mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-22 09:10:11 +01:00
Acked-by: Kenneth Graunke <kenneth@whitecape.org> Acked-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/29146>
1424 lines
51 KiB
C++
1424 lines
51 KiB
C++
/*
|
|
* Copyright © 2010 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "brw_analysis.h"
|
|
#include "brw_eu.h"
|
|
#include "brw_shader.h"
|
|
#include "brw_builder.h"
|
|
#include "brw_nir.h"
|
|
#include "brw_cfg.h"
|
|
#include "brw_rt.h"
|
|
#include "brw_private.h"
|
|
#include "intel_nir.h"
|
|
#include "shader_enums.h"
|
|
#include "dev/intel_debug.h"
|
|
#include "dev/intel_wa.h"
|
|
#include "compiler/glsl_types.h"
|
|
#include "compiler/nir/nir_builder.h"
|
|
#include "util/u_math.h"
|
|
|
|
void
|
|
brw_shader::emit_urb_writes(const brw_reg &gs_vertex_count)
|
|
{
|
|
int slot, urb_offset, length;
|
|
int starting_urb_offset = 0;
|
|
const struct brw_vue_prog_data *vue_prog_data =
|
|
brw_vue_prog_data(this->prog_data);
|
|
const struct intel_vue_map *vue_map = &vue_prog_data->vue_map;
|
|
bool flush;
|
|
brw_reg sources[8];
|
|
brw_reg urb_handle;
|
|
|
|
switch (stage) {
|
|
case MESA_SHADER_VERTEX:
|
|
urb_handle = vs_payload().urb_handles;
|
|
break;
|
|
case MESA_SHADER_TESS_EVAL:
|
|
urb_handle = tes_payload().urb_output;
|
|
break;
|
|
case MESA_SHADER_GEOMETRY:
|
|
urb_handle = gs_payload().urb_handles;
|
|
break;
|
|
default:
|
|
UNREACHABLE("invalid stage");
|
|
}
|
|
|
|
const brw_builder bld = brw_builder(this);
|
|
|
|
brw_reg per_slot_offsets;
|
|
|
|
if (stage == MESA_SHADER_GEOMETRY) {
|
|
const struct brw_gs_prog_data *gs_prog_data =
|
|
brw_gs_prog_data(this->prog_data);
|
|
|
|
/* We need to increment the Global Offset to skip over the control data
|
|
* header and the extra "Vertex Count" field (1 HWord) at the beginning
|
|
* of the VUE. We're counting in OWords, so the units are doubled.
|
|
*/
|
|
starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
|
|
if (gs_prog_data->static_vertex_count == -1)
|
|
starting_urb_offset += 2;
|
|
|
|
/* The URB offset is in 128-bit units, so we need to multiply by 2 */
|
|
const int output_vertex_size_owords =
|
|
gs_prog_data->output_vertex_size_hwords * 2;
|
|
|
|
/* On Xe2+ platform, LSC can operate on the Dword data element with byte
|
|
* offset granularity, so convert per slot offset in bytes since it's in
|
|
* Owords (16-bytes) unit else keep per slot offset in oword unit for
|
|
* previous platforms.
|
|
*/
|
|
const int output_vertex_size = devinfo->ver >= 20 ?
|
|
output_vertex_size_owords * 16 :
|
|
output_vertex_size_owords;
|
|
if (gs_vertex_count.file == IMM) {
|
|
per_slot_offsets = brw_imm_ud(output_vertex_size *
|
|
gs_vertex_count.ud);
|
|
} else {
|
|
per_slot_offsets = bld.vgrf(BRW_TYPE_UD);
|
|
bld.MUL(per_slot_offsets, gs_vertex_count,
|
|
brw_imm_ud(output_vertex_size));
|
|
}
|
|
}
|
|
|
|
length = 0;
|
|
urb_offset = starting_urb_offset;
|
|
flush = false;
|
|
|
|
/* SSO shaders can have VUE slots allocated which are never actually
|
|
* written to, so ignore them when looking for the last (written) slot.
|
|
*/
|
|
int last_slot = vue_map->num_slots - 1;
|
|
while (last_slot > 0 &&
|
|
(vue_map->slot_to_varying[last_slot] == BRW_VARYING_SLOT_PAD ||
|
|
outputs[vue_map->slot_to_varying[last_slot]].file == BAD_FILE)) {
|
|
last_slot--;
|
|
}
|
|
|
|
bool urb_written = false;
|
|
for (slot = 0; slot < vue_map->num_slots; slot++) {
|
|
int varying = vue_map->slot_to_varying[slot];
|
|
switch (varying) {
|
|
case VARYING_SLOT_PSIZ: {
|
|
/* The point size varying slot is the vue header and is always in the
|
|
* vue map. If anything in the header is going to be read back by HW,
|
|
* we need to initialize it, in particular the viewport & layer
|
|
* values.
|
|
*
|
|
* SKL PRMs, Volume 7: 3D-Media-GPGPU, Vertex URB Entry (VUE)
|
|
* Formats:
|
|
*
|
|
* "VUEs are written in two ways:
|
|
*
|
|
* - At the top of the 3D Geometry pipeline, the VF's
|
|
* InputAssembly function creates VUEs and initializes them
|
|
* from data extracted from Vertex Buffers as well as
|
|
* internally generated data.
|
|
*
|
|
* - VS, GS, HS and DS threads can compute, format, and write
|
|
* new VUEs as thread output."
|
|
*
|
|
* "Software must ensure that any VUEs subject to readback by the
|
|
* 3D pipeline start with a valid Vertex Header. This extends to
|
|
* all VUEs with the following exceptions:
|
|
*
|
|
* - If the VS function is enabled, the VF-written VUEs are not
|
|
* required to have Vertex Headers, as the VS-incoming
|
|
* vertices are guaranteed to be consumed by the VS (i.e.,
|
|
* the VS thread is responsible for overwriting the input
|
|
* vertex data).
|
|
*
|
|
* - If the GS FF is enabled, neither VF-written VUEs nor VS
|
|
* thread-generated VUEs are required to have Vertex Headers,
|
|
* as the GS will consume all incoming vertices.
|
|
*
|
|
* - If Rendering is disabled, VertexHeaders are not required
|
|
* anywhere."
|
|
*/
|
|
brw_reg zero =
|
|
retype(brw_allocate_vgrf_units(*this, dispatch_width / 8), BRW_TYPE_UD);
|
|
bld.MOV(zero, brw_imm_ud(0u));
|
|
|
|
if (vue_map->slots_valid & VARYING_BIT_PRIMITIVE_SHADING_RATE &&
|
|
this->outputs[VARYING_SLOT_PRIMITIVE_SHADING_RATE].file != BAD_FILE) {
|
|
sources[length++] = this->outputs[VARYING_SLOT_PRIMITIVE_SHADING_RATE];
|
|
} else if (devinfo->has_coarse_pixel_primitive_and_cb) {
|
|
uint32_t one_fp16 = 0x3C00;
|
|
brw_reg one_by_one_fp16 =
|
|
retype(brw_allocate_vgrf_units(*this, dispatch_width / 8), BRW_TYPE_UD);
|
|
bld.MOV(one_by_one_fp16, brw_imm_ud((one_fp16 << 16) | one_fp16));
|
|
sources[length++] = one_by_one_fp16;
|
|
} else {
|
|
sources[length++] = zero;
|
|
}
|
|
|
|
if (vue_map->slots_valid & VARYING_BIT_LAYER)
|
|
sources[length++] = this->outputs[VARYING_SLOT_LAYER];
|
|
else
|
|
sources[length++] = zero;
|
|
|
|
if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
|
|
sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
|
|
else
|
|
sources[length++] = zero;
|
|
|
|
if (vue_map->slots_valid & VARYING_BIT_PSIZ)
|
|
sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
|
|
else
|
|
sources[length++] = zero;
|
|
break;
|
|
}
|
|
case VARYING_SLOT_EDGE:
|
|
UNREACHABLE("unexpected scalar vs output");
|
|
break;
|
|
|
|
default:
|
|
/* gl_Position is always in the vue map, but isn't always written by
|
|
* the shader. Other varyings (clip distances) get added to the vue
|
|
* map but don't always get written. In those cases, the
|
|
* corresponding this->output[] slot will be invalid we and can skip
|
|
* the urb write for the varying. If we've already queued up a vue
|
|
* slot for writing we flush a mlen 5 urb write, otherwise we just
|
|
* advance the urb_offset.
