mesa/src/amd/compiler/aco_insert_waitcnt.cpp
Rhys Perry 507956ed04 aco: add vmem/smem score statistic
This isn't perfect (for example, changes might not be too meaningful when
comparing shaders with different control flow) but it should be useful for
evaluating scheduler changes.

Signed-off-by: Rhys Perry <pendingchaos02@gmail.com>
Acked-by: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl>
Reviewed-by: Daniel Schürmann <daniel@schuermann.dev>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/2965>
2020-04-03 12:12:08 +00:00

982 lines
33 KiB
C++

/*
* Copyright © 2018 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include <algorithm>
#include <map>
#include <stack>
#include <math.h>
#include "aco_ir.h"
#include "vulkan/radv_shader.h"
namespace aco {
namespace {
/**
* The general idea of this pass is:
* The CFG is traversed in reverse postorder (forward) and loops are processed
* several times until no progress is made.
* Per BB two wait_ctx is maintained: an in-context and out-context.
* The in-context is the joined out-contexts of the predecessors.
* The context contains a map: gpr -> wait_entry
* consisting of the information about the cnt values to be waited for.
* Note: After merge-nodes, it might occur that for the same register
* multiple cnt values are to be waited for.
*
* The values are updated according to the encountered instructions:
* - additional events increment the counter of waits of the same type
* - or erase gprs with counters higher than to be waited for.
*/
// TODO: do a more clever insertion of wait_cnt (lgkm_cnt) when there is a load followed by a use of a previous load
/* Instructions of the same event will finish in-order except for smem
* and maybe flat. Instructions of different events may not finish in-order. */
enum wait_event : uint16_t {
event_smem = 1 << 0,
event_lds = 1 << 1,
event_gds = 1 << 2,
event_vmem = 1 << 3,
event_vmem_store = 1 << 4, /* GFX10+ */
event_flat = 1 << 5,
event_exp_pos = 1 << 6,
event_exp_param = 1 << 7,
event_exp_mrt_null = 1 << 8,
event_gds_gpr_lock = 1 << 9,
event_vmem_gpr_lock = 1 << 10,
event_sendmsg = 1 << 11,
num_events = 12,
};
enum counter_type : uint8_t {
counter_exp = 1 << 0,
counter_lgkm = 1 << 1,
counter_vm = 1 << 2,
counter_vs = 1 << 3,
num_counters = 4,
};
static const uint16_t exp_events = event_exp_pos | event_exp_param | event_exp_mrt_null | event_gds_gpr_lock | event_vmem_gpr_lock;
static const uint16_t lgkm_events = event_smem | event_lds | event_gds | event_flat | event_sendmsg;
static const uint16_t vm_events = event_vmem | event_flat;
static const uint16_t vs_events = event_vmem_store;
uint8_t get_counters_for_event(wait_event ev)
{
switch (ev) {
case event_smem:
case event_lds:
case event_gds:
case event_sendmsg:
return counter_lgkm;
case event_vmem:
return counter_vm;
case event_vmem_store:
return counter_vs;
case event_flat:
return counter_vm | counter_lgkm;
case event_exp_pos:
case event_exp_param:
case event_exp_mrt_null:
case event_gds_gpr_lock:
case event_vmem_gpr_lock:
return counter_exp;
default:
return 0;
}
}
uint16_t get_events_for_counter(counter_type ctr)
{
switch (ctr) {
case counter_exp:
return exp_events;
case counter_lgkm:
return lgkm_events;
case counter_vm:
return vm_events;
case counter_vs:
return vs_events;
}
return 0;
}
struct wait_imm {
static const uint8_t unset_counter = 0xff;
uint8_t vm;
uint8_t exp;
uint8_t lgkm;
uint8_t vs;
wait_imm() :
vm(unset_counter), exp(unset_counter), lgkm(unset_counter), vs(unset_counter) {}
