNC(tu6_compare_func(front->compareOp)) |
A6XX_RB_STENCIL_CONTROL_FAIL(tu6_stencil_op(front->failOp)) |
A6XX_RB_STENCIL_CONTROL_ZPASS(tu6_stencil_op(front->passOp)) |
A6XX_RB_STENCIL_CONTROL_ZFAIL(tu6_stencil_op(front->depthFailOp)) |
A6XX_RB_STENCIL_CONTROL_FUNC_BF(tu6_compare_func(back->compareOp)) |
A6XX_RB_STENCIL_CONTROL_FAIL_BF(tu6_stencil_op(back->failOp)) |
A6XX_RB_STENCIL_CONTROL_ZPASS_BF(tu6_stencil_op(back->passOp)) |
A6XX_RB_STENCIL_CONTROL_ZFAIL_BF(tu6_stencil_op(back->depthFailOp));
}
tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_CONTROL, 1);
tu_cs_emit(cs, rb_stencil_control);
}
void
tu6_emit_stencil_compare_mask(struct tu_cs *cs, uint32_t front, uint32_t back)
{
tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILMASK, 1);
tu_cs_emit(
cs, A6XX_RB_STENCILMASK_MASK(front) | A6XX_RB_STENCILMASK_BFMASK(back));
}
void
tu6_emit_stencil_write_mask(struct tu_cs *cs, uint32_t front, uint32_t back)
{
tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILWRMASK, 1);
tu_cs_emit(cs, A6XX_RB_STENCILWRMASK_WRMASK(front) |
A6XX_RB_STENCILWRMASK_BFWRMASK(back));
}
void
tu6_emit_stencil_reference(struct tu_cs *cs, uint32_t front, uint32_t back)
{
tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILREF, 1);
tu_cs_emit(cs,
A6XX_RB_STENCILREF_REF(front) | A6XX_RB_STENCILREF_BFREF(back));
}
static uint32_t
tu6_rb_mrt_blend_control(const VkPipelineColorBlendAttachmentState *att,
bool has_alpha)
{
const enum a3xx_rb_blend_opcode color_op = tu6_blend_op(att->colorBlendOp);
const enum adreno_rb_blend_factor src_color_factor = tu6_blend_factor(
has_alpha ? att->srcColorBlendFactor
: tu_blend_factor_no_dst_alpha(att->srcColorBlendFactor));
const enum adreno_rb_blend_factor dst_color_factor = tu6_blend_factor(
has_alpha ? att->dstColorBlendFactor
: tu_blend_factor_no_dst_alpha(att->dstColorBlendFactor));
const enum a3xx_rb_blend_opcode alpha_op = tu6_blend_op(att->alphaBlendOp);
const enum adreno_rb_blend_factor src_alpha_factor =
tu6_blend_factor(att->srcAlphaBlendFactor);
const enum adreno_rb_blend_factor dst_alpha_factor =
tu6_blend_factor(att->dstAlphaBlendFactor);
return A6XX_RB_MRT_BLEND_CONTROL_RGB_SRC_FACTOR(src_color_factor) |
A6XX_RB_MRT_BLEND_CONTROL_RGB_BLEND_OPCODE(color_op) |
A6XX_RB_MRT_BLEND_CONTROL_RGB_DEST_FACTOR(dst_color_factor) |
A6XX_RB_MRT_BLEND_CONTROL_ALPHA_SRC_FACTOR(src_alpha_factor) |
A6XX_RB_MRT_BLEND_CONTROL_ALPHA_BLEND_OPCODE(alpha_op) |
A6XX_RB_MRT_BLEND_CONTROL_ALPHA_DEST_FACTOR(dst_alpha_factor);
}
static uint32_t
tu6_rb_mrt_control(const VkPipelineColorBlendAttachmentState *att,
uint32_t rb_mrt_control_rop,
bool is_int,
bool has_alpha)
{
uint32_t rb_mrt_control =
A6XX_RB_MRT_CONTROL_COMPONENT_ENABLE(att->colorWriteMask);
/* ignore blending and logic op for integer attachments */
if (is_int) {
rb_mrt_control |= A6XX_RB_MRT_CONTROL_ROP_CODE(ROP_COPY);
return rb_mrt_control;
}
rb_mrt_control |= rb_mrt_control_rop;
if (att->blendEnable) {
rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND;
if (has_alpha)
rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND2;
}
return rb_mrt_control;
}
static void
tu6_emit_rb_mrt_controls(struct tu_cs *cs,
