mesa/src/amd/compiler/aco_ir.h
Rhys Perry 507956ed04 aco: add vmem/smem score statistic
This isn't perfect (for example, changes might not be too meaningful when
comparing shaders with different control flow) but it should be useful for
evaluating scheduler changes.

Signed-off-by: Rhys Perry <pendingchaos02@gmail.com>
Acked-by: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl>
Reviewed-by: Daniel Schürmann <daniel@schuermann.dev>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/2965>
2020-04-03 12:12:08 +00:00

1397 lines
41 KiB
C++

/*
* Copyright © 2018 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#ifndef ACO_IR_H
#define ACO_IR_H
#include <vector>
#include <set>
#include <bitset>
#include <memory>
#include "nir.h"
#include "ac_binary.h"
#include "amd_family.h"
#include "aco_opcodes.h"
#include "aco_util.h"
struct radv_nir_compiler_options;
struct radv_shader_args;
struct radv_shader_info;
namespace aco {
extern uint64_t debug_flags;
enum {
DEBUG_VALIDATE = 0x1,
DEBUG_VALIDATE_RA = 0x2,
DEBUG_PERFWARN = 0x4,
};
/**
* Representation of the instruction's microcode encoding format
* Note: Some Vector ALU Formats can be combined, such that:
* - VOP2* | VOP3A represents a VOP2 instruction in VOP3A encoding
* - VOP2* | DPP represents a VOP2 instruction with data parallel primitive.
* - VOP2* | SDWA represents a VOP2 instruction with sub-dword addressing.
*
* (*) The same is applicable for VOP1 and VOPC instructions.
*/
enum class Format : std::uint16_t {
/* Pseudo Instruction Format */
PSEUDO = 0,
/* Scalar ALU & Control Formats */
SOP1 = 1,
SOP2 = 2,
SOPK = 3,
SOPP = 4,
SOPC = 5,
/* Scalar Memory Format */
SMEM = 6,
/* LDS/GDS Format */
DS = 8,
/* Vector Memory Buffer Formats */
MTBUF = 9,
MUBUF = 10,
/* Vector Memory Image Format */
MIMG = 11,
/* Export Format */
EXP = 12,
/* Flat Formats */
FLAT = 13,
GLOBAL = 14,
SCRATCH = 15,
PSEUDO_BRANCH = 16,
PSEUDO_BARRIER = 17,
PSEUDO_REDUCTION = 18,
/* Vector ALU Formats */
VOP1 = 1 << 8,
VOP2 = 1 << 9,
VOPC = 1 << 10,
VOP3 = 1 << 11,
VOP3A = 1 << 11,
VOP3B = 1 << 11,
VOP3P = 1 << 12,
/* Vector Parameter Interpolation Format */
VINTRP = 1 << 13,
DPP = 1 << 14,
SDWA = 1 << 15,
};
enum barrier_interaction : uint8_t {
barrier_none = 0,
barrier_buffer = 0x1,
barrier_image = 0x2,
barrier_atomic = 0x4,
barrier_shared = 0x8,
/* used for geometry shaders to ensure vertex data writes are before the
* GS_DONE s_sendmsg. */
barrier_gs_data = 0x10,
/* used for geometry shaders to ensure s_sendmsg instructions are in-order. */
barrier_gs_sendmsg = 0x20,
/* used by barriers. created by s_barrier */
barrier_barrier = 0x40,
barrier_count = 6,
};
enum fp_round {
fp_round_ne = 0,
fp_round_pi = 1,
fp_round_ni = 2,
fp_round_tz = 3,
};
enum fp_denorm {
/* Note that v_rcp_f32, v_exp_f32, v_log_f32, v_sqrt_f32, v_rsq_f32 and
* v_mad_f32/v_madak_f32/v_madmk_f32/v_mac_f32 always flush denormals. */
fp_denorm_flush = 0x0,
fp_denorm_keep = 0x3,
};
struct float_mode {
/* matches encoding of the MODE register */
union {
struct {
fp_round round32:2;
fp_round round16_64:2;
unsigned denorm32:2;
unsigned denorm16_64:2;
};
uint8_t val = 0;
};
/* if false, optimizations which may remove infs/nan/-0.0 can be done */
bool preserve_signed_zero_inf_nan32:1;
bool preserve_signed_zero_inf_nan16_64:1;
/* if false, optimizations which may remove denormal flushing can be done */
bool must_flush_denorms32:1;
bool must_flush_denorms16_64:1;
bool care_about_round32:1;
bool care_about_round16_64:1;
/* Returns true if instructions using the mode "other" can safely use the
* current one instead. */
bool canReplace(float_mode other) const noexcept {
return val == other.val &&
(preserve_signed_zero_inf_nan32 || !other.preserve_signed_zero_inf_nan32) &&
(preserve_signed_zero_inf_nan16_64 || !other.preserve_signed_zero_inf_nan16_64) &&
(must_flush_denorms32 || !other.must_flush_denorms32) &&
(must_flush_denorms16_64 || !other.must_flush_denorms16_64) &&
(care_about_round32 || !other.care_about_round32) &&
(care_about_round16_64 || !other.care_about_round16_64);
}
};
constexpr Format asVOP3(Format format) {
return (Format) ((uint32_t) Format::VOP3 | (uint32_t) format);
};
enum class RegType {
none = 0,
sgpr,
vgpr,
linear_vgpr,
};
struct RegClass {
enum RC : uint8_t {
s1 = 1,
s2 = 2,
s3 = 3,
s4 = 4,
s6 = 6,
s8 = 8,
s16 = 16,
v1 = s1 | (1 << 5),
v2 = s2 | (1 << 5),
v3 = s3 | (1 << 5),
v4 = s4 | (1 << 5),
v5 = 5 | (1 << 5),
v6 = 6 | (1 << 5),
v7 = 7 | (1 << 5),
v8 = 8 | (1 << 5),
