mesa/src/compiler/nir/nir_instr_set.c
Jason Ekstrand e94a027af8 nir: Add a ptr_as_array deref type
These correspond directly to SPIR-V's OpPtrAccessChain.  As such, they
treat whatever their parent gives them as if it's the first element in
some array and dereferences that array.  If the parent is, itself, an
array deref, then the two indices can just be added together to get the
final array deref.  However, it can also be used in cases where what you
have is a dereference to some random vec2 value somewhere.  In this
case, we require a cast before the ptr_as_array and use the ptr_stride
field in the cast to provide a stride for the ptr_as_array derefs.

Reviewed-by: Alejandro Piñeiro <apinheiro@igalia.com>
Reviewed-by: Caio Marcelo de Oliveira Filho <caio.oliveira@intel.com>
2019-01-08 00:38:30 +00:00

623 lines
19 KiB
C

/*
* Copyright © 2014 Connor Abbott
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir_instr_set.h"
#include "nir_vla.h"
#define HASH(hash, data) _mesa_fnv32_1a_accumulate((hash), (data))
static uint32_t
hash_src(uint32_t hash, const nir_src *src)
{
assert(src->is_ssa);
hash = HASH(hash, src->ssa);
return hash;
}
static uint32_t
hash_alu_src(uint32_t hash, const nir_alu_src *src, unsigned num_components)
{
hash = HASH(hash, src->abs);
hash = HASH(hash, src->negate);
for (unsigned i = 0; i < num_components; i++)
hash = HASH(hash, src->swizzle[i]);
hash = hash_src(hash, &src->src);
return hash;
}
static uint32_t
hash_alu(uint32_t hash, const nir_alu_instr *instr)
{
hash = HASH(hash, instr->op);
hash = HASH(hash, instr->dest.dest.ssa.num_components);
hash = HASH(hash, instr->dest.dest.ssa.bit_size);
/* We explicitly don't hash instr->dest.dest.exact */
if (nir_op_infos[instr->op].algebraic_properties & NIR_OP_IS_COMMUTATIVE) {
assert(nir_op_infos[instr->op].num_inputs == 2);
uint32_t hash0 = hash_alu_src(hash, &instr->src[0],
nir_ssa_alu_instr_src_components(instr, 0));
uint32_t hash1 = hash_alu_src(hash, &instr->src[1],
nir_ssa_alu_instr_src_components(instr, 1));
/* For commutative operations, we need some commutative way of
* combining the hashes. One option would be to XOR them but that
* means that anything with two identical sources will hash to 0 and
* that's common enough we probably don't want the guaranteed
* collision. Either addition or multiplication will also work.
*/
hash = hash0 * hash1;
} else {
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
hash = hash_alu_src(hash, &instr->src[i],
nir_ssa_alu_instr_src_components(instr, i));
}
}
return hash;
}
static uint32_t
hash_deref(uint32_t hash, const nir_deref_instr *instr)
{
hash = HASH(hash, instr->deref_type);
hash = HASH(hash, instr->mode);
hash = HASH(hash, instr->type);
if (instr->deref_type == nir_deref_type_var)
return HASH(hash, instr->var);
hash = hash_src(hash, &instr->parent);
switch (instr->deref_type) {
case nir_deref_type_struct:
hash = HASH(hash, instr->strct.index);
break;
case nir_deref_type_array:
case nir_deref_type_ptr_as_array:
hash = hash_src(hash, &instr->arr.index);
break;
case nir_deref_type_cast:
hash = HASH(hash, instr->cast.ptr_stride);
break;
case nir_deref_type_var:
case nir_deref_type_array_wildcard:
/* Nothing to do */
break;
default:
unreachable("Invalid instruction deref type");
}
return hash;
}
static uint32_t
hash_load_const(uint32_t hash, const nir_load_const_instr *instr)
{
hash = HASH(hash, instr->def.num_components);
if (instr->def.bit_size == 1) {
for (unsigned i = 0; i < instr->def.num_components; i++) {
uint8_t b = instr->value.b[i];
hash = HASH(hash, b);
}
} else {
unsigned size = instr->def.num_components * (instr->def.bit_size / 8);
hash = _mesa_fnv32_1a_accumulate_block(hash, instr->value.f32, size);
}
return hash;
}
static int
cmp_phi_src(const void *data1, const void *data2)
{
nir_phi_src *src1 = *(nir_phi_src **)data1;
nir_phi_src *src2 = *(nir_phi_src **)data2;