const VkPipelineColorBlendStateCreateInfo *blend_info,
const VkFormat attachment_formats[MAX_RTS],
uint32_t *blend_enable_mask)
{
*blend_enable_mask = 0;
bool rop_reads_dst = false;
uint32_t rb_mrt_control_rop = 0;
if (blend_info->logicOpEnable) {
rop_reads_dst = tu_logic_op_reads_dst(blend_info->logicOp);
rb_mrt_control_rop =
A6XX_RB_MRT_CONTROL_ROP_ENABLE |
A6XX_RB_MRT_CONTROL_ROP_CODE(tu6_rop(blend_info->logicOp));
}
for (uint32_t i = 0; i < blend_info->attachmentCount; i++) {
const VkPipelineColorBlendAttachmentState *att =
&blend_info->pAttachments[i];
const VkFormat format = attachment_formats[i];
uint32_t rb_mrt_control = 0;
uint32_t rb_mrt_blend_control = 0;
if (format != VK_FORMAT_UNDEFINED) {
const bool is_int = vk_format_is_int(format);
const bool has_alpha = vk_format_has_alpha(format);
rb_mrt_control =
tu6_rb_mrt_control(att, rb_mrt_control_rop, is_int, has_alpha);
rb_mrt_blend_control = tu6_rb_mrt_blend_control(att, has_alpha);
if (att->blendEnable || rop_reads_dst)
*blend_enable_mask |= 1 << i;
}
tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2);
tu_cs_emit(cs, rb_mrt_control);
tu_cs_emit(cs, rb_mrt_blend_control);
}
}
static void
tu6_emit_blend_control(struct tu_cs *cs,
uint32_t blend_enable_mask,
bool dual_src_blend,
const VkPipelineMultisampleStateCreateInfo *msaa_info)
{
assert(!msaa_info->alphaToOneEnable);
uint32_t sp_blend_cntl = A6XX_SP_BLEND_CNTL_UNK8;
if (blend_enable_mask)
sp_blend_cntl |= A6XX_SP_BLEND_CNTL_ENABLED;
if (dual_src_blend)
sp_blend_cntl |= A6XX_SP_BLEND_CNTL_DUAL_COLOR_IN_ENABLE;
if (msaa_info->alphaToCoverageEnable)
sp_blend_cntl |= A6XX_SP_BLEND_CNTL_ALPHA_TO_COVERAGE;
const uint32_t sample_mask =
msaa_info->pSampleMask ? *msaa_info->pSampleMask
: ((1 << msaa_info->rasterizationSamples) - 1);
/* set A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND only when enabled? */
uint32_t rb_blend_cntl =
A6XX_RB_BLEND_CNTL_ENABLE_BLEND(blend_enable_mask) |
A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND |
A6XX_RB_BLEND_CNTL_SAMPLE_MASK(sample_mask);
if (dual_src_blend)
rb_blend_cntl |= A6XX_RB_BLEND_CNTL_DUAL_COLOR_IN_ENABLE;
if (msaa_info->alphaToCoverageEnable)
rb_blend_cntl |= A6XX_RB_BLEND_CNTL_ALPHA_TO_COVERAGE;
tu_cs_emit_pkt4(cs, REG_A6XX_SP_BLEND_CNTL, 1);
tu_cs_emit(cs, sp_blend_cntl);
tu_cs_emit_pkt4(cs, REG_A6XX_RB_BLEND_CNTL, 1);
tu_cs_emit(cs, rb_blend_cntl);
}
void
tu6_emit_blend_constants(struct tu_cs *cs, const float constants[4])
{
tu_cs_emit_pkt4(cs, REG_A6XX_RB_BLEND_RED_F32, 4);
tu_cs_emit_array(cs, (const uint32_t *) constants, 4);
}
static VkResult
tu_pipeline_create(struct tu_device *dev,
struct tu_pipeline_layout *layout,
bool compute,
const VkAllocationCallbacks *pAllocator,
struct tu_pipeline **out_pipeline)
{
struct tu_pipeline *pipeline =
vk_zalloc2(&dev->alloc, pAllocator, sizeof(*pipeline), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!pipeline)
return VK_ERROR_OUT_OF_HOST_MEMORY;
tu_cs_init(&pipeline->cs, dev, TU_CS_MODE_SUB_STREAM, 2048);
/* Reserve the space now such that tu_cs_begin_sub_stream never fails. Note
* that LOAD_STATE can potentially take up a large amount of space so we
* calculate its size explicitly.
