mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-21 20:10:14 +01:00
Copy propagation often eliminates all uses of an instruction. If we detect that we've done so, we can eliminate the instruction ourselves rather than leaving it hanging until the next DCE pass. This saves some CPU time as other passes don't see dead code. Reviewed-by: Caio Oliveira <caio.oliveira@intel.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/28666>
1877 lines
64 KiB
C++
1877 lines
64 KiB
C++
/*
|
|
* Copyright © 2012 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
/** @file brw_fs_copy_propagation.cpp
|
|
*
|
|
* Support for global copy propagation in two passes: A local pass that does
|
|
* intra-block copy (and constant) propagation, and a global pass that uses
|
|
* dataflow analysis on the copies available at the end of each block to re-do
|
|
* local copy propagation with more copies available.
|
|
*
|
|
* See Muchnick's Advanced Compiler Design and Implementation, section
|
|
* 12.5 (p356).
|
|
*/
|
|
|
|
#include "util/bitset.h"
|
|
#include "util/u_math.h"
|
|
#include "util/rb_tree.h"
|
|
#include "brw_fs.h"
|
|
#include "brw_fs_live_variables.h"
|
|
#include "brw_cfg.h"
|
|
#include "brw_eu.h"
|
|
|
|
using namespace brw;
|
|
|
|
namespace { /* avoid conflict with opt_copy_propagation_elements */
|
|
struct acp_entry {
|
|
struct rb_node by_dst;
|
|
struct rb_node by_src;
|
|
fs_reg dst;
|
|
fs_reg src;
|
|
unsigned global_idx;
|
|
unsigned size_written;
|
|
unsigned size_read;
|
|
enum opcode opcode;
|
|
bool is_partial_write;
|
|
bool force_writemask_all;
|
|
};
|
|
|
|
/**
|
|
* Compare two acp_entry::src.nr
|
|
*
|
|
* This is intended to be used as the comparison function for rb_tree.
|
|
*/
|
|
static int
|
|
cmp_entry_dst_entry_dst(const struct rb_node *a_node, const struct rb_node *b_node)
|
|
{
|
|
const struct acp_entry *a_entry =
|
|
rb_node_data(struct acp_entry, a_node, by_dst);
|
|
|
|
const struct acp_entry *b_entry =
|
|
rb_node_data(struct acp_entry, b_node, by_dst);
|
|
|
|
return a_entry->dst.nr - b_entry->dst.nr;
|
|
}
|
|
|
|
static int
|
|
cmp_entry_dst_nr(const struct rb_node *a_node, const void *b_key)
|
|
{
|
|
const struct acp_entry *a_entry =
|
|
rb_node_data(struct acp_entry, a_node, by_dst);
|
|
|
|
return a_entry->dst.nr - (uintptr_t) b_key;
|
|
}
|
|
|
|
static int
|
|
cmp_entry_src_entry_src(const struct rb_node *a_node, const struct rb_node *b_node)
|
|
{
|
|
const struct acp_entry *a_entry =
|
|
rb_node_data(struct acp_entry, a_node, by_src);
|
|
|
|
const struct acp_entry *b_entry =
|
|
rb_node_data(struct acp_entry, b_node, by_src);
|
|
|
|
return a_entry->src.nr - b_entry->src.nr;
|
|
}
|
|
|
|
/**
|
|
* Compare an acp_entry::src.nr with a raw nr.
|
|
*
|
|
* This is intended to be used as the comparison function for rb_tree.
