mesa/src/glsl/loop_analysis.cpp
Paul Berry ffc29120c4 glsl/loops: Move some analysis from loop_controls to loop_analysis.
Previously, the sole responsibility of loop_analysis was to find all
the variables referenced in the loop that are either loop constant or
induction variables, and find all of the simple if statements that
might terminate the loop.  The remainder of the analysis necessary to
determine how many times a loop executed was performed by
loop_controls.

This patch makes loop_analysis also responsible for determining the
number of iterations after which each loop terminator will terminate
the loop, and for figuring out which terminator will terminate the
loop first (I'm calling this the "limiting terminator").

This will allow loop unrolling to make use of information that was
previously only visible from loop_controls, namely the identity of the
limiting terminator.

Reviewed-by: Ian Romanick <ian.d.romanick@intel.com>
2013-12-09 10:54:56 -08:00

648 lines
17 KiB
C++

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "glsl_types.h"
#include "loop_analysis.h"
#include "ir_hierarchical_visitor.h"
static bool is_loop_terminator(ir_if *ir);
static bool all_expression_operands_are_loop_constant(ir_rvalue *,
hash_table *);
static ir_rvalue *get_basic_induction_increment(ir_assignment *, hash_table *);
/**
* Record the fact that the given loop variable was referenced inside the loop.
*
* \arg in_assignee is true if the reference was on the LHS of an assignment.
*
* \arg in_conditional_code_or_nested_loop is true if the reference occurred
* inside an if statement or a nested loop.
*
* \arg current_assignment is the ir_assignment node that the loop variable is
* on the LHS of, if any (ignored if \c in_assignee is false).
*/
void
loop_variable::record_reference(bool in_assignee,
bool in_conditional_code_or_nested_loop,
ir_assignment *current_assignment)
{
if (in_assignee) {
assert(current_assignment != NULL);
if (in_conditional_code_or_nested_loop ||
current_assignment->condition != NULL) {
this->conditional_or_nested_assignment = true;
}
if (this->first_assignment == NULL) {
assert(this->num_assignments == 0);
this->first_assignment = current_assignment;
}
this->num_assignments++;
} else if (this->first_assignment == current_assignment) {
/* This catches the case where the variable is used in the RHS of an
* assignment where it is also in the LHS.
*/
this->read_before_write = true;
}
}
loop_state::loop_state()
{
this->ht = hash_table_ctor(0, hash_table_pointer_hash,
hash_table_pointer_compare);
this->mem_ctx = ralloc_context(NULL);
this->loop_found = false;
}
loop_state::~loop_state()
{
hash_table_dtor(this->ht);
ralloc_free(this->mem_ctx);
}
loop_variable_state *
loop_state::insert(ir_loop *ir)
{
loop_variable_state *ls = new(this->mem_ctx) loop_variable_state;
hash_table_insert(this->ht, ls, ir);
this->loop_found = true;
return ls;
}
loop_variable_state *
loop_state::get(const ir_loop *ir)
{
return (loop_variable_state *) hash_table_find(this->ht, ir);
}
loop_variable *
loop_variable_state::get(const ir_variable *ir)
{
return (loop_variable *) hash_table_find(this->var_hash, ir);
}
loop_variable *
loop_variable_state::insert(ir_variable *var)
{
void *mem_ctx = ralloc_parent(this);
loop_variable *lv = rzalloc(mem_ctx, loop_variable);
lv->var = var;
hash_table_insert(this->var_hash, lv, lv->var);
this->variables.push_tail(lv);
return lv;
}
loop_terminator *
loop_variable_state::insert(ir_if *if_stmt)
{
void *mem_ctx = ralloc_parent(this);
loop_terminator *t = new(mem_ctx) loop_terminator();
t->ir = if_stmt;
this->terminators.push_tail(t);
return t;
}
/**
* If the given variable already is recorded in the state for this loop,
* return the corresponding loop_variable object that records information
* about it.
*
* Otherwise, create a new loop_variable object to record information about
* the variable, and set its \c read_before_write field appropriately based on
* \c in_assignee.
*
* \arg in_assignee is true if this variable was encountered on the LHS of an
* assignment.