*/
unsigned load_state_size = tu6_load_state_size(layout, compute);
VkResult result = tu_cs_reserve_space(&pipeline->cs, 2048 + load_state_size);
if (result != VK_SUCCESS) {
vk_free2(&dev->alloc, pAllocator, pipeline);
return result;
}
*out_pipeline = pipeline;
return VK_SUCCESS;
}
static VkResult
tu_pipeline_builder_compile_shaders(struct tu_pipeline_builder *builder)
{
const VkPipelineShaderStageCreateInfo *stage_infos[MESA_SHADER_STAGES] = {
NULL
};
for (uint32_t i = 0; i < builder->create_info->stageCount; i++) {
gl_shader_stage stage =
tu_shader_stage(builder->create_info->pStages[i].stage);
stage_infos[stage] = &builder->create_info->pStages[i];
}
struct tu_shader_compile_options options;
tu_shader_compile_options_init(&options, builder->create_info);
/* compile shaders in reverse order */
struct tu_shader *next_stage_shader = NULL;
for (gl_shader_stage stage = MESA_SHADER_STAGES - 1;
stage > MESA_SHADER_NONE; stage--) {
const VkPipelineShaderStageCreateInfo *stage_info = stage_infos[stage];
if (!stage_info && stage != MESA_SHADER_FRAGMENT)
continue;
struct tu_shader *shader =
tu_shader_create(builder->device, stage, stage_info, builder->layout,
builder->alloc);
if (!shader)
return VK_ERROR_OUT_OF_HOST_MEMORY;
VkResult result =
tu_shader_compile(builder->device, shader, next_stage_shader,
&options, builder->alloc);
if (result != VK_SUCCESS)
return result;
builder->shaders[stage] = shader;
builder->shader_offsets[stage] = builder->shader_total_size;
builder->shader_total_size +=
sizeof(uint32_t) * shader->variants[0].info.sizedwords;
next_stage_shader = shader;
}
if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) {
const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
const struct ir3_shader_variant *variant;
if (vs->ir3_shader.stream_output.num_outputs)
variant = &vs->variants[0];
else
variant = &vs->variants[1];
builder->binning_vs_offset = builder->shader_total_size;
builder->shader_total_size +=
sizeof(uint32_t) * variant->info.sizedwords;
}
return VK_SUCCESS;
}
static VkResult
tu_pipeline_builder_upload_shaders(struct tu_pipeline_builder *builder,
struct tu_pipeline *pipeline)
{
struct tu_bo *bo = &pipeline->program.binary_bo;
VkResult result =
tu_bo_init_new(builder->device, bo, builder->shader_total_size);
if (result != VK_SUCCESS)
return result;
result = tu_bo_map(builder->device, bo);
if (result != VK_SUCCESS)
return result;
for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
const struct tu_shader *shader = builder->shaders[i];
if (!shader)
continue;
memcpy(bo->map + builder->shader_offsets[i], shader->binary,
sizeof(uint32_t) * shader->variants[0].info.sizedwords);
}
if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) {
const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
const struct ir3_shader_variant *variant;
void *bin;
if (vs->ir3_shader.stream_output.num_outputs) {
variant = &vs->variants[0];
bin = vs->binary;
} else {
variant = &vs->variants[1];
bin = vs->binning_binary;
}
memcpy(bo->map + builder->binning_vs_offset, bin,
sizeof(uint32_t) * variant->info.sizedwords);
}
return VK_SUCCESS;
}
static void