|
|
*/
|
|
if (varying == BRW_VARYING_SLOT_PAD ||
|
|
this->outputs[varying].file == BAD_FILE) {
|
|
if (length > 0)
|
|
flush = true;
|
|
else
|
|
urb_offset++;
|
|
break;
|
|
}
|
|
|
|
int slot_offset = 0;
|
|
|
|
/* When using Primitive Replication, there may be multiple slots
|
|
* assigned to POS.
|
|
*/
|
|
if (varying == VARYING_SLOT_POS)
|
|
slot_offset = slot - vue_map->varying_to_slot[VARYING_SLOT_POS];
|
|
|
|
for (unsigned i = 0; i < 4; i++) {
|
|
sources[length++] = offset(this->outputs[varying], bld,
|
|
i + (slot_offset * 4));
|
|
}
|
|
break;
|
|
}
|
|
|
|
const brw_builder abld = bld.annotate("URB write");
|
|
|
|
/* If we've queued up 8 registers of payload (2 VUE slots), if this is
|
|
* the last slot or if we need to flush (see BAD_FILE varying case
|
|
* above), emit a URB write send now to flush out the data.
|
|
*/
|
|
if (length == 8 || (length > 0 && slot == last_slot))
|
|
flush = true;
|
|
if (flush) {
|
|
brw_reg srcs[URB_LOGICAL_NUM_SRCS];
|
|
|
|
srcs[URB_LOGICAL_SRC_HANDLE] = urb_handle;
|
|
srcs[URB_LOGICAL_SRC_PER_SLOT_OFFSETS] = per_slot_offsets;
|
|
srcs[URB_LOGICAL_SRC_DATA] =
|
|
retype(brw_allocate_vgrf_units(*this, (dispatch_width / 8) * length), BRW_TYPE_F);
|
|
abld.LOAD_PAYLOAD(srcs[URB_LOGICAL_SRC_DATA], sources, length, 0);
|
|
|
|
brw_urb_inst *urb = abld.URB_WRITE(srcs, ARRAY_SIZE(srcs));
|
|
urb->components = length;
|
|
|
|
/* For Wa_1805992985 one needs additional write in the end. */
|
|
if (intel_needs_workaround(devinfo, 1805992985) && stage == MESA_SHADER_TESS_EVAL)
|
|
urb->eot = false;
|
|
else
|
|
urb->eot = slot == last_slot && stage != MESA_SHADER_GEOMETRY;
|
|
|
|
urb->offset = urb_offset;
|
|
urb_offset = starting_urb_offset + slot + 1;
|
|
length = 0;
|
|
flush = false;
|
|
urb_written = true;
|
|
}
|
|
}
|
|
|
|
/* If we don't have any valid slots to write, just do a minimal urb write
|
|
* send to terminate the shader. This includes 1 slot of undefined data,
|
|
* because it's invalid to write 0 data:
|
|
*
|
|
* From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
|
|
* Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
|
|
* Write Data Payload:
|
|
*
|
|
* "The write data payload can be between 1 and 8 message phases long."
|
|
*/
|
|
if (!urb_written) {
|
|
/* For GS, just turn EmitVertex() into a no-op. We don't want it to
|
|
* end the thread, and emit_gs_thread_end() already emits a SEND with
|
|
* EOT at the end of the program for us.
|
|
*/
|
|
if (stage == MESA_SHADER_GEOMETRY)
|
|
return;
|
|
|
|
brw_reg uniform_urb_handle =
|
|
retype(brw_allocate_vgrf_units(*this, dispatch_width / 8), BRW_TYPE_UD);
|
|
brw_reg payload =
|
|
retype(brw_allocate_vgrf_units(*this, dispatch_width / 8), BRW_TYPE_UD);
|
|
|
|
bld.exec_all().MOV(uniform_urb_handle, urb_handle);
|
|
|
|
brw_reg srcs[URB_LOGICAL_NUM_SRCS];
|
|
srcs[URB_LOGICAL_SRC_HANDLE] = uniform_urb_handle;
|
|
srcs[URB_LOGICAL_SRC_DATA] = payload;
|
|
|
|
brw_urb_inst *urb = bld.URB_WRITE(srcs, ARRAY_SIZE(srcs));
|
|
urb->eot = true;
|
|
urb->offset = 1;
|
|
urb->components = 1;
|
|
return;
|
|
}
|
|
|
|
/* Wa_1805992985:
|
|
*
|
|
* GPU hangs on one of tessellation vkcts tests with DS not done. The
|
|
* send cycle, which is a urb write with an eot must be 4 phases long and
|
|
* all 8 lanes must valid.
|
|
*/
|
|
if (intel_needs_workaround(devinfo, 1805992985) && stage == MESA_SHADER_TESS_EVAL) {
|
|
assert(dispatch_width == 8);
|
|
brw_reg uniform_urb_handle = retype(brw_allocate_vgrf_units(*this, 1), BRW_TYPE_UD);
|
|
brw_reg uniform_mask = retype(brw_allocate_vgrf_units(*this, 1), BRW_TYPE_UD);
|
|
brw_reg payload = retype(brw_allocate_vgrf_units(*this, 4), BRW_TYPE_UD);
|
|
|
|
/* Workaround requires all 8 channels (lanes) to be valid. This is
|
|
* understood to mean they all need to be alive. First trick is to find
|
|
* a live channel and copy its urb handle for all the other channels to
|
|
* make sure all handles are valid.
|
|
*/
|
|
bld.exec_all().MOV(uniform_urb_handle, bld.emit_uniformize(urb_handle));
|
|
|
|
/* Second trick is to use masked URB write where one can tell the HW to
|
|
* actually write data only for selected channels even though all are
|
|
* active.
|
|
* Third trick is to take advantage of the must-be-zero (MBZ) area in
|
|
* the very beginning of the URB.
|
|
*
|
|
* One masks data to be written only for the first channel and uses
|
|
* offset zero explicitly to land data to the MBZ area avoiding trashing
|
|
* any other part of the URB.
|
|
*
|
|
* Since the WA says that the write needs to be 4 phases long one uses
|
|
* 4 slots data. All are explicitly zeros in order to to keep the MBZ
|
|
* area written as zeros.
|
|
*/
|
|
bld.exec_all().MOV(uniform_mask, brw_imm_ud(0x1u));
|
|
bld.exec_all().MOV(offset(payload, bld, 0), brw_imm_ud(0u));
|
|
bld.exec_all().MOV(offset(payload, bld, 1), brw_imm_ud(0u));
|
|
bld.exec_all().MOV(offset(payload, bld, 2), brw_imm_ud(0u));
|
|
bld.exec_all().MOV(offset(payload, bld, 3), brw_imm_ud(0u));
|
|
|
|
brw_reg srcs[URB_LOGICAL_NUM_SRCS];
|
|
srcs[URB_LOGICAL_SRC_HANDLE] = uniform_urb_handle;
|
|
srcs[URB_LOGICAL_SRC_CHANNEL_MASK] = uniform_mask;
|
|
srcs[URB_LOGICAL_SRC_DATA] = payload;
|
|
|
|
brw_urb_inst *urb = bld.exec_all().URB_WRITE(srcs, ARRAY_SIZE(srcs));
|
|
urb->eot = true;
|
|
urb->offset = 0;
|
|
urb->components = 4;
|
|
}
|
|
}
|
|
|
|
void
|
|
brw_shader::emit_cs_terminate()
|
|
{
|
|
const brw_builder ubld = brw_builder(this).exec_all();
|
|
|
|
/* We can't directly send from g0, since sends with EOT have to use
|
|
* g112-127. So, copy it to a virtual register, The register allocator will
|
|
* make sure it uses the appropriate register range.
