mesa/src/intel/blorp/blorp_clear.c
Jason Ekstrand 72878f9f53 intel/blorp: Add a clear_attachments entrypoint
Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
Reviewed-by: Topi Pohjolainen <topi.pohjolainen@intel.com>
2016-11-16 10:11:29 -08:00

602 lines
22 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright © 2013 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "util/ralloc.h"
#include "main/macros.h" /* Needed for MAX3 and MAX2 for format_rgb9e5 */
#include "util/format_rgb9e5.h"
#include "blorp_priv.h"
#include "brw_defines.h"
#include "compiler/nir/nir_builder.h"
#define FILE_DEBUG_FLAG DEBUG_BLORP
struct brw_blorp_const_color_prog_key
{
enum blorp_shader_type shader_type; /* Must be BLORP_SHADER_TYPE_CLEAR */
bool use_simd16_replicated_data;
bool pad[3];
};
static void
blorp_params_get_clear_kernel(struct blorp_context *blorp,
struct blorp_params *params,
bool use_replicated_data)
{
const struct brw_blorp_const_color_prog_key blorp_key = {
.shader_type = BLORP_SHADER_TYPE_CLEAR,
.use_simd16_replicated_data = use_replicated_data,
};
if (blorp->lookup_shader(blorp, &blorp_key, sizeof(blorp_key),
&params->wm_prog_kernel, &params->wm_prog_data))
return;
void *mem_ctx = ralloc_context(NULL);
nir_builder b;
nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT, NULL);
b.shader->info->name = ralloc_strdup(b.shader, "BLORP-clear");
nir_variable *v_color =
BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type());
nir_variable *frag_color = nir_variable_create(b.shader, nir_var_shader_out,
glsl_vec4_type(),
"gl_FragColor");
frag_color->data.location = FRAG_RESULT_COLOR;
nir_copy_var(&b, frag_color, v_color);
struct brw_wm_prog_key wm_key;
brw_blorp_init_wm_prog_key(&wm_key);
struct brw_wm_prog_data prog_data;
unsigned program_size;
const unsigned *program =
blorp_compile_fs(blorp, mem_ctx, b.shader, &wm_key, use_replicated_data,
&prog_data, &program_size);
blorp->upload_shader(blorp, &blorp_key, sizeof(blorp_key),
program, program_size,
&prog_data.base, sizeof(prog_data),
&params->wm_prog_kernel, &params->wm_prog_data);
ralloc_free(mem_ctx);
}
struct layer_offset_vs_key {
enum blorp_shader_type shader_type;
unsigned num_inputs;
};
/* In the case of doing attachment clears, we are using a surface state that
* is handed to us so we can't set (and don't even know) the base array layer.
* In order to do a layered clear in this scenario, we need some way of adding
* the base array layer to the instance id. Unfortunately, our hardware has
* no real concept of "base instance", so we have to do it manually in a
* vertex shader.
*/
static void
blorp_params_get_layer_offset_vs(struct blorp_context *blorp,
struct blorp_params *params)
{
struct layer_offset_vs_key blorp_key = {
.shader_type = BLORP_SHADER_TYPE_LAYER_OFFSET_VS,
};
if (params->wm_prog_data)
blorp_key.num_inputs = params->wm_prog_data->num_varying_inputs;
if (blorp->lookup_shader(blorp, &blorp_key, sizeof(blorp_key),
&params->vs_prog_kernel, &params->vs_prog_data))
return;
void *mem_ctx = ralloc_context(NULL);
nir_builder b;
nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_VERTEX, NULL);
b.shader->info->name = ralloc_strdup(b.shader, "BLORP-layer-offset-vs");
const struct glsl_type *uvec4_type = glsl_vector_type(GLSL_TYPE_UINT, 4);
/* First we deal with the header which has instance and base instance */
nir_variable *a_header = nir_variable_create(b.shader, nir_var_shader_in,
uvec4_type, "header");
a_header->data.location = VERT_ATTRIB_GENERIC0;
nir_variable *v_layer = nir_variable_create(b.shader, nir_var_shader_out,
glsl_int_type(), "layer_id");
v_layer->data.location = VARYING_SLOT_LAYER;
/* Compute the layer id */
nir_ssa_def *header = nir_load_var(&b, a_header);