*/
loop_variable *
loop_variable_state::get_or_insert(ir_variable *var, bool in_assignee)
{
loop_variable *lv = this->get(var);
if (lv == NULL) {
lv = this->insert(var);
lv->read_before_write = !in_assignee;
}
return lv;
}
namespace {
class loop_analysis : public ir_hierarchical_visitor {
public:
loop_analysis(loop_state *loops);
virtual ir_visitor_status visit(ir_loop_jump *);
virtual ir_visitor_status visit(ir_dereference_variable *);
virtual ir_visitor_status visit_enter(ir_call *);
virtual ir_visitor_status visit_enter(ir_loop *);
virtual ir_visitor_status visit_leave(ir_loop *);
virtual ir_visitor_status visit_enter(ir_assignment *);
virtual ir_visitor_status visit_leave(ir_assignment *);
virtual ir_visitor_status visit_enter(ir_if *);
virtual ir_visitor_status visit_leave(ir_if *);
loop_state *loops;
int if_statement_depth;
ir_assignment *current_assignment;
exec_list state;
};
} /* anonymous namespace */
loop_analysis::loop_analysis(loop_state *loops)
: loops(loops), if_statement_depth(0), current_assignment(NULL)
{
/* empty */
}
ir_visitor_status
loop_analysis::visit(ir_loop_jump *ir)
{
(void) ir;
assert(!this->state.is_empty());
loop_variable_state *const ls =
(loop_variable_state *) this->state.get_head();
ls->num_loop_jumps++;
return visit_continue;
}
ir_visitor_status
loop_analysis::visit_enter(ir_call *ir)
{
/* Mark every loop that we're currently analyzing as containing an ir_call
* (even those at outer nesting levels).
*/
foreach_list(node, &this->state) {
loop_variable_state *const ls = (loop_variable_state *) node;
ls->contains_calls = true;
}
return visit_continue_with_parent;
}
ir_visitor_status
loop_analysis::visit(ir_dereference_variable *ir)
{
/* If we're not somewhere inside a loop, there's nothing to do.
*/
if (this->state.is_empty())
return visit_continue;
bool nested = false;
foreach_list(node, &this->state) {
loop_variable_state *const ls = (loop_variable_state *) node;
ir_variable *var = ir->variable_referenced();
loop_variable *lv = ls->get_or_insert(var, this->in_assignee);
lv->record_reference(this->in_assignee,
nested || this->if_statement_depth > 0,
this->current_assignment);
nested = true;
}
return visit_continue;
}
ir_visitor_status
loop_analysis::visit_enter(ir_loop *ir)
{
loop_variable_state *ls = this->loops->insert(ir);
this->state.push_head(ls);
return visit_continue;
}
ir_visitor_status
loop_analysis::visit_leave(ir_loop *ir)
{
loop_variable_state *const ls =
(loop_variable_state *) this->state.pop_head();
/* Function calls may contain side effects. These could alter any of our
* variables in ways that cannot be known, and may even terminate shader
* execution (say, calling discard in the fragment shader). So we can't
* rely on any of our analysis about assignments to variables.
*
* We could perform some conservative analysis (prove there's no statically
* possible assignment, etc.) but it isn't worth it for now; function
* inlining will allow us to unroll loops anyway.
*/
if (ls->contains_calls)
return visit_continue;
foreach_list(node, &ir->body_instructions) {
/* Skip over declarations at the start of a loop.
*/
if (((ir_instruction *) node)->as_variable())
continue;
ir_if *if_stmt = ((ir_instruction *) node)->as_if();
if ((if_stmt != NULL) && is_loop_terminator(if_stmt))
ls->insert(if_stmt);
else
break;
}
foreach_list_safe(node, &ls->variables) {
loop_variable *lv = (loop_variable *) node;
/* Move variables that are already marked as being loop constant to
* a separate list. These trivially don't need to be tested.
*/
if (lv->is_loop_constant()) {
lv->remove();
ls->constants.push_tail(lv);
}
}
/* Each variable assigned in the loop that isn't already marked as being loop
* constant might still be loop constant. The requirements at this point
* are:
*
* - Variable is written before it is read.
*
* - Only one assignment to the variable.
