mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-24 17:30:12 +01:00
Acked-by: Jesse Natalie <jenatali@microsoft.com> Acked-by: Marek Olšák <marek.olsak@amd.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/26707>
725 lines
24 KiB
C++
725 lines
24 KiB
C++
/*
|
|
* Copyright © 2016 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
#include <gtest/gtest.h>
|
|
#include "ir.h"
|
|
#include "ir_array_refcount.h"
|
|
#include "ir_builder.h"
|
|
#include "util/hash_table.h"
|
|
|
|
using namespace ir_builder;
|
|
|
|
class array_refcount_test : public ::testing::Test {
|
|
public:
|
|
virtual void SetUp();
|
|
virtual void TearDown();
|
|
|
|
exec_list instructions;
|
|
ir_factory *body;
|
|
void *mem_ctx;
|
|
|
|
/**
|
|
* glsl_type for a vec4[3][4][5].
|
|
*
|
|
* The exceptionally verbose name is picked because it matches the syntax
|
|
* of http://cdecl.org/.
|
|
*/
|
|
const glsl_type *array_3_of_array_4_of_array_5_of_vec4;
|
|
|
|
/**
|
|
* glsl_type for a int[3].
|
|
*
|
|
* The exceptionally verbose name is picked because it matches the syntax
|
|
* of http://cdecl.org/.
|
|
*/
|
|
const glsl_type *array_3_of_int;
|
|
|
|
/**
|
|
* Wrapper to access private member "bits" of ir_array_refcount_entry
|
|
*
|
|
* The test class is a friend to ir_array_refcount_entry, but the
|
|
* individual tests are not part of the class. Since the friendliness of
|
|
* the test class does not extend to the tests, provide a wrapper.
|
|
*/
|
|
const BITSET_WORD *get_bits(const ir_array_refcount_entry &entry)
|
|
{
|
|
return entry.bits;
|
|
}
|
|
|
|
/**
|
|
* Wrapper to access private member "num_bits" of ir_array_refcount_entry
|
|
*
|
|
* The test class is a friend to ir_array_refcount_entry, but the
|
|
* individual tests are not part of the class. Since the friendliness of
|
|
* the test class does not extend to the tests, provide a wrapper.
|
|
*/
|
|
unsigned get_num_bits(const ir_array_refcount_entry &entry)
|
|
{
|
|
return entry.num_bits;
|
|
}
|
|
|
|
/**
|
|
* Wrapper to access private member "array_depth" of ir_array_refcount_entry
|
|
*
|
|
* The test class is a friend to ir_array_refcount_entry, but the
|
|
* individual tests are not part of the class. Since the friendliness of
|
|
* the test class does not extend to the tests, provide a wrapper.
|
|
*/
|
|
unsigned get_array_depth(const ir_array_refcount_entry &entry)
|
|
{
|
|
return entry.array_depth;
|
|
}
|
|
};
|
|
|
|
void
|
|
array_refcount_test::SetUp()
|
|
{
|
|
glsl_type_singleton_init_or_ref();
|
|
|
|
mem_ctx = ralloc_context(NULL);
|
|
|
|
instructions.make_empty();
|
|
body = new ir_factory(&instructions, mem_ctx);
|
|
|
|
/* The type of vec4 x[3][4][5]; */
|
|
const glsl_type *const array_5_of_vec4 =
|
|
glsl_array_type(&glsl_type_builtin_vec4, 5, 0);
|
|
const glsl_type *const array_4_of_array_5_of_vec4 =
|
|
glsl_array_type(array_5_of_vec4, 4, 0);
|
|
array_3_of_array_4_of_array_5_of_vec4 =
|
|
glsl_array_type(array_4_of_array_5_of_vec4, 3, 0);
|
|
|
|
array_3_of_int = glsl_array_type(&glsl_type_builtin_int, 3, 0);
|
|
}
|
|
|
|
void
|
|
array_refcount_test::TearDown()
|
|
{
|
|
delete body;
|
|
body = NULL;
|
|
|
|
ralloc_free(mem_ctx);
|
|
mem_ctx = NULL;
|
|
|
|
glsl_type_singleton_decref();
|
|
}
|
|
|
|
static operand
|
|
deref_array(operand array, operand index)
|
|
{
|
|
void *mem_ctx = ralloc_parent(array.val);
|
|
|
|
ir_rvalue *val = new(mem_ctx) ir_dereference_array(array.val, index.val);
|
|
|
|
return operand(val);
|
|
}
|
|
|
|
static operand
|
|
deref_struct(operand s, const char *field)
|
|
{
|
|
void *mem_ctx = ralloc_parent(s.val);
|
|
|
|
ir_rvalue *val = new(mem_ctx) ir_dereference_record(s.val, field);
|
|
|
|
return operand(val);
|
|
}
|
|
|
|
/**
|
|
* Verify that only the specified set of ir_variables exists in the hash table
|
|
*/
|
|
static void
|
|
validate_variables_in_hash_table(struct hash_table *ht,
|
|
unsigned count,
|
|
...)