wait_imm(uint16_t vm_, uint16_t exp_, uint16_t lgkm_, uint16_t vs_) :
vm(vm_), exp(exp_), lgkm(lgkm_), vs(vs_) {}
wait_imm(enum chip_class chip, uint16_t packed) : vs(unset_counter)
{
vm = packed & 0xf;
if (chip >= GFX9)
vm |= (packed >> 10) & 0x30;
exp = (packed >> 4) & 0x7;
lgkm = (packed >> 8) & 0xf;
if (chip >= GFX10)
lgkm |= (packed >> 8) & 0x30;
}
uint16_t pack(enum chip_class chip) const
{
uint16_t imm = 0;
assert(exp == unset_counter || exp <= 0x7);
switch (chip) {
case GFX10:
assert(lgkm == unset_counter || lgkm <= 0x3f);
assert(vm == unset_counter || vm <= 0x3f);
imm = ((vm & 0x30) << 10) | ((lgkm & 0x3f) << 8) | ((exp & 0x7) << 4) | (vm & 0xf);
break;
case GFX9:
assert(lgkm == unset_counter || lgkm <= 0xf);
assert(vm == unset_counter || vm <= 0x3f);
imm = ((vm & 0x30) << 10) | ((lgkm & 0xf) << 8) | ((exp & 0x7) << 4) | (vm & 0xf);
break;
default:
assert(lgkm == unset_counter || lgkm <= 0xf);
assert(vm == unset_counter || vm <= 0xf);
imm = ((lgkm & 0xf) << 8) | ((exp & 0x7) << 4) | (vm & 0xf);
break;
}
if (chip < GFX9 && vm == wait_imm::unset_counter)
imm |= 0xc000; /* should have no effect on pre-GFX9 and now we won't have to worry about the architecture when interpreting the immediate */
if (chip < GFX10 && lgkm == wait_imm::unset_counter)
imm |= 0x3000; /* should have no effect on pre-GFX10 and now we won't have to worry about the architecture when interpreting the immediate */
return imm;
}
bool combine(const wait_imm& other)
{
bool changed = other.vm < vm || other.exp < exp || other.lgkm < lgkm || other.vs < vs;
vm = std::min(vm, other.vm);
exp = std::min(exp, other.exp);
lgkm = std::min(lgkm, other.lgkm);
vs = std::min(vs, other.vs);
return changed;
}
bool empty() const
{
return vm == unset_counter && exp == unset_counter &&
lgkm == unset_counter && vs == unset_counter;
}
};
struct wait_entry {
wait_imm imm;
uint16_t events; /* use wait_event notion */
uint8_t counters; /* use counter_type notion */
bool wait_on_read:1;
bool logical:1;
wait_entry(wait_event event, wait_imm imm, bool logical, bool wait_on_read)
: imm(imm), events(event), counters(get_counters_for_event(event)),
wait_on_read(wait_on_read), logical(logical) {}
bool join(const wait_entry& other)
{
bool changed = (other.events & ~events) ||
(other.counters & ~counters) ||
(other.wait_on_read && !wait_on_read);
events |= other.events;
counters |= other.counters;
changed |= imm.combine(other.imm);
wait_on_read = wait_on_read || other.wait_on_read;
assert(logical == other.logical);
return changed;
}
void remove_counter(counter_type counter)
{
counters &= ~counter;
if (counter == counter_lgkm) {
imm.lgkm = wait_imm::unset_counter;
events &= ~(event_smem | event_lds | event_gds | event_sendmsg);
}
if (counter == counter_vm) {
imm.vm = wait_imm::unset_counter;
events &= ~event_vmem;
}
if (counter == counter_exp) {
imm.exp = wait_imm::unset_counter;
events &= ~(event_exp_pos | event_exp_param | event_exp_mrt_null | event_gds_gpr_lock | event_vmem_gpr_lock);
}
if (counter == counter_vs) {
imm.vs = wait_imm::unset_counter;
events &= ~event_vmem_store;
}
if (!(counters & counter_lgkm) && !(counters & counter_vm))
events &= ~event_flat;
}
};
struct wait_ctx {
Program *program;
enum chip_class chip_class;
uint16_t max_vm_cnt;
uint16_t max_exp_cnt;
uint16_t max_lgkm_cnt;
uint16_t max_vs_cnt;
uint16_t unordered_events = event_smem | event_flat;
uint8_t vm_cnt = 0;
uint8_t exp_cnt = 0;
uint8_t lgkm_cnt = 0;