nir_ssa_def *base_layer = nir_channel(&b, header, 0);
nir_ssa_def *instance = nir_channel(&b, header, 1);
nir_store_var(&b, v_layer, nir_iadd(&b, instance, base_layer), 0x1);
/* Then we copy the vertex from the next slot to VARYING_SLOT_POS */
nir_variable *a_vertex = nir_variable_create(b.shader, nir_var_shader_in,
glsl_vec4_type(), "a_vertex");
a_vertex->data.location = VERT_ATTRIB_GENERIC1;
nir_variable *v_pos = nir_variable_create(b.shader, nir_var_shader_out,
glsl_vec4_type(), "v_pos");
v_pos->data.location = VARYING_SLOT_POS;
nir_copy_var(&b, v_pos, a_vertex);
/* Then we copy everything else */
for (unsigned i = 0; i < blorp_key.num_inputs; i++) {
nir_variable *a_in = nir_variable_create(b.shader, nir_var_shader_in,
uvec4_type, "input");
a_in->data.location = VERT_ATTRIB_GENERIC2 + i;
nir_variable *v_out = nir_variable_create(b.shader, nir_var_shader_out,
uvec4_type, "output");
v_out->data.location = VARYING_SLOT_VAR0 + i;
nir_copy_var(&b, v_out, a_in);
}
struct brw_vs_prog_data vs_prog_data;
memset(&vs_prog_data, 0, sizeof(vs_prog_data));
unsigned program_size;
const unsigned *program =
blorp_compile_vs(blorp, mem_ctx, b.shader, &vs_prog_data, &program_size);
blorp->upload_shader(blorp, &blorp_key, sizeof(blorp_key),
program, program_size,
&vs_prog_data.base.base, sizeof(vs_prog_data),
&params->vs_prog_kernel, &params->vs_prog_data);
ralloc_free(mem_ctx);
}
/* The x0, y0, x1, and y1 parameters must already be populated with the render
* area of the framebuffer to be cleared.
*/
static void
get_fast_clear_rect(const struct isl_device *dev,
const struct isl_surf *aux_surf,
unsigned *x0, unsigned *y0,
unsigned *x1, unsigned *y1)
{
unsigned int x_align, y_align;
unsigned int x_scaledown, y_scaledown;
/* Only single sampled surfaces need to (and actually can) be resolved. */
if (aux_surf->usage == ISL_SURF_USAGE_CCS_BIT) {
/* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
* Target(s)", beneath the "Fast Color Clear" bullet (p327):
*
* Clear pass must have a clear rectangle that must follow
* alignment rules in terms of pixels and lines as shown in the
* table below. Further, the clear-rectangle height and width
* must be multiple of the following dimensions. If the height
* and width of the render target being cleared do not meet these
* requirements, an MCS buffer can be created such that it
* follows the requirement and covers the RT.
*
* The alignment size in the table that follows is related to the
* alignment size that is baked into the CCS surface format but with X
* alignment multiplied by 16 and Y alignment multiplied by 32.
*/
x_align = isl_format_get_layout(aux_surf->format)->bw;
y_align = isl_format_get_layout(aux_surf->format)->bh;
x_align *= 16;
/* SKL+ line alignment requirement for Y-tiled are half those of the prior
* generations.
*/
if (dev->info->gen >= 9)
y_align *= 16;
else
y_align *= 32;
/* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
* Target(s)", beneath the "Fast Color Clear" bullet (p327):
*
* In order to optimize the performance MCS buffer (when bound to
* 1X RT) clear similarly to MCS buffer clear for MSRT case,
* clear rect is required to be scaled by the following factors
* in the horizontal and vertical directions:
*
* The X and Y scale down factors in the table that follows are each
* equal to half the alignment value computed above.
*/
x_scaledown = x_align / 2;
y_scaledown = y_align / 2;
/* From BSpec: 3D-Media-GPGPU Engine > 3D Pipeline > Pixel > Pixel
* Backend > MCS Buffer for Render Target(s) [DevIVB+] > Table "Color
* Clear of Non-MultiSampled Render Target Restrictions":
*
* Clear rectangle must be aligned to two times the number of
* pixels in the table shown below due to 16x16 hashing across the
* slice.