|
|
*/
|
|
struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_TYPE_UD);
|
|
brw_reg payload =
|
|
retype(brw_allocate_vgrf_units(*this, reg_unit(devinfo)), BRW_TYPE_UD);
|
|
ubld.group(8 * reg_unit(devinfo), 0).MOV(payload, g0);
|
|
|
|
/* Set the descriptor to "Dereference Resource" and "Root Thread" */
|
|
unsigned desc = 0;
|
|
|
|
/* Set Resource Select to "Do not dereference URB" on Gfx < 11.
|
|
*
|
|
* Note that even though the thread has a URB resource associated with it,
|
|
* we set the "do not dereference URB" bit, because the URB resource is
|
|
* managed by the fixed-function unit, so it will free it automatically.
|
|
*/
|
|
if (devinfo->ver < 11)
|
|
desc |= (1 << 4); /* Do not dereference URB */
|
|
|
|
brw_send_inst *send = ubld.SEND();
|
|
send->dst = reg_undef;
|
|
send->src[SEND_SRC_DESC] = brw_imm_ud(desc);
|
|
send->src[SEND_SRC_EX_DESC] = brw_imm_ud(0);
|
|
send->src[SEND_SRC_PAYLOAD1] = payload;
|
|
send->src[SEND_SRC_PAYLOAD2] = brw_reg();
|
|
|
|
/* On Alchemist and later, send an EOT message to the message gateway to
|
|
* terminate a compute shader. For older GPUs, send to the thread spawner.
|
|
*/
|
|
send->sfid = devinfo->verx10 >= 125 ? BRW_SFID_MESSAGE_GATEWAY
|
|
: BRW_SFID_THREAD_SPAWNER;
|
|
send->mlen = reg_unit(devinfo);
|
|
send->eot = true;
|
|
}
|
|
|
|
brw_shader::brw_shader(const brw_shader_params *params)
|
|
: compiler(params->compiler),
|
|
log_data(params->log_data),
|
|
devinfo(params->compiler->devinfo),
|
|
nir(params->nir),
|
|
mem_ctx(params->mem_ctx),
|
|
cfg(NULL),
|
|
stage(params->nir->info.stage),
|
|
debug_enabled(params->debug_enabled),
|
|
key(params->key),
|
|
prog_data(params->prog_data),
|
|
live_analysis(this),
|
|
regpressure_analysis(this),
|
|
performance_analysis(this),
|
|
idom_analysis(this),
|
|
def_analysis(this),
|
|
ip_ranges_analysis(this),
|
|
needs_register_pressure(params->needs_register_pressure),
|
|
dispatch_width(params->dispatch_width),
|
|
max_polygons(params->num_polygons),
|
|
api_subgroup_size(brw_nir_api_subgroup_size(params->nir, dispatch_width)),
|
|
archiver(params->archiver)
|
|
{
|
|
assert(api_subgroup_size == 0 ||
|
|
api_subgroup_size == 8 ||
|
|
api_subgroup_size == 16 ||
|
|
api_subgroup_size == 32);
|
|
|
|
this->max_dispatch_width = 32;
|
|
|
|
this->failed = false;
|
|
this->fail_msg = NULL;
|
|
|
|
this->payload_ = NULL;
|
|
this->source_depth_to_render_target = false;
|
|
this->first_non_payload_grf = 0;
|
|
|
|
this->uniforms = this->nir->num_uniforms / 4;
|
|
this->last_scratch = 0;
|
|
|
|
memset(&this->shader_stats, 0, sizeof(this->shader_stats));
|
|
|
|
this->grf_used = 0;
|
|
this->spilled_any_registers = false;
|
|
|
|
this->phase = BRW_SHADER_PHASE_INITIAL;
|
|
|
|
this->next_address_register_nr = 1;
|
|
|
|
this->alloc.capacity = 0;
|
|
this->alloc.sizes = NULL;
|
|
this->alloc.count = 0;
|
|
|
|
this->gs.control_data_bits_per_vertex = 0;
|
|
this->gs.control_data_header_size_bits = 0;
|
|
|
|
if (params->per_primitive_offsets) {
|
|
assert(stage == MESA_SHADER_FRAGMENT);
|
|
memcpy(this->fs.per_primitive_offsets, params->per_primitive_offsets,
|
|
sizeof(this->fs.per_primitive_offsets));
|
|
}
|
|
|
|
{
|
|
unsigned inst_count = 0;
|
|
if (nir_shader_get_entrypoint(nir)) {
|
|
nir_foreach_block(block, nir_shader_get_entrypoint(nir)) {
|
|
nir_foreach_instr(instr, block)
|
|
inst_count++;
|
|
}
|
|
}
|
|
|
|
const unsigned estimate = inst_count * (sizeof(brw_inst) + 2 * sizeof(brw_reg));
|
|
|
|
inst_arena.mem_ctx = ralloc_context(NULL);
|
|
inst_arena.cap = estimate;
|
|
inst_arena.beg = (char *) ralloc_size(mem_ctx, inst_arena.cap);
|
|
inst_arena.end = inst_arena.beg + inst_arena.cap;
|
|
inst_arena.total_cap = inst_arena.cap;
|
|
}
|
|
}
|
|
|
|
brw_shader::~brw_shader()
|
|
{
|
|
delete this->payload_;
|
|
ralloc_free(inst_arena.mem_ctx);
|
|
}
|
|
|
|
void
|
|
brw_shader::vfail(const char *format, va_list va)
|
|
{
|
|
char *msg;
|
|
|
|
if (failed)
|
|
return;
|
|
|
|
failed = true;
|
|
|
|
msg = ralloc_vasprintf(mem_ctx, format, va);
|
|
msg = ralloc_asprintf(mem_ctx, "SIMD%d %s compile failed: %s\n",
|
|
dispatch_width, _mesa_shader_stage_to_abbrev(stage), msg);
|
|
|
|
this->fail_msg = msg;
|
|
|
|
if (unlikely(debug_enabled)) {
|
|
fprintf(stderr, "%s", msg);
|
|
}
|
|
}
|
|
|
|
void
|
|
brw_shader::fail(const char *format, ...)
|
|
{
|
|
va_list va;
|
|
|
|
va_start(va, format);
|
|
vfail(format, va);
|
|
va_end(va);
|
|
}
|
|
|
|
/**
|
|
* Mark this program as impossible to compile with dispatch width greater
|
|
* than n.
|
|
*
|
|
* During the SIMD8 compile (which happens first), we can detect and flag
|
|
* things that are unsupported in SIMD16+ mode, so the compiler can skip the
|
|
* SIMD16+ compile altogether.
|
|
*
|
|
* During a compile of dispatch width greater than n (if one happens anyway),
|
|
* this just calls fail().
|
|
*/
|
|
void
|
|
brw_shader::limit_dispatch_width(unsigned n, const char *msg)
|
|
{
|
|
if (dispatch_width > n) {
|
|
fail("%s", msg);
|
|
} else {
|
|
max_dispatch_width = MIN2(max_dispatch_width, n);
|
|
brw_shader_perf_log(compiler, log_data,
|
|
"Shader dispatch width limited to SIMD%d: %s\n",
|
|
n, msg);
|
|
}
|
|
}
|
|
|
|
enum intel_barycentric_mode
|
|
brw_barycentric_mode(const struct brw_wm_prog_key *key,
|
|
nir_intrinsic_instr *intr)
|
|
{
|
|
const glsl_interp_mode mode =
|
|
(enum glsl_interp_mode) nir_intrinsic_interp_mode(intr);
|
|
|
|
/* Barycentric modes don't make sense for flat inputs. */
|
|
assert(mode != INTERP_MODE_FLAT);
|
|
|
|
unsigned bary;
|
|
switch (intr->intrinsic) {
|
|
case nir_intrinsic_load_barycentric_pixel:
|
|
case nir_intrinsic_load_barycentric_at_offset:
|
|
/* When per sample interpolation is dynamic, assume sample
|
|
* interpolation. We'll dynamically remap things so that the FS thread
|
|
* payload is not affected.