uint8_t vs_cnt = 0;
bool pending_flat_lgkm = false;
bool pending_flat_vm = false;
bool pending_s_buffer_store = false; /* GFX10 workaround */
wait_imm barrier_imm[barrier_count];
uint16_t barrier_events[barrier_count] = {}; /* use wait_event notion */
std::map<PhysReg,wait_entry> gpr_map;
/* used for vmem/smem scores */
bool collect_statistics;
Instruction *gen_instr;
std::map<Instruction *, unsigned> unwaited_instrs[num_counters];
std::map<PhysReg,std::set<Instruction *>> reg_instrs[num_counters];
std::vector<unsigned> wait_distances[num_events];
wait_ctx() {}
wait_ctx(Program *program_)
: program(program_),
chip_class(program_->chip_class),
max_vm_cnt(program_->chip_class >= GFX9 ? 62 : 14),
max_exp_cnt(6),
max_lgkm_cnt(program_->chip_class >= GFX10 ? 62 : 14),
max_vs_cnt(program_->chip_class >= GFX10 ? 62 : 0),
unordered_events(event_smem | (program_->chip_class < GFX10 ? event_flat : 0)) {}
bool join(const wait_ctx* other, bool logical)
{
bool changed = other->exp_cnt > exp_cnt ||
other->vm_cnt > vm_cnt ||
other->lgkm_cnt > lgkm_cnt ||
other->vs_cnt > vs_cnt ||
(other->pending_flat_lgkm && !pending_flat_lgkm) ||
(other->pending_flat_vm && !pending_flat_vm);
exp_cnt = std::max(exp_cnt, other->exp_cnt);
vm_cnt = std::max(vm_cnt, other->vm_cnt);
lgkm_cnt = std::max(lgkm_cnt, other->lgkm_cnt);
vs_cnt = std::max(vs_cnt, other->vs_cnt);
pending_flat_lgkm |= other->pending_flat_lgkm;
pending_flat_vm |= other->pending_flat_vm;
pending_s_buffer_store |= other->pending_s_buffer_store;
for (std::pair<PhysReg,wait_entry> entry : other->gpr_map)
{
std::map<PhysReg,wait_entry>::iterator it = gpr_map.find(entry.first);
if (entry.second.logical != logical)
continue;
if (it != gpr_map.end()) {
changed |= it->second.join(entry.second);
} else {
gpr_map.insert(entry);
changed = true;
}
}
for (unsigned i = 0; i < barrier_count; i++) {
changed |= barrier_imm[i].combine(other->barrier_imm[i]);
changed |= other->barrier_events[i] & ~barrier_events[i];
barrier_events[i] |= other->barrier_events[i];
}
/* these are used for statistics, so don't update "changed" */
for (unsigned i = 0; i < num_counters; i++) {
for (std::pair<Instruction *, unsigned> instr : other->unwaited_instrs[i]) {
auto pos = unwaited_instrs[i].find(instr.first);
if (pos == unwaited_instrs[i].end())
unwaited_instrs[i].insert(instr);
else
pos->second = std::min(pos->second, instr.second);
}
/* don't use a foreach loop to avoid copies */
for (auto it = other->reg_instrs[i].begin(); it != other->reg_instrs[i].end(); ++it)
reg_instrs[i][it->first].insert(it->second.begin(), it->second.end());
}
return changed;
}
void wait_and_remove_from_entry(PhysReg reg, wait_entry& entry, counter_type counter) {
if (collect_statistics && (entry.counters & counter)) {
unsigned counter_idx = ffs(counter) - 1;
for (Instruction *instr : reg_instrs[counter_idx][reg]) {
auto pos = unwaited_instrs[counter_idx].find(instr);
if (pos == unwaited_instrs[counter_idx].end())
continue;
unsigned distance = pos->second;
unsigned events = entry.events & get_events_for_counter(counter);
while (events) {
unsigned event_idx = u_bit_scan(&events);
wait_distances[event_idx].push_back(distance);
}
unwaited_instrs[counter_idx].erase(instr);
}
reg_instrs[counter_idx][reg].clear();
}
entry.remove_counter(counter);
}
void advance_unwaited_instrs()
{
for (unsigned i = 0; i < num_counters; i++) {
for (auto it = unwaited_instrs[i].begin(); it != unwaited_instrs[i].end(); ++it)
it->second++;