|
|
*/
|
|
static int
|
|
cmp_entry_src_nr(const struct rb_node *a_node, const void *b_key)
|
|
{
|
|
const struct acp_entry *a_entry =
|
|
rb_node_data(struct acp_entry, a_node, by_src);
|
|
|
|
return a_entry->src.nr - (uintptr_t) b_key;
|
|
}
|
|
|
|
class acp_forward_iterator {
|
|
public:
|
|
acp_forward_iterator(struct rb_node *n, unsigned offset)
|
|
: curr(n), next(nullptr), offset(offset)
|
|
{
|
|
next = rb_node_next_or_null(curr);
|
|
}
|
|
|
|
acp_forward_iterator &operator++()
|
|
{
|
|
curr = next;
|
|
next = rb_node_next_or_null(curr);
|
|
|
|
return *this;
|
|
}
|
|
|
|
bool operator!=(const acp_forward_iterator &other) const
|
|
{
|
|
return curr != other.curr;
|
|
}
|
|
|
|
struct acp_entry *operator*() const
|
|
{
|
|
/* This open-codes part of rb_node_data. */
|
|
return curr != NULL ? (struct acp_entry *)(((char *)curr) - offset)
|
|
: NULL;
|
|
}
|
|
|
|
private:
|
|
struct rb_node *curr;
|
|
struct rb_node *next;
|
|
unsigned offset;
|
|
};
|
|
|
|
struct acp {
|
|
struct rb_tree by_dst;
|
|
struct rb_tree by_src;
|
|
|
|
acp()
|
|
{
|
|
rb_tree_init(&by_dst);
|
|
rb_tree_init(&by_src);
|
|
}
|
|
|
|
acp_forward_iterator begin()
|
|
{
|
|
return acp_forward_iterator(rb_tree_first(&by_src),
|
|
rb_tree_offsetof(struct acp_entry, by_src, 0));
|
|
}
|
|
|
|
const acp_forward_iterator end() const
|
|
{
|
|
return acp_forward_iterator(nullptr, 0);
|
|
}
|
|
|
|
unsigned length()
|
|
{
|
|
unsigned l = 0;
|
|
|
|
for (rb_node *iter = rb_tree_first(&by_src);
|
|
iter != NULL; iter = rb_node_next(iter))
|
|
l++;
|
|
|
|
return l;
|
|
}
|
|
|
|
void add(acp_entry *entry)
|
|
{
|
|
rb_tree_insert(&by_dst, &entry->by_dst, cmp_entry_dst_entry_dst);
|
|
rb_tree_insert(&by_src, &entry->by_src, cmp_entry_src_entry_src);
|
|
}
|
|
|
|
void remove(acp_entry *entry)
|
|
{
|
|
rb_tree_remove(&by_dst, &entry->by_dst);
|
|
rb_tree_remove(&by_src, &entry->by_src);
|
|
}
|
|
|
|
acp_forward_iterator find_by_src(unsigned nr)
|
|
{
|
|
struct rb_node *rbn = rb_tree_search(&by_src,
|
|
(void *)(uintptr_t) nr,
|
|
cmp_entry_src_nr);
|
|
|
|
return acp_forward_iterator(rbn, rb_tree_offsetof(struct acp_entry,
|
|
by_src, rbn));
|
|
}
|
|
|
|
acp_forward_iterator find_by_dst(unsigned nr)
|
|
{
|
|
struct rb_node *rbn = rb_tree_search(&by_dst,
|
|
(void *)(uintptr_t) nr,
|
|
cmp_entry_dst_nr);
|
|
|
|
return acp_forward_iterator(rbn, rb_tree_offsetof(struct acp_entry,
|
|
by_dst, rbn));
|
|
}
|
|
};
|
|
|
|
struct block_data {
|
|
/**
|
|
* Which entries in the fs_copy_prop_dataflow acp table are live at the
|
|
* start of this block. This is the useful output of the analysis, since
|
|
* it lets us plug those into the local copy propagation on the second
|
|
* pass.
|
|
*/
|
|
BITSET_WORD *livein;
|
|
|
|
/**
|
|
* Which entries in the fs_copy_prop_dataflow acp table are live at the end
|
|
* of this block. This is done in initial setup from the per-block acps
|
|
* returned by the first local copy prop pass.
|
|
*/
|
|
BITSET_WORD *liveout;
|
|
|
|
/**
|
|
* Which entries in the fs_copy_prop_dataflow acp table are generated by
|
|
* instructions in this block which reach the end of the block without
|
|
* being killed.
|
|
*/
|
|
BITSET_WORD *copy;
|
|
|
|
/**
|
|
* Which entries in the fs_copy_prop_dataflow acp table are killed over the
|
|
* course of this block.
|
|
*/
|
|
BITSET_WORD *kill;
|
|
|
|
/**
|
|
* Which entries in the fs_copy_prop_dataflow acp table are guaranteed to
|
|
* have a fully uninitialized destination at the end of this block.
|
|
*/
|
|
BITSET_WORD *undef;
|
|
|
|
/**
|
|
* Which entries in the fs_copy_prop_dataflow acp table can the
|
|
* start of this block be reached from. Note that this is a weaker
|
|
* condition than livein.
|
|
*/
|
|
BITSET_WORD *reachin;
|
|
|
|
/**
|
|
* Which entries in the fs_copy_prop_dataflow acp table are
|
|
* overwritten by an instruction with channel masks inconsistent
|
|
* with the copy instruction (e.g. due to force_writemask_all).
|
|
* Such an overwrite can cause the copy entry to become invalid
|
|
* even if the copy instruction is subsequently re-executed for any
|
|
* given channel i, since the execution of the overwrite for
|
|
* channel i may corrupt other channels j!=i inactive for the
|
|
* subsequent copy.