*/
x_align *= 2;
y_align *= 2;
} else {
assert(aux_surf->usage == ISL_SURF_USAGE_MCS_BIT);
/* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
* Target(s)", beneath the "MSAA Compression" bullet (p326):
*
* Clear pass for this case requires that scaled down primitive
* is sent down with upper left co-ordinate to coincide with
* actual rectangle being cleared. For MSAA, clear rectangles
* height and width need to as show in the following table in
* terms of (width,height) of the RT.
*
* MSAA Width of Clear Rect Height of Clear Rect
* 2X Ceil(1/8*width) Ceil(1/2*height)
* 4X Ceil(1/8*width) Ceil(1/2*height)
* 8X Ceil(1/2*width) Ceil(1/2*height)
* 16X width Ceil(1/2*height)
*
* The text "with upper left co-ordinate to coincide with actual
* rectangle being cleared" is a little confusing--it seems to imply
* that to clear a rectangle from (x,y) to (x+w,y+h), one needs to
* feed the pipeline using the rectangle (x,y) to
* (x+Ceil(w/N),y+Ceil(h/2)), where N is either 2 or 8 depending on
* the number of samples. Experiments indicate that this is not
* quite correct; actually, what the hardware appears to do is to
* align whatever rectangle is sent down the pipeline to the nearest
* multiple of 2x2 blocks, and then scale it up by a factor of N
* horizontally and 2 vertically. So the resulting alignment is 4
* vertically and either 4 or 16 horizontally, and the scaledown
* factor is 2 vertically and either 2 or 8 horizontally.
*/
switch (aux_surf->format) {
case ISL_FORMAT_MCS_2X:
case ISL_FORMAT_MCS_4X:
x_scaledown = 8;
break;
case ISL_FORMAT_MCS_8X:
x_scaledown = 2;
break;
case ISL_FORMAT_MCS_16X:
x_scaledown = 1;
break;
default:
unreachable("Unexpected MCS format for fast clear");
}
y_scaledown = 2;
x_align = x_scaledown * 2;
y_align = y_scaledown * 2;
}
*x0 = ROUND_DOWN_TO(*x0, x_align) / x_scaledown;
*y0 = ROUND_DOWN_TO(*y0, y_align) / y_scaledown;
*x1 = ALIGN(*x1, x_align) / x_scaledown;
*y1 = ALIGN(*y1, y_align) / y_scaledown;
}
void
blorp_fast_clear(struct blorp_batch *batch,
const struct blorp_surf *surf, enum isl_format format,
uint32_t level, uint32_t start_layer, uint32_t num_layers,
uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1)
{
struct blorp_params params;
blorp_params_init(&params);
params.num_layers = num_layers;
params.x0 = x0;
params.y0 = y0;
params.x1 = x1;
params.y1 = y1;
memset(&params.wm_inputs.clear_color, 0xff, 4*sizeof(float));
params.fast_clear_op = BLORP_FAST_CLEAR_OP_CLEAR;
get_fast_clear_rect(batch->blorp->isl_dev, surf->aux_surf,
&params.x0, &params.y0, &params.x1, &params.y1);
blorp_params_get_clear_kernel(batch->blorp, &params, true);
brw_blorp_surface_info_init(batch->blorp, &params.dst, surf, level,
start_layer, format, true);
params.num_samples = params.dst.surf.samples;
batch->blorp->exec(batch, &params);
}
void
blorp_clear(struct blorp_batch *batch,
const struct blorp_surf *surf,
enum isl_format format, struct isl_swizzle swizzle,
uint32_t level, uint32_t start_layer, uint32_t num_layers,
uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
union isl_color_value clear_color,
const bool color_write_disable[4])
{
struct blorp_params params;
blorp_params_init(&params);
params.x0 = x0;
params.y0 = y0;
params.x1 = x1;
params.y1 = y1;
if (format == ISL_FORMAT_R9G9B9E5_SHAREDEXP) {
clear_color.u32[0] = float3_to_rgb9e5(clear_color.f32);
format = ISL_FORMAT_R32_UINT;
}
memcpy(&params.wm_inputs.clear_color, clear_color.f32, sizeof(float) * 4);
bool use_simd16_replicated_data = true;
/* From the SNB PRM (Vol4_Part1):
*
* "Replicated data (Message Type = 111) is only supported when
* accessing tiled memory. Using this Message Type to access linear
* (untiled) memory is UNDEFINED."