|
|
*/
|
|
bary = key->persample_interp == INTEL_SOMETIMES ?
|
|
INTEL_BARYCENTRIC_PERSPECTIVE_SAMPLE :
|
|
INTEL_BARYCENTRIC_PERSPECTIVE_PIXEL;
|
|
break;
|
|
case nir_intrinsic_load_barycentric_centroid:
|
|
bary = INTEL_BARYCENTRIC_PERSPECTIVE_CENTROID;
|
|
break;
|
|
case nir_intrinsic_load_barycentric_sample:
|
|
case nir_intrinsic_load_barycentric_at_sample:
|
|
bary = INTEL_BARYCENTRIC_PERSPECTIVE_SAMPLE;
|
|
break;
|
|
default:
|
|
UNREACHABLE("invalid intrinsic");
|
|
}
|
|
|
|
if (mode == INTERP_MODE_NOPERSPECTIVE)
|
|
bary += 3;
|
|
|
|
return (enum intel_barycentric_mode) bary;
|
|
}
|
|
|
|
/**
|
|
* Walk backwards from the end of the program looking for a URB write that
|
|
* isn't in control flow, and mark it with EOT.
|
|
*
|
|
* Return true if successful or false if a separate EOT write is needed.
|
|
*/
|
|
bool
|
|
brw_shader::mark_last_urb_write_with_eot()
|
|
{
|
|
brw_foreach_in_list_reverse(brw_inst, prev, &this->instructions) {
|
|
if (prev->opcode == SHADER_OPCODE_URB_WRITE_LOGICAL) {
|
|
prev->eot = true;
|
|
|
|
/* Delete now dead instructions. */
|
|
brw_foreach_in_list_reverse_safe(brw_exec_node, dead, &this->instructions) {
|
|
if (dead == prev)
|
|
break;
|
|
dead->remove();
|
|
}
|
|
return true;
|
|
} else if (prev->is_control_flow() || prev->has_side_effects()) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static unsigned
|
|
round_components_to_whole_registers(const intel_device_info *devinfo,
|
|
unsigned c)
|
|
{
|
|
return DIV_ROUND_UP(c, 8 * reg_unit(devinfo)) * reg_unit(devinfo);
|
|
}
|
|
|
|
void
|
|
brw_shader::assign_curb_setup()
|
|
{
|
|
unsigned uniform_push_length =
|
|
round_components_to_whole_registers(devinfo, prog_data->nr_params);
|
|
|
|
unsigned ubo_push_length = 0;
|
|
unsigned ubo_push_start[4];
|
|
for (int i = 0; i < 4; i++) {
|
|
ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length);
|
|
ubo_push_length += prog_data->ubo_ranges[i].length;
|
|
|
|
assert(ubo_push_start[i] % (8 * reg_unit(devinfo)) == 0);
|
|
assert(ubo_push_length % (1 * reg_unit(devinfo)) == 0);
|
|
}
|
|
|
|
prog_data->curb_read_length = uniform_push_length + ubo_push_length;
|
|
if (stage == MESA_SHADER_FRAGMENT &&
|
|
((struct brw_wm_prog_key *)key)->null_push_constant_tbimr_workaround)
|
|
prog_data->curb_read_length = MAX2(1, prog_data->curb_read_length);
|
|
|
|
uint64_t used = 0;
|
|
const bool pull_constants =
|
|
devinfo->verx10 >= 125 &&
|
|
(mesa_shader_stage_is_compute(stage) ||
|
|
mesa_shader_stage_is_mesh(stage)) &&
|
|
uniform_push_length;
|
|
|
|
if (pull_constants) {
|
|
const bool pull_constants_a64 =
|
|
(mesa_shader_stage_is_rt(stage) &&
|
|
brw_bs_prog_data(prog_data)->uses_inline_push_addr) ||
|
|
((mesa_shader_stage_is_compute(stage) ||
|
|
mesa_shader_stage_is_mesh(stage)) &&
|
|
brw_cs_prog_data(prog_data)->uses_inline_push_addr);
|
|
assert(devinfo->has_lsc);
|
|
brw_builder ubld = brw_builder(this, 1).exec_all().at_start(cfg->first_block());
|
|
|
|
brw_reg base_addr;
|
|
if (pull_constants_a64) {
|
|
/* The address of the push constants is at offset 0 in the inline
|
|
* parameter.
|
|
*/
|
|
base_addr =
|
|
mesa_shader_stage_is_rt(stage) ?
|
|
retype(bs_payload().inline_parameter, BRW_TYPE_UQ) :
|
|
retype(cs_payload().inline_parameter, BRW_TYPE_UQ);
|
|
} else {
|
|
/* The base offset for our push data is passed in as R0.0[31:6]. We
|
|
* have to mask off the bottom 6 bits.
|
|
*/
|
|
base_addr = ubld.AND(retype(brw_vec1_grf(0, 0), BRW_TYPE_UD),
|
|
brw_imm_ud(INTEL_MASK(31, 6)));
|
|
}
|
|
|
|
brw_analysis_dependency_class dirty_bits = BRW_DEPENDENCY_INSTRUCTIONS;
|
|
|
|
/* On Gfx12-HP we load constants at the start of the program using A32
|
|
* stateless messages.
|
|
*/
|
|
for (unsigned i = 0; i < uniform_push_length;) {
|
|
/* Limit ourselves to LSC HW limit of 8 GRFs (256bytes D32V64). */
|
|
unsigned num_regs = MIN2(uniform_push_length - i, 8);
|
|
assert(num_regs > 0);
|
|
num_regs = 1 << util_logbase2(num_regs);
|
|
|
|
brw_reg addr;
|
|
|
|
if (i != 0) {
|
|
if (pull_constants_a64) {
|
|
dirty_bits |= BRW_DEPENDENCY_VARIABLES;
|
|
/* We need to do the carry manually as when this pass is run,
|
|
* we're not expecting any 64bit ALUs. Unfortunately all the
|
|
* 64bit lowering is done in NIR.
|
|
*/
|
|
addr = ubld.vgrf(BRW_TYPE_UQ);
|
|
brw_reg addr_ldw = subscript(addr, BRW_TYPE_UD, 0);
|
|
brw_reg addr_udw = subscript(addr, BRW_TYPE_UD, 1);
|
|
brw_reg base_addr_ldw = subscript(base_addr, BRW_TYPE_UD, 0);
|
|
brw_reg base_addr_udw = subscript(base_addr, BRW_TYPE_UD, 1);
|
|
ubld.ADD(addr_ldw, base_addr_ldw, brw_imm_ud(i * REG_SIZE));
|
|
ubld.CMP(ubld.null_reg_d(), addr_ldw, base_addr_ldw, BRW_CONDITIONAL_L);
|
|
set_predicate(BRW_PREDICATE_NORMAL,
|
|
ubld.ADD(addr_udw, base_addr_udw, brw_imm_ud(1)));
|
|
set_predicate_inv(BRW_PREDICATE_NORMAL, true,
|
|
ubld.MOV(addr_udw, base_addr_udw));
|
|
} else {
|
|
addr = ubld.ADD(base_addr, brw_imm_ud(i * REG_SIZE));
|
|
}
|
|
} else {
|
|
addr = base_addr;
|
|
}
|
|
|
|
brw_send_inst *send = ubld.SEND();
|
|
send->dst = retype(brw_vec8_grf(payload().num_regs + i, 0),
|
|
BRW_TYPE_UD);
|
|
|
|
send->src[SEND_SRC_DESC] = brw_imm_ud(0);
|
|
send->src[SEND_SRC_EX_DESC] = brw_imm_ud(0);
|
|
send->src[SEND_SRC_PAYLOAD1] = addr;
|
|
send->src[SEND_SRC_PAYLOAD2] = brw_reg();
|
|
|
|
send->sfid = BRW_SFID_UGM;
|
|
uint32_t desc = lsc_msg_desc(devinfo, LSC_OP_LOAD,
|
|
LSC_ADDR_SURFTYPE_FLAT,
|
|
pull_constants_a64 ?