|
|
{
|
|
ir_variable **vars = new ir_variable *[count];
|
|
va_list args;
|
|
|
|
/* Make a copy of the list of expected ir_variables. The copied list can
|
|
* be modified during the checking.
|
|
*/
|
|
va_start(args, count);
|
|
|
|
for (unsigned i = 0; i < count; i++)
|
|
vars[i] = va_arg(args, ir_variable *);
|
|
|
|
va_end(args);
|
|
|
|
hash_table_foreach(ht, entry) {
|
|
const ir_instruction *const ir = (ir_instruction *) entry->key;
|
|
const ir_variable *const v = ir->as_variable();
|
|
|
|
if (v == NULL) {
|
|
ADD_FAILURE() << "Invalid junk in hash table: ir_type = "
|
|
<< ir->ir_type << ", address = "
|
|
<< (void *) ir;
|
|
continue;
|
|
}
|
|
|
|
unsigned i;
|
|
for (i = 0; i < count; i++) {
|
|
if (vars[i] == NULL)
|
|
continue;
|
|
|
|
if (vars[i] == v)
|
|
break;
|
|
}
|
|
|
|
if (i == count) {
|
|
ADD_FAILURE() << "Invalid variable in hash table: \""
|
|
<< v->name << "\"";
|
|
} else {
|
|
/* As each variable is encountered, remove it from the set. Don't
|
|
* bother compacting the set because we don't care about
|
|
* performance here.
|
|
*/
|
|
vars[i] = NULL;
|
|
}
|
|
}
|
|
|
|
/* Check that there's nothing left in the set. */
|
|
for (unsigned i = 0; i < count; i++) {
|
|
if (vars[i] != NULL) {
|
|
ADD_FAILURE() << "Variable was not in the hash table: \""
|
|
<< vars[i]->name << "\"";
|
|
}
|
|
}
|
|
|
|
delete [] vars;
|
|
}
|
|
|
|
TEST_F(array_refcount_test, ir_array_refcount_entry_initial_state_for_scalar)
|
|
{
|
|
ir_variable *const var =
|
|
new(mem_ctx) ir_variable(&glsl_type_builtin_int, "a", ir_var_auto);
|
|
|
|
ir_array_refcount_entry entry(var);
|
|
|
|
ASSERT_NE((void *)0, get_bits(entry));
|
|
EXPECT_FALSE(entry.is_referenced);
|
|
EXPECT_EQ(1, get_num_bits(entry));
|
|
EXPECT_EQ(0, get_array_depth(entry));
|
|
EXPECT_FALSE(entry.is_linearized_index_referenced(0));
|
|
}
|
|
|
|
TEST_F(array_refcount_test, ir_array_refcount_entry_initial_state_for_vector)
|
|
{
|
|
ir_variable *const var =
|
|
new(mem_ctx) ir_variable(&glsl_type_builtin_vec4, "a", ir_var_auto);
|
|
|
|
ir_array_refcount_entry entry(var);
|
|
|
|
ASSERT_NE((void *)0, get_bits(entry));
|
|
EXPECT_FALSE(entry.is_referenced);
|
|
EXPECT_EQ(1, get_num_bits(entry));
|
|
EXPECT_EQ(0, get_array_depth(entry));
|
|
EXPECT_FALSE(entry.is_linearized_index_referenced(0));
|
|
}
|
|
|
|
TEST_F(array_refcount_test, ir_array_refcount_entry_initial_state_for_matrix)
|
|
{
|
|
ir_variable *const var =
|
|
new(mem_ctx) ir_variable(&glsl_type_builtin_mat4, "a", ir_var_auto);
|
|
|
|
ir_array_refcount_entry entry(var);
|
|
|
|
ASSERT_NE((void *)0, get_bits(entry));
|
|
EXPECT_FALSE(entry.is_referenced);
|
|
EXPECT_EQ(1, get_num_bits(entry));
|
|
EXPECT_EQ(0, get_array_depth(entry));
|
|
EXPECT_FALSE(entry.is_linearized_index_referenced(0));
|
|
}
|
|
|
|
TEST_F(array_refcount_test, ir_array_refcount_entry_initial_state_for_array)
|
|
{
|
|
ir_variable *const var =
|
|