tu_pipeline_builder_parse_dynamic(struct tu_pipeline_builder *builder,
struct tu_pipeline *pipeline)
{
const VkPipelineDynamicStateCreateInfo *dynamic_info =
builder->create_info->pDynamicState;
if (!dynamic_info)
return;
for (uint32_t i = 0; i < dynamic_info->dynamicStateCount; i++) {
pipeline->dynamic_state.mask |=
tu_dynamic_state_bit(dynamic_info->pDynamicStates[i]);
}
}
static void
tu_pipeline_set_linkage(struct tu_program_descriptor_linkage *link,
struct tu_shader *shader,
struct ir3_shader_variant *v)
{
link->ubo_state = v->shader->ubo_state;
link->const_state = v->shader->const_state;
link->constlen = v->constlen;
link->push_consts = shader->push_consts;
}
static void
tu_pipeline_builder_parse_shader_stages(struct tu_pipeline_builder *builder,
struct tu_pipeline *pipeline)
{
struct tu_cs prog_cs;
tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, false, &pipeline->streamout);
pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, true, &pipeline->streamout);
pipeline->program.binning_state_ib =
tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
VkShaderStageFlags stages = 0;
for (unsigned i = 0; i < builder->create_info->stageCount; i++) {
stages |= builder->create_info->pStages[i].stage;
}
pipeline->active_stages = stages;
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
if (!builder->shaders[i])
continue;
tu_pipeline_set_linkage(&pipeline->program.link[i],
builder->shaders[i],
&builder->shaders[i]->variants[0]);
}
if (builder->shaders[MESA_SHADER_FRAGMENT]) {
memcpy(pipeline->program.input_attachment_idx,
builder->shaders[MESA_SHADER_FRAGMENT]->attachment_idx,
sizeof(pipeline->program.input_attachment_idx));
}
}
static void
tu_pipeline_builder_parse_vertex_input(struct tu_pipeline_builder *builder,
struct tu_pipeline *pipeline)
{
const VkPipelineVertexInputStateCreateInfo *vi_info =
builder->create_info->pVertexInputState;
const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
struct tu_cs vi_cs;
tu_cs_begin_sub_stream(&pipeline->cs,
MAX_VERTEX_ATTRIBS * 7 + 2, &vi_cs);
tu6_emit_vertex_input(&vi_cs, &vs->variants[0], vi_info,
pipeline->vi.bindings, &pipeline->vi.count);
pipeline->vi.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
if (vs->has_binning_pass) {
tu_cs_begin_sub_stream(&pipeline->cs,
MAX_VERTEX_ATTRIBS * 7 + 2, &vi_cs);
tu6_emit_vertex_input(
&vi_cs, &vs->variants[1], vi_info, pipeline->vi.binning_bindings,
&pipeline->vi.binning_count);
pipeline->vi.binning_state_ib =
tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
}
}
static void
tu_pipeline_builder_parse_input_assembly(struct tu_pipeline_builder *builder,
struct tu_pipeline *pipeline)
{
const VkPipelineInputAssemblyStateCreateInfo *ia_info =
builder->create_info->pInputAssemblyState;
pipeline->ia.primtype = tu6_primtype(ia_info->topology);
pipeline->ia.primitive_restart = ia_info->primitiveRestartEnable;
}
static void
tu_pipeline_builder_parse_viewport(struct tu_pipeline_builder *builder,
struct tu_pipeline *pipeline)
{
/* The spec says:
*
* pViewportState is a pointer to an instance of the
* VkPipelineViewportStateCreateInfo structure, and is ignored if the
* pipeline has rasterization disabled."