*/
if (surf->surf->tiling == ISL_TILING_LINEAR)
use_simd16_replicated_data = false;
/* Constant color writes ignore everyting in blend and color calculator
* state. This is not documented.
*/
if (color_write_disable) {
for (unsigned i = 0; i < 4; i++) {
params.color_write_disable[i] = color_write_disable[i];
if (color_write_disable[i])
use_simd16_replicated_data = false;
}
}
blorp_params_get_clear_kernel(batch->blorp, &params,
use_simd16_replicated_data);
while (num_layers > 0) {
brw_blorp_surface_info_init(batch->blorp, &params.dst, surf, level,
start_layer, format, true);
params.dst.view.swizzle = swizzle;
params.num_samples = params.dst.surf.samples;
/* We may be restricted on the number of layers we can bind at any one
* time. In particular, Sandy Bridge has a maximum number of layers of
* 512 but a maximum 3D texture size is much larger.
*/
params.num_layers = MIN2(params.dst.view.array_len, num_layers);
batch->blorp->exec(batch, &params);
start_layer += params.num_layers;
num_layers -= params.num_layers;
}
}
void
blorp_clear_depth_stencil(struct blorp_batch *batch,
const struct blorp_surf *depth,
const struct blorp_surf *stencil,
uint32_t level, uint32_t start_layer,
uint32_t num_layers,
uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
bool clear_depth, float depth_value,
uint8_t stencil_mask, uint8_t stencil_value)
{
struct blorp_params params;
blorp_params_init(&params);
params.x0 = x0;
params.y0 = y0;
params.x1 = x1;
params.y1 = y1;
while (num_layers > 0) {
params.num_layers = num_layers;
if (stencil_mask) {
brw_blorp_surface_info_init(batch->blorp, &params.stencil, stencil,
level, start_layer,
ISL_FORMAT_UNSUPPORTED, true);
params.stencil_mask = stencil_mask;
params.stencil_ref = stencil_value;
params.dst.surf.samples = params.stencil.surf.samples;
params.dst.surf.logical_level0_px =
params.stencil.surf.logical_level0_px;
params.dst.view = params.depth.view;
params.num_samples = params.stencil.surf.samples;
/* We may be restricted on the number of layers we can bind at any
* one time. In particular, Sandy Bridge has a maximum number of
* layers of 512 but a maximum 3D texture size is much larger.
*/
if (params.stencil.view.array_len < params.num_layers)
params.num_layers = params.stencil.view.array_len;
}
if (clear_depth) {
brw_blorp_surface_info_init(batch->blorp, &params.depth, depth,
level, start_layer,
ISL_FORMAT_UNSUPPORTED, true);
params.z = depth_value;
params.depth_format =
isl_format_get_depth_format(depth->surf->format, false);
params.dst.surf.samples = params.depth.surf.samples;
params.dst.surf.logical_level0_px =
params.depth.surf.logical_level0_px;
params.dst.view = params.depth.view;
params.num_samples = params.depth.surf.samples;
/* We may be restricted on the number of layers we can bind at any
* one time. In particular, Sandy Bridge has a maximum number of
* layers of 512 but a maximum 3D texture size is much larger.
*/
if (params.depth.view.array_len < params.num_layers)
params.num_layers = params.depth.view.array_len;
}
batch->blorp->exec(batch, &params);
start_layer += params.num_layers;
num_layers -= params.num_layers;
}
}
/** Clear active color/depth/stencili attachments
*
* This function performs a clear operation on the currently bound
* color/depth/stencil attachments. It is assumed that any information passed
* in here is valid, consistent, and in-bounds relative to the currently
* attached depth/stencil. The binding_table_offset parameter is the 32-bit
* offset relative to surface state base address where pre-baked binding table
* that we are to use lives. If clear_color is false, binding_table_offset
* must point to a binding table with one entry which is a valid null surface
* that matches the currently bound depth and stencil.