|
|
LSC_ADDR_SIZE_A64 : LSC_ADDR_SIZE_A32,
|
|
LSC_DATA_SIZE_D32,
|
|
num_regs * 8 /* num_channels */,
|
|
true /* transpose */,
|
|
LSC_CACHE(devinfo, LOAD, L1STATE_L3MOCS));
|
|
send->header_size = 0;
|
|
send->mlen = lsc_msg_addr_len(
|
|
devinfo, pull_constants_a64 ?
|
|
LSC_ADDR_SIZE_A64 : LSC_ADDR_SIZE_A32, 1);
|
|
send->size_written =
|
|
lsc_msg_dest_len(devinfo, LSC_DATA_SIZE_D32, num_regs * 8) * REG_SIZE;
|
|
assert((payload().num_regs + i + send->size_written / REG_SIZE) <=
|
|
(payload().num_regs + prog_data->curb_read_length));
|
|
send->is_volatile = true;
|
|
|
|
send->src[SEND_SRC_DESC] =
|
|
brw_imm_ud(desc | brw_message_desc(devinfo,
|
|
send->mlen,
|
|
send->size_written / REG_SIZE,
|
|
send->header_size));
|
|
|
|
i += num_regs;
|
|
}
|
|
|
|
invalidate_analysis(dirty_bits);
|
|
}
|
|
|
|
/* Map the offsets in the UNIFORM file to fixed HW regs. */
|
|
foreach_block_and_inst(block, brw_inst, inst, cfg) {
|
|
for (unsigned int i = 0; i < inst->sources; i++) {
|
|
if (inst->src[i].file == UNIFORM) {
|
|
int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
|
|
int constant_nr;
|
|
if (inst->src[i].nr >= UBO_START) {
|
|
/* constant_nr is in 32-bit units, the rest are in bytes */
|
|
constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] +
|
|
inst->src[i].offset / 4;
|
|
} else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
|
|
constant_nr = uniform_nr;
|
|
} else {
|
|
/* Section 5.11 of the OpenGL 4.1 spec says:
|
|
* "Out-of-bounds reads return undefined values, which include
|
|
* values from other variables of the active program or zero."
|
|
* Just return the first push constant.
|
|
*/
|
|
constant_nr = 0;
|
|
}
|
|
|
|
assert(constant_nr / 8 < 64);
|
|
used |= BITFIELD64_BIT(constant_nr / 8);
|
|
|
|
struct brw_reg brw_reg = brw_vec1_grf(payload().num_regs +
|
|
constant_nr / 8,
|
|
constant_nr % 8);
|
|
brw_reg.abs = inst->src[i].abs;
|
|
brw_reg.negate = inst->src[i].negate;
|
|
|
|
/* The combination of is_scalar for load_uniform, copy prop, and
|
|
* lower_btd_logical_send can generate a MOV from a UNIFORM with
|
|
* exec size 2 and stride of 1.
|
|
*/
|
|
assert(inst->src[i].stride == 0 || inst->exec_size == 2);
|
|
inst->src[i] = byte_offset(
|
|
retype(brw_reg, inst->src[i].type),
|
|
inst->src[i].offset % 4);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (prog_data->robust_ubo_ranges) {
|
|
brw_builder ubld = brw_builder(this, 8).exec_all().at_start(cfg->first_block());
|
|
/* At most we can write 2 GRFs (HW limit), the SIMD width matching the
|
|
* HW generation depends on the size of the physical register.
|
|
*/
|
|
const unsigned max_grf_writes = 2 * reg_unit(devinfo);
|
|
assert(max_grf_writes <= 4);
|
|
|
|
/* push_reg_mask_param is in 32-bit units */
|
|
unsigned mask_param = prog_data->push_reg_mask_param;
|
|
brw_reg mask = retype(brw_vec1_grf(payload().num_regs + mask_param / 8,
|
|
mask_param % 8), BRW_TYPE_UB);
|
|
|
|
/* For each 16bit lane, generate an offset in unit of 16B */
|
|
brw_reg offset_base = ubld.vgrf(BRW_TYPE_UW, max_grf_writes);
|
|
ubld.MOV(offset_base, brw_imm_uv(0x76543210));
|
|
ubld.MOV(horiz_offset(offset_base, 8), brw_imm_uv(0xFEDCBA98));
|
|
if (max_grf_writes > 2)
|
|
ubld.group(16, 0).ADD(horiz_offset(offset_base, 16), offset_base, brw_imm_uw(16));
|
|
|
|
u_foreach_bit(i, prog_data->robust_ubo_ranges) {
|
|
struct brw_ubo_range *ubo_range = &prog_data->ubo_ranges[i];
|
|
|
|
unsigned range_start = ubo_push_start[i] / 8;
|
|
uint64_t want_zero = (used >> range_start) & BITFIELD64_MASK(ubo_range->length);
|
|
if (!want_zero)
|
|
continue;
|
|
|
|
const unsigned grf_start = payload().num_regs + range_start;
|
|
const unsigned grf_end = grf_start + ubo_range->length;
|
|
const unsigned max_grf_mask = max_grf_writes * 4;
|
|
unsigned grf = grf_start;
|
|
|
|
do {
|
|
unsigned mask_length = MIN2(grf_end - grf, max_grf_mask);
|
|
unsigned simd_width_mask = 1 << util_last_bit(mask_length * 2 - 1);
|
|
|
|
if (!(want_zero & BITFIELD64_RANGE(grf - grf_start, mask_length))) {
|
|
grf += max_grf_mask;
|
|
continue;
|
|
}
|
|
|
|
/* Prepare section of mask, at 1/4 size */
|
|
brw_builder ubld_mask = ubld.group(simd_width_mask, 0);
|
|
brw_reg offset_reg = ubld_mask.vgrf(BRW_TYPE_UW);
|
|
unsigned mask_start = grf, mask_end = grf + mask_length;
|
|
ubld_mask.ADD(offset_reg, offset_base, brw_imm_uw((mask_start - grf_start) * 2));
|
|
/* Compare the 16B increments with the value coming from push
|
|
* constants and store the result into a dword. This expands a
|
|
* comparison between 2 values in 16B increments into a 32bit mask
|
|
* where each bit covers 4bits of data in the payload.
|
|
*
|
|
* This expension works because of the sign extension guaranteed
|
|
* by the HW.
|
|
*
|
|
* SKL PRMs, Volume 7: 3D-Media-GPGPU, Execution Data Type:
|
|
*
|
|
* "The following rules explain the conversion of multiple
|
|
* source operand types, possibly a mix of different types, to
|
|
* one common execution type:
|
|
* - ...
|
|
* - Unsigned integers are converted to signed integers.
|
|
* - Byte (B) or Unsigned Byte (UB) values are converted to a Word
|
|
* or wider integer execution type.
|
|
* - If source operands have different integer widths, use
|
|
* the widest width specified to choose the signed integer
|
|
* execution type."
|
|
*/
|
|
brw_reg mask_reg = ubld_mask.vgrf(BRW_TYPE_UD);
|
|
ubld_mask.CMP(mask_reg, byte_offset(mask, i), offset_reg, BRW_CONDITIONAL_G);
|
|
|
|
for (unsigned and_length; grf < mask_end; grf += and_length) {
|
|
and_length = 1u << (util_last_bit(MIN2(grf_end - grf, max_grf_writes)) - 1);
|
|
|
|
if (!(want_zero & BITFIELD64_RANGE(grf - grf_start, and_length)))
|
|
continue;
|
|
|
|
brw_reg push_reg = retype(brw_vec8_grf(grf, 0), BRW_TYPE_D);
|
|
|
|
/* Expand the masking bits one more time (1bit -> 4bit because
|
|
* UB -> UD) so that now each 8bits of mask cover 32bits of
|
|
* data to mask, while doing the masking in the payload data.