return src1->pred - src2->pred;
}
static uint32_t
hash_phi(uint32_t hash, const nir_phi_instr *instr)
{
hash = HASH(hash, instr->instr.block);
/* sort sources by predecessor, since the order shouldn't matter */
unsigned num_preds = instr->instr.block->predecessors->entries;
NIR_VLA(nir_phi_src *, srcs, num_preds);
unsigned i = 0;
nir_foreach_phi_src(src, instr) {
srcs[i++] = src;
}
qsort(srcs, num_preds, sizeof(nir_phi_src *), cmp_phi_src);
for (i = 0; i < num_preds; i++) {
hash = hash_src(hash, &srcs[i]->src);
hash = HASH(hash, srcs[i]->pred);
}
return hash;
}
static uint32_t
hash_intrinsic(uint32_t hash, const nir_intrinsic_instr *instr)
{
const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
hash = HASH(hash, instr->intrinsic);
if (info->has_dest) {
hash = HASH(hash, instr->dest.ssa.num_components);
hash = HASH(hash, instr->dest.ssa.bit_size);
}
hash = _mesa_fnv32_1a_accumulate_block(hash, instr->const_index,
info->num_indices
* sizeof(instr->const_index[0]));
return hash;
}
static uint32_t
hash_tex(uint32_t hash, const nir_tex_instr *instr)
{
hash = HASH(hash, instr->op);
hash = HASH(hash, instr->num_srcs);
for (unsigned i = 0; i < instr->num_srcs; i++) {
hash = HASH(hash, instr->src[i].src_type);
hash = hash_src(hash, &instr->src[i].src);
}
hash = HASH(hash, instr->coord_components);
hash = HASH(hash, instr->sampler_dim);
hash = HASH(hash, instr->is_array);
hash = HASH(hash, instr->is_shadow);
hash = HASH(hash, instr->is_new_style_shadow);
unsigned component = instr->component;
hash = HASH(hash, component);
hash = HASH(hash, instr->texture_index);
hash = HASH(hash, instr->texture_array_size);
hash = HASH(hash, instr->sampler_index);
return hash;
}
/* Computes a hash of an instruction for use in a hash table. Note that this
* will only work for instructions where instr_can_rewrite() returns true, and
* it should return identical hashes for two instructions that are the same
* according nir_instrs_equal().
*/
static uint32_t
hash_instr(const void *data)
{
const nir_instr *instr = data;
uint32_t hash = _mesa_fnv32_1a_offset_bias;
switch (instr->type) {
case nir_instr_type_alu:
hash = hash_alu(hash, nir_instr_as_alu(instr));
break;
case nir_instr_type_deref:
hash = hash_deref(hash, nir_instr_as_deref(instr));
break;
case nir_instr_type_load_const:
hash = hash_load_const(hash, nir_instr_as_load_const(instr));
break;
case nir_instr_type_phi:
hash = hash_phi(hash, nir_instr_as_phi(instr));
break;
case nir_instr_type_intrinsic:
hash = hash_intrinsic(hash, nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_tex:
hash = hash_tex(hash, nir_instr_as_tex(instr));
break;
default:
unreachable("Invalid instruction type");
}
return hash;
}
bool
nir_srcs_equal(nir_src src1, nir_src src2)
{
if (src1.is_ssa) {
if (src2.is_ssa) {
return src1.ssa == src2.ssa;
} else {
return false;
}
} else {
if (src2.is_ssa) {
return false;
} else {
if ((src1.reg.indirect == NULL) != (src2.reg.indirect == NULL))
return false;
if (src1.reg.indirect) {
if (!nir_srcs_equal(*src1.reg.indirect, *src2.reg.indirect))
return false;
}
return src1.reg.reg == src2.reg.reg &&
src1.reg.base_offset == src2.reg.base_offset;
}
}
}
bool
nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
unsigned src1, unsigned src2)
{
if (alu1->src[src1].abs != alu2->src[src2].abs ||
alu1->src[src1].negate != alu2->src[src2].negate)
return false;
for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(alu1, src1); i++) {
if (alu1->src[src1].swizzle[i] != alu2->src[src2].swizzle[i])
return false;
}
return nir_srcs_equal(alu1->src[src1].src, alu2->src[src2].src);
}
/* Returns "true" if two instructions are equal. Note that this will only
* work for the subset of instructions defined by instr_can_rewrite(). Also,
* it should only return "true" for instructions that hash_instr() will return
* the same hash for (ignoring collisions, of course).