/* these are used for WWM and spills to vgpr */
v1_linear = v1 | (1 << 6),
v2_linear = v2 | (1 << 6),
};
RegClass() = default;
constexpr RegClass(RC rc)
: rc(rc) {}
constexpr RegClass(RegType type, unsigned size)
: rc((RC) ((type == RegType::vgpr ? 1 << 5 : 0) | size)) {}
constexpr operator RC() const { return rc; }
explicit operator bool() = delete;
constexpr RegType type() const { return rc <= RC::s16 ? RegType::sgpr : RegType::vgpr; }
constexpr unsigned size() const { return (unsigned) rc & 0x1F; }
constexpr bool is_linear() const { return rc <= RC::s16 || rc & (1 << 6); }
constexpr RegClass as_linear() const { return RegClass((RC) (rc | (1 << 6))); }
private:
RC rc;
};
/* transitional helper expressions */
static constexpr RegClass s1{RegClass::s1};
static constexpr RegClass s2{RegClass::s2};
static constexpr RegClass s3{RegClass::s3};
static constexpr RegClass s4{RegClass::s4};
static constexpr RegClass s8{RegClass::s8};
static constexpr RegClass s16{RegClass::s16};
static constexpr RegClass v1{RegClass::v1};
static constexpr RegClass v2{RegClass::v2};
static constexpr RegClass v3{RegClass::v3};
static constexpr RegClass v4{RegClass::v4};
static constexpr RegClass v5{RegClass::v5};
static constexpr RegClass v6{RegClass::v6};
static constexpr RegClass v7{RegClass::v7};
static constexpr RegClass v8{RegClass::v8};
/**
* Temp Class
* Each temporary virtual register has a
* register class (i.e. size and type)
* and SSA id.
*/
struct Temp {
Temp() = default;
constexpr Temp(uint32_t id, RegClass cls) noexcept
: id_(id), reg_class(cls) {}
constexpr uint32_t id() const noexcept { return id_; }
constexpr RegClass regClass() const noexcept { return reg_class; }
constexpr unsigned size() const noexcept { return reg_class.size(); }
constexpr RegType type() const noexcept { return reg_class.type(); }
constexpr bool is_linear() const noexcept { return reg_class.is_linear(); }
constexpr bool operator <(Temp other) const noexcept { return id() < other.id(); }
constexpr bool operator==(Temp other) const noexcept { return id() == other.id(); }
constexpr bool operator!=(Temp other) const noexcept { return id() != other.id(); }
private:
uint32_t id_:24;
RegClass reg_class;
};
/**
* PhysReg
* Represents the physical register for each
* Operand and Definition.
*/
struct PhysReg {
constexpr PhysReg() = default;
explicit constexpr PhysReg(unsigned r) : reg(r) {}
constexpr operator unsigned() const { return reg; }
uint16_t reg = 0;
};
/* helper expressions for special registers */
static constexpr PhysReg m0{124};
static constexpr PhysReg vcc{106};
static constexpr PhysReg vcc_hi{107};
static constexpr PhysReg sgpr_null{125}; /* GFX10+ */
static constexpr PhysReg exec{126};
static constexpr PhysReg exec_lo{126};
static constexpr PhysReg exec_hi{127};
static constexpr PhysReg vccz{251};
static constexpr PhysReg execz{252};
static constexpr PhysReg scc{253};
/**
* Operand Class
* Initially, each Operand refers to either
* a temporary virtual register
* or to a constant value
* Temporary registers get mapped to physical register during RA
* Constant values are inlined into the instruction sequence.
*/
class Operand final
{
public:
constexpr Operand()
: reg_(PhysReg{128}), isTemp_(false), isFixed_(true), isConstant_(false),
isKill_(false), isUndef_(true), isFirstKill_(false), is64BitConst_(false),
isLateKill_(false) {}
explicit Operand(Temp r) noexcept
{
data_.temp = r;
if (r.id()) {
isTemp_ = true;
} else {
isUndef_ = true;
setFixed(PhysReg{128});
}
};
explicit Operand(uint32_t v, bool is64bit = false) noexcept
{
data_.i = v;
isConstant_ = true;
is64BitConst_ = is64bit;
if (v <= 64)
setFixed(PhysReg{128 + v});
else if (v >= 0xFFFFFFF0) /* [-16 .. -1] */
setFixed(PhysReg{192 - v});
else if (v == 0x3f000000) /* 0.5 */
setFixed(PhysReg{240});
else if (v == 0xbf000000) /* -0.5 */
setFixed(PhysReg{241});
else if (v == 0x3f800000) /* 1.0 */
setFixed(PhysReg{242});
else if (v == 0xbf800000) /* -1.0 */
setFixed(PhysReg{243});
else if (v == 0x40000000) /* 2.0 */
setFixed(PhysReg{244});
else if (v == 0xc0000000) /* -2.0 */
setFixed(PhysReg{245});
else if (v == 0x40800000) /* 4.0 */
setFixed(PhysReg{246});
else if (v == 0xc0800000) /* -4.0 */
setFixed(PhysReg{247});
else { /* Literal Constant */
assert(!is64bit && "attempt to create a 64-bit literal constant");
setFixed(PhysReg{255});
}
};
explicit Operand(uint64_t v) noexcept
{
isConstant_ = true;
is64BitConst_ = true;
if (v <= 64) {
data_.i = (uint32_t) v;
setFixed(PhysReg{128 + (uint32_t) v});