*/
void
blorp_clear_attachments(struct blorp_batch *batch,
uint32_t binding_table_offset,
enum isl_format depth_format,
uint32_t num_samples,
uint32_t start_layer, uint32_t num_layers,
uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
bool clear_color, union isl_color_value color_value,
bool clear_depth, float depth_value,
uint8_t stencil_mask, uint8_t stencil_value)
{
struct blorp_params params;
blorp_params_init(&params);
assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);
params.x0 = x0;
params.y0 = y0;
params.x1 = x1;
params.y1 = y1;
params.use_pre_baked_binding_table = true;
params.pre_baked_binding_table_offset = binding_table_offset;
params.num_layers = num_layers;
params.num_samples = num_samples;
if (clear_color) {
params.dst.enabled = true;
memcpy(&params.wm_inputs.clear_color, color_value.f32, sizeof(float) * 4);
/* Unfortunately, without knowing whether or not our destination surface
* is tiled or not, we have to assume it may be linear. This means no
* SIMD16_REPDATA for us. :-(
*/
blorp_params_get_clear_kernel(batch->blorp, &params, false);
}
if (clear_depth) {
params.depth.enabled = true;
params.z = depth_value;
params.depth_format = isl_format_get_depth_format(depth_format, false);
}
if (stencil_mask) {
params.stencil.enabled = true;
params.stencil_mask = stencil_mask;
params.stencil_ref = stencil_value;
}
blorp_params_get_layer_offset_vs(batch->blorp, &params);
params.vs_inputs.base_layer = start_layer;
batch->blorp->exec(batch, &params);
}
void
blorp_ccs_resolve(struct blorp_batch *batch,
struct blorp_surf *surf, enum isl_format format)
{
struct blorp_params params;
blorp_params_init(&params);
brw_blorp_surface_info_init(batch->blorp, &params.dst, surf,
0 /* level */, 0 /* layer */, format, true);
/* From the Ivy Bridge PRM, Vol2 Part1 11.9 "Render Target Resolve":
*
* A rectangle primitive must be scaled down by the following factors
* with respect to render target being resolved.
*
* The scaledown factors in the table that follows are related to the block
* size of the CCS format. For IVB and HSW, we divide by two, for BDW we
* multiply by 8 and 16. On Sky Lake, we multiply by 8.
*/
const struct isl_format_layout *aux_fmtl =
isl_format_get_layout(params.dst.aux_surf.format);
assert(aux_fmtl->txc == ISL_TXC_CCS);
unsigned x_scaledown, y_scaledown;
if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 9) {
x_scaledown = aux_fmtl->bw * 8;
y_scaledown = aux_fmtl->bh * 8;
} else if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 8) {
x_scaledown = aux_fmtl->bw * 8;
y_scaledown = aux_fmtl->bh * 16;
} else {
x_scaledown = aux_fmtl->bw / 2;
y_scaledown = aux_fmtl->bh / 2;
}
params.x0 = params.y0 = 0;
params.x1 = params.dst.aux_surf.logical_level0_px.width;
params.y1 = params.dst.aux_surf.logical_level0_px.height;
params.x1 = ALIGN(params.x1, x_scaledown) / x_scaledown;
params.y1 = ALIGN(params.y1, y_scaledown) / y_scaledown;
if (batch->blorp->isl_dev->info->gen >= 9) {
if (params.dst.aux_usage == ISL_AUX_USAGE_CCS_E)
params.fast_clear_op = BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
else
params.fast_clear_op = BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
} else {
/* Broadwell and earlier do not have a partial resolve */
params.fast_clear_op = BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
}
/* Note: there is no need to initialize push constants because it doesn't
* matter what data gets dispatched to the render target. However, we must
* ensure that the fragment shader delivers the data using the "replicated
* color" message.
*/
blorp_params_get_clear_kernel(batch->blorp, &params, true);
batch->blorp->exec(batch, &params);
}