new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4,
|
|
"a",
|
|
ir_var_auto);
|
|
const unsigned total_elements = glsl_get_aoa_size(var->type);
|
|
|
|
ir_array_refcount_entry entry(var);
|
|
|
|
ASSERT_NE((void *)0, get_bits(entry));
|
|
EXPECT_FALSE(entry.is_referenced);
|
|
EXPECT_EQ(total_elements, get_num_bits(entry));
|
|
EXPECT_EQ(3, get_array_depth(entry));
|
|
|
|
for (unsigned i = 0; i < total_elements; i++)
|
|
EXPECT_FALSE(entry.is_linearized_index_referenced(i)) << "index = " << i;
|
|
}
|
|
|
|
TEST_F(array_refcount_test, mark_array_elements_referenced_simple)
|
|
{
|
|
ir_variable *const var =
|
|
new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4,
|
|
"a",
|
|
ir_var_auto);
|
|
const unsigned total_elements = glsl_get_aoa_size(var->type);
|
|
|
|
ir_array_refcount_entry entry(var);
|
|
|
|
static const array_deref_range dr[] = {
|
|
{ 0, 5 }, { 1, 4 }, { 2, 3 }
|
|
};
|
|
const unsigned accessed_element = 0 + (1 * 5) + (2 * 4 * 5);
|
|
|
|
link_util_mark_array_elements_referenced(dr, 3, entry.array_depth,
|
|
entry.bits);
|
|
|
|
for (unsigned i = 0; i < total_elements; i++)
|
|
EXPECT_EQ(i == accessed_element, entry.is_linearized_index_referenced(i));
|
|
}
|
|
|
|
TEST_F(array_refcount_test, mark_array_elements_referenced_whole_first_array)
|
|
{
|
|
ir_variable *const var =
|
|
new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4,
|
|
"a",
|
|
ir_var_auto);
|
|
|
|
ir_array_refcount_entry entry(var);
|
|
|
|
static const array_deref_range dr[] = {
|
|
{ 0, 5 }, { 1, 4 }, { 3, 3 }
|
|
};
|
|
|
|
link_util_mark_array_elements_referenced(dr, 3, entry.array_depth,
|
|
entry.bits);
|
|
|
|
for (unsigned i = 0; i < 3; i++) {
|
|
for (unsigned j = 0; j < 4; j++) {
|
|
for (unsigned k = 0; k < 5; k++) {
|
|
const bool accessed = (j == 1) && (k == 0);
|
|
const unsigned linearized_index = k + (j * 5) + (i * 4 * 5);
|
|
|
|
EXPECT_EQ(accessed,
|
|
entry.is_linearized_index_referenced(linearized_index));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(array_refcount_test, mark_array_elements_referenced_whole_second_array)
|
|
{
|
|
ir_variable *const var =
|
|
new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4,
|
|
"a",
|
|
ir_var_auto);
|
|
|
|
ir_array_refcount_entry entry(var);
|
|
|
|
static const array_deref_range dr[] = {
|
|
{ 0, 5 }, { 4, 4 }, { 1, 3 }
|
|
};
|
|
|
|
link_util_mark_array_elements_referenced(dr, 3, entry.array_depth,
|
|
entry.bits);
|
|
|
|
for (unsigned i = 0; i < 3; i++) {
|
|
for (unsigned j = 0; j < 4; j++) {
|
|
for (unsigned k = 0; k < 5; k++) {
|
|
const bool accessed = (i == 1) && (k == 0);
|
|
const unsigned linearized_index = k + (j * 5) + (i * 4 * 5);
|
|
|
|
EXPECT_EQ(accessed,
|
|
entry.is_linearized_index_referenced(linearized_index));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(array_refcount_test, mark_array_elements_referenced_whole_third_array)
|
|
{
|
|
ir_variable *const var =
|
|