} else if (v >= 0xFFFFFFFFFFFFFFF0) { /* [-16 .. -1] */
data_.i = (uint32_t) v;
setFixed(PhysReg{192 - (uint32_t) v});
} else if (v == 0x3FE0000000000000) { /* 0.5 */
data_.i = 0x3f000000;
setFixed(PhysReg{240});
} else if (v == 0xBFE0000000000000) { /* -0.5 */
data_.i = 0xbf000000;
setFixed(PhysReg{241});
} else if (v == 0x3FF0000000000000) { /* 1.0 */
data_.i = 0x3f800000;
setFixed(PhysReg{242});
} else if (v == 0xBFF0000000000000) { /* -1.0 */
data_.i = 0xbf800000;
setFixed(PhysReg{243});
} else if (v == 0x4000000000000000) { /* 2.0 */
data_.i = 0x40000000;
setFixed(PhysReg{244});
} else if (v == 0xC000000000000000) { /* -2.0 */
data_.i = 0xc0000000;
setFixed(PhysReg{245});
} else if (v == 0x4010000000000000) { /* 4.0 */
data_.i = 0x40800000;
setFixed(PhysReg{246});
} else if (v == 0xC010000000000000) { /* -4.0 */
data_.i = 0xc0800000;
setFixed(PhysReg{247});
} else { /* Literal Constant: we don't know if it is a long or double.*/
isConstant_ = 0;
assert(false && "attempt to create a 64-bit literal constant");
}
};
explicit Operand(RegClass type) noexcept
{
isUndef_ = true;
data_.temp = Temp(0, type);
setFixed(PhysReg{128});
};
explicit Operand(PhysReg reg, RegClass type) noexcept
{
data_.temp = Temp(0, type);
setFixed(reg);
}
constexpr bool isTemp() const noexcept
{
return isTemp_;
}
constexpr void setTemp(Temp t) noexcept {
assert(!isConstant_);
isTemp_ = true;
data_.temp = t;
}
constexpr Temp getTemp() const noexcept
{
return data_.temp;
}
constexpr uint32_t tempId() const noexcept
{
return data_.temp.id();
}
constexpr bool hasRegClass() const noexcept
{
return isTemp() || isUndefined();
}
constexpr RegClass regClass() const noexcept
{
return data_.temp.regClass();
}
constexpr unsigned size() const noexcept
{
if (isConstant())
return is64BitConst_ ? 2 : 1;
else
return data_.temp.size();
}
constexpr bool isFixed() const noexcept
{
return isFixed_;
}
constexpr PhysReg physReg() const noexcept
{
return reg_;
}
constexpr void setFixed(PhysReg reg) noexcept
{
isFixed_ = reg != unsigned(-1);
reg_ = reg;
}
constexpr bool isConstant() const noexcept
{
return isConstant_;
}
constexpr bool isLiteral() const noexcept
{
return isConstant() && reg_ == 255;
}
constexpr bool isUndefined() const noexcept
{
return isUndef_;
}
constexpr uint32_t constantValue() const noexcept
{
return data_.i;
}
constexpr bool constantEquals(uint32_t cmp) const noexcept
{
return isConstant() && constantValue() == cmp;
}
constexpr uint64_t constantValue64(bool signext=false) const noexcept
{
if (is64BitConst_) {
if (reg_.reg <= 192)
return reg_.reg - 128;
else if (reg_.reg <= 208)
return 0xFFFFFFFFFFFFFFFF - (reg_.reg - 193);
switch (reg_.reg) {
case 240:
return 0x3FE0000000000000;
case 241:
return 0xBFE0000000000000;
case 242:
return 0x3FF0000000000000;
case 243:
return 0xBFF0000000000000;
case 244:
return 0x4000000000000000;
case 245:
return 0xC000000000000000;
case 246:
return 0x4010000000000000;
case 247:
return 0xC010000000000000;
}
}
return (signext && (data_.i & 0x80000000u) ? 0xffffffff00000000ull : 0ull) | data_.i;
}
/* Indicates that the killed operand's live range intersects with the
* instruction's definitions. Unlike isKill() and isFirstKill(), this is
* not set by liveness analysis. */
constexpr void setLateKill(bool flag) noexcept
{
isLateKill_ = flag;
}
constexpr bool isLateKill() const noexcept
{
return isLateKill_;
}
constexpr void setKill(bool flag) noexcept
{
isKill_ = flag;
if (!flag)
setFirstKill(false);
}
constexpr bool isKill() const noexcept
{
return isKill_ || isFirstKill();
}
constexpr void setFirstKill(bool flag) noexcept
{
isFirstKill_ = flag;
if (flag)
setKill(flag);
}
/* When there are multiple operands killing the same temporary,
* isFirstKill() is only returns true for the first one. */
constexpr bool isFirstKill() const noexcept
{
return isFirstKill_;
}
constexpr bool isKillBeforeDef() const noexcept
{
return isKill() && !isLateKill();
}
constexpr bool isFirstKillBeforeDef() const noexcept
{
return isFirstKill() && !isLateKill();
}
constexpr bool operator == (Operand other) const noexcept
{
if (other.size() != size())
return false;
if (isFixed() != other.isFixed() || isKillBeforeDef() != other.isKillBeforeDef())
return false;
if (isFixed() && other.isFixed() && physReg() != other.physReg())
return false;
if (isLiteral())
return other.isLiteral() && other.constantValue() == constantValue();
else if (isConstant())
return other.isConstant() && other.physReg() == physReg();
else if (isUndefined())