|
|
*/
|
|
ubld.group(and_length * 8, 0).AND(
|
|
push_reg,
|
|
byte_offset(retype(mask_reg, BRW_TYPE_B),
|
|
(grf - mask_start) * 8),
|
|
push_reg);
|
|
}
|
|
} while (grf < grf_end);
|
|
}
|
|
|
|
invalidate_analysis(BRW_DEPENDENCY_INSTRUCTIONS | BRW_DEPENDENCY_VARIABLES);
|
|
}
|
|
|
|
/* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
|
|
this->first_non_payload_grf = payload().num_regs + prog_data->curb_read_length;
|
|
|
|
this->debug_optimizer(this->nir, "assign_curb_setup", 90, 0);
|
|
}
|
|
|
|
/*
|
|
* Build up an array of indices into the urb_setup array that
|
|
* references the active entries of the urb_setup array.
|
|
* Used to accelerate walking the active entries of the urb_setup array
|
|
* on each upload.
|
|
*/
|
|
void
|
|
brw_compute_urb_setup_index(struct brw_wm_prog_data *wm_prog_data)
|
|
{
|
|
/* TODO(mesh): Review usage of this in the context of Mesh, we may want to
|
|
* skip per-primitive attributes here.
|
|
*/
|
|
|
|
/* Make sure uint8_t is sufficient */
|
|
STATIC_ASSERT(VARYING_SLOT_MAX <= 0xff);
|
|
uint8_t index = 0;
|
|
for (uint8_t attr = 0; attr < VARYING_SLOT_MAX; attr++) {
|
|
if (wm_prog_data->urb_setup[attr] >= 0) {
|
|
wm_prog_data->urb_setup_attribs[index++] = attr;
|
|
}
|
|
}
|
|
wm_prog_data->urb_setup_attribs_count = index;
|
|
}
|
|
|
|
void
|
|
brw_shader::convert_attr_sources_to_hw_regs(brw_inst *inst)
|
|
{
|
|
for (int i = 0; i < inst->sources; i++) {
|
|
if (inst->src[i].file == ATTR) {
|
|
assert(inst->src[i].nr == 0);
|
|
int grf = payload().num_regs +
|
|
prog_data->curb_read_length +
|
|
inst->src[i].offset / REG_SIZE;
|
|
|
|
/* As explained at brw_lower_vgrf_to_fixed_grf, From the Haswell PRM:
|
|
*
|
|
* VertStride must be used to cross GRF register boundaries. This
|
|
* rule implies that elements within a 'Width' cannot cross GRF
|
|
* boundaries.
|
|
*
|
|
* So, for registers that are large enough, we have to split the exec
|
|
* size in two and trust the compression state to sort it out.
|
|
*/
|
|
unsigned total_size = inst->exec_size *
|
|
inst->src[i].stride *
|
|
brw_type_size_bytes(inst->src[i].type);
|
|
|
|
assert(total_size <= 2 * REG_SIZE);
|
|
const unsigned exec_size =
|
|
(total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
|
|
|
|
unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
|
|
struct brw_reg reg =
|
|
stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
|
|
inst->src[i].offset % REG_SIZE),
|
|
exec_size * inst->src[i].stride,
|
|
width, inst->src[i].stride);
|
|
reg.abs = inst->src[i].abs;
|
|
reg.negate = inst->src[i].negate;
|
|
|
|
inst->src[i] = reg;
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
brw_get_subgroup_id_param_index(const intel_device_info *devinfo,
|
|
const brw_stage_prog_data *prog_data)
|
|
{
|
|
if (prog_data->nr_params == 0)
|
|
return -1;
|
|
|
|
if (devinfo->verx10 >= 125)
|
|
return -1;
|
|
|
|
/* The local thread id is always the last parameter in the list */
|
|
uint32_t last_param = prog_data->param[prog_data->nr_params - 1];
|
|
if (last_param == BRW_PARAM_BUILTIN_SUBGROUP_ID)
|
|
return prog_data->nr_params - 1;
|
|
|
|
return -1;
|
|
}
|
|
|
|
uint32_t
|
|
brw_fb_write_msg_control(const brw_inst *inst,
|
|
const struct brw_wm_prog_data *prog_data)
|
|
{
|
|
uint32_t mctl;
|
|
|
|
if (prog_data->dual_src_blend) {
|
|
assert(inst->exec_size < 32);
|
|
|
|
if (inst->group % 16 == 0)
|
|
mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01;
|
|
else if (inst->group % 16 == 8)
|
|
mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23;
|
|
else
|
|
UNREACHABLE("Invalid dual-source FB write instruction group");
|
|
} else {
|
|
assert(inst->group == 0 || (inst->group == 16 && inst->exec_size == 16));
|
|
|
|
if (inst->exec_size == 16)
|
|
mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
|
|
else if (inst->exec_size == 8)
|
|
mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01;
|
|
else if (inst->exec_size == 32)
|
|
mctl = XE2_DATAPORT_RENDER_TARGET_WRITE_SIMD32_SINGLE_SOURCE;
|
|
else
|
|
UNREACHABLE("Invalid FB write execution size");
|
|
}
|
|
|
|
return mctl;
|
|
}
|
|
|
|
void
|
|
brw_shader::invalidate_analysis(brw_analysis_dependency_class c)
|
|
{
|
|
live_analysis.invalidate(c);
|
|
regpressure_analysis.invalidate(c);
|
|
performance_analysis.invalidate(c);
|
|
idom_analysis.invalidate(c);
|
|
def_analysis.invalidate(c);
|
|
ip_ranges_analysis.invalidate(c);
|
|
}
|
|
|
|
void
|
|
brw_shader::debug_optimizer(const nir_shader *nir,
|
|
const char *pass_name,
|
|
int iteration, int pass_num) const
|
|
{
|
|
if (!archiver)
|
|
return;
|
|
|
|
/* TODO: Add replacement for INTEL_SHADER_OPTIMIZER_PATH. */
|
|
const char *filename =
|
|
ralloc_asprintf(mem_ctx, "BRW%d/%02d-%02d-%s",
|
|
dispatch_width,
|
|
iteration, pass_num, pass_name);
|
|
|
|
FILE *f = debug_archiver_start_file(archiver, filename);
|
|
brw_print_instructions(*this, f);
|
|
debug_archiver_finish_file(archiver);
|
|
}
|
|
|
|
static uint32_t
|
|
brw_compute_max_register_pressure(brw_shader &s)
|
|
{
|
|
const brw_register_pressure &rp = s.regpressure_analysis.require();
|
|
uint32_t ip = 0, max_pressure = 0;
|
|
foreach_block_and_inst(block, brw_inst, inst, s.cfg) {
|
|
max_pressure = MAX2(max_pressure, rp.regs_live_at_ip[ip]);
|
|
ip++;
|
|
}
|
|
return max_pressure;
|
|
}
|
|
|
|
static brw_inst **
|
|
save_instruction_order(const struct cfg_t *cfg)
|
|
{
|
|
/* Before we schedule anything, stash off the instruction order as an array
|
|
* of brw_inst *. This way, we can reset it between scheduling passes to
|
|
* prevent dependencies between the different scheduling modes.