*
* We leave the relevant registers stale in that case.
*/
if (builder->rasterizer_discard)
return;
const VkPipelineViewportStateCreateInfo *vp_info =
builder->create_info->pViewportState;
struct tu_cs vp_cs;
tu_cs_begin_sub_stream(&pipeline->cs, 21, &vp_cs);
if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_VIEWPORT)) {
assert(vp_info->viewportCount == 1);
tu6_emit_viewport(&vp_cs, vp_info->pViewports);
}
if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_SCISSOR)) {
assert(vp_info->scissorCount == 1);
tu6_emit_scissor(&vp_cs, vp_info->pScissors);
}
pipeline->vp.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vp_cs);
}
static void
tu_pipeline_builder_parse_rasterization(struct tu_pipeline_builder *builder,
struct tu_pipeline *pipeline)
{
const VkPipelineRasterizationStateCreateInfo *rast_info =
builder->create_info->pRasterizationState;
assert(rast_info->polygonMode == VK_POLYGON_MODE_FILL);
struct tu_cs rast_cs;
tu_cs_begin_sub_stream(&pipeline->cs, 20, &rast_cs);
tu_cs_emit_regs(&rast_cs,
A6XX_GRAS_CL_CNTL(
.znear_clip_disable = rast_info->depthClampEnable,
.zfar_clip_disable = rast_info->depthClampEnable,
.unk5 = rast_info->depthClampEnable,
.zero_gb_scale_z = 1,
.vp_clip_code_ignore = 1));
/* move to hw ctx init? */
tu6_emit_gras_unknowns(&rast_cs);
tu6_emit_point_size(&rast_cs);
const uint32_t gras_su_cntl =
tu6_gras_su_cntl(rast_info, builder->samples);
if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_LINE_WIDTH))
tu6_emit_gras_su_cntl(&rast_cs, gras_su_cntl, rast_info->lineWidth);
if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_DEPTH_BIAS)) {
tu6_emit_depth_bias(&rast_cs, rast_info->depthBiasConstantFactor,
rast_info->depthBiasClamp,
rast_info->depthBiasSlopeFactor);
}
pipeline->rast.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &rast_cs);
pipeline->rast.gras_su_cntl = gras_su_cntl;
}
static void
tu_pipeline_builder_parse_depth_stencil(struct tu_pipeline_builder *builder,
struct tu_pipeline *pipeline)
{
/* The spec says:
*
* pDepthStencilState is a pointer to an instance of the
* VkPipelineDepthStencilStateCreateInfo structure, and is ignored if
* the pipeline has rasterization disabled or if the subpass of the
* render pass the pipeline is created against does not use a
* depth/stencil attachment.
*
* Disable both depth and stencil tests if there is no ds attachment,
* Disable depth test if ds attachment is S8_UINT, since S8_UINT defines
* only the separate stencil attachment
*/
static const VkPipelineDepthStencilStateCreateInfo dummy_ds_info;
const VkPipelineDepthStencilStateCreateInfo *ds_info =
builder->depth_attachment_format != VK_FORMAT_UNDEFINED
? builder->create_info->pDepthStencilState
: &dummy_ds_info;
const VkPipelineDepthStencilStateCreateInfo *ds_info_depth =
builder->depth_attachment_format != VK_FORMAT_S8_UINT
? ds_info : &dummy_ds_info;
struct tu_cs ds_cs;
tu_cs_begin_sub_stream(&pipeline->cs, 12, &ds_cs);
/* move to hw ctx init? */
tu6_emit_alpha_control_disable(&ds_cs);
tu6_emit_depth_control(&ds_cs, ds_info_depth,
builder->create_info->pRasterizationState);
tu6_emit_stencil_control(&ds_cs, ds_info);
if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_COMPARE_MASK)) {
tu6_emit_stencil_compare_mask(&ds_cs, ds_info->front.compareMask,
ds_info->back.compareMask);
}
if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_WRITE_MASK)) {
tu6_emit_stencil_write_mask(&ds_cs, ds_info->front.writeMask,
ds_info->back.writeMask);
}
if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_REFERENCE)) {
tu6_emit_stencil_reference(&ds_cs, ds_info->front.reference,
ds_info->back.reference);
}
pipeline->ds.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &ds_cs);
}
static void
tu_pipeline_builder_parse_multisample_and_color_blend(
struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline)
{
/* The spec says:
*
* pMultisampleState is a pointer to an instance of the
* VkPipelineMultisampleStateCreateInfo, and is ignored if the pipeline
* has rasterization disabled.