return other.isUndefined() && other.regClass() == regClass();
else
return other.isTemp() && other.getTemp() == getTemp();
}
private:
union {
uint32_t i;
float f;
Temp temp = Temp(0, s1);
} data_;
PhysReg reg_;
union {
struct {
uint8_t isTemp_:1;
uint8_t isFixed_:1;
uint8_t isConstant_:1;
uint8_t isKill_:1;
uint8_t isUndef_:1;
uint8_t isFirstKill_:1;
uint8_t is64BitConst_:1;
uint8_t isLateKill_:1;
};
/* can't initialize bit-fields in c++11, so work around using a union */
uint8_t control_ = 0;
};
};
/**
* Definition Class
* Definitions are the results of Instructions
* and refer to temporary virtual registers
* which are later mapped to physical registers
*/
class Definition final
{
public:
constexpr Definition() : temp(Temp(0, s1)), reg_(0), isFixed_(0), hasHint_(0), isKill_(0) {}
Definition(uint32_t index, RegClass type) noexcept
: temp(index, type) {}
explicit Definition(Temp tmp) noexcept
: temp(tmp) {}
Definition(PhysReg reg, RegClass type) noexcept
: temp(Temp(0, type))
{
setFixed(reg);
}
Definition(uint32_t tmpId, PhysReg reg, RegClass type) noexcept
: temp(Temp(tmpId, type))
{
setFixed(reg);
}
constexpr bool isTemp() const noexcept
{
return tempId() > 0;
}
constexpr Temp getTemp() const noexcept
{
return temp;
}
constexpr uint32_t tempId() const noexcept
{
return temp.id();
}
constexpr void setTemp(Temp t) noexcept {
temp = t;
}
constexpr RegClass regClass() const noexcept
{
return temp.regClass();
}
constexpr unsigned size() const noexcept
{
return temp.size();
}
constexpr bool isFixed() const noexcept
{
return isFixed_;
}
constexpr PhysReg physReg() const noexcept
{
return reg_;
}
constexpr void setFixed(PhysReg reg) noexcept
{
isFixed_ = 1;
reg_ = reg;
}
constexpr void setHint(PhysReg reg) noexcept
{
hasHint_ = 1;
reg_ = reg;
}
constexpr bool hasHint() const noexcept
{
return hasHint_;
}
constexpr void setKill(bool flag) noexcept
{
isKill_ = flag;
}
constexpr bool isKill() const noexcept
{
return isKill_;
}
private:
Temp temp = Temp(0, s1);
PhysReg reg_;
union {
struct {
uint8_t isFixed_:1;
uint8_t hasHint_:1;
uint8_t isKill_:1;
};
/* can't initialize bit-fields in c++11, so work around using a union */
uint8_t control_ = 0;
};
};
class Block;
struct Instruction {
aco_opcode opcode;
Format format;
uint32_t pass_flags;
aco::span<Operand> operands;
aco::span<Definition> definitions;
constexpr bool isVALU() const noexcept
{
return ((uint16_t) format & (uint16_t) Format::VOP1) == (uint16_t) Format::VOP1
|| ((uint16_t) format & (uint16_t) Format::VOP2) == (uint16_t) Format::VOP2
|| ((uint16_t) format & (uint16_t) Format::VOPC) == (uint16_t) Format::VOPC
|| ((uint16_t) format & (uint16_t) Format::VOP3A) == (uint16_t) Format::VOP3A
|| ((uint16_t) format & (uint16_t) Format::VOP3B) == (uint16_t) Format::VOP3B
|| ((uint16_t) format & (uint16_t) Format::VOP3P) == (uint16_t) Format::VOP3P;
}
constexpr bool isSALU() const noexcept
{
return format == Format::SOP1 ||
format == Format::SOP2 ||
format == Format::SOPC ||
format == Format::SOPK ||
format == Format::SOPP;
}
constexpr bool isVMEM() const noexcept
{
return format == Format::MTBUF ||
format == Format::MUBUF ||
format == Format::MIMG;
}
constexpr bool isDPP() const noexcept
{
return (uint16_t) format & (uint16_t) Format::DPP;
}
constexpr bool isVOP3() const noexcept
{
return ((uint16_t) format & (uint16_t) Format::VOP3A) ||
((uint16_t) format & (uint16_t) Format::VOP3B) ||
format == Format::VOP3P;
}
constexpr bool isSDWA() const noexcept
{
return (uint16_t) format & (uint16_t) Format::SDWA;
}
constexpr bool isFlatOrGlobal() const noexcept
{
return format == Format::FLAT || format == Format::GLOBAL;
}
constexpr bool usesModifiers() const noexcept;
constexpr bool reads_exec() const noexcept
{
for (const Operand& op : operands) {
if (op.isFixed() && op.physReg() == exec)
return true;
}
return false;
}
};
struct SOPK_instruction : public Instruction {
uint16_t imm;
};
struct SOPP_instruction : public Instruction {
uint32_t imm;
int block;
};
struct SOPC_instruction : public Instruction {
};
struct SOP1_instruction : public Instruction {
};
struct SOP2_instruction : public Instruction {
};
/**
* Scalar Memory Format:
* For s_(buffer_)load_dword*:
* Operand(0): SBASE - SGPR-pair which provides base address
* Operand(1): Offset - immediate (un)signed offset or SGPR
* Operand(2) / Definition(0): SDATA - SGPR for read / write result
* Operand(n-1): SOffset - SGPR offset (Vega only)
*
* Having no operands is also valid for instructions such as s_dcache_inv.