*/
static bool
nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2)
{
if (instr1->type != instr2->type)
return false;
switch (instr1->type) {
case nir_instr_type_alu: {
nir_alu_instr *alu1 = nir_instr_as_alu(instr1);
nir_alu_instr *alu2 = nir_instr_as_alu(instr2);
if (alu1->op != alu2->op)
return false;
/* TODO: We can probably acutally do something more inteligent such
* as allowing different numbers and taking a maximum or something
* here */
if (alu1->dest.dest.ssa.num_components != alu2->dest.dest.ssa.num_components)
return false;
if (alu1->dest.dest.ssa.bit_size != alu2->dest.dest.ssa.bit_size)
return false;
/* We explicitly don't hash instr->dest.dest.exact */
if (nir_op_infos[alu1->op].algebraic_properties & NIR_OP_IS_COMMUTATIVE) {
assert(nir_op_infos[alu1->op].num_inputs == 2);
return (nir_alu_srcs_equal(alu1, alu2, 0, 0) &&
nir_alu_srcs_equal(alu1, alu2, 1, 1)) ||
(nir_alu_srcs_equal(alu1, alu2, 0, 1) &&
nir_alu_srcs_equal(alu1, alu2, 1, 0));
} else {
for (unsigned i = 0; i < nir_op_infos[alu1->op].num_inputs; i++) {
if (!nir_alu_srcs_equal(alu1, alu2, i, i))
return false;
}
}
return true;
}
case nir_instr_type_deref: {
nir_deref_instr *deref1 = nir_instr_as_deref(instr1);
nir_deref_instr *deref2 = nir_instr_as_deref(instr2);
if (deref1->deref_type != deref2->deref_type ||
deref1->mode != deref2->mode ||
deref1->type != deref2->type)
return false;
if (deref1->deref_type == nir_deref_type_var)
return deref1->var == deref2->var;
if (!nir_srcs_equal(deref1->parent, deref2->parent))
return false;
switch (deref1->deref_type) {
case nir_deref_type_struct:
if (deref1->strct.index != deref2->strct.index)
return false;
break;
case nir_deref_type_array:
case nir_deref_type_ptr_as_array:
if (!nir_srcs_equal(deref1->arr.index, deref2->arr.index))
return false;
break;
case nir_deref_type_cast:
if (deref1->cast.ptr_stride != deref2->cast.ptr_stride)
return false;
break;
case nir_deref_type_var:
case nir_deref_type_array_wildcard:
/* Nothing to do */
break;
default:
unreachable("Invalid instruction deref type");
}
return true;
}
case nir_instr_type_tex: {
nir_tex_instr *tex1 = nir_instr_as_tex(instr1);
nir_tex_instr *tex2 = nir_instr_as_tex(instr2);
if (tex1->op != tex2->op)
return false;
if (tex1->num_srcs != tex2->num_srcs)
return false;
for (unsigned i = 0; i < tex1->num_srcs; i++) {
if (tex1->src[i].src_type != tex2->src[i].src_type ||
!nir_srcs_equal(tex1->src[i].src, tex2->src[i].src)) {
return false;
}
}
if (tex1->coord_components != tex2->coord_components ||
tex1->sampler_dim != tex2->sampler_dim ||
tex1->is_array != tex2->is_array ||
tex1->is_shadow != tex2->is_shadow ||
tex1->is_new_style_shadow != tex2->is_new_style_shadow ||
tex1->component != tex2->component ||
tex1->texture_index != tex2->texture_index ||
tex1->texture_array_size != tex2->texture_array_size ||
tex1->sampler_index != tex2->sampler_index) {
return false;
}
return true;
}
case nir_instr_type_load_const: {
nir_load_const_instr *load1 = nir_instr_as_load_const(instr1);
nir_load_const_instr *load2 = nir_instr_as_load_const(instr2);
if (load1->def.num_components != load2->def.num_components)
return false;
if (load1->def.bit_size != load2->def.bit_size)
return false;
if (load1->def.bit_size == 1) {
unsigned size = load1->def.num_components * sizeof(bool);
return memcmp(load1->value.b, load2->value.b, size) == 0;
} else {
unsigned size = load1->def.num_components * (load1->def.bit_size / 8);
return memcmp(load1->value.f32, load2->value.f32, size) == 0;
}
}
case nir_instr_type_phi: {
nir_phi_instr *phi1 = nir_instr_as_phi(instr1);
nir_phi_instr *phi2 = nir_instr_as_phi(instr2);
if (phi1->instr.block != phi2->instr.block)
return false;
nir_foreach_phi_src(src1, phi1) {
nir_foreach_phi_src(src2, phi2) {
if (src1->pred == src2->pred) {
if (!nir_srcs_equal(src1->src, src2->src))
return false;
break;
}
}
}
return true;
}
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *intrinsic1 = nir_instr_as_intrinsic(instr1);
nir_intrinsic_instr *intrinsic2 = nir_instr_as_intrinsic(instr2);
const nir_intrinsic_info *info =
&nir_intrinsic_infos[intrinsic1->intrinsic];
if (intrinsic1->intrinsic != intrinsic2->intrinsic ||
intrinsic1->num_components != intrinsic2->num_components)
return false;
if (info->has_dest && intrinsic1->dest.ssa.num_components !=
intrinsic2->dest.ssa.num_components)
return false;
if (info->has_dest && intrinsic1->dest.ssa.bit_size !=
intrinsic2->dest.ssa.bit_size)
return false;
for (unsigned i = 0; i < info->num_srcs; i++) {
if (!nir_srcs_equal(intrinsic1->src[i], intrinsic2->src[i]))
return false;
}
for (unsigned i = 0; i < info->num_indices; i++) {
if (intrinsic1->const_index[i] != intrinsic2->const_index[i])
return false;
}
return true;
}
case nir_instr_type_call:
case nir_instr_type_jump:
case nir_instr_type_ssa_undef:
case nir_instr_type_parallel_copy:
default:
unreachable("Invalid instruction type");
}
unreachable("All cases in the above switch should return");
}
static bool
src_is_ssa(nir_src *src, void *data)
{
(void) data;
return src->is_ssa;
}
static bool
dest_is_ssa(nir_dest *dest, void *data)
{
(void) data;
return dest->is_ssa;
}
/* This function determines if uses of an instruction can safely be rewritten
* to use another identical instruction instead. Note that this function must
* be kept in sync with hash_instr() and nir_instrs_equal() -- only
* instructions that pass this test will be handed on to those functions, and
* conversely they must handle everything that this function returns true for.