new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4,
|
|
"a",
|
|
ir_var_auto);
|
|
|
|
ir_array_refcount_entry entry(var);
|
|
|
|
static const array_deref_range dr[] = {
|
|
{ 5, 5 }, { 2, 4 }, { 1, 3 }
|
|
};
|
|
|
|
link_util_mark_array_elements_referenced(dr, 3, entry.array_depth,
|
|
entry.bits);
|
|
|
|
for (unsigned i = 0; i < 3; i++) {
|
|
for (unsigned j = 0; j < 4; j++) {
|
|
for (unsigned k = 0; k < 5; k++) {
|
|
const bool accessed = (i == 1) && (j == 2);
|
|
const unsigned linearized_index = k + (j * 5) + (i * 4 * 5);
|
|
|
|
EXPECT_EQ(accessed,
|
|
entry.is_linearized_index_referenced(linearized_index));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(array_refcount_test, mark_array_elements_referenced_whole_first_and_third_arrays)
|
|
{
|
|
ir_variable *const var =
|
|
new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4,
|
|
"a",
|
|
ir_var_auto);
|
|
|
|
ir_array_refcount_entry entry(var);
|
|
|
|
static const array_deref_range dr[] = {
|
|
{ 5, 5 }, { 3, 4 }, { 3, 3 }
|
|
};
|
|
|
|
link_util_mark_array_elements_referenced(dr, 3, entry.array_depth,
|
|
entry.bits);
|
|
|
|
for (unsigned i = 0; i < 3; i++) {
|
|
for (unsigned j = 0; j < 4; j++) {
|
|
for (unsigned k = 0; k < 5; k++) {
|
|
const bool accessed = (j == 3);
|
|
const unsigned linearized_index = k + (j * 5) + (i * 4 * 5);
|
|
|
|
EXPECT_EQ(accessed,
|
|
entry.is_linearized_index_referenced(linearized_index));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(array_refcount_test, do_not_process_vector_indexing)
|
|
{
|
|
/* Vectors and matrices can also be indexed in much the same manner as
|
|
* arrays. The visitor should not try to track per-element accesses to
|
|
* these types.
|
|
*/
|
|
ir_variable *var_a = new(mem_ctx) ir_variable(&glsl_type_builtin_float,
|
|
"a",
|
|
ir_var_auto);
|
|
ir_variable *var_b = new(mem_ctx) ir_variable(&glsl_type_builtin_int,
|
|
"b",
|
|
ir_var_auto);
|
|
ir_variable *var_c = new(mem_ctx) ir_variable(&glsl_type_builtin_vec4,
|
|
"c",
|
|
ir_var_auto);
|
|
|
|
body->emit(assign(var_a, deref_array(var_c, var_b)));
|
|
|
|
ir_array_refcount_visitor v;
|
|
|
|
visit_list_elements(&v, &instructions);
|
|
|
|
ir_array_refcount_entry *entry_a = v.get_variable_entry(var_a);
|
|
ir_array_refcount_entry *entry_b = v.get_variable_entry(var_b);
|
|
ir_array_refcount_entry *entry_c = v.get_variable_entry(var_c);
|
|
|
|
EXPECT_TRUE(entry_a->is_referenced);
|
|
EXPECT_TRUE(entry_b->is_referenced);
|
|
EXPECT_TRUE(entry_c->is_referenced);
|
|
|
|
/* As validated by previous tests, for non-array types, num_bits is 1. */
|
|
ASSERT_EQ(1, get_num_bits(*entry_c));
|
|
EXPECT_FALSE(entry_c->is_linearized_index_referenced(0));
|
|
}
|
|
|
|
TEST_F(array_refcount_test, do_not_process_matrix_indexing)
|
|
{
|
|
/* Vectors and matrices can also be indexed in much the same manner as
|
|
* arrays. The visitor should not try to track per-element accesses to
|
|
* these types.