*
*/
struct SMEM_instruction : public Instruction {
bool glc : 1; /* VI+: globally coherent */
bool dlc : 1; /* NAVI: device level coherent */
bool nv : 1; /* VEGA only: Non-volatile */
bool can_reorder : 1;
bool disable_wqm : 1;
barrier_interaction barrier;
};
struct VOP1_instruction : public Instruction {
};
struct VOP2_instruction : public Instruction {
};
struct VOPC_instruction : public Instruction {
};
struct VOP3A_instruction : public Instruction {
bool abs[3];
bool neg[3];
uint8_t opsel : 4;
uint8_t omod : 2;
bool clamp : 1;
};
/**
* Data Parallel Primitives Format:
* This format can be used for VOP1, VOP2 or VOPC instructions.
* The swizzle applies to the src0 operand.
*
*/
struct DPP_instruction : public Instruction {
bool abs[2];
bool neg[2];
uint16_t dpp_ctrl;
uint8_t row_mask : 4;
uint8_t bank_mask : 4;
bool bound_ctrl : 1;
};
struct Interp_instruction : public Instruction {
uint8_t attribute;
uint8_t component;
};
/**
* Local and Global Data Sharing instructions
* Operand(0): ADDR - VGPR which supplies the address.
* Operand(1): DATA0 - First data VGPR.
* Operand(2): DATA1 - Second data VGPR.
* Operand(n-1): M0 - LDS size.
* Definition(0): VDST - Destination VGPR when results returned to VGPRs.
*
*/
struct DS_instruction : public Instruction {
int16_t offset0;
int8_t offset1;
bool gds;
};
/**
* Vector Memory Untyped-buffer Instructions
* Operand(0): SRSRC - Specifies which SGPR supplies T# (resource constant)
* Operand(1): VADDR - Address source. Can carry an index and/or offset
* Operand(2): SOFFSET - SGPR to supply unsigned byte offset. (SGPR, M0, or inline constant)
* Operand(3) / Definition(0): VDATA - Vector GPR for write result / read data
*
*/
struct MUBUF_instruction : public Instruction {
uint16_t offset : 12; /* Unsigned byte offset - 12 bit */
bool offen : 1; /* Supply an offset from VGPR (VADDR) */
bool idxen : 1; /* Supply an index from VGPR (VADDR) */
bool addr64 : 1; /* SI, CIK: Address size is 64-bit */
bool glc : 1; /* globally coherent */
bool dlc : 1; /* NAVI: device level coherent */
bool slc : 1; /* system level coherent */
bool tfe : 1; /* texture fail enable */
bool lds : 1; /* Return read-data to LDS instead of VGPRs */
bool disable_wqm : 1; /* Require an exec mask without helper invocations */
bool can_reorder : 1;
barrier_interaction barrier;
};
/**
* Vector Memory Typed-buffer Instructions
* Operand(0): SRSRC - Specifies which SGPR supplies T# (resource constant)
* Operand(1): VADDR - Address source. Can carry an index and/or offset
* Operand(2): SOFFSET - SGPR to supply unsigned byte offset. (SGPR, M0, or inline constant)
* Operand(3) / Definition(0): VDATA - Vector GPR for write result / read data
*
*/
struct MTBUF_instruction : public Instruction {
uint16_t offset; /* Unsigned byte offset - 12 bit */
uint8_t dfmt : 4; /* Data Format of data in memory buffer */
uint8_t nfmt : 3; /* Numeric format of data in memory */
bool offen : 1; /* Supply an offset from VGPR (VADDR) */
bool idxen : 1; /* Supply an index from VGPR (VADDR) */
bool glc : 1; /* globally coherent */
bool dlc : 1; /* NAVI: device level coherent */
bool slc : 1; /* system level coherent */
bool tfe : 1; /* texture fail enable */
bool disable_wqm : 1; /* Require an exec mask without helper invocations */
bool can_reorder : 1;
barrier_interaction barrier;
};
/**
* Vector Memory Image Instructions
* Operand(0) SRSRC - Scalar GPR that specifies the resource constant.
* Operand(1): SSAMP - Scalar GPR that specifies sampler constant.
* or VDATA - Vector GPR for write data.
* Operand(2): VADDR - Address source. Can carry an offset or an index.
* Definition(0): VDATA - Vector GPR for read result.
*
*/
struct MIMG_instruction : public Instruction {
uint8_t dmask; /* Data VGPR enable mask */
uint8_t dim : 3; /* NAVI: dimensionality */
bool unrm : 1; /* Force address to be un-normalized */
bool dlc : 1; /* NAVI: device level coherent */
bool glc : 1; /* globally coherent */
bool slc : 1; /* system level coherent */
bool tfe : 1; /* texture fail enable */
bool da : 1; /* declare an array */
bool lwe : 1; /* Force data to be un-normalized */
bool r128 : 1; /* NAVI: Texture resource size */
bool a16 : 1; /* VEGA, NAVI: Address components are 16-bits */
bool d16 : 1; /* Convert 32-bit data to 16-bit data */
bool disable_wqm : 1; /* Require an exec mask without helper invocations */
bool can_reorder : 1;
barrier_interaction barrier;
};
/**
* Flat/Scratch/Global Instructions
* Operand(0): ADDR
* Operand(1): SADDR
* Operand(2) / Definition(0): DATA/VDST
*
*/
struct FLAT_instruction : public Instruction {
uint16_t offset; /* Vega/Navi only */
bool slc : 1; /* system level coherent */
bool glc : 1; /* globally coherent */
bool dlc : 1; /* NAVI: device level coherent */
bool lds : 1;
bool nv : 1;
bool disable_wqm : 1; /* Require an exec mask without helper invocations */
bool can_reorder : 1;
barrier_interaction barrier;
};
struct Export_instruction : public Instruction {
uint8_t enabled_mask;
uint8_t dest;
bool compressed : 1;
bool done : 1;
bool valid_mask : 1;
};
struct Pseudo_instruction : public Instruction {
bool tmp_in_scc;
PhysReg scratch_sgpr; /* might not be valid if it's not needed */
};
struct Pseudo_branch_instruction : public Instruction {
/* target[0] is the block index of the branch target.