|
|
*/
|
|
BITSET_WORD *exec_mismatch;
|
|
};
|
|
|
|
class fs_copy_prop_dataflow
|
|
{
|
|
public:
|
|
fs_copy_prop_dataflow(linear_ctx *lin_ctx, cfg_t *cfg,
|
|
const fs_live_variables &live,
|
|
struct acp *out_acp);
|
|
|
|
void setup_initial_values();
|
|
void run();
|
|
|
|
void dump_block_data() const UNUSED;
|
|
|
|
cfg_t *cfg;
|
|
const fs_live_variables &live;
|
|
|
|
acp_entry **acp;
|
|
int num_acp;
|
|
int bitset_words;
|
|
|
|
struct block_data *bd;
|
|
};
|
|
} /* anonymous namespace */
|
|
|
|
fs_copy_prop_dataflow::fs_copy_prop_dataflow(linear_ctx *lin_ctx, cfg_t *cfg,
|
|
const fs_live_variables &live,
|
|
struct acp *out_acp)
|
|
: cfg(cfg), live(live)
|
|
{
|
|
bd = linear_zalloc_array(lin_ctx, struct block_data, cfg->num_blocks);
|
|
|
|
num_acp = 0;
|
|
foreach_block (block, cfg)
|
|
num_acp += out_acp[block->num].length();
|
|
|
|
bitset_words = BITSET_WORDS(num_acp);
|
|
|
|
foreach_block (block, cfg) {
|
|
bd[block->num].livein = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
|
|
bd[block->num].liveout = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
|
|
bd[block->num].copy = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
|
|
bd[block->num].kill = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
|
|
bd[block->num].undef = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
|
|
bd[block->num].reachin = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
|
|
bd[block->num].exec_mismatch = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
|
|
}
|
|
|
|
acp = linear_zalloc_array(lin_ctx, struct acp_entry *, num_acp);
|
|
|
|
int next_acp = 0;
|
|
foreach_block (block, cfg) {
|
|
for (auto iter = out_acp[block->num].begin();
|
|
iter != out_acp[block->num].end(); ++iter) {
|
|
acp[next_acp] = *iter;
|
|
|
|
(*iter)->global_idx = next_acp;
|
|
|
|
/* opt_copy_propagation_local populates out_acp with copies created
|
|
* in a block which are still live at the end of the block. This
|
|
* is exactly what we want in the COPY set.
|
|
*/
|
|
BITSET_SET(bd[block->num].copy, next_acp);
|
|
|
|
next_acp++;
|
|
}
|
|
}
|
|
|
|
assert(next_acp == num_acp);
|
|
|
|
setup_initial_values();
|
|
run();
|
|
}
|
|
|
|
/**
|
|
* Like reg_offset, but register must be VGRF or FIXED_GRF.
|
|
*/
|
|
static inline unsigned
|
|
grf_reg_offset(const fs_reg &r)
|
|
{
|
|
return (r.file == VGRF ? 0 : r.nr) * REG_SIZE +
|
|
r.offset +
|
|
(r.file == FIXED_GRF ? r.subnr : 0);
|
|
}
|
|
|
|
/**
|
|
* Like regions_overlap, but register must be VGRF or FIXED_GRF.
|
|
*/
|
|
static inline bool
|
|
grf_regions_overlap(const fs_reg &r, unsigned dr, const fs_reg &s, unsigned ds)
|
|
{
|
|
return reg_space(r) == reg_space(s) &&
|
|
!(grf_reg_offset(r) + dr <= grf_reg_offset(s) ||
|
|
grf_reg_offset(s) + ds <= grf_reg_offset(r));
|
|
}
|
|
|
|
/**
|
|
* Set up initial values for each of the data flow sets, prior to running
|
|
* the fixed-point algorithm.
|
|
*/
|
|
void
|
|
fs_copy_prop_dataflow::setup_initial_values()
|
|
{
|
|
/* Initialize the COPY and KILL sets. */
|
|
{
|
|
struct acp acp_table;
|
|
|
|
/* First, get all the KILLs for instructions which overwrite ACP
|
|
* destinations.
|
|
*/
|
|
for (int i = 0; i < num_acp; i++)
|
|
acp_table.add(acp[i]);
|
|
|
|
foreach_block (block, cfg) {
|
|
foreach_inst_in_block(fs_inst, inst, block) {
|
|
if (inst->dst.file != VGRF &&
|
|
inst->dst.file != FIXED_GRF)
|
|
continue;
|
|
|
|
for (auto iter = acp_table.find_by_src(inst->dst.nr);
|
|
iter != acp_table.end() && (*iter)->src.nr == inst->dst.nr;
|
|
++iter) {
|
|
if (grf_regions_overlap(inst->dst, inst->size_written,
|
|
(*iter)->src, (*iter)->size_read)) {
|
|
BITSET_SET(bd[block->num].kill, (*iter)->global_idx);
|
|
if (inst->force_writemask_all && !(*iter)->force_writemask_all)
|
|
BITSET_SET(bd[block->num].exec_mismatch, (*iter)->global_idx);
|
|
}
|
|
}
|
|
|
|
if (inst->dst.file != VGRF)
|
|
continue;
|
|
|
|
for (auto iter = acp_table.find_by_dst(inst->dst.nr);
|
|
iter != acp_table.end() && (*iter)->dst.nr == inst->dst.nr;
|
|
++iter) {
|
|
if (grf_regions_overlap(inst->dst, inst->size_written,
|
|
(*iter)->dst, (*iter)->size_written)) {
|
|
BITSET_SET(bd[block->num].kill, (*iter)->global_idx);
|
|
if (inst->force_writemask_all && !(*iter)->force_writemask_all)
|
|
BITSET_SET(bd[block->num].exec_mismatch, (*iter)->global_idx);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Populate the initial values for the livein and liveout sets. For the
|
|
* block at the start of the program, livein = 0 and liveout = copy.
