mesa/src/amd/compiler/aco_assembler.cpp
Timur Kristóf 99aed688d3 aco/gfx10: Add notes about some GFX10 hazards.
ACO currently mitigates VMEMtoScalarWriteHazard and Offset3fBug
(names from LLVM). There are some bugs that ACO needn't care about.
Just to be on the safe side, add an assertion that makes sure
that we aren't hit by FlatSegmentOffsetBug.

Signed-off-by: Timur Kristóf <timur.kristof@gmail.com>
Reviewed-by: Daniel Schürmann <daniel@schuermann.dev>
2019-10-25 10:10:41 +02:00

709 lines
26 KiB
C++

#include <vector>
#include <algorithm>
#include "aco_ir.h"
#include "common/sid.h"
#include "ac_shader_util.h"
#include "util/u_math.h"
namespace aco {
struct asm_context {
Program *program;
enum chip_class chip_class;
std::vector<std::pair<int, SOPP_instruction*>> branches;
std::vector<unsigned> constaddrs;
const int16_t* opcode;
// TODO: keep track of branch instructions referring blocks
// and, when emitting the block, correct the offset in instr
asm_context(Program* program) : program(program), chip_class(program->chip_class) {
if (chip_class <= GFX9)
opcode = &instr_info.opcode_gfx9[0];
else if (chip_class == GFX10)
opcode = &instr_info.opcode_gfx10[0];
}
int subvector_begin_pos = -1;
};
void emit_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
uint32_t instr_offset = out.size() * 4u;
/* lower remaining pseudo-instructions */
if (instr->opcode == aco_opcode::p_constaddr) {
unsigned dest = instr->definitions[0].physReg();
unsigned offset = instr->operands[0].constantValue();
/* s_getpc_b64 dest[0:1] */
uint32_t encoding = (0b101111101 << 23);
uint32_t opcode = ctx.opcode[(int)aco_opcode::s_getpc_b64];
if (opcode >= 55 && ctx.chip_class <= GFX9) {
assert(ctx.chip_class == GFX9 && opcode < 60);
opcode = opcode - 4;
}
encoding |= dest << 16;
encoding |= opcode << 8;
out.push_back(encoding);
/* s_add_u32 dest[0], dest[0], ... */
encoding = (0b10 << 30);
encoding |= ctx.opcode[(int)aco_opcode::s_add_u32] << 23;
encoding |= dest << 16;
encoding |= dest;
encoding |= 255 << 8;
out.push_back(encoding);
ctx.constaddrs.push_back(out.size());
out.push_back(-(instr_offset + 4) + offset);
/* s_addc_u32 dest[1], dest[1], 0 */
encoding = (0b10 << 30);
encoding |= ctx.opcode[(int)aco_opcode::s_addc_u32] << 23;
encoding |= (dest + 1) << 16;
encoding |= dest + 1;
encoding |= 128 << 8;
out.push_back(encoding);
return;
}
uint32_t opcode = ctx.opcode[(int)instr->opcode];
if (opcode == (uint32_t)-1) {
fprintf(stderr, "Unsupported opcode: ");
aco_print_instr(instr, stderr);
abort();
}
switch (instr->format) {
case Format::SOP2: {
uint32_t encoding = (0b10 << 30);
encoding |= opcode << 23;
encoding |= !instr->definitions.empty() ? instr->definitions[0].physReg() << 16 : 0;
encoding |= instr->operands.size() >= 2 ? instr->operands[1].physReg() << 8 : 0;
encoding |= !instr->operands.empty() ? instr->operands[0].physReg() : 0;
out.push_back(encoding);
break;
}
case Format::SOPK: {
SOPK_instruction *sopk = static_cast<SOPK_instruction*>(instr);
if (instr->opcode == aco_opcode::s_subvector_loop_begin) {
assert(ctx.chip_class >= GFX10);
assert(ctx.subvector_begin_pos == -1);
ctx.subvector_begin_pos = out.size();
} else if (instr->opcode == aco_opcode::s_subvector_loop_end) {
assert(ctx.chip_class >= GFX10);
assert(ctx.subvector_begin_pos != -1);
/* Adjust s_subvector_loop_begin instruction to the address after the end */
out[ctx.subvector_begin_pos] |= (out.size() - ctx.subvector_begin_pos);
/* Adjust s_subvector_loop_end instruction to the address after the beginning */
sopk->imm = (uint16_t)(ctx.subvector_begin_pos - (int)out.size());
ctx.subvector_begin_pos = -1;
}
uint32_t encoding = (0b1011 << 28);
encoding |= opcode << 23;
encoding |=
!instr->definitions.empty() && !(instr->definitions[0].physReg() == scc) ?