* For conditional branches, target[1] contains the fall-through alternative.
* A value of 0 means the target has not been initialized (BB0 cannot be a branch target).
*/
uint32_t target[2];
};
struct Pseudo_barrier_instruction : public Instruction {
};
enum ReduceOp {
iadd32, iadd64,
imul32, imul64,
fadd32, fadd64,
fmul32, fmul64,
imin32, imin64,
imax32, imax64,
umin32, umin64,
umax32, umax64,
fmin32, fmin64,
fmax32, fmax64,
iand32, iand64,
ior32, ior64,
ixor32, ixor64,
gfx10_wave64_bpermute
};
/**
* Subgroup Reduction Instructions, everything except for the data to be
* reduced and the result as inserted by setup_reduce_temp().
* Operand(0): data to be reduced
* Operand(1): reduce temporary
* Operand(2): vector temporary
* Definition(0): result
* Definition(1): scalar temporary
* Definition(2): scalar identity temporary (not used to store identity on GFX10)
* Definition(3): scc clobber
* Definition(4): vcc clobber
*
*/
struct Pseudo_reduction_instruction : public Instruction {
ReduceOp reduce_op;
unsigned cluster_size; // must be 0 for scans
};
struct instr_deleter_functor {
void operator()(void* p) {
free(p);
}
};
template<typename T>
using aco_ptr = std::unique_ptr<T, instr_deleter_functor>;
template<typename T>
T* create_instruction(aco_opcode opcode, Format format, uint32_t num_operands, uint32_t num_definitions)
{
std::size_t size = sizeof(T) + num_operands * sizeof(Operand) + num_definitions * sizeof(Definition);
char *data = (char*) calloc(1, size);
T* inst = (T*) data;
inst->opcode = opcode;
inst->format = format;
uint16_t operands_offset = data + sizeof(T) - (char*)&inst->operands;
inst->operands = aco::span<Operand>(operands_offset, num_operands);
uint16_t definitions_offset = (char*)inst->operands.end() - (char*)&inst->definitions;
inst->definitions = aco::span<Definition>(definitions_offset, num_definitions);
return inst;
}
constexpr bool Instruction::usesModifiers() const noexcept
{
if (isDPP() || isSDWA())
return true;
if (!isVOP3())
return false;
const VOP3A_instruction *vop3 = static_cast<const VOP3A_instruction*>(this);
for (unsigned i = 0; i < operands.size(); i++) {
if (vop3->abs[i] || vop3->neg[i])
return true;
}
return vop3->opsel || vop3->clamp || vop3->omod;
}
constexpr bool is_phi(Instruction* instr)
{
return instr->opcode == aco_opcode::p_phi || instr->opcode == aco_opcode::p_linear_phi;
}
static inline bool is_phi(aco_ptr<Instruction>& instr)
{
return is_phi(instr.get());
}
barrier_interaction get_barrier_interaction(Instruction* instr);
bool is_dead(const std::vector<uint16_t>& uses, Instruction *instr);
enum block_kind {
/* uniform indicates that leaving this block,
* all actives lanes stay active */
block_kind_uniform = 1 << 0,
block_kind_top_level = 1 << 1,
block_kind_loop_preheader = 1 << 2,
block_kind_loop_header = 1 << 3,
block_kind_loop_exit = 1 << 4,
block_kind_continue = 1 << 5,
block_kind_break = 1 << 6,
block_kind_continue_or_break = 1 << 7,
block_kind_discard = 1 << 8,
block_kind_branch = 1 << 9,
block_kind_merge = 1 << 10,
block_kind_invert = 1 << 11,
block_kind_uses_discard_if = 1 << 12,
block_kind_needs_lowering = 1 << 13,
block_kind_uses_demote = 1 << 14,
block_kind_export_end = 1 << 15,
};
struct RegisterDemand {
constexpr RegisterDemand() = default;
constexpr RegisterDemand(const int16_t v, const int16_t s) noexcept
: vgpr{v}, sgpr{s} {}
int16_t vgpr = 0;
int16_t sgpr = 0;
constexpr friend bool operator==(const RegisterDemand a, const RegisterDemand b) noexcept {
return a.vgpr == b.vgpr && a.sgpr == b.sgpr;
}
constexpr bool exceeds(const RegisterDemand other) const noexcept {
return vgpr > other.vgpr || sgpr > other.sgpr;
}
constexpr RegisterDemand operator+(const Temp t) const noexcept {
if (t.type() == RegType::sgpr)
return RegisterDemand( vgpr, sgpr + t.size() );
else
return RegisterDemand( vgpr + t.size(), sgpr );
}
constexpr RegisterDemand operator+(const RegisterDemand other) const noexcept {
return RegisterDemand(vgpr + other.vgpr, sgpr + other.sgpr);
}
constexpr RegisterDemand operator-(const RegisterDemand other) const noexcept {
return RegisterDemand(vgpr - other.vgpr, sgpr - other.sgpr);
}
constexpr RegisterDemand& operator+=(const RegisterDemand other) noexcept {
vgpr += other.vgpr;
sgpr += other.sgpr;
return *this;
}
constexpr RegisterDemand& operator-=(const RegisterDemand other) noexcept {
vgpr -= other.vgpr;
sgpr -= other.sgpr;
return *this;
}
constexpr RegisterDemand& operator+=(const Temp t) noexcept {
if (t.type() == RegType::sgpr)
sgpr += t.size();
else
vgpr += t.size();