}
}
};
wait_imm check_instr(Instruction* instr, wait_ctx& ctx)
{
wait_imm wait;
for (const Operand op : instr->operands) {
if (op.isConstant() || op.isUndefined())
continue;
/* check consecutively read gprs */
for (unsigned j = 0; j < op.size(); j++) {
PhysReg reg{op.physReg() + j};
std::map<PhysReg,wait_entry>::iterator it = ctx.gpr_map.find(reg);
if (it == ctx.gpr_map.end() || !it->second.wait_on_read)
continue;
wait.combine(it->second.imm);
}
}
for (const Definition& def : instr->definitions) {
/* check consecutively written gprs */
for (unsigned j = 0; j < def.getTemp().size(); j++)
{
PhysReg reg{def.physReg() + j};
std::map<PhysReg,wait_entry>::iterator it = ctx.gpr_map.find(reg);
if (it == ctx.gpr_map.end())
continue;
/* Vector Memory reads and writes return in the order they were issued */
if (instr->isVMEM() && ((it->second.events & vm_events) == event_vmem)) {
it->second.remove_counter(counter_vm);
if (!it->second.counters)
it = ctx.gpr_map.erase(it);
continue;
}
/* LDS reads and writes return in the order they were issued. same for GDS */
if (instr->format == Format::DS) {
bool gds = static_cast<DS_instruction*>(instr)->gds;
if ((it->second.events & lgkm_events) == (gds ? event_gds : event_lds)) {
it->second.remove_counter(counter_lgkm);
if (!it->second.counters)
it = ctx.gpr_map.erase(it);
continue;
}
}
wait.combine(it->second.imm);
}
}
return wait;
}
wait_imm parse_wait_instr(wait_ctx& ctx, Instruction *instr)
{
if (instr->opcode == aco_opcode::s_waitcnt_vscnt &&
instr->definitions[0].physReg() == sgpr_null) {
wait_imm imm;
imm.vs = std::min<uint8_t>(imm.vs, static_cast<SOPK_instruction*>(instr)->imm);
return imm;
} else if (instr->opcode == aco_opcode::s_waitcnt) {
return wait_imm(ctx.chip_class, static_cast<SOPP_instruction*>(instr)->imm);
}
return wait_imm();
}
wait_imm kill(Instruction* instr, wait_ctx& ctx)
{
wait_imm imm;
if (ctx.exp_cnt || ctx.vm_cnt || ctx.lgkm_cnt)
imm.combine(check_instr(instr, ctx));
imm.combine(parse_wait_instr(ctx, instr));
/* It's required to wait for scalar stores before "writing back" data.
* It shouldn't cost anything anyways since we're about to do s_endpgm.
*/
if (ctx.lgkm_cnt && instr->opcode == aco_opcode::s_dcache_wb) {
assert(ctx.chip_class >= GFX8);
imm.lgkm = 0;
}
if (ctx.chip_class >= GFX10) {
/* GFX10: A store followed by a load at the same address causes a problem because
* the load doesn't load the correct values unless we wait for the store first.
* This is NOT mitigated by an s_nop.
*
* TODO: Refine this when we have proper alias analysis.
*/
SMEM_instruction *smem = static_cast<SMEM_instruction *>(instr);
if (ctx.pending_s_buffer_store &&
!smem->definitions.empty() &&
!smem->can_reorder && smem->barrier == barrier_buffer) {
imm.lgkm = 0;
}
}
if (instr->format == Format::PSEUDO_BARRIER) {
switch (instr->opcode) {
case aco_opcode::p_memory_barrier_common:
imm.combine(ctx.barrier_imm[ffs(barrier_atomic) - 1]);
imm.combine(ctx.barrier_imm[ffs(barrier_buffer) - 1]);
imm.combine(ctx.barrier_imm[ffs(barrier_image) - 1]);
if (ctx.program->workgroup_size > ctx.program->wave_size)
imm.combine(ctx.barrier_imm[ffs(barrier_shared) - 1]);
break;
case aco_opcode::p_memory_barrier_atomic:
imm.combine(ctx.barrier_imm[ffs(barrier_atomic) - 1]);
break;
/* see comment in aco_scheduler.cpp's can_move_instr() on why these barriers are merged */
case aco_opcode::p_memory_barrier_buffer:
case aco_opcode::p_memory_barrier_image:
imm.combine(ctx.barrier_imm[ffs(barrier_buffer) - 1]);