*
* Also,
*
* pColorBlendState is a pointer to an instance of the
* VkPipelineColorBlendStateCreateInfo structure, and is ignored if the
* pipeline has rasterization disabled or if the subpass of the render
* pass the pipeline is created against does not use any color
* attachments.
*
* We leave the relevant registers stale when rasterization is disabled.
*/
if (builder->rasterizer_discard)
return;
static const VkPipelineColorBlendStateCreateInfo dummy_blend_info;
const VkPipelineMultisampleStateCreateInfo *msaa_info =
builder->create_info->pMultisampleState;
const VkPipelineColorBlendStateCreateInfo *blend_info =
builder->use_color_attachments ? builder->create_info->pColorBlendState
: &dummy_blend_info;
struct tu_cs blend_cs;
tu_cs_begin_sub_stream(&pipeline->cs, MAX_RTS * 3 + 18, &blend_cs);
uint32_t blend_enable_mask;
tu6_emit_rb_mrt_controls(&blend_cs, blend_info,
builder->color_attachment_formats,
&blend_enable_mask);
if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_BLEND_CONSTANTS))
tu6_emit_blend_constants(&blend_cs, blend_info->blendConstants);
if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_SAMPLE_LOCATIONS)) {
const struct VkPipelineSampleLocationsStateCreateInfoEXT *sample_locations =
vk_find_struct_const(msaa_info->pNext, PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT);
const VkSampleLocationsInfoEXT *samp_loc = NULL;
if (sample_locations && sample_locations->sampleLocationsEnable)
samp_loc = &sample_locations->sampleLocationsInfo;
tu6_emit_sample_locations(&blend_cs, samp_loc);
}
tu6_emit_blend_control(&blend_cs, blend_enable_mask,
builder->use_dual_src_blend, msaa_info);
pipeline->blend.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &blend_cs);
}
static void
tu_pipeline_finish(struct tu_pipeline *pipeline,
struct tu_device *dev,
const VkAllocationCallbacks *alloc)
{
tu_cs_finish(&pipeline->cs);
if (pipeline->program.binary_bo.gem_handle)
tu_bo_finish(dev, &pipeline->program.binary_bo);
}
static VkResult
tu_pipeline_builder_build(struct tu_pipeline_builder *builder,
struct tu_pipeline **pipeline)
{
VkResult result = tu_pipeline_create(builder->device, builder->layout,
false, builder->alloc, pipeline);
if (result != VK_SUCCESS)
return result;
(*pipeline)->layout = builder->layout;
/* compile and upload shaders */
result = tu_pipeline_builder_compile_shaders(builder);
if (result == VK_SUCCESS)
result = tu_pipeline_builder_upload_shaders(builder, *pipeline);
if (result != VK_SUCCESS) {
tu_pipeline_finish(*pipeline, builder->device, builder->alloc);
vk_free2(&builder->device->alloc, builder->alloc, *pipeline);
*pipeline = VK_NULL_HANDLE;
return result;
}
tu_pipeline_builder_parse_dynamic(builder, *pipeline);
tu_pipeline_builder_parse_shader_stages(builder, *pipeline);
tu_pipeline_builder_parse_vertex_input(builder, *pipeline);
tu_pipeline_builder_parse_input_assembly(builder, *pipeline);
tu_pipeline_builder_parse_viewport(builder, *pipeline);
tu_pipeline_builder_parse_rasterization(builder, *pipeline);
tu_pipeline_builder_parse_depth_stencil(builder, *pipeline);
tu_pipeline_builder_parse_multisample_and_color_blend(builder, *pipeline);
tu6_emit_load_state(*pipeline, false);
/* we should have reserved enough space upfront such that the CS never
* grows
*/
assert((*pipeline)->cs.bo_count == 1);
return VK_SUCCESS;
}
static void