|
|
*/
|
|
int num_insts = cfg->total_instructions;
|
|
brw_inst **inst_arr = new brw_inst * [num_insts];
|
|
|
|
int ip = 0;
|
|
foreach_block_and_inst(block, brw_inst, inst, cfg) {
|
|
inst_arr[ip++] = inst;
|
|
}
|
|
assert(ip == num_insts);
|
|
|
|
return inst_arr;
|
|
}
|
|
|
|
static void
|
|
restore_instruction_order(brw_shader &s, brw_inst **inst_arr)
|
|
{
|
|
ASSERTED int num_insts = s.cfg->total_instructions;
|
|
|
|
int ip = 0;
|
|
foreach_block (block, s.cfg) {
|
|
block->instructions.make_empty();
|
|
|
|
for (unsigned i = 0; i < block->num_instructions; i++)
|
|
block->instructions.push_tail(inst_arr[ip++]);
|
|
}
|
|
assert(ip == num_insts);
|
|
|
|
s.invalidate_analysis(BRW_DEPENDENCY_INSTRUCTIONS |
|
|
BRW_DEPENDENCY_VARIABLES);
|
|
}
|
|
|
|
/* Per-thread scratch space is a power-of-two multiple of 1KB. */
|
|
static inline unsigned
|
|
brw_get_scratch_size(int size)
|
|
{
|
|
return MAX2(1024, util_next_power_of_two(size));
|
|
}
|
|
|
|
void
|
|
brw_allocate_registers(brw_shader &s, bool allow_spilling)
|
|
{
|
|
const struct intel_device_info *devinfo = s.devinfo;
|
|
const nir_shader *nir = s.nir;
|
|
bool allocated;
|
|
|
|
static const enum brw_instruction_scheduler_mode pre_modes[] = {
|
|
BRW_SCHEDULE_PRE_LATENCY,
|
|
BRW_SCHEDULE_PRE,
|
|
BRW_SCHEDULE_PRE_NON_LIFO,
|
|
BRW_SCHEDULE_NONE,
|
|
BRW_SCHEDULE_PRE_LIFO,
|
|
};
|
|
|
|
static const char *scheduler_mode_name[] = {
|
|
[BRW_SCHEDULE_PRE_LATENCY] = "latency-sensitive",
|
|
[BRW_SCHEDULE_PRE] = "top-down",
|
|
[BRW_SCHEDULE_PRE_NON_LIFO] = "non-lifo",
|
|
[BRW_SCHEDULE_PRE_LIFO] = "lifo",
|
|
[BRW_SCHEDULE_POST] = "post",
|
|
[BRW_SCHEDULE_NONE] = "none",
|
|
};
|
|
|
|
uint32_t best_register_pressure = UINT32_MAX;
|
|
float best_perf = -INFINITY;
|
|
unsigned best_press_idx = 0;
|
|
unsigned best_perf_idx = 0;
|
|
|
|
brw_opt_compact_virtual_grfs(s);
|
|
|
|
if (s.needs_register_pressure)
|
|
s.shader_stats.max_register_pressure = brw_compute_max_register_pressure(s);
|
|
|
|
s.debug_optimizer(nir, "pre_register_allocate", 90, 90);
|
|
|
|
bool spill_all = allow_spilling && INTEL_DEBUG(DEBUG_SPILL_FS);
|
|
|
|
/* Before we schedule anything, stash off the instruction order as an array
|
|
* of brw_inst *. This way, we can reset it between scheduling passes to
|
|
* prevent dependencies between the different scheduling modes.
|
|
*/
|
|
brw_inst **orig_order = save_instruction_order(s.cfg);
|
|
brw_inst **orders[ARRAY_SIZE(pre_modes)] = {};
|
|
|
|
void *scheduler_ctx = ralloc_context(NULL);
|
|
brw_instruction_scheduler *sched = brw_prepare_scheduler(s, scheduler_ctx);
|
|
|
|
/* Try each scheduling heuristic to choose the one one with the
|
|
* best trade-off between latency and register pressure, which on
|
|
* xe3+ is dependent on the thread parallelism that can be achieved
|
|
* at the GRF register requirement of each ordering of the program
|
|
* (note that the register requirement of the program can only be
|
|
* estimated at this point prior to register allocation).
|
|
*/
|
|
for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
|
|
enum brw_instruction_scheduler_mode sched_mode = pre_modes[i];
|
|
|
|
/* Only use the PRE heuristic on pre-xe3 platforms during the
|
|
* first pass, since the trade-off between EU thread count and
|
|
* GRF use isn't a concern on platforms that don't support VRT.
|
|
*/
|
|
if (devinfo->ver < 30 && sched_mode != BRW_SCHEDULE_PRE)
|
|
continue;
|
|
|
|
/* These don't appear to provide much benefit on xe3+.
|
|
*/
|
|
if (devinfo->ver >= 30 && (sched_mode == BRW_SCHEDULE_PRE_LIFO ||
|
|
sched_mode == BRW_SCHEDULE_NONE))
|
|
continue;
|
|
|
|
brw_schedule_instructions_pre_ra(s, sched, sched_mode);
|
|
s.shader_stats.scheduler_mode = scheduler_mode_name[sched_mode];
|
|
s.debug_optimizer(nir, s.shader_stats.scheduler_mode, 95, i);
|
|
orders[i] = save_instruction_order(s.cfg);
|
|
|
|
const unsigned press = brw_compute_max_register_pressure(s);
|
|
if (press < best_register_pressure) {
|
|
best_register_pressure = press;
|
|
best_press_idx = i;
|
|
}
|
|
|
|
const brw_performance &perf = s.performance_analysis.require();
|
|
if (perf.throughput > best_perf) {
|
|
best_perf = perf.throughput;
|
|
best_perf_idx = i;
|
|
}
|
|
|
|
if (i + 1 < ARRAY_SIZE(pre_modes)) {
|
|
/* Reset back to the original order before trying the next mode */
|
|
restore_instruction_order(s, orig_order);
|
|
}
|
|
}
|
|
|
|
restore_instruction_order(s, orders[best_perf_idx]);
|
|
s.shader_stats.scheduler_mode = scheduler_mode_name[pre_modes[best_perf_idx]];
|
|
allocated = brw_assign_regs(s, false, spill_all);
|
|
|
|
if (!allocated) {
|
|
/* Try each scheduling heuristic to see if it can successfully register
|
|
* allocate without spilling. They should be ordered by decreasing
|
|
* performance but increasing likelihood of allocating.
|
|
*/
|
|
for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
|
|
enum brw_instruction_scheduler_mode sched_mode = pre_modes[i];
|
|
|
|
/* The latency-sensitive heuristic is unlikely to be helpful
|
|
* if we failed to register-allocate.
|
|
*/
|
|
if (sched_mode == BRW_SCHEDULE_PRE_LATENCY)
|
|
continue;
|
|
|
|
/* Already tried to register-allocate this. */
|
|
if (i == best_perf_idx)
|
|
continue;
|
|
|
|
if (orders[i]) {
|
|
/* We already scheduled the program with this mode. */
|
|
restore_instruction_order(s, orders[i]);
|
|
} else {
|
|
restore_instruction_order(s, orig_order);
|
|
brw_schedule_instructions_pre_ra(s, sched, sched_mode);
|
|
s.shader_stats.scheduler_mode = scheduler_mode_name[sched_mode];
|
|
s.debug_optimizer(nir, s.shader_stats.scheduler_mode, 95, i);
|
|
orders[i] = save_instruction_order(s.cfg);
|
|
|
|
const unsigned press = brw_compute_max_register_pressure(s);
|
|
if (press < best_register_pressure) {
|
|
best_register_pressure = press;
|
|
best_press_idx = i;
|
|
}
|
|
}
|
|
|
|
s.shader_stats.scheduler_mode = scheduler_mode_name[sched_mode];
|
|
|
|
/* We should only spill registers on the last scheduling. */
|
|
assert(!s.spilled_any_registers);
|
|
|
|
allocated = brw_assign_regs(s, false, spill_all);
|
|
if (allocated)
|
|
break;
|
|
}
|
|
}
|
|
|
|
ralloc_free(scheduler_ctx);
|
|
|
|
if (!allocated) {
|
|
if (0) {
|
|
fprintf(stderr, "Spilling - using lowest-pressure mode \"%s\"\n",
|
|
scheduler_mode_name[pre_modes[best_press_idx]]);
|
|
}
|
|
restore_instruction_order(s, orders[best_press_idx]);
|
|
s.shader_stats.scheduler_mode = scheduler_mode_name[pre_modes[best_press_idx]];
|
|
|
|
allocated = brw_assign_regs(s, allow_spilling, spill_all);
|
|
}
|
|
|
|
delete[] orig_order;
|
|
for (unsigned i = 0; i < ARRAY_SIZE(orders); i++)
|
|
delete[] orders[i];
|
|
|
|
if (!allocated) {
|
|
s.fail("Failure to register allocate. Reduce number of "
|
|
"live scalar values to avoid this.");
|
|
} else if (s.spilled_any_registers) {
|
|
brw_shader_perf_log(s.compiler, s.log_data,
|
|
"%s shader triggered register spilling. "
|
|
"Try reducing the number of live scalar "
|
|
"values to improve performance.\n",
|
|
_mesa_shader_stage_to_string(s.stage));
|
|
}
|
|
|
|
if (s.failed)
|
|
return;
|
|
|
|
int pass_num = 0;
|
|
|
|
s.debug_optimizer(nir, "post_ra_alloc", 96, pass_num++);
|
|
|
|
brw_opt_bank_conflicts(s);
|
|
|
|
s.debug_optimizer(nir, "bank_conflict", 96, pass_num++);
|
|
|
|
brw_schedule_instructions_post_ra(s);
|
|
|
|
s.debug_optimizer(nir, "post_ra_alloc_scheduling", 96, pass_num++);
|
|
|
|
/* Lowering VGRF to FIXED_GRF is currently done as a separate pass instead
|
|
* of part of assign_regs since both bank conflicts optimization and post
|
|
* RA scheduling take advantage of distinguishing references to registers
|
|
* that were allocated from references that were already fixed.