instr->definitions[0].physReg() << 16 :
!instr->operands.empty() && !(instr->operands[0].physReg() == scc) ?
instr->operands[0].physReg() << 16 : 0;
encoding |= sopk->imm;
out.push_back(encoding);
break;
}
case Format::SOP1: {
uint32_t encoding = (0b101111101 << 23);
if (opcode >= 55 && ctx.chip_class <= GFX9) {
assert(ctx.chip_class == GFX9 && opcode < 60);
opcode = opcode - 4;
}
encoding |= !instr->definitions.empty() ? instr->definitions[0].physReg() << 16 : 0;
encoding |= opcode << 8;
encoding |= !instr->operands.empty() ? instr->operands[0].physReg() : 0;
out.push_back(encoding);
break;
}
case Format::SOPC: {
uint32_t encoding = (0b101111110 << 23);
encoding |= opcode << 16;
encoding |= instr->operands.size() == 2 ? instr->operands[1].physReg() << 8 : 0;
encoding |= !instr->operands.empty() ? instr->operands[0].physReg() : 0;
out.push_back(encoding);
break;
}
case Format::SOPP: {
SOPP_instruction* sopp = static_cast<SOPP_instruction*>(instr);
uint32_t encoding = (0b101111111 << 23);
encoding |= opcode << 16;
encoding |= (uint16_t) sopp->imm;
if (sopp->block != -1)
ctx.branches.emplace_back(out.size(), sopp);
out.push_back(encoding);
break;
}
case Format::SMEM: {
SMEM_instruction* smem = static_cast<SMEM_instruction*>(instr);
bool soe = instr->operands.size() >= (!instr->definitions.empty() ? 3 : 4);
bool is_load = !instr->definitions.empty();
uint32_t encoding = 0;
if (ctx.chip_class <= GFX9) {
encoding = (0b110000 << 26);
assert(!smem->dlc); /* Device-level coherent is not supported on GFX9 and lower */
encoding |= smem->nv ? 1 << 15 : 0;
} else {
encoding = (0b111101 << 26);
assert(!smem->nv); /* Non-volatile is not supported on GFX10 */
encoding |= smem->dlc ? 1 << 14 : 0;
}
encoding |= opcode << 18;
encoding |= smem->glc ? 1 << 16 : 0;
if (ctx.chip_class <= GFX9) {
if (instr->operands.size() >= 2)
encoding |= instr->operands[1].isConstant() ? 1 << 17 : 0; /* IMM - immediate enable */
}
if (ctx.chip_class == GFX9) {
encoding |= soe ? 1 << 14 : 0;
}
if (is_load || instr->operands.size() >= 3) { /* SDATA */
encoding |= (is_load ? instr->definitions[0].physReg() : instr->operands[2].physReg()) << 6;
}
if (instr->operands.size() >= 1) { /* SBASE */
encoding |= instr->operands[0].physReg() >> 1;
}
out.push_back(encoding);
encoding = 0;
int32_t offset = 0;
uint32_t soffset = ctx.chip_class >= GFX10
? sgpr_null /* On GFX10 this is disabled by specifying SGPR_NULL */
: 0; /* On GFX9, it is disabled by the SOE bit (and it's not present on GFX8 and below) */
if (instr->operands.size() >= 2) {
const Operand &op_off1 = instr->operands[1];
if (ctx.chip_class <= GFX9) {
offset = op_off1.isConstant() ? op_off1.constantValue() : op_off1.physReg();
} else {
/* GFX10 only supports constants in OFFSET, so put the operand in SOFFSET if it's an SGPR */
if (op_off1.isConstant()) {
offset = op_off1.constantValue();
} else {
soffset = op_off1.physReg();
assert(!soe); /* There is no place to put the other SGPR offset, if any */
}
}
if (soe) {
const Operand &op_off2 = instr->operands.back();
assert(ctx.chip_class >= GFX9); /* GFX8 and below don't support specifying a constant and an SGPR at the same time */