|
|
* For the others, set liveout and livein to ~0 (the universal set).
|
|
*/
|
|
foreach_block (block, cfg) {
|
|
if (block->parents.is_empty()) {
|
|
for (int i = 0; i < bitset_words; i++) {
|
|
bd[block->num].livein[i] = 0u;
|
|
bd[block->num].liveout[i] = bd[block->num].copy[i];
|
|
}
|
|
} else {
|
|
for (int i = 0; i < bitset_words; i++) {
|
|
bd[block->num].liveout[i] = ~0u;
|
|
bd[block->num].livein[i] = ~0u;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Initialize the undef set. */
|
|
foreach_block (block, cfg) {
|
|
for (int i = 0; i < num_acp; i++) {
|
|
BITSET_SET(bd[block->num].undef, i);
|
|
for (unsigned off = 0; off < acp[i]->size_written; off += REG_SIZE) {
|
|
if (BITSET_TEST(live.block_data[block->num].defout,
|
|
live.var_from_reg(byte_offset(acp[i]->dst, off))))
|
|
BITSET_CLEAR(bd[block->num].undef, i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Walk the set of instructions in the block, marking which entries in the acp
|
|
* are killed by the block.
|
|
*/
|
|
void
|
|
fs_copy_prop_dataflow::run()
|
|
{
|
|
bool progress;
|
|
|
|
do {
|
|
progress = false;
|
|
|
|
foreach_block (block, cfg) {
|
|
if (block->parents.is_empty())
|
|
continue;
|
|
|
|
for (int i = 0; i < bitset_words; i++) {
|
|
const BITSET_WORD old_liveout = bd[block->num].liveout[i];
|
|
const BITSET_WORD old_reachin = bd[block->num].reachin[i];
|
|
BITSET_WORD livein_from_any_block = 0;
|
|
|
|
/* Update livein for this block. If a copy is live out of all
|
|
* parent blocks, it's live coming in to this block.
|
|
*/
|
|
bd[block->num].livein[i] = ~0u;
|
|
foreach_list_typed(bblock_link, parent_link, link, &block->parents) {
|
|
bblock_t *parent = parent_link->block;
|
|
/* Consider ACP entries with a known-undefined destination to
|
|
* be available from the parent. This is valid because we're
|
|
* free to set the undefined variable equal to the source of
|
|
* the ACP entry without breaking the application's
|
|
* expectations, since the variable is undefined.
|
|
*/
|
|
bd[block->num].livein[i] &= (bd[parent->num].liveout[i] |
|
|
bd[parent->num].undef[i]);
|
|
livein_from_any_block |= bd[parent->num].liveout[i];
|
|
|
|
/* Update reachin for this block. If the end of any
|
|
* parent block is reachable from the copy, the start
|
|
* of this block is reachable from it as well.
|
|
*/
|
|
bd[block->num].reachin[i] |= (bd[parent->num].reachin[i] |
|
|
bd[parent->num].copy[i]);
|
|
}
|
|
|
|
/* Limit to the set of ACP entries that can possibly be available
|
|
* at the start of the block, since propagating from a variable
|
|
* which is guaranteed to be undefined (rather than potentially
|
|
* undefined for some dynamic control-flow paths) doesn't seem
|
|
* particularly useful.
|
|
*/
|
|
bd[block->num].livein[i] &= livein_from_any_block;
|
|
|
|
/* Update liveout for this block. */
|
|
bd[block->num].liveout[i] =
|
|
bd[block->num].copy[i] | (bd[block->num].livein[i] &
|
|
~bd[block->num].kill[i]);
|
|
|
|
if (old_liveout != bd[block->num].liveout[i] ||
|
|
old_reachin != bd[block->num].reachin[i])
|
|
progress = true;
|
|
}
|
|
}
|
|
} while (progress);
|
|
|
|
/* Perform a second fixed-point pass in order to propagate the
|
|
* exec_mismatch bitsets. Note that this requires an accurate
|
|
* value of the reachin bitsets as input, which isn't available
|
|
* until the end of the first propagation pass, so this loop cannot
|
|
* be folded into the previous one.