tu_pipeline_builder_finish(struct tu_pipeline_builder *builder)
{
for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
if (!builder->shaders[i])
continue;
tu_shader_destroy(builder->device, builder->shaders[i], builder->alloc);
}
}
static void
tu_pipeline_builder_init_graphics(
struct tu_pipeline_builder *builder,
struct tu_device *dev,
struct tu_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *create_info,
const VkAllocationCallbacks *alloc)
{
TU_FROM_HANDLE(tu_pipeline_layout, layout, create_info->layout);
*builder = (struct tu_pipeline_builder) {
.device = dev,
.cache = cache,
.create_info = create_info,
.alloc = alloc,
.layout = layout,
};
builder->rasterizer_discard =
create_info->pRasterizationState->rasterizerDiscardEnable;
if (builder->rasterizer_discard) {
builder->samples = VK_SAMPLE_COUNT_1_BIT;
} else {
builder->samples = create_info->pMultisampleState->rasterizationSamples;
const struct tu_render_pass *pass =
tu_render_pass_from_handle(create_info->renderPass);
const struct tu_subpass *subpass =
&pass->subpasses[create_info->subpass];
const uint32_t a = subpass->depth_stencil_attachment.attachment;
builder->depth_attachment_format = (a != VK_ATTACHMENT_UNUSED) ?
pass->attachments[a].format : VK_FORMAT_UNDEFINED;
assert(subpass->color_count == 0 ||
!create_info->pColorBlendState ||
subpass->color_count == create_info->pColorBlendState->attachmentCount);
builder->color_attachment_count = subpass->color_count;
for (uint32_t i = 0; i < subpass->color_count; i++) {
const uint32_t a = subpass->color_attachments[i].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
builder->color_attachment_formats[i] = pass->attachments[a].format;
builder->use_color_attachments = true;
builder->render_components |= 0xf << (i * 4);
}
if (tu_blend_state_is_dual_src(create_info->pColorBlendState)) {
builder->color_attachment_count++;
builder->use_dual_src_blend = true;
/* dual source blending has an extra fs output in the 2nd slot */
if (subpass->color_attachments[0].attachment != VK_ATTACHMENT_UNUSED)
builder->render_components |= 0xf << 4;
}
}
}
static VkResult
tu_graphics_pipeline_create(VkDevice device,
VkPipelineCache pipelineCache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipeline)
{
TU_FROM_HANDLE(tu_device, dev, device);
TU_FROM_HANDLE(tu_pipeline_cache, cache, pipelineCache);
struct tu_pipeline_builder builder;
tu_pipeline_builder_init_graphics(&builder, dev, cache,
pCreateInfo, pAllocator);
struct tu_pipeline *pipeline = NULL;
VkResult result = tu_pipeline_builder_build(&builder, &pipeline);
tu_pipeline_builder_finish(&builder);
if (result == VK_SUCCESS)
*pPipeline = tu_pipeline_to_handle(pipeline);
else
*pPipeline = VK_NULL_HANDLE;
return result;
}
VkResult
tu_CreateGraphicsPipelines(VkDevice device,
VkPipelineCache pipelineCache,
uint32_t count,
const VkGraphicsPipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipelines)
{
VkResult final_result = VK_SUCCESS;
for (uint32_t i = 0; i < count; i++) {
VkResult result = tu_graphics_pipeline_create(device, pipelineCache,
&pCreateInfos[i], pAllocator,
&pPipelines[i]);
if (result != VK_SUCCESS)
final_result = result;
}
return final_result;
}
static void
tu6_emit_compute_program(struct tu_cs *cs,
struct tu_shader *shader,
const struct tu_bo *binary_bo)
{
const struct ir3_shader_variant *v = &shader->variants[0];