*/
static bool
instr_can_rewrite(nir_instr *instr)
{
/* We only handle SSA. */
if (!nir_foreach_dest(instr, dest_is_ssa, NULL) ||
!nir_foreach_src(instr, src_is_ssa, NULL))
return false;
switch (instr->type) {
case nir_instr_type_alu:
case nir_instr_type_deref:
case nir_instr_type_tex:
case nir_instr_type_load_const:
case nir_instr_type_phi:
return true;
case nir_instr_type_intrinsic: {
const nir_intrinsic_info *info =
&nir_intrinsic_infos[nir_instr_as_intrinsic(instr)->intrinsic];
return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
(info->flags & NIR_INTRINSIC_CAN_REORDER);
}
case nir_instr_type_call:
case nir_instr_type_jump:
case nir_instr_type_ssa_undef:
return false;
case nir_instr_type_parallel_copy:
default:
unreachable("Invalid instruction type");
}
return false;
}
static nir_ssa_def *
nir_instr_get_dest_ssa_def(nir_instr *instr)
{
switch (instr->type) {
case nir_instr_type_alu:
assert(nir_instr_as_alu(instr)->dest.dest.is_ssa);
return &nir_instr_as_alu(instr)->dest.dest.ssa;
case nir_instr_type_deref:
assert(nir_instr_as_deref(instr)->dest.is_ssa);
return &nir_instr_as_deref(instr)->dest.ssa;
case nir_instr_type_load_const:
return &nir_instr_as_load_const(instr)->def;
case nir_instr_type_phi:
assert(nir_instr_as_phi(instr)->dest.is_ssa);
return &nir_instr_as_phi(instr)->dest.ssa;
case nir_instr_type_intrinsic:
assert(nir_instr_as_intrinsic(instr)->dest.is_ssa);
return &nir_instr_as_intrinsic(instr)->dest.ssa;
case nir_instr_type_tex:
assert(nir_instr_as_tex(instr)->dest.is_ssa);
return &nir_instr_as_tex(instr)->dest.ssa;
default:
unreachable("We never ask for any of these");
}
}
static bool
cmp_func(const void *data1, const void *data2)
{
return nir_instrs_equal(data1, data2);
}
struct set *
nir_instr_set_create(void *mem_ctx)
{
return _mesa_set_create(mem_ctx, hash_instr, cmp_func);
}
void
nir_instr_set_destroy(struct set *instr_set)
{
_mesa_set_destroy(instr_set, NULL);
}
bool
nir_instr_set_add_or_rewrite(struct set *instr_set, nir_instr *instr)
{
if (!instr_can_rewrite(instr))
return false;
struct set_entry *entry = _mesa_set_search(instr_set, instr);
if (entry) {
nir_ssa_def *def = nir_instr_get_dest_ssa_def(instr);
nir_instr *match = (nir_instr *) entry->key;
nir_ssa_def *new_def = nir_instr_get_dest_ssa_def(match);
/* It's safe to replace an exact instruction with an inexact one as
* long as we make it exact. If we got here, the two instructions are
* exactly identical in every other way so, once we've set the exact
* bit, they are the same.
*/
if (instr->type == nir_instr_type_alu && nir_instr_as_alu(instr)->exact)
nir_instr_as_alu(match)->exact = true;
nir_ssa_def_rewrite_uses(def, nir_src_for_ssa(new_def));
return true;
}
_mesa_set_add(instr_set, instr);
return false;
}
void
nir_instr_set_remove(struct set *instr_set, nir_instr *instr)
{
if (!instr_can_rewrite(instr))
return;
struct set_entry *entry = _mesa_set_search(instr_set, instr);
if (entry)
_mesa_set_remove(instr_set, entry);
}