assert(!op_off2.isConstant());
soffset = op_off2.physReg();
}
}
encoding |= offset;
encoding |= soffset << 25;
out.push_back(encoding);
return;
}
case Format::VOP2: {
uint32_t encoding = 0;
encoding |= opcode << 25;
encoding |= (0xFF & instr->definitions[0].physReg()) << 17;
encoding |= (0xFF & instr->operands[1].physReg()) << 9;
encoding |= instr->operands[0].physReg();
out.push_back(encoding);
break;
}
case Format::VOP1: {
uint32_t encoding = (0b0111111 << 25);
if (!instr->definitions.empty())
encoding |= (0xFF & instr->definitions[0].physReg()) << 17;
encoding |= opcode << 9;
if (!instr->operands.empty())
encoding |= instr->operands[0].physReg();
out.push_back(encoding);
break;
}
case Format::VOPC: {
uint32_t encoding = (0b0111110 << 25);
encoding |= opcode << 17;
encoding |= (0xFF & instr->operands[1].physReg()) << 9;
encoding |= instr->operands[0].physReg();
out.push_back(encoding);
break;
}
case Format::VINTRP: {
Interp_instruction* interp = static_cast<Interp_instruction*>(instr);
uint32_t encoding = 0;
if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) {
encoding = (0b110101 << 26); /* Vega ISA doc says 110010 but it's wrong */
} else {
encoding = (0b110010 << 26);
}
assert(encoding);
encoding |= (0xFF & instr->definitions[0].physReg()) << 18;
encoding |= opcode << 16;
encoding |= interp->attribute << 10;
encoding |= interp->component << 8;
if (instr->opcode == aco_opcode::v_interp_mov_f32)
encoding |= (0x3 & instr->operands[0].constantValue());
else
encoding |= (0xFF & instr->operands[0].physReg());
out.push_back(encoding);
break;
}
case Format::DS: {
DS_instruction* ds = static_cast<DS_instruction*>(instr);
uint32_t encoding = (0b110110 << 26);
if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) {
encoding |= opcode << 17;
encoding |= (ds->gds ? 1 : 0) << 16;
} else {
encoding |= opcode << 18;
encoding |= (ds->gds ? 1 : 0) << 17;
}
encoding |= ((0xFF & ds->offset1) << 8);
encoding |= (0xFFFF & ds->offset0);
out.push_back(encoding);
encoding = 0;
unsigned reg = !instr->definitions.empty() ? instr->definitions[0].physReg() : 0;
encoding |= (0xFF & reg) << 24;
reg = instr->operands.size() >= 3 && !(instr->operands[2].physReg() == m0) ? instr->operands[2].physReg() : 0;
encoding |= (0xFF & reg) << 16;
reg = instr->operands.size() >= 2 && !(instr->operands[1].physReg() == m0) ? instr->operands[1].physReg() : 0;
encoding |= (0xFF & reg) << 8;
encoding |= (0xFF & instr->operands[0].physReg());
out.push_back(encoding);
break;
}
case Format::MUBUF: {
MUBUF_instruction* mubuf = static_cast<MUBUF_instruction*>(instr);
uint32_t encoding = (0b111000 << 26);
encoding |= opcode << 18;
encoding |= (mubuf->lds ? 1 : 0) << 16;
encoding |= (mubuf->glc ? 1 : 0) << 14;
encoding |= (mubuf->idxen ? 1 : 0) << 13;
encoding |= (mubuf->offen ? 1 : 0) << 12;
if (ctx.chip_class <= GFX9) {
assert(!mubuf->dlc); /* Device-level coherent is not supported on GFX9 and lower */
encoding |= (mubuf->slc ? 1 : 0) << 17;
} else if (ctx.chip_class >= GFX10) {
encoding |= (mubuf->dlc ? 1 : 0) << 15;
}
encoding |= 0x0FFF & mubuf->offset;
out.push_back(encoding);
encoding = 0;
if (ctx.chip_class >= GFX10) {