|
|
*/
|
|
do {
|
|
progress = false;
|
|
|
|
foreach_block (block, cfg) {
|
|
for (int i = 0; i < bitset_words; i++) {
|
|
const BITSET_WORD old_exec_mismatch = bd[block->num].exec_mismatch[i];
|
|
|
|
/* Update exec_mismatch for this block. If the end of a
|
|
* parent block is reachable by an overwrite with
|
|
* inconsistent execution masking, the start of this block
|
|
* is reachable by such an overwrite as well.
|
|
*/
|
|
foreach_list_typed(bblock_link, parent_link, link, &block->parents) {
|
|
bblock_t *parent = parent_link->block;
|
|
bd[block->num].exec_mismatch[i] |= (bd[parent->num].exec_mismatch[i] &
|
|
bd[parent->num].reachin[i]);
|
|
}
|
|
|
|
/* Only consider overwrites with inconsistent execution
|
|
* masking if they are reachable from the copy, since
|
|
* overwrites unreachable from a copy are harmless to that
|
|
* copy.
|
|
*/
|
|
bd[block->num].exec_mismatch[i] &= bd[block->num].reachin[i];
|
|
if (old_exec_mismatch != bd[block->num].exec_mismatch[i])
|
|
progress = true;
|
|
}
|
|
}
|
|
} while (progress);
|
|
}
|
|
|
|
void
|
|
fs_copy_prop_dataflow::dump_block_data() const
|
|
{
|
|
foreach_block (block, cfg) {
|
|
fprintf(stderr, "Block %d [%d, %d] (parents ", block->num,
|
|
block->start_ip, block->end_ip);
|
|
foreach_list_typed(bblock_link, link, link, &block->parents) {
|
|
bblock_t *parent = link->block;
|
|
fprintf(stderr, "%d ", parent->num);
|
|
}
|
|
fprintf(stderr, "):\n");
|
|
fprintf(stderr, " livein = 0x");
|
|
for (int i = 0; i < bitset_words; i++)
|
|
fprintf(stderr, "%08x", bd[block->num].livein[i]);
|
|
fprintf(stderr, ", liveout = 0x");
|
|
for (int i = 0; i < bitset_words; i++)
|
|
fprintf(stderr, "%08x", bd[block->num].liveout[i]);
|
|
fprintf(stderr, ",\n copy = 0x");
|
|
for (int i = 0; i < bitset_words; i++)
|
|
fprintf(stderr, "%08x", bd[block->num].copy[i]);
|
|
fprintf(stderr, ", kill = 0x");
|
|
for (int i = 0; i < bitset_words; i++)
|
|
fprintf(stderr, "%08x", bd[block->num].kill[i]);
|
|
fprintf(stderr, "\n");
|
|
}
|
|
}
|
|
|
|
static bool
|
|
is_logic_op(enum opcode opcode)
|
|
{
|
|
return (opcode == BRW_OPCODE_AND ||
|
|
opcode == BRW_OPCODE_OR ||
|
|
opcode == BRW_OPCODE_XOR ||
|
|
opcode == BRW_OPCODE_NOT);
|
|
}
|
|
|
|
static bool
|
|
can_take_stride(fs_inst *inst, brw_reg_type dst_type,
|
|
unsigned arg, unsigned stride,
|
|
const struct brw_compiler *compiler)
|
|
{
|
|
const struct intel_device_info *devinfo = compiler->devinfo;
|
|
|
|
if (stride > 4)
|
|
return false;
|
|
|
|
/* Bail if the channels of the source need to be aligned to the byte offset
|
|
* of the corresponding channel of the destination, and the provided stride
|
|
* would break this restriction.
|
|
*/
|
|
if (has_dst_aligned_region_restriction(devinfo, inst, dst_type) &&
|
|
!(brw_type_size_bytes(inst->src[arg].type) * stride ==
|
|
brw_type_size_bytes(dst_type) * inst->dst.stride ||
|
|
stride == 0))
|
|
return false;
|
|
|
|
/* 3-source instructions can only be Align16, which restricts what strides
|
|
* they can take. They can only take a stride of 1 (the usual case), or 0
|
|
* with a special "repctrl" bit. But the repctrl bit doesn't work for
|
|
* 64-bit datatypes, so if the source type is 64-bit then only a stride of
|
|
* 1 is allowed. From the Broadwell PRM, Volume 7 "3D Media GPGPU", page
|
|
* 944:
|
|
*
|
|
* This is applicable to 32b datatypes and 16b datatype. 64b datatypes
|
|
* cannot use the replicate control.
|
|
*/
|
|
if (inst->is_3src(compiler)) {
|
|
if (brw_type_size_bytes(inst->src[arg].type) > 4)
|
|
return stride == 1;
|
|
else
|
|
return stride == 1 || stride == 0;
|
|
}
|
|
|
|
if (inst->is_math()) {
|
|
/* Wa_22016140776:
|
|
*
|
|
* Scalar broadcast on HF math (packed or unpacked) must not be used.