*
* - All operands on the RHS of the assignment are also loop constants.
*
* The last requirement is the reason for the progress loop. A variable
* marked as a loop constant on one pass may allow other variables to be
* marked as loop constant on following passes.
*/
bool progress;
do {
progress = false;
foreach_list_safe(node, &ls->variables) {
loop_variable *lv = (loop_variable *) node;
if (lv->conditional_or_nested_assignment || (lv->num_assignments > 1))
continue;
/* Process the RHS of the assignment. If all of the variables
* accessed there are loop constants, then add this
*/
ir_rvalue *const rhs = lv->first_assignment->rhs;
if (all_expression_operands_are_loop_constant(rhs, ls->var_hash)) {
lv->rhs_clean = true;
if (lv->is_loop_constant()) {
progress = true;
lv->remove();
ls->constants.push_tail(lv);
}
}
}
} while (progress);
/* The remaining variables that are not loop invariant might be loop
* induction variables.
*/
foreach_list_safe(node, &ls->variables) {
loop_variable *lv = (loop_variable *) node;
/* If there is more than one assignment to a variable, it cannot be a
* loop induction variable. This isn't strictly true, but this is a
* very simple induction variable detector, and it can't handle more
* complex cases.
*/
if (lv->num_assignments > 1)
continue;
/* All of the variables with zero assignments in the loop are loop
* invariant, and they should have already been filtered out.
*/
assert(lv->num_assignments == 1);
assert(lv->first_assignment != NULL);
/* The assignment to the variable in the loop must be unconditional and
* not inside a nested loop.
*/
if (lv->conditional_or_nested_assignment)
continue;
/* Basic loop induction variables have a single assignment in the loop
* that has the form 'VAR = VAR + i' or 'VAR = VAR - i' where i is a
* loop invariant.
*/
ir_rvalue *const inc =
get_basic_induction_increment(lv->first_assignment, ls->var_hash);
if (inc != NULL) {
lv->increment = inc;
lv->remove();
ls->induction_variables.push_tail(lv);
}
}
/* Search the loop terminating conditions for those of the form 'i < c'
* where i is a loop induction variable, c is a constant, and < is any
* relative operator. From each of these we can infer an iteration count.
* Also figure out which terminator (if any) produces the smallest
* iteration count--this is the limiting terminator.
*/
foreach_list(node, &ls->terminators) {
loop_terminator *t = (loop_terminator *) node;
ir_if *if_stmt = t->ir;
/* If-statements can be either 'if (expr)' or 'if (deref)'. We only care
* about the former here.
*/
ir_expression *cond = if_stmt->condition->as_expression();
if (cond == NULL)
continue;
switch (cond->operation) {
case ir_binop_less:
case ir_binop_greater:
case ir_binop_lequal:
case ir_binop_gequal: {
/* The expressions that we care about will either be of the form
* 'counter < limit' or 'limit < counter'. Figure out which is
* which.
*/
ir_rvalue *counter = cond->operands[0]->as_dereference_variable();
ir_constant *limit = cond->operands[1]->as_constant();
enum ir_expression_operation cmp = cond->operation;
if (limit == NULL) {
counter = cond->operands[1]->as_dereference_variable();
limit = cond->operands[0]->as_constant();
switch (cmp) {
case ir_binop_less: cmp = ir_binop_greater; break;
case ir_binop_greater: cmp = ir_binop_less; break;
case ir_binop_lequal: cmp = ir_binop_gequal; break;
case ir_binop_gequal: cmp = ir_binop_lequal; break;
default: assert(!"Should not get here.");
}
}
if ((counter == NULL) || (limit == NULL))
break;
ir_variable *var = counter->variable_referenced();
ir_rvalue *init = find_initial_value(ir, var);
loop_variable *lv = ls->get(var);
if (lv != NULL && lv->is_induction_var()) {
t->iterations = calculate_iterations(init, limit, lv->increment,
cmp);
if (t->iterations >= 0 &&
(ls->limiting_terminator == NULL ||
t->iterations < ls->limiting_terminator->iterations)) {
ls->limiting_terminator = t;
}
}
break;
}
default:
break;
}
}
return visit_continue;
}
ir_visitor_status
loop_analysis::visit_enter(ir_if *ir)
{
(void) ir;
if (!this->state.is_empty())
this->if_statement_depth++;
return visit_continue;
}
ir_visitor_status
loop_analysis::visit_leave(ir_if *ir)
{
(void) ir;
if (!this->state.is_empty())
this->if_statement_depth--;
return visit_continue;
}
ir_visitor_status
loop_analysis::visit_enter(ir_assignment *ir)
{
/* If we're not somewhere inside a loop, there's nothing to do.