encoding |= (mubuf->slc ? 1 : 0) << 22;
}
encoding |= instr->operands[2].physReg() << 24;
encoding |= (mubuf->tfe ? 1 : 0) << 23;
encoding |= (instr->operands[1].physReg() >> 2) << 16;
unsigned reg = instr->operands.size() > 3 ? instr->operands[3].physReg() : instr->definitions[0].physReg();
encoding |= (0xFF & reg) << 8;
encoding |= (0xFF & instr->operands[0].physReg());
out.push_back(encoding);
break;
}
case Format::MTBUF: {
MTBUF_instruction* mtbuf = static_cast<MTBUF_instruction*>(instr);
uint32_t img_format = ac_get_tbuffer_format(ctx.chip_class, mtbuf->dfmt, mtbuf->nfmt);
uint32_t encoding = (0b111010 << 26);
assert(!mtbuf->dlc || ctx.chip_class >= GFX10);
encoding |= (mtbuf->dlc ? 1 : 0) << 15; /* DLC bit replaces one bit of the OPCODE on GFX10 */
encoding |= (mtbuf->glc ? 1 : 0) << 14;
encoding |= (mtbuf->idxen ? 1 : 0) << 13;
encoding |= (mtbuf->offen ? 1 : 0) << 12;
encoding |= 0x0FFF & mtbuf->offset;
encoding |= (img_format << 19); /* Handles both the GFX10 FORMAT and the old NFMT+DFMT */
if (ctx.chip_class <= GFX9) {
encoding |= opcode << 15;
} else {
encoding |= (opcode & 0x07) << 16; /* 3 LSBs of 4-bit OPCODE */
}
out.push_back(encoding);
encoding = 0;
encoding |= instr->operands[2].physReg() << 24;
encoding |= (mtbuf->tfe ? 1 : 0) << 23;
encoding |= (mtbuf->slc ? 1 : 0) << 22;
encoding |= (instr->operands[1].physReg() >> 2) << 16;
unsigned reg = instr->operands.size() > 3 ? instr->operands[3].physReg() : instr->definitions[0].physReg();
encoding |= (0xFF & reg) << 8;
encoding |= (0xFF & instr->operands[0].physReg());
if (ctx.chip_class >= GFX10) {
encoding |= (((opcode & 0x08) >> 4) << 21); /* MSB of 4-bit OPCODE */
}
out.push_back(encoding);
break;
}
case Format::MIMG: {
MIMG_instruction* mimg = static_cast<MIMG_instruction*>(instr);
uint32_t encoding = (0b111100 << 26);
encoding |= mimg->slc ? 1 << 25 : 0;
encoding |= opcode << 18;
encoding |= mimg->lwe ? 1 << 17 : 0;
encoding |= mimg->tfe ? 1 << 16 : 0;
encoding |= mimg->glc ? 1 << 13 : 0;
encoding |= mimg->unrm ? 1 << 12 : 0;
if (ctx.chip_class <= GFX9) {
assert(!mimg->dlc); /* Device-level coherent is not supported on GFX9 and lower */
assert(!mimg->r128);
encoding |= mimg->a16 ? 1 << 15 : 0;
encoding |= mimg->da ? 1 << 14 : 0;
} else {
encoding |= mimg->r128 ? 1 << 15 : 0; /* GFX10: A16 moved to 2nd word, R128 replaces it in 1st word */
encoding |= mimg->dim << 3; /* GFX10: dimensionality instead of declare array */
encoding |= mimg->dlc ? 1 << 7 : 0;
}
encoding |= (0xF & mimg->dmask) << 8;
out.push_back(encoding);
encoding = (0xFF & instr->operands[0].physReg()); /* VADDR */
if (!instr->definitions.empty()) {
encoding |= (0xFF & instr->definitions[0].physReg()) << 8; /* VDATA */
} else if (instr->operands.size() == 4) {
encoding |= (0xFF & instr->operands[3].physReg()) << 8; /* VDATA */
}
encoding |= (0x1F & (instr->operands[1].physReg() >> 2)) << 16; /* T# (resource) */
if (instr->operands.size() > 2)
encoding |= (0x1F & (instr->operands[2].physReg() >> 2)) << 21; /* sampler */
assert(!mimg->d16 || ctx.chip_class >= GFX9);
encoding |= mimg->d16 ? 1 << 15 : 0;
if (ctx.chip_class >= GFX10) {