|
|
* Compiler must use a mov instruction to expand the scalar value to
|
|
* a vector before using in a HF (packed or unpacked) math operation.
|
|
*
|
|
* Prevent copy propagating a scalar value into a math instruction.
|
|
*/
|
|
if (intel_needs_workaround(devinfo, 22016140776) &&
|
|
stride == 0 && inst->src[arg].type == BRW_TYPE_HF) {
|
|
return false;
|
|
}
|
|
|
|
/* From the Broadwell PRM, Volume 2a "Command Reference - Instructions",
|
|
* page 391 ("Extended Math Function"):
|
|
*
|
|
* The following restrictions apply for align1 mode: Scalar source
|
|
* is supported. Source and destination horizontal stride must be
|
|
* the same.
|
|
*/
|
|
return stride == inst->dst.stride || stride == 0;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
instruction_requires_packed_data(fs_inst *inst)
|
|
{
|
|
switch (inst->opcode) {
|
|
case FS_OPCODE_DDX_FINE:
|
|
case FS_OPCODE_DDX_COARSE:
|
|
case FS_OPCODE_DDY_FINE:
|
|
case FS_OPCODE_DDY_COARSE:
|
|
case SHADER_OPCODE_QUAD_SWIZZLE:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool
|
|
try_copy_propagate(const brw_compiler *compiler, fs_inst *inst,
|
|
acp_entry *entry, int arg,
|
|
const brw::simple_allocator &alloc,
|
|
uint8_t max_polygons)
|
|
{
|
|
if (inst->src[arg].file != VGRF)
|
|
return false;
|
|
|
|
const struct intel_device_info *devinfo = compiler->devinfo;
|
|
|
|
assert(entry->src.file == VGRF || entry->src.file == UNIFORM ||
|
|
entry->src.file == ATTR || entry->src.file == FIXED_GRF);
|
|
|
|
/* Avoid propagating a LOAD_PAYLOAD instruction into another if there is a
|
|
* good chance that we'll be able to eliminate the latter through register
|
|
* coalescing. If only part of the sources of the second LOAD_PAYLOAD can
|
|
* be simplified through copy propagation we would be making register
|
|
* coalescing impossible, ending up with unnecessary copies in the program.
|
|
* This is also the case for is_multi_copy_payload() copies that can only
|
|
* be coalesced when the instruction is lowered into a sequence of MOVs.
|
|
*
|
|
* Worse -- In cases where the ACP entry was the result of CSE combining
|
|
* multiple LOAD_PAYLOAD subexpressions, propagating the first LOAD_PAYLOAD
|
|
* into the second would undo the work of CSE, leading to an infinite
|
|
* optimization loop. Avoid this by detecting LOAD_PAYLOAD copies from CSE
|
|
* temporaries which should match is_coalescing_payload().
|
|
*/
|
|
if (entry->opcode == SHADER_OPCODE_LOAD_PAYLOAD &&
|
|
(is_coalescing_payload(alloc, inst) || is_multi_copy_payload(inst)))
|
|
return false;
|
|
|
|
assert(entry->dst.file == VGRF);
|
|
if (inst->src[arg].nr != entry->dst.nr)
|
|
return false;
|
|
|
|
/* Bail if inst is reading a range that isn't contained in the range
|
|
* that entry is writing.
|
|
*/
|
|
if (!region_contained_in(inst->src[arg], inst->size_read(arg),
|
|
entry->dst, entry->size_written))
|
|
return false;
|
|
|
|
/* Send messages with EOT set are restricted to use g112-g127 (and we
|
|
* sometimes need g127 for other purposes), so avoid copy propagating
|
|
* anything that would make it impossible to satisfy that restriction.
|
|
*/
|
|
if (inst->eot) {
|
|
/* Don't propagate things that are already pinned. */
|
|
if (entry->src.file != VGRF)
|
|
return false;
|
|
|
|
/* We might be propagating from a large register, while the SEND only
|
|
* is reading a portion of it (say the .A channel in an RGBA value).
|
|
* We need to pin both split SEND sources in g112-g126/127, so only
|
|
* allow this if the registers aren't too large.
|
|
*/
|
|
if (inst->opcode == SHADER_OPCODE_SEND && inst->sources >= 4 &&
|
|
entry->src.file == VGRF) {
|
|
int other_src = arg == 2 ? 3 : 2;
|
|
unsigned other_size = inst->src[other_src].file == VGRF ?
|
|
alloc.sizes[inst->src[other_src].nr] :
|
|
inst->size_read(other_src);
|
|
unsigned prop_src_size = alloc.sizes[entry->src.nr];
|
|
if (other_size + prop_src_size > 15)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* we can't generally copy-propagate UD negations because we
|
|
* can end up accessing the resulting values as signed integers
|
|
* instead. See also resolve_ud_negate() and comment in
|
|
* fs_generator::generate_code.