*/
if (this->state.is_empty())
return visit_continue_with_parent;
this->current_assignment = ir;
return visit_continue;
}
ir_visitor_status
loop_analysis::visit_leave(ir_assignment *ir)
{
/* Since the visit_enter exits with visit_continue_with_parent for this
* case, the loop state stack should never be empty here.
*/
assert(!this->state.is_empty());
assert(this->current_assignment == ir);
this->current_assignment = NULL;
return visit_continue;
}
class examine_rhs : public ir_hierarchical_visitor {
public:
examine_rhs(hash_table *loop_variables)
{
this->only_uses_loop_constants = true;
this->loop_variables = loop_variables;
}
virtual ir_visitor_status visit(ir_dereference_variable *ir)
{
loop_variable *lv =
(loop_variable *) hash_table_find(this->loop_variables, ir->var);
assert(lv != NULL);
if (lv->is_loop_constant()) {
return visit_continue;
} else {
this->only_uses_loop_constants = false;
return visit_stop;
}
}
hash_table *loop_variables;
bool only_uses_loop_constants;
};
bool
all_expression_operands_are_loop_constant(ir_rvalue *ir, hash_table *variables)
{
examine_rhs v(variables);
ir->accept(&v);
return v.only_uses_loop_constants;
}
ir_rvalue *
get_basic_induction_increment(ir_assignment *ir, hash_table *var_hash)
{
/* The RHS must be a binary expression.
*/
ir_expression *const rhs = ir->rhs->as_expression();
if ((rhs == NULL)
|| ((rhs->operation != ir_binop_add)
&& (rhs->operation != ir_binop_sub)))
return NULL;
/* One of the of operands of the expression must be the variable assigned.
* If the operation is subtraction, the variable in question must be the
* "left" operand.
*/
ir_variable *const var = ir->lhs->variable_referenced();
ir_variable *const op0 = rhs->operands[0]->variable_referenced();
ir_variable *const op1 = rhs->operands[1]->variable_referenced();
if (((op0 != var) && (op1 != var))
|| ((op1 == var) && (rhs->operation == ir_binop_sub)))
return NULL;
ir_rvalue *inc = (op0 == var) ? rhs->operands[1] : rhs->operands[0];
if (inc->as_constant() == NULL) {
ir_variable *const inc_var = inc->variable_referenced();
if (inc_var != NULL) {
loop_variable *lv =
(loop_variable *) hash_table_find(var_hash, inc_var);
if (!lv->is_loop_constant())
inc = NULL;
} else
inc = NULL;
}
if ((inc != NULL) && (rhs->operation == ir_binop_sub)) {
void *mem_ctx = ralloc_parent(ir);
inc = new(mem_ctx) ir_expression(ir_unop_neg,
inc->type,
inc->clone(mem_ctx, NULL),
NULL);
}
return inc;
}
/**
* Detect whether an if-statement is a loop terminating condition
*
* Detects if-statements of the form
*
* (if (expression bool ...) (break))
*/
bool
is_loop_terminator(ir_if *ir)
{
if (!ir->else_instructions.is_empty())
return false;
ir_instruction *const inst =
(ir_instruction *) ir->then_instructions.get_head();
if (inst == NULL)
return false;
if (inst->ir_type != ir_type_loop_jump)
return false;
ir_loop_jump *const jump = (ir_loop_jump *) inst;
if (jump->mode != ir_loop_jump::jump_break)
return false;
return true;
}
loop_state *
analyze_loop_variables(exec_list *instructions)
{
loop_state *loops = new loop_state;
loop_analysis v(loops);
v.run(instructions);
return v.loops;
}