encoding |= mimg->a16 ? 1 << 14 : 0; /* GFX10: A16 still exists, but is in a different place */
}
out.push_back(encoding);
break;
}
case Format::FLAT:
case Format::SCRATCH:
case Format::GLOBAL: {
FLAT_instruction *flat = static_cast<FLAT_instruction*>(instr);
uint32_t encoding = (0b110111 << 26);
encoding |= opcode << 18;
if (ctx.chip_class <= GFX9) {
assert(flat->offset <= 0x1fff);
encoding |= flat->offset & 0x1fff;
} else {
/* GFX10 has a 12-bit immediate OFFSET field,
* but it has a hw bug: it ignores the offset, called FlatSegmentOffsetBug
*/
assert(flat->offset == 0);
}
if (instr->format == Format::SCRATCH)
encoding |= 1 << 14;
else if (instr->format == Format::GLOBAL)
encoding |= 2 << 14;
encoding |= flat->lds ? 1 << 13 : 0;
encoding |= flat->glc ? 1 << 16 : 0;
encoding |= flat->slc ? 1 << 17 : 0;
if (ctx.chip_class >= GFX10) {
assert(!flat->nv);
encoding |= flat->dlc ? 1 << 12 : 0;
} else {
assert(!flat->dlc);
}
out.push_back(encoding);
encoding = (0xFF & instr->operands[0].physReg());
if (!instr->definitions.empty())
encoding |= (0xFF & instr->definitions[0].physReg()) << 24;
else
encoding |= (0xFF & instr->operands[2].physReg()) << 8;
if (!instr->operands[1].isUndefined()) {
assert(ctx.chip_class >= GFX10 || instr->operands[1].physReg() != 0x7F);
assert(instr->format != Format::FLAT);
encoding |= instr->operands[1].physReg() << 16;
} else if (instr->format != Format::FLAT) {
if (ctx.chip_class <= GFX9)
encoding |= 0x7F << 16;
else
encoding |= sgpr_null << 16;
}
encoding |= flat->nv ? 1 << 23 : 0;
out.push_back(encoding);
break;
}
case Format::EXP: {
Export_instruction* exp = static_cast<Export_instruction*>(instr);
uint32_t encoding;
if (ctx.chip_class <= GFX9) {
encoding = (0b110001 << 26);
} else if (ctx.chip_class >= GFX10) {
encoding = (0b111110 << 26);
}
encoding |= exp->valid_mask ? 0b1 << 12 : 0;
encoding |= exp->done ? 0b1 << 11 : 0;
encoding |= exp->compressed ? 0b1 << 10 : 0;
encoding |= exp->dest << 4;
encoding |= exp->enabled_mask;
out.push_back(encoding);
encoding = 0xFF & exp->operands[0].physReg();
encoding |= (0xFF & exp->operands[1].physReg()) << 8;
encoding |= (0xFF & exp->operands[2].physReg()) << 16;
encoding |= (0xFF & exp->operands[3].physReg()) << 24;
out.push_back(encoding);
break;
}
case Format::PSEUDO:
case Format::PSEUDO_BARRIER:
unreachable("Pseudo instructions should be lowered before assembly.");
default:
if ((uint16_t) instr->format & (uint16_t) Format::VOP3A) {
VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(instr);
if ((uint16_t) instr->format & (uint16_t) Format::VOP2) {
opcode = opcode + 0x100;
} else if ((uint16_t) instr->format & (uint16_t) Format::VOP1) {
if (ctx.chip_class <= GFX9) {
opcode = opcode + 0x140;
} else {
/* RDNA ISA doc says this is 0x140, but that doesn't work */
opcode = opcode + 0x180;
}
} else if ((uint16_t) instr->format & (uint16_t) Format::VOPC) {
opcode = opcode + 0x0;
} else if ((uint16_t) instr->format & (uint16_t) Format::VINTRP) {
opcode = opcode + 0x270;
}
uint32_t encoding;
if (ctx.chip_class <= GFX9) {
encoding = (0b110100 << 26);
} else if (ctx.chip_class == GFX10) {
encoding = (0b110101 << 26);
}
encoding |= opcode << 16;