|
|
*/
|
|
if (entry->src.type == BRW_TYPE_UD &&
|
|
entry->src.negate)
|
|
return false;
|
|
|
|
bool has_source_modifiers = entry->src.abs || entry->src.negate;
|
|
|
|
if (has_source_modifiers && !inst->can_do_source_mods(devinfo))
|
|
return false;
|
|
|
|
/* Reject cases that would violate register regioning restrictions. */
|
|
if ((entry->src.file == UNIFORM || !entry->src.is_contiguous()) &&
|
|
(inst->is_send_from_grf() ||
|
|
inst->uses_indirect_addressing())) {
|
|
return false;
|
|
}
|
|
|
|
/* Some instructions implemented in the generator backend, such as
|
|
* derivatives, assume that their operands are packed so we can't
|
|
* generally propagate strided regions to them.
|
|
*/
|
|
const unsigned entry_stride = (entry->src.file == FIXED_GRF ? 1 :
|
|
entry->src.stride);
|
|
if (instruction_requires_packed_data(inst) && entry_stride != 1)
|
|
return false;
|
|
|
|
const brw_reg_type dst_type = (has_source_modifiers &&
|
|
entry->dst.type != inst->src[arg].type) ?
|
|
entry->dst.type : inst->dst.type;
|
|
|
|
/* Bail if the result of composing both strides would exceed the
|
|
* hardware limit.
|
|
*/
|
|
if (!can_take_stride(inst, dst_type, arg,
|
|
entry_stride * inst->src[arg].stride,
|
|
compiler))
|
|
return false;
|
|
|
|
/* From the Cherry Trail/Braswell PRMs, Volume 7: 3D Media GPGPU:
|
|
* EU Overview
|
|
* Register Region Restrictions
|
|
* Special Requirements for Handling Double Precision Data Types :
|
|
*
|
|
* "When source or destination datatype is 64b or operation is integer
|
|
* DWord multiply, regioning in Align1 must follow these rules:
|
|
*
|
|
* 1. Source and Destination horizontal stride must be aligned to the
|
|
* same qword.
|
|
* 2. Regioning must ensure Src.Vstride = Src.Width * Src.Hstride.
|
|
* 3. Source and Destination offset must be the same, except the case
|
|
* of scalar source."
|
|
*
|
|
* Most of this is already checked in can_take_stride(), we're only left
|
|
* with checking 3.
|
|
*/
|
|
if (has_dst_aligned_region_restriction(devinfo, inst, dst_type) &&
|
|
entry_stride != 0 &&
|
|
(reg_offset(inst->dst) % (REG_SIZE * reg_unit(devinfo))) != (reg_offset(entry->src) % (REG_SIZE * reg_unit(devinfo))))
|
|
return false;
|
|
|
|
/*
|
|
* Bail if the composition of both regions would be affected by the Xe2+
|
|
* regioning restrictions that apply to integer types smaller than a dword.
|
|
* See BSpec #56640 for details.
|
|
*/
|
|
const fs_reg tmp = horiz_stride(entry->src, inst->src[arg].stride);
|
|
if (has_subdword_integer_region_restriction(devinfo, inst, &tmp, 1))
|
|
return false;
|
|
|
|
/* The <8;8,0> regions used for FS attributes in multipolygon
|
|
* dispatch mode could violate regioning restrictions, don't copy
|
|
* propagate them in such cases.
|
|
*/
|
|
if (entry->src.file == ATTR && max_polygons > 1 &&
|
|
(has_dst_aligned_region_restriction(devinfo, inst, dst_type) ||
|
|
instruction_requires_packed_data(inst) ||
|
|
(inst->is_3src(compiler) && arg == 2) ||
|
|
entry->dst.type != inst->src[arg].type))
|
|
return false;
|
|
|
|
/* Bail if the source FIXED_GRF region of the copy cannot be trivially
|
|
* composed with the source region of the instruction -- E.g. because the
|
|
* copy uses some extended stride greater than 4 not supported natively by
|
|
* the hardware as a horizontal stride, or because instruction compression
|
|
* could require us to use a vertical stride shorter than a GRF.
|
|
*/
|
|
if (entry->src.file == FIXED_GRF &&
|
|
(inst->src[arg].stride > 4 ||
|
|
inst->dst.component_size(inst->exec_size) >
|
|
inst->src[arg].component_size(inst->exec_size)))
|
|
return false;
|
|
|
|
/* Bail if the instruction type is larger than the execution type of the
|
|
* copy, what implies that each channel is reading multiple channels of the
|
|
* destination of the copy, and simply replacing the sources would give a
|
|
* program with different semantics.