tu6_emit_cs_config(cs, shader, v);
/* The compute program is the only one in the pipeline, so 0 offset. */
tu6_emit_shader_object(cs, MESA_SHADER_COMPUTE, v, binary_bo, 0);
tu6_emit_immediates(cs, v, CP_LOAD_STATE6_FRAG, SB6_CS_SHADER);
}
static VkResult
tu_compute_upload_shader(VkDevice device,
struct tu_pipeline *pipeline,
struct tu_shader *shader)
{
TU_FROM_HANDLE(tu_device, dev, device);
struct tu_bo *bo = &pipeline->program.binary_bo;
struct ir3_shader_variant *v = &shader->variants[0];
uint32_t shader_size = sizeof(uint32_t) * v->info.sizedwords;
VkResult result =
tu_bo_init_new(dev, bo, shader_size);
if (result != VK_SUCCESS)
return result;
result = tu_bo_map(dev, bo);
if (result != VK_SUCCESS)
return result;
memcpy(bo->map, shader->binary, shader_size);
return VK_SUCCESS;
}
static VkResult
tu_compute_pipeline_create(VkDevice device,
VkPipelineCache _cache,
const VkComputePipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipeline)
{
TU_FROM_HANDLE(tu_device, dev, device);
TU_FROM_HANDLE(tu_pipeline_layout, layout, pCreateInfo->layout);
const VkPipelineShaderStageCreateInfo *stage_info = &pCreateInfo->stage;
VkResult result;
struct tu_pipeline *pipeline;
*pPipeline = VK_NULL_HANDLE;
result = tu_pipeline_create(dev, layout, true, pAllocator, &pipeline);
if (result != VK_SUCCESS)
return result;
pipeline->layout = layout;
struct tu_shader_compile_options options;
tu_shader_compile_options_init(&options, NULL);
struct tu_shader *shader =
tu_shader_create(dev, MESA_SHADER_COMPUTE, stage_info, layout, pAllocator);
if (!shader) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto fail;
}
result = tu_shader_compile(dev, shader, NULL, &options, pAllocator);
if (result != VK_SUCCESS)
goto fail;
struct ir3_shader_variant *v = &shader->variants[0];
tu_pipeline_set_linkage(&pipeline->program.link[MESA_SHADER_COMPUTE],
shader, v);
result = tu_compute_upload_shader(device, pipeline, shader);
if (result != VK_SUCCESS)
goto fail;
for (int i = 0; i < 3; i++)
pipeline->compute.local_size[i] = v->shader->nir->info.cs.local_size[i];
struct tu_cs prog_cs;
tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
tu6_emit_compute_program(&prog_cs, shader, &pipeline->program.binary_bo);
pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
tu6_emit_load_state(pipeline, true);
*pPipeline = tu_pipeline_to_handle(pipeline);
return VK_SUCCESS;
fail:
if (shader)
tu_shader_destroy(dev, shader, pAllocator);
tu_pipeline_finish(pipeline, dev, pAllocator);
vk_free2(&dev->alloc, pAllocator, pipeline);
return result;
}
VkResult
tu_CreateComputePipelines(VkDevice device,
VkPipelineCache pipelineCache,
uint32_t count,
const VkComputePipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipelines)
{
VkResult final_result = VK_SUCCESS;
for (uint32_t i = 0; i < count; i++) {
VkResult result = tu_compute_pipeline_create(device, pipelineCache,
&pCreateInfos[i],
pAllocator, &pPipelines[i]);
if (result != VK_SUCCESS)
final_result = result;
}
return final_result;
}
void
tu_DestroyPipeline(VkDevice _device,
VkPipeline _pipeline,
const VkAllocationCallbacks *pAllocator)
{
TU_FROM_HANDLE(tu_device, dev, _device);
TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
if (!_pipeline)
return;
tu_pipeline_finish(pipeline, dev, pAllocator);
vk_free2(&dev->alloc, pAllocator, pipeline);
}