return *this;
}
constexpr RegisterDemand& operator-=(const Temp t) noexcept {
if (t.type() == RegType::sgpr)
sgpr -= t.size();
else
vgpr -= t.size();
return *this;
}
constexpr void update(const RegisterDemand other) noexcept {
vgpr = std::max(vgpr, other.vgpr);
sgpr = std::max(sgpr, other.sgpr);
}
};
/* CFG */
struct Block {
float_mode fp_mode;
unsigned index;
unsigned offset = 0;
std::vector<aco_ptr<Instruction>> instructions;
std::vector<unsigned> logical_preds;
std::vector<unsigned> linear_preds;
std::vector<unsigned> logical_succs;
std::vector<unsigned> linear_succs;
RegisterDemand register_demand = RegisterDemand();
uint16_t loop_nest_depth = 0;
uint16_t kind = 0;
int logical_idom = -1;
int linear_idom = -1;
Temp live_out_exec = Temp();
/* this information is needed for predecessors to blocks with phis when
* moving out of ssa */
bool scc_live_out = false;
PhysReg scratch_sgpr = PhysReg(); /* only needs to be valid if scc_live_out != false */
Block(unsigned idx) : index(idx) {}
Block() : index(0) {}
};
using Stage = uint16_t;
/* software stages */
static constexpr Stage sw_vs = 1 << 0;
static constexpr Stage sw_gs = 1 << 1;
static constexpr Stage sw_tcs = 1 << 2;
static constexpr Stage sw_tes = 1 << 3;
static constexpr Stage sw_fs = 1 << 4;
static constexpr Stage sw_cs = 1 << 5;
static constexpr Stage sw_gs_copy = 1 << 6;
static constexpr Stage sw_mask = 0x7f;
/* hardware stages (can't be OR'd, just a mask for convenience when testing multiple) */
static constexpr Stage hw_vs = 1 << 7;
static constexpr Stage hw_es = 1 << 8; /* not on GFX9. combined into GS on GFX9 (and GFX10/legacy). */
static constexpr Stage hw_gs = 1 << 9;
static constexpr Stage hw_ls = 1 << 10; /* not on GFX9. combined into HS on GFX9 (and GFX10/legacy). */
static constexpr Stage hw_hs = 1 << 11;
static constexpr Stage hw_fs = 1 << 12;
static constexpr Stage hw_cs = 1 << 13;
static constexpr Stage hw_mask = 0x7f << 7;
/* possible settings of Program::stage */
static constexpr Stage vertex_vs = sw_vs | hw_vs;
static constexpr Stage fragment_fs = sw_fs | hw_fs;
static constexpr Stage compute_cs = sw_cs | hw_cs;
static constexpr Stage tess_eval_vs = sw_tes | hw_vs;
static constexpr Stage gs_copy_vs = sw_gs_copy | hw_vs;
/* GFX10/NGG */
static constexpr Stage ngg_vertex_gs = sw_vs | hw_gs;
static constexpr Stage ngg_vertex_geometry_gs = sw_vs | sw_gs | hw_gs;
static constexpr Stage ngg_tess_eval_geometry_gs = sw_tes | sw_gs | hw_gs;
static constexpr Stage ngg_vertex_tess_control_hs = sw_vs | sw_tcs | hw_hs;
/* GFX9 (and GFX10 if NGG isn't used) */
static constexpr Stage vertex_geometry_gs = sw_vs | sw_gs | hw_gs;
static constexpr Stage vertex_tess_control_hs = sw_vs | sw_tcs | hw_hs;
static constexpr Stage tess_eval_geometry_gs = sw_tes | sw_gs | hw_gs;
/* pre-GFX9 */
static constexpr Stage vertex_ls = sw_vs | hw_ls; /* vertex before tesselation control */
static constexpr Stage vertex_es = sw_vs | hw_es; /* vertex before geometry */
static constexpr Stage tess_control_hs = sw_tcs | hw_hs;
static constexpr Stage tess_eval_es = sw_tes | hw_es; /* tesselation evaluation before geometry */
static constexpr Stage geometry_gs = sw_gs | hw_gs;
enum statistic {
statistic_hash,
statistic_instructions,
statistic_copies,
statistic_branches,
statistic_cycles,
statistic_vmem_clauses,
statistic_smem_clauses,
statistic_vmem_score,
statistic_smem_score,
statistic_sgpr_presched,
statistic_vgpr_presched,
num_statistics
};
class Program final {
public:
float_mode next_fp_mode;
std::vector<Block> blocks;
RegisterDemand max_reg_demand = RegisterDemand();
uint16_t num_waves = 0;
uint16_t max_waves = 0; /* maximum number of waves, regardless of register usage */
ac_shader_config* config;
struct radv_shader_info *info;
enum chip_class chip_class;
enum radeon_family family;
unsigned wave_size;
RegClass lane_mask;
Stage stage; /* Stage */
bool needs_exact = false; /* there exists an instruction with disable_wqm = true */
bool needs_wqm = false; /* there exists a p_wqm instruction */
bool wb_smem_l1_on_end = false;
std::vector<uint8_t> constant_data;
Temp private_segment_buffer;
Temp scratch_offset;
uint16_t min_waves = 0;
uint16_t lds_alloc_granule;
uint32_t lds_limit; /* in bytes */
bool has_16bank_lds;
uint16_t vgpr_limit;
uint16_t sgpr_limit;
uint16_t physical_sgprs;
uint16_t sgpr_alloc_granule; /* minus one. must be power of two */
uint16_t vgpr_alloc_granule; /* minus one. must be power of two */
unsigned workgroup_size; /* if known; otherwise UINT_MAX */
bool xnack_enabled = false;