encoding |= (vop3->clamp ? 1 : 0) << 15;
for (unsigned i = 0; i < 3; i++)
encoding |= vop3->abs[i] << (8+i);
for (unsigned i = 0; i < 4; i++)
encoding |= vop3->opsel[i] << (11+i);
if (instr->definitions.size() == 2)
encoding |= instr->definitions[1].physReg() << 8;
encoding |= (0xFF & instr->definitions[0].physReg());
out.push_back(encoding);
encoding = 0;
if (instr->opcode == aco_opcode::v_interp_mov_f32) {
encoding = 0x3 & instr->operands[0].constantValue();
} else {
for (unsigned i = 0; i < instr->operands.size(); i++)
encoding |= instr->operands[i].physReg() << (i * 9);
}
encoding |= vop3->omod << 27;
for (unsigned i = 0; i < 3; i++)
encoding |= vop3->neg[i] << (29+i);
out.push_back(encoding);
} else if (instr->isDPP()){
/* first emit the instruction without the DPP operand */
Operand dpp_op = instr->operands[0];
instr->operands[0] = Operand(PhysReg{250}, v1);
instr->format = (Format) ((uint32_t) instr->format & ~(1 << 14));
emit_instruction(ctx, out, instr);
DPP_instruction* dpp = static_cast<DPP_instruction*>(instr);
uint32_t encoding = (0xF & dpp->row_mask) << 28;
encoding |= (0xF & dpp->bank_mask) << 24;
encoding |= dpp->abs[1] << 23;
encoding |= dpp->neg[1] << 22;
encoding |= dpp->abs[0] << 21;
encoding |= dpp->neg[0] << 20;
encoding |= dpp->bound_ctrl << 19;
encoding |= dpp->dpp_ctrl << 8;
encoding |= (0xFF) & dpp_op.physReg();
out.push_back(encoding);
return;
} else {
unreachable("unimplemented instruction format");
}
break;
}
/* append literal dword */
for (const Operand& op : instr->operands) {
if (op.isLiteral()) {
out.push_back(op.constantValue());
break;
}
}
}
void emit_block(asm_context& ctx, std::vector<uint32_t>& out, Block& block)
{
for (aco_ptr<Instruction>& instr : block.instructions) {
#if 0
int start_idx = out.size();
std::cerr << "Encoding:\t" << std::endl;
aco_print_instr(&*instr, stderr);
std::cerr << std::endl;
#endif
emit_instruction(ctx, out, instr.get());
#if 0
for (int i = start_idx; i < out.size(); i++)
std::cerr << "encoding: " << "0x" << std::setfill('0') << std::setw(8) << std::hex << out[i] << std::endl;
#endif
}
}
void fix_exports(asm_context& ctx, std::vector<uint32_t>& out, Program* program)
{
for (int idx = program->blocks.size() - 1; idx >= 0; idx--) {
Block& block = program->blocks[idx];
std::vector<aco_ptr<Instruction>>::reverse_iterator it = block.instructions.rbegin();
bool endBlock = false;
bool exported = false;
while ( it != block.instructions.rend())
{
if ((*it)->format == Format::EXP && endBlock) {
Export_instruction* exp = static_cast<Export_instruction*>((*it).get());
if (program->stage & hw_vs) {
if (exp->dest >= V_008DFC_SQ_EXP_POS && exp->dest <= (V_008DFC_SQ_EXP_POS + 3)) {
exp->done = true;
exported = true;
break;
}
} else {
exp->done = true;
exp->valid_mask = true;
exported = true;
break;
}
} else if ((*it)->definitions.size() && (*it)->definitions[0].physReg() == exec)
break;
else if ((*it)->opcode == aco_opcode::s_endpgm) {
if (endBlock)
break;
endBlock = true;
}
++it;
}
if (!endBlock || exported)
continue;
/* we didn't find an Export instruction and have to insert a null export */
aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