|
|
*
|
|
* TODO: Change the passes above, then move this lowering to be part of
|
|
* assign_regs.
|
|
*/
|
|
brw_lower_vgrfs_to_fixed_grfs(s);
|
|
|
|
s.debug_optimizer(nir, "lowered_vgrfs_to_fixed_grfs", 96, pass_num++);
|
|
|
|
if (s.devinfo->ver >= 30) {
|
|
brw_lower_send_gather(s);
|
|
s.debug_optimizer(nir, "lower_send_gather", 96, pass_num++);
|
|
}
|
|
|
|
brw_shader_phase_update(s, BRW_SHADER_PHASE_AFTER_REGALLOC);
|
|
|
|
if (s.last_scratch > 0) {
|
|
/* We currently only support up to 2MB of scratch space. If we
|
|
* need to support more eventually, the documentation suggests
|
|
* that we could allocate a larger buffer, and partition it out
|
|
* ourselves. We'd just have to undo the hardware's address
|
|
* calculation by subtracting (FFTID * Per Thread Scratch Space)
|
|
* and then add FFTID * (Larger Per Thread Scratch Space).
|
|
*
|
|
* See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
|
|
* Thread Group Tracking > Local Memory/Scratch Space.
|
|
*/
|
|
if (s.last_scratch <= devinfo->max_scratch_size_per_thread) {
|
|
/* Take the max of any previously compiled variant of the shader. In the
|
|
* case of bindless shaders with return parts, this will also take the
|
|
* max of all parts.
|
|
*/
|
|
s.prog_data->total_scratch = MAX2(brw_get_scratch_size(s.last_scratch),
|
|
s.prog_data->total_scratch);
|
|
} else {
|
|
s.fail("Scratch space required is larger than supported");
|
|
}
|
|
}
|
|
|
|
if (s.failed)
|
|
return;
|
|
|
|
brw_lower_scoreboard(s);
|
|
|
|
s.debug_optimizer(nir, "scoreboard", 96, pass_num++);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void
|
|
brw_debug_archive_nir(debug_archiver *archiver, nir_shader *nir,
|
|
unsigned dispatch_width, const char *step)
|
|
{
|
|
if (!archiver)
|
|
return;
|
|
|
|
const bool prefix_dispatch_width =
|
|
dispatch_width > 0 && mesa_shader_stage_uses_workgroup(nir->info.stage);
|
|
const char *filename = prefix_dispatch_width ?
|
|
ralloc_asprintf(archiver, "NIR%d/%s", dispatch_width, step) :
|
|
ralloc_asprintf(archiver, "NIR/%s", step);
|
|
|
|
FILE *f = debug_archiver_start_file(archiver, filename);
|
|
nir_print_shader(nir, f);
|
|
debug_archiver_finish_file(archiver);
|
|
}
|
|
#endif
|
|
|
|
unsigned
|
|
brw_cs_push_const_total_size(const struct brw_cs_prog_data *cs_prog_data,
|
|
unsigned threads)
|
|
{
|
|
assert(cs_prog_data->push.per_thread.size % REG_SIZE == 0);
|
|
assert(cs_prog_data->push.cross_thread.size % REG_SIZE == 0);
|
|
return cs_prog_data->push.per_thread.size * threads +
|
|
cs_prog_data->push.cross_thread.size;
|
|
}
|
|
|
|
struct intel_cs_dispatch_info
|
|
brw_cs_get_dispatch_info(const struct intel_device_info *devinfo,
|
|
const struct brw_cs_prog_data *prog_data,
|
|
const unsigned *override_local_size)
|
|
{
|
|
struct intel_cs_dispatch_info info = {};
|
|
|
|
const unsigned *sizes =
|
|
override_local_size ? override_local_size :
|
|
prog_data->local_size;
|
|
|
|
const int simd = brw_simd_select_for_workgroup_size(devinfo, prog_data, sizes);
|
|
assert(simd >= 0 && simd < 3);
|
|
|
|
info.group_size = sizes[0] * sizes[1] * sizes[2];
|
|
info.simd_size = 8u << simd;
|
|
info.threads = DIV_ROUND_UP(info.group_size, info.simd_size);
|
|
|
|
const uint32_t remainder = info.group_size & (info.simd_size - 1);
|
|
if (remainder > 0)
|
|
info.right_mask = ~0u >> (32 - remainder);
|
|
else
|
|
info.right_mask = ~0u >> (32 - info.simd_size);
|
|
|
|
return info;
|
|
}
|
|
|
|
void
|
|
brw_shader_phase_update(brw_shader &s, enum brw_shader_phase phase)
|
|
{
|
|
assert(phase == s.phase + 1);
|
|
s.phase = phase;
|
|
brw_validate(s);
|
|
}
|
|
|
|
bool brw_should_print_shader(const nir_shader *shader, uint64_t debug_flag, uint32_t source_hash)
|
|
{
|
|
if (intel_shader_dump_filter && intel_shader_dump_filter != source_hash) {
|
|
return false;
|
|
}
|
|
|
|
return INTEL_DEBUG(debug_flag) && (!shader->info.internal || NIR_DEBUG(PRINT_INTERNAL));
|
|
}
|
|
|
|
static unsigned
|
|
brw_allocate_vgrf_number(brw_shader &s, unsigned size_in_REGSIZE_units)
|
|
{
|
|
assert(size_in_REGSIZE_units > 0);
|
|
|
|
if (s.alloc.capacity <= s.alloc.count) {
|
|
unsigned new_cap = MAX2(16, s.alloc.capacity * 2);
|
|
s.alloc.sizes = rerzalloc(s.mem_ctx, s.alloc.sizes, unsigned,
|
|
s.alloc.capacity, new_cap);
|
|
s.alloc.capacity = new_cap;
|
|
}
|
|
|
|
s.alloc.sizes[s.alloc.count] = size_in_REGSIZE_units;
|
|
|
|
return s.alloc.count++;
|
|
}
|
|
|
|
brw_reg
|
|
brw_allocate_vgrf(brw_shader &s, brw_reg_type type, unsigned count)
|
|
{
|
|
const unsigned unit = reg_unit(s.devinfo);
|
|
const unsigned size = DIV_ROUND_UP(count * brw_type_size_bytes(type),
|
|
unit * REG_SIZE) * unit;
|
|
return retype(brw_allocate_vgrf_units(s, size), type);
|
|
}
|
|
|
|
brw_reg
|
|
brw_allocate_vgrf_units(brw_shader &s, unsigned units_of_REGSIZE)
|
|
{
|
|
return brw_vgrf(brw_allocate_vgrf_number(s, units_of_REGSIZE), BRW_TYPE_UD);
|
|
}
|