bool needs_vcc = false;
bool needs_flat_scr = false;
bool collect_statistics = false;
uint32_t statistics[num_statistics];
uint32_t allocateId()
{
assert(allocationID <= 16777215);
return allocationID++;
}
uint32_t peekAllocationId()
{
return allocationID;
}
void setAllocationId(uint32_t id)
{
allocationID = id;
}
Block* create_and_insert_block() {
blocks.emplace_back(blocks.size());
blocks.back().fp_mode = next_fp_mode;
return &blocks.back();
}
Block* insert_block(Block&& block) {
block.index = blocks.size();
block.fp_mode = next_fp_mode;
blocks.emplace_back(std::move(block));
return &blocks.back();
}
private:
uint32_t allocationID = 1;
};
struct live {
/* live temps out per block */
std::vector<std::set<Temp>> live_out;
/* register demand (sgpr/vgpr) per instruction per block */
std::vector<std::vector<RegisterDemand>> register_demand;
};
void select_program(Program *program,
unsigned shader_count,
struct nir_shader *const *shaders,
ac_shader_config* config,
struct radv_shader_args *args);
void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
ac_shader_config* config,
struct radv_shader_args *args);
void lower_wqm(Program* program, live& live_vars,
const struct radv_nir_compiler_options *options);
void lower_bool_phis(Program* program);
void calc_min_waves(Program* program);
void update_vgpr_sgpr_demand(Program* program, const RegisterDemand new_demand);
live live_var_analysis(Program* program, const struct radv_nir_compiler_options *options);
std::vector<uint16_t> dead_code_analysis(Program *program);
void dominator_tree(Program* program);
void insert_exec_mask(Program *program);
void value_numbering(Program* program);
void optimize(Program* program);
void setup_reduce_temp(Program* program);
void lower_to_cssa(Program* program, live& live_vars, const struct radv_nir_compiler_options *options);
void register_allocation(Program *program, std::vector<std::set<Temp>> live_out_per_block);
void ssa_elimination(Program* program);
void lower_to_hw_instr(Program* program);
void schedule_program(Program* program, live& live_vars);
void spill(Program* program, live& live_vars, const struct radv_nir_compiler_options *options);
void insert_wait_states(Program* program);
void insert_NOPs(Program* program);
unsigned emit_program(Program* program, std::vector<uint32_t>& code);
void print_asm(Program *program, std::vector<uint32_t>& binary,
unsigned exec_size, std::ostream& out);
void validate(Program* program, FILE *output);
bool validate_ra(Program* program, const struct radv_nir_compiler_options *options, FILE *output);
#ifndef NDEBUG
void perfwarn(bool cond, const char *msg, Instruction *instr=NULL);
#else
#define perfwarn(program, cond, msg, ...) do {} while(0)
#endif
void collect_presched_stats(Program *program);
void collect_preasm_stats(Program *program);
void collect_postasm_stats(Program *program, const std::vector<uint32_t>& code);
void aco_print_instr(Instruction *instr, FILE *output);
void aco_print_program(Program *program, FILE *output);
/* utilities for dealing with register demand */
RegisterDemand get_live_changes(aco_ptr<Instruction>& instr);
RegisterDemand get_temp_registers(aco_ptr<Instruction>& instr);
RegisterDemand get_demand_before(RegisterDemand demand, aco_ptr<Instruction>& instr, aco_ptr<Instruction>& instr_before);
/* number of sgprs that need to be allocated but might notbe addressable as s0-s105 */
uint16_t get_extra_sgprs(Program *program);
/* get number of sgprs/vgprs allocated required to address a number of sgprs/vgprs */
uint16_t get_sgpr_alloc(Program *program, uint16_t addressable_sgprs);
uint16_t get_vgpr_alloc(Program *program, uint16_t addressable_vgprs);
/* return number of addressable sgprs/vgprs for max_waves */
uint16_t get_addr_sgpr_from_waves(Program *program, uint16_t max_waves);
uint16_t get_addr_vgpr_from_waves(Program *program, uint16_t max_waves);
typedef struct {
const int16_t opcode_gfx7[static_cast<int>(aco_opcode::num_opcodes)];
const int16_t opcode_gfx9[static_cast<int>(aco_opcode::num_opcodes)];
const int16_t opcode_gfx10[static_cast<int>(aco_opcode::num_opcodes)];
const std::bitset<static_cast<int>(aco_opcode::num_opcodes)> can_use_input_modifiers;
const std::bitset<static_cast<int>(aco_opcode::num_opcodes)> can_use_output_modifiers;
const std::bitset<static_cast<int>(aco_opcode::num_opcodes)> is_atomic;
const char *name[static_cast<int>(aco_opcode::num_opcodes)];
const aco::Format format[static_cast<int>(aco_opcode::num_opcodes)];
} Info;
extern const Info instr_info;
}
#endif /* ACO_IR_H */