for (unsigned i = 0; i < 4; i++)
exp->operands[i] = Operand(v1);
exp->enabled_mask = 0;
exp->compressed = false;
exp->done = true;
exp->valid_mask = program->stage & hw_fs;
if (program->stage & hw_fs)
exp->dest = 9; /* NULL */
else
exp->dest = V_008DFC_SQ_EXP_POS;
/* insert the null export 1 instruction before endpgm */
block.instructions.insert(block.instructions.end() - 1, std::move(exp));
}
}
static void fix_branches_gfx10(asm_context& ctx, std::vector<uint32_t>& out)
{
/* Branches with an offset of 0x3f are buggy on GFX10, we workaround by inserting NOPs if needed. */
bool gfx10_3f_bug = false;
do {
auto buggy_branch_it = std::find_if(ctx.branches.begin(), ctx.branches.end(), [&ctx](const auto &branch) -> bool {
return ((int)ctx.program->blocks[branch.second->block].offset - branch.first - 1) == 0x3f;
});
gfx10_3f_bug = buggy_branch_it != ctx.branches.end();
if (gfx10_3f_bug) {
/* Insert an s_nop after the branch */
constexpr uint32_t s_nop_0 = 0xbf800000u;
int s_nop_pos = buggy_branch_it->first + 1;
auto out_pos = std::next(out.begin(), s_nop_pos);
out.insert(out_pos, s_nop_0);
/* Update the offset of each affected block */
for (Block& block : ctx.program->blocks) {
if (block.offset > (unsigned)buggy_branch_it->first)
block.offset++;
}
/* Update the branches following the current one */
for (auto branch_it = std::next(buggy_branch_it); branch_it != ctx.branches.end(); ++branch_it)
branch_it->first++;
/* Find first constant address after the inserted instruction */
auto caddr_it = std::find_if(ctx.constaddrs.begin(), ctx.constaddrs.end(), [s_nop_pos](const int &caddr_pos) -> bool {
return caddr_pos >= s_nop_pos;
});
/* Update the locations of constant addresses */
for (; caddr_it != ctx.constaddrs.end(); ++caddr_it)
(*caddr_it)++;
}
} while (gfx10_3f_bug);
}
void fix_branches(asm_context& ctx, std::vector<uint32_t>& out)
{
if (ctx.chip_class >= GFX10)
fix_branches_gfx10(ctx, out);
for (std::pair<int, SOPP_instruction*> &branch : ctx.branches) {
int offset = (int)ctx.program->blocks[branch.second->block].offset - branch.first - 1;
out[branch.first] |= (uint16_t) offset;
}
}
void fix_constaddrs(asm_context& ctx, std::vector<uint32_t>& out)
{
for (unsigned addr : ctx.constaddrs)
out[addr] += out.size() * 4u;
}
unsigned emit_program(Program* program,
std::vector<uint32_t>& code)
{
asm_context ctx(program);
if (program->stage & (hw_vs | hw_fs))
fix_exports(ctx, code, program);
for (Block& block : program->blocks) {
block.offset = code.size();
emit_block(ctx, code, block);
}
fix_branches(ctx, code);
unsigned exec_size = code.size() * sizeof(uint32_t);
if (program->chip_class >= GFX10) {
/* Pad output with s_code_end so instruction prefetching doesn't cause
* page faults */
unsigned final_size = align(code.size() + 3 * 16, 16);
while (code.size() < final_size)
code.push_back(0xbf9f0000u);
}
fix_constaddrs(ctx, code);
while (program->constant_data.size() % 4u)
program->constant_data.push_back(0);
/* Copy constant data */
code.insert(code.end(), (uint32_t*)program->constant_data.data(),
(uint32_t*)(program->constant_data.data() + program->constant_data.size()));
return exec_size;
}
}