imm.combine(ctx.barrier_imm[ffs(barrier_image) - 1]);
break;
case aco_opcode::p_memory_barrier_shared:
if (ctx.program->workgroup_size > ctx.program->wave_size)
imm.combine(ctx.barrier_imm[ffs(barrier_shared) - 1]);
break;
case aco_opcode::p_memory_barrier_gs_data:
imm.combine(ctx.barrier_imm[ffs(barrier_gs_data) - 1]);
break;
case aco_opcode::p_memory_barrier_gs_sendmsg:
imm.combine(ctx.barrier_imm[ffs(barrier_gs_sendmsg) - 1]);
break;
default:
assert(false);
break;
}
}
if (!imm.empty()) {
if (ctx.pending_flat_vm && imm.vm != wait_imm::unset_counter)
imm.vm = 0;
if (ctx.pending_flat_lgkm && imm.lgkm != wait_imm::unset_counter)
imm.lgkm = 0;
/* reset counters */
ctx.exp_cnt = std::min(ctx.exp_cnt, imm.exp);
ctx.vm_cnt = std::min(ctx.vm_cnt, imm.vm);
ctx.lgkm_cnt = std::min(ctx.lgkm_cnt, imm.lgkm);
ctx.vs_cnt = std::min(ctx.vs_cnt, imm.vs);
/* update barrier wait imms */
for (unsigned i = 0; i < barrier_count; i++) {
wait_imm& bar = ctx.barrier_imm[i];
uint16_t& bar_ev = ctx.barrier_events[i];
if (bar.exp != wait_imm::unset_counter && imm.exp <= bar.exp) {
bar.exp = wait_imm::unset_counter;
bar_ev &= ~exp_events;
}
if (bar.vm != wait_imm::unset_counter && imm.vm <= bar.vm) {
bar.vm = wait_imm::unset_counter;
bar_ev &= ~(vm_events & ~event_flat);
}
if (bar.lgkm != wait_imm::unset_counter && imm.lgkm <= bar.lgkm) {
bar.lgkm = wait_imm::unset_counter;
bar_ev &= ~(lgkm_events & ~event_flat);
}
if (bar.vs != wait_imm::unset_counter && imm.vs <= bar.vs) {
bar.vs = wait_imm::unset_counter;
bar_ev &= ~vs_events;
}
if (bar.vm == wait_imm::unset_counter && bar.lgkm == wait_imm::unset_counter)
bar_ev &= ~event_flat;
}
/* remove all gprs with higher counter from map */
std::map<PhysReg,wait_entry>::iterator it = ctx.gpr_map.begin();
while (it != ctx.gpr_map.end())
{
if (imm.exp != wait_imm::unset_counter && imm.exp <= it->second.imm.exp)
ctx.wait_and_remove_from_entry(it->first, it->second, counter_exp);
if (imm.vm != wait_imm::unset_counter && imm.vm <= it->second.imm.vm)
ctx.wait_and_remove_from_entry(it->first, it->second, counter_vm);
if (imm.lgkm != wait_imm::unset_counter && imm.lgkm <= it->second.imm.lgkm)
ctx.wait_and_remove_from_entry(it->first, it->second, counter_lgkm);
if (imm.lgkm != wait_imm::unset_counter && imm.vs <= it->second.imm.vs)
ctx.wait_and_remove_from_entry(it->first, it->second, counter_vs);
if (!it->second.counters)
it = ctx.gpr_map.erase(it);
else
it++;
}
}
if (imm.vm == 0)
ctx.pending_flat_vm = false;
if (imm.lgkm == 0) {
ctx.pending_flat_lgkm = false;
ctx.pending_s_buffer_store = false;
}
return imm;
}
void update_barrier_counter(uint8_t *ctr, unsigned max)
{
if (*ctr != wait_imm::unset_counter && *ctr < max)
(*ctr)++;
}
void update_barrier_imm(wait_ctx& ctx, uint8_t counters, wait_event event, barrier_interaction barrier)
{
for (unsigned i = 0; i < barrier_count; i++) {
wait_imm& bar = ctx.barrier_imm[i];
uint16_t& bar_ev = ctx.barrier_events[i];
if (barrier & (1 << i)) {
bar_ev |= event;
if (counters & counter_lgkm)
bar.lgkm = 0;
if (counters & counter_vm)
bar.vm = 0;
if (counters & counter_exp)
bar.exp = 0;
if (counters & counter_vs)
bar.vs = 0;
} else if (!(bar_ev & ctx.unordered_events) && !(ctx.unordered_events & event)) {
if (counters & counter_lgkm && (bar_ev & lgkm_events) == event)
update_barrier_counter(&bar.lgkm, ctx.max_lgkm_cnt);
if (counters & counter_vm && (bar_ev & vm_events) == event)
update_barrier_counter(&bar.vm, ctx.max_vm_cnt);