|
|
*/
|
|
ir_variable *var_a = new(mem_ctx) ir_variable(&glsl_type_builtin_vec4,
|
|
"a",
|
|
ir_var_auto);
|
|
ir_variable *var_b = new(mem_ctx) ir_variable(&glsl_type_builtin_int,
|
|
"b",
|
|
ir_var_auto);
|
|
ir_variable *var_c = new(mem_ctx) ir_variable(&glsl_type_builtin_mat4,
|
|
"c",
|
|
ir_var_auto);
|
|
|
|
body->emit(assign(var_a, deref_array(var_c, var_b)));
|
|
|
|
ir_array_refcount_visitor v;
|
|
|
|
visit_list_elements(&v, &instructions);
|
|
|
|
ir_array_refcount_entry *entry_a = v.get_variable_entry(var_a);
|
|
ir_array_refcount_entry *entry_b = v.get_variable_entry(var_b);
|
|
ir_array_refcount_entry *entry_c = v.get_variable_entry(var_c);
|
|
|
|
EXPECT_TRUE(entry_a->is_referenced);
|
|
EXPECT_TRUE(entry_b->is_referenced);
|
|
EXPECT_TRUE(entry_c->is_referenced);
|
|
|
|
/* As validated by previous tests, for non-array types, num_bits is 1. */
|
|
ASSERT_EQ(1, get_num_bits(*entry_c));
|
|
EXPECT_FALSE(entry_c->is_linearized_index_referenced(0));
|
|
}
|
|
|
|
TEST_F(array_refcount_test, do_not_process_array_inside_structure)
|
|
{
|
|
/* Structures can contain arrays. The visitor should not try to track
|
|
* per-element accesses to arrays contained inside structures.
|
|
*/
|
|
const glsl_struct_field fields[] = {
|
|
glsl_struct_field(array_3_of_int, "i"),
|
|
};
|
|
|
|
const glsl_type *const record_of_array_3_of_int =
|
|
glsl_struct_type(fields, ARRAY_SIZE(fields), "S", false /* packed */);
|
|
|
|
ir_variable *var_a = new(mem_ctx) ir_variable(&glsl_type_builtin_int,
|
|
"a",
|
|
ir_var_auto);
|
|
|
|
ir_variable *var_b = new(mem_ctx) ir_variable(record_of_array_3_of_int,
|
|
"b",
|
|
ir_var_auto);
|
|
|
|
/* a = b.i[2] */
|
|
body->emit(assign(var_a,
|
|
deref_array(
|
|
deref_struct(var_b, "i"),
|
|
body->constant(int(2)))));
|
|
|
|
ir_array_refcount_visitor v;
|
|
|
|
visit_list_elements(&v, &instructions);
|
|
|
|
ir_array_refcount_entry *entry_a = v.get_variable_entry(var_a);
|
|
ir_array_refcount_entry *entry_b = v.get_variable_entry(var_b);
|
|
|
|
EXPECT_TRUE(entry_a->is_referenced);
|
|
EXPECT_TRUE(entry_b->is_referenced);
|
|
|
|
ASSERT_EQ(1, get_num_bits(*entry_b));
|
|
EXPECT_FALSE(entry_b->is_linearized_index_referenced(0));
|
|
|
|
validate_variables_in_hash_table(v.ht, 2, var_a, var_b);
|
|
}
|
|
|
|
TEST_F(array_refcount_test, visit_simple_indexing)
|
|
{
|
|
ir_variable *var_a = new(mem_ctx) ir_variable(&glsl_type_builtin_vec4,
|
|
"a",
|
|
ir_var_auto);
|
|
ir_variable *var_b = new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4,
|
|
"b",
|
|
ir_var_auto);
|
|
|
|
/* a = b[2][1][0] */
|
|
body->emit(assign(var_a,
|
|
deref_array(
|
|
deref_array(
|
|
deref_array(var_b, body->constant(int(2))),
|
|
body->constant(int(1))),
|
|
body->constant(int(0)))));
|
|
|
|
ir_array_refcount_visitor v;