if (counters & counter_exp && (bar_ev & exp_events) == event)
update_barrier_counter(&bar.exp, ctx.max_exp_cnt);
if (counters & counter_vs && (bar_ev & vs_events) == event)
update_barrier_counter(&bar.vs, ctx.max_vs_cnt);
}
}
}
void update_counters(wait_ctx& ctx, wait_event event, barrier_interaction barrier=barrier_none)
{
uint8_t counters = get_counters_for_event(event);
if (counters & counter_lgkm && ctx.lgkm_cnt <= ctx.max_lgkm_cnt)
ctx.lgkm_cnt++;
if (counters & counter_vm && ctx.vm_cnt <= ctx.max_vm_cnt)
ctx.vm_cnt++;
if (counters & counter_exp && ctx.exp_cnt <= ctx.max_exp_cnt)
ctx.exp_cnt++;
if (counters & counter_vs && ctx.vs_cnt <= ctx.max_vs_cnt)
ctx.vs_cnt++;
update_barrier_imm(ctx, counters, event, barrier);
if (ctx.unordered_events & event)
return;
if (ctx.pending_flat_lgkm)
counters &= ~counter_lgkm;
if (ctx.pending_flat_vm)
counters &= ~counter_vm;
for (std::pair<const PhysReg,wait_entry>& e : ctx.gpr_map) {
wait_entry& entry = e.second;
if (entry.events & ctx.unordered_events)
continue;
assert(entry.events);
if ((counters & counter_exp) && (entry.events & exp_events) == event && entry.imm.exp < ctx.max_exp_cnt)
entry.imm.exp++;
if ((counters & counter_lgkm) && (entry.events & lgkm_events) == event && entry.imm.lgkm < ctx.max_lgkm_cnt)
entry.imm.lgkm++;
if ((counters & counter_vm) && (entry.events & vm_events) == event && entry.imm.vm < ctx.max_vm_cnt)
entry.imm.vm++;
if ((counters & counter_vs) && (entry.events & vs_events) == event && entry.imm.vs < ctx.max_vs_cnt)
entry.imm.vs++;
}
}
void update_counters_for_flat_load(wait_ctx& ctx, barrier_interaction barrier=barrier_none)
{
assert(ctx.chip_class < GFX10);
if (ctx.lgkm_cnt <= ctx.max_lgkm_cnt)
ctx.lgkm_cnt++;
if (ctx.vm_cnt <= ctx.max_vm_cnt)
ctx.vm_cnt++;
update_barrier_imm(ctx, counter_vm | counter_lgkm, event_flat, barrier);
for (std::pair<PhysReg,wait_entry> e : ctx.gpr_map)
{
if (e.second.counters & counter_vm)
e.second.imm.vm = 0;
if (e.second.counters & counter_lgkm)
e.second.imm.lgkm = 0;
}
ctx.pending_flat_lgkm = true;
ctx.pending_flat_vm = true;
}
void insert_wait_entry(wait_ctx& ctx, PhysReg reg, RegClass rc, wait_event event, bool wait_on_read)
{
uint16_t counters = get_counters_for_event(event);
wait_imm imm;
if (counters & counter_lgkm)
imm.lgkm = 0;
if (counters & counter_vm)
imm.vm = 0;
if (counters & counter_exp)
imm.exp = 0;
if (counters & counter_vs)
imm.vs = 0;
wait_entry new_entry(event, imm, !rc.is_linear(), wait_on_read);
for (unsigned i = 0; i < rc.size(); i++) {
auto it = ctx.gpr_map.emplace(PhysReg{reg.reg+i}, new_entry);
if (!it.second)
it.first->second.join(new_entry);
}
if (ctx.collect_statistics) {
unsigned counters_todo = counters;
while (counters_todo) {
unsigned i = u_bit_scan(&counters_todo);
ctx.unwaited_instrs[i].insert(std::make_pair(ctx.gen_instr, 0u));
for (unsigned j = 0; j < rc.size(); j++)
ctx.reg_instrs[i][PhysReg{reg.reg+j}].insert(ctx.gen_instr);
}
}
}
void insert_wait_entry(wait_ctx& ctx, Operand op, wait_event event)
{
if (!op.isConstant() && !op.isUndefined())
insert_wait_entry(ctx, op.physReg(), op.regClass(), event, false);
}
void insert_wait_entry(wait_ctx& ctx, Definition def, wait_event event)
{
insert_wait_entry(ctx, def.physReg(), def.regClass(), event, true);
}
void gen(Instruction* instr, wait_ctx& ctx)
{
switch (instr->format) {
case Format::EXP: {
Export_instruction* exp_instr = static_cast<Export_instruction*>(instr);
wait_event ev;
if (exp_instr->dest <= 9)
ev = event_exp_mrt_null;