|
|
|
|
visit_list_elements(&v, &instructions);
|
|
|
|
const unsigned accessed_element = 0 + (1 * 5) + (2 * 4 * 5);
|
|
ir_array_refcount_entry *entry_b = v.get_variable_entry(var_b);
|
|
const unsigned total_elements = glsl_get_aoa_size(var_b->type);
|
|
|
|
for (unsigned i = 0; i < total_elements; i++)
|
|
EXPECT_EQ(i == accessed_element, entry_b->is_linearized_index_referenced(i)) <<
|
|
"i = " << i;
|
|
|
|
validate_variables_in_hash_table(v.ht, 2, var_a, var_b);
|
|
}
|
|
|
|
TEST_F(array_refcount_test, visit_whole_second_array_indexing)
|
|
{
|
|
ir_variable *var_a = new(mem_ctx) ir_variable(&glsl_type_builtin_vec4,
|
|
"a",
|
|
ir_var_auto);
|
|
ir_variable *var_b = new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4,
|
|
"b",
|
|
ir_var_auto);
|
|
ir_variable *var_i = new(mem_ctx) ir_variable(&glsl_type_builtin_int,
|
|
"i",
|
|
ir_var_auto);
|
|
|
|
/* a = b[2][i][1] */
|
|
body->emit(assign(var_a,
|
|
deref_array(
|
|
deref_array(
|
|
deref_array(var_b, body->constant(int(2))),
|
|
var_i),
|
|
body->constant(int(1)))));
|
|
|
|
ir_array_refcount_visitor v;
|
|
|
|
visit_list_elements(&v, &instructions);
|
|
|
|
ir_array_refcount_entry *const entry_b = v.get_variable_entry(var_b);
|
|
for (unsigned i = 0; i < 3; i++) {
|
|
for (unsigned j = 0; j < 4; j++) {
|
|
for (unsigned k = 0; k < 5; k++) {
|
|
const bool accessed = (i == 2) && (k == 1);
|
|
const unsigned linearized_index = k + (j * 5) + (i * 4 * 5);
|
|
|
|
EXPECT_EQ(accessed,
|
|
entry_b->is_linearized_index_referenced(linearized_index)) <<
|
|
"i = " << i;
|
|
}
|
|
}
|
|
}
|
|
|
|
validate_variables_in_hash_table(v.ht, 3, var_a, var_b, var_i);
|
|
}
|
|
|
|
TEST_F(array_refcount_test, visit_array_indexing_an_array)
|
|
{
|
|
ir_variable *var_a = new(mem_ctx) ir_variable(&glsl_type_builtin_vec4,
|
|
"a",
|
|
ir_var_auto);
|
|
ir_variable *var_b = new(mem_ctx) ir_variable(array_3_of_array_4_of_array_5_of_vec4,
|
|
"b",
|
|
ir_var_auto);
|
|
ir_variable *var_c = new(mem_ctx) ir_variable(array_3_of_int,
|
|
"c",
|
|
ir_var_auto);
|
|
ir_variable *var_i = new(mem_ctx) ir_variable(&glsl_type_builtin_int,
|
|
"i",
|
|
ir_var_auto);
|
|
|
|
/* a = b[2][3][c[i]] */
|
|
body->emit(assign(var_a,
|
|
deref_array(
|
|
deref_array(
|
|
deref_array(var_b, body->constant(int(2))),
|
|
body->constant(int(3))),
|
|
deref_array(var_c, var_i))));
|
|
|
|
ir_array_refcount_visitor v;
|
|
|
|
visit_list_elements(&v, &instructions);
|
|
|
|
ir_array_refcount_entry *const entry_b = v.get_variable_entry(var_b);
|
|
|
|
for (unsigned i = 0; i < 3; i++) {
|
|
for (unsigned j = 0; j < 4; j++) {
|
|
for (unsigned k = 0; k < 5; k++) {
|
|
const bool accessed = (i == 2) && (j == 3);
|
|
const unsigned linearized_index = k + (j * 5) + (i * 4 * 5);
|
|
|
|
EXPECT_EQ(accessed,