else if (exp_instr->dest <= 15)
ev = event_exp_pos;
else
ev = event_exp_param;
update_counters(ctx, ev);
/* insert new entries for exported vgprs */
for (unsigned i = 0; i < 4; i++)
{
if (exp_instr->enabled_mask & (1 << i)) {
unsigned idx = exp_instr->compressed ? i >> 1 : i;
assert(idx < exp_instr->operands.size());
insert_wait_entry(ctx, exp_instr->operands[idx], ev);
}
}
insert_wait_entry(ctx, exec, s2, ev, false);
break;
}
case Format::FLAT: {
if (ctx.chip_class < GFX10 && !instr->definitions.empty())
update_counters_for_flat_load(ctx, barrier_buffer);
else
update_counters(ctx, event_flat, barrier_buffer);
if (!instr->definitions.empty())
insert_wait_entry(ctx, instr->definitions[0], event_flat);
break;
}
case Format::SMEM: {
SMEM_instruction *smem = static_cast<SMEM_instruction*>(instr);
update_counters(ctx, event_smem, static_cast<SMEM_instruction*>(instr)->barrier);
if (!instr->definitions.empty())
insert_wait_entry(ctx, instr->definitions[0], event_smem);
else if (ctx.chip_class >= GFX10 &&
!smem->can_reorder &&
smem->barrier == barrier_buffer)
ctx.pending_s_buffer_store = true;
break;
}
case Format::DS: {
bool gds = static_cast<DS_instruction*>(instr)->gds;
update_counters(ctx, gds ? event_gds : event_lds, gds ? barrier_none : barrier_shared);
if (gds)
update_counters(ctx, event_gds_gpr_lock);
if (!instr->definitions.empty())
insert_wait_entry(ctx, instr->definitions[0], gds ? event_gds : event_lds);
if (gds) {
for (const Operand& op : instr->operands)
insert_wait_entry(ctx, op, event_gds_gpr_lock);
insert_wait_entry(ctx, exec, s2, event_gds_gpr_lock, false);
}
break;
}
case Format::MUBUF:
case Format::MTBUF:
case Format::MIMG:
case Format::GLOBAL: {
wait_event ev = !instr->definitions.empty() || ctx.chip_class < GFX10 ? event_vmem : event_vmem_store;
update_counters(ctx, ev, get_barrier_interaction(instr));
if (!instr->definitions.empty())
insert_wait_entry(ctx, instr->definitions[0], ev);
if (ctx.chip_class == GFX6 &&
instr->format != Format::MIMG &&
instr->operands.size() == 4) {
ctx.exp_cnt++;
update_counters(ctx, event_vmem_gpr_lock);
insert_wait_entry(ctx, instr->operands[3], event_vmem_gpr_lock);
} else if (ctx.chip_class == GFX6 &&
instr->format == Format::MIMG &&
instr->operands[1].regClass().type() == RegType::vgpr) {
ctx.exp_cnt++;
update_counters(ctx, event_vmem_gpr_lock);
insert_wait_entry(ctx, instr->operands[1], event_vmem_gpr_lock);
}
break;
}
case Format::SOPP: {
if (instr->opcode == aco_opcode::s_sendmsg ||
instr->opcode == aco_opcode::s_sendmsghalt)
update_counters(ctx, event_sendmsg, get_barrier_interaction(instr));
}
default:
break;
}
}
void emit_waitcnt(wait_ctx& ctx, std::vector<aco_ptr<Instruction>>& instructions, wait_imm imm)
{
if (imm.vs != wait_imm::unset_counter) {
assert(ctx.chip_class >= GFX10);
SOPK_instruction* waitcnt_vs = create_instruction<SOPK_instruction>(aco_opcode::s_waitcnt_vscnt, Format::SOPK, 0, 1);
waitcnt_vs->definitions[0] = Definition(sgpr_null, s1);
waitcnt_vs->imm = imm.vs;
instructions.emplace_back(waitcnt_vs);
imm.vs = wait_imm::unset_counter;
}
if (!imm.empty()) {
SOPP_instruction* waitcnt = create_instruction<SOPP_instruction>(aco_opcode::s_waitcnt, Format::SOPP, 0, 0);
waitcnt->imm = imm.pack(ctx.chip_class);
waitcnt->block = -1;
instructions.emplace_back(waitcnt);
}
}
void handle_block(Program *program, Block& block, wait_ctx& ctx)
{
std::vector<aco_ptr<Instruction>> new_instructions;
wait_imm queued_imm;
ctx.collect_statistics = program->collect_statistics;