|
|
entry_b->is_linearized_index_referenced(linearized_index)) <<
|
|
"array b[" << i << "][" << j << "][" << k << "], " <<
|
|
"linear index = " << linearized_index;
|
|
}
|
|
}
|
|
}
|
|
|
|
ir_array_refcount_entry *const entry_c = v.get_variable_entry(var_c);
|
|
|
|
for (int i = 0; i < glsl_array_size(var_c->type); i++) {
|
|
EXPECT_EQ(true, entry_c->is_linearized_index_referenced(i)) <<
|
|
"array c, i = " << i;
|
|
}
|
|
|
|
validate_variables_in_hash_table(v.ht, 4, var_a, var_b, var_c, var_i);
|
|
}
|
|
|
|
TEST_F(array_refcount_test, visit_array_indexing_with_itself)
|
|
{
|
|
const glsl_type *const array_2_of_array_3_of_int =
|
|
glsl_array_type(array_3_of_int, 2, 0);
|
|
|
|
const glsl_type *const array_2_of_array_2_of_array_3_of_int =
|
|
glsl_array_type(array_2_of_array_3_of_int, 2, 0);
|
|
|
|
ir_variable *var_a = new(mem_ctx) ir_variable(&glsl_type_builtin_int,
|
|
"a",
|
|
ir_var_auto);
|
|
ir_variable *var_b = new(mem_ctx) ir_variable(array_2_of_array_2_of_array_3_of_int,
|
|
"b",
|
|
ir_var_auto);
|
|
|
|
/* Given GLSL code:
|
|
*
|
|
* int b[2][2][3];
|
|
* a = b[ b[0][0][0] ][ b[ b[0][1][0] ][ b[1][0][0] ][1] ][2]
|
|
*
|
|
* b[0][0][0], b[0][1][0], and b[1][0][0] are trivially accessed.
|
|
*
|
|
* b[*][*][1] and b[*][*][2] are accessed.
|
|
*
|
|
* Only b[1][1][0] is not accessed.
|
|
*/
|
|
operand b000 = deref_array(
|
|
deref_array(
|
|
deref_array(var_b, body->constant(int(0))),
|
|
body->constant(int(0))),
|
|
body->constant(int(0)));
|
|
|
|
operand b010 = deref_array(
|
|
deref_array(
|
|
deref_array(var_b, body->constant(int(0))),
|
|
body->constant(int(1))),
|
|
body->constant(int(0)));
|
|
|
|
operand b100 = deref_array(
|
|
deref_array(
|
|
deref_array(var_b, body->constant(int(1))),
|
|
body->constant(int(0))),
|
|
body->constant(int(0)));
|
|
|
|
operand b_b010_b100_1 = deref_array(
|
|
deref_array(
|
|
deref_array(var_b, b010),
|
|
b100),
|
|
body->constant(int(1)));
|
|
|
|
body->emit(assign(var_a,
|
|
deref_array(
|
|
deref_array(
|
|
deref_array(var_b, b000),
|
|
b_b010_b100_1),
|
|
body->constant(int(2)))));
|
|
|
|
ir_array_refcount_visitor v;
|
|
|
|
visit_list_elements(&v, &instructions);
|
|
|
|
ir_array_refcount_entry *const entry_b = v.get_variable_entry(var_b);
|
|
|
|
for (unsigned i = 0; i < 2; i++) {
|
|
for (unsigned j = 0; j < 2; j++) {
|
|
for (unsigned k = 0; k < 3; k++) {
|
|
const bool accessed = !(i == 1 && j == 1 && k == 0);
|
|
const unsigned linearized_index = k + (j * 3) + (i * 2 * 3);
|
|
|
|
EXPECT_EQ(accessed,
|
|
entry_b->is_linearized_index_referenced(linearized_index)) <<
|
|
"array b[" << i << "][" << j << "][" << k << "], " <<
|
|
"linear index = " << linearized_index;
|
|
}
|
|
}
|
|
}
|
|
|
|
validate_variables_in_hash_table(v.ht, 2, var_a, var_b);
|
|
}
|