for (aco_ptr<Instruction>& instr : block.instructions) {
bool is_wait = !parse_wait_instr(ctx, instr.get()).empty();
queued_imm.combine(kill(instr.get(), ctx));
ctx.gen_instr = instr.get();
gen(instr.get(), ctx);
if (instr->format != Format::PSEUDO_BARRIER && !is_wait) {
if (!queued_imm.empty()) {
emit_waitcnt(ctx, new_instructions, queued_imm);
queued_imm = wait_imm();
}
new_instructions.emplace_back(std::move(instr));
if (ctx.collect_statistics)
ctx.advance_unwaited_instrs();
}
}
if (!queued_imm.empty())
emit_waitcnt(ctx, new_instructions, queued_imm);
block.instructions.swap(new_instructions);
}
} /* end namespace */
static uint32_t calculate_score(unsigned num_ctx, wait_ctx *ctx, uint32_t event_mask)
{
double result = 0.0;
unsigned num_waits = 0;
while (event_mask) {
unsigned event_index = u_bit_scan(&event_mask);
for (unsigned i = 0; i < num_ctx; i++) {
for (unsigned dist : ctx[i].wait_distances[event_index]) {
double score = dist;
/* for many events, excessive distances provide little benefit, so
* decrease the score in that case. */
double threshold = INFINITY;
double inv_strength = 0.000001;
switch (1 << event_index) {
case event_smem:
threshold = 70.0;
inv_strength = 75.0;
break;
case event_vmem:
case event_vmem_store:
case event_flat:
threshold = 230.0;
inv_strength = 150.0;
break;
case event_lds:
threshold = 16.0;
break;
default:
break;
}
if (score > threshold) {
score -= threshold;
score = threshold + score / (1.0 + score / inv_strength);
}
/* we don't want increases in high scores to hide decreases in low scores,
* so raise to the power of 0.1 before averaging. */
result += pow(score, 0.1);
num_waits++;
}
}
}
return round(pow(result / num_waits, 10.0) * 10.0);
}
void insert_wait_states(Program* program)
{
/* per BB ctx */
std::vector<bool> done(program->blocks.size());
wait_ctx in_ctx[program->blocks.size()];
wait_ctx out_ctx[program->blocks.size()];
for (unsigned i = 0; i < program->blocks.size(); i++)
in_ctx[i] = wait_ctx(program);
std::stack<unsigned> loop_header_indices;
unsigned loop_progress = 0;
for (unsigned i = 0; i < program->blocks.size();) {
Block& current = program->blocks[i++];
wait_ctx ctx = in_ctx[current.index];
if (current.kind & block_kind_loop_header) {
loop_header_indices.push(current.index);
} else if (current.kind & block_kind_loop_exit) {
bool repeat = false;
if (loop_progress == loop_header_indices.size()) {
i = loop_header_indices.top();
repeat = true;
}
loop_header_indices.pop();
loop_progress = std::min<unsigned>(loop_progress, loop_header_indices.size());
if (repeat)
continue;
}
bool changed = false;
for (unsigned b : current.linear_preds)
changed |= ctx.join(&out_ctx[b], false);
for (unsigned b : current.logical_preds)
changed |= ctx.join(&out_ctx[b], true);
if (done[current.index] && !changed) {
in_ctx[current.index] = std::move(ctx);
continue;
} else {
in_ctx[current.index] = ctx;
}
if (current.instructions.empty()) {
out_ctx[current.index] = std::move(ctx);
continue;
}
loop_progress = std::max<unsigned>(loop_progress, current.loop_nest_depth);
done[current.index] = true;
handle_block(program, current, ctx);
out_ctx[current.index] = std::move(ctx);
}
if (program->collect_statistics) {
program->statistics[statistic_vmem_score] =
calculate_score(program->blocks.size(), out_ctx, event_vmem | event_flat | event_vmem_store);
program->statistics[statistic_smem_score] =
calculate_score(program->blocks.size(), out_ctx, event_smem);
}
}
}