|
|
*/
|
|
if ((brw_type_size_bits(entry->dst.type) < brw_type_size_bits(inst->src[arg].type) ||
|
|
entry->is_partial_write) &&
|
|
inst->opcode != BRW_OPCODE_MOV) {
|
|
return false;
|
|
}
|
|
|
|
/* Bail if the result of composing both strides cannot be expressed
|
|
* as another stride. This avoids, for example, trying to transform
|
|
* this:
|
|
*
|
|
* MOV (8) rX<1>UD rY<0;1,0>UD
|
|
* FOO (8) ... rX<8;8,1>UW
|
|
*
|
|
* into this:
|
|
*
|
|
* FOO (8) ... rY<0;1,0>UW
|
|
*
|
|
* Which would have different semantics.
|
|
*/
|
|
if (entry_stride != 1 &&
|
|
(inst->src[arg].stride *
|
|
brw_type_size_bytes(inst->src[arg].type)) % brw_type_size_bytes(entry->src.type) != 0)
|
|
return false;
|
|
|
|
/* Since semantics of source modifiers are type-dependent we need to
|
|
* ensure that the meaning of the instruction remains the same if we
|
|
* change the type. If the sizes of the types are different the new
|
|
* instruction will read a different amount of data than the original
|
|
* and the semantics will always be different.
|
|
*/
|
|
if (has_source_modifiers &&
|
|
entry->dst.type != inst->src[arg].type &&
|
|
(!inst->can_change_types() ||
|
|
brw_type_size_bits(entry->dst.type) != brw_type_size_bits(inst->src[arg].type)))
|
|
return false;
|
|
|
|
if ((entry->src.negate || entry->src.abs) &&
|
|
is_logic_op(inst->opcode)) {
|
|
return false;
|
|
}
|
|
|
|
/* Save the offset of inst->src[arg] relative to entry->dst for it to be
|
|
* applied later.
|
|
*/
|
|
const unsigned rel_offset = inst->src[arg].offset - entry->dst.offset;
|
|
|
|
/* Fold the copy into the instruction consuming it. */
|
|
inst->src[arg].file = entry->src.file;
|
|
inst->src[arg].nr = entry->src.nr;
|
|
inst->src[arg].subnr = entry->src.subnr;
|
|
inst->src[arg].offset = entry->src.offset;
|
|
|
|
/* Compose the strides of both regions. */
|
|
if (entry->src.file == FIXED_GRF) {
|
|
if (inst->src[arg].stride) {
|
|
const unsigned orig_width = 1 << entry->src.width;
|
|
const unsigned reg_width =
|
|
REG_SIZE / (brw_type_size_bytes(inst->src[arg].type) *
|
|
inst->src[arg].stride);
|
|
inst->src[arg].width = cvt(MIN2(orig_width, reg_width)) - 1;
|
|
inst->src[arg].hstride = cvt(inst->src[arg].stride);
|
|
inst->src[arg].vstride = inst->src[arg].hstride + inst->src[arg].width;
|
|
} else {
|
|
inst->src[arg].vstride = inst->src[arg].hstride =
|
|
inst->src[arg].width = 0;
|
|
}
|
|
|
|
inst->src[arg].stride = 1;
|
|
|
|
/* Hopefully no Align16 around here... */
|
|
assert(entry->src.swizzle == BRW_SWIZZLE_XYZW);
|
|
inst->src[arg].swizzle = entry->src.swizzle;
|
|
} else {
|
|
inst->src[arg].stride *= entry->src.stride;
|
|
}
|
|
|
|
/* Compute the first component of the copy that the instruction is
|
|
* reading, and the base byte offset within that component.
|
|
*/
|
|
assert(entry->dst.stride == 1);
|
|
const unsigned component = rel_offset / brw_type_size_bytes(entry->dst.type);
|
|
const unsigned suboffset = rel_offset % brw_type_size_bytes(entry->dst.type);
|
|
|
|
/* Calculate the byte offset at the origin of the copy of the given
|
|
* component and suboffset.
|
|
*/
|
|
inst->src[arg] = byte_offset(inst->src[arg],
|
|
component * entry_stride * brw_type_size_bytes(entry->src.type) + suboffset);
|
|
|
|
if (has_source_modifiers) {
|
|
if (entry->dst.type != inst->src[arg].type) {
|
|
/* We are propagating source modifiers from a MOV with a different
|
|
* type. If we got here, then we can just change the source and
|
|
* destination types of the instruction and keep going.
|
|
*/
|
|
for (int i = 0; i < inst->sources; i++) {
|
|
inst->src[i].type = entry->dst.type;
|
|
}
|
|
inst->dst.type = entry->dst.type;
|
|
}
|
|
|
|
if (!inst->src[arg].abs) {
|
|
inst->src[arg].abs = entry->src.abs;
|
|
inst->src[arg].negate ^= entry->src.negate;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
try_constant_propagate_value(fs_reg val, brw_reg_type dst_type,
|
|
fs_inst *inst, int arg)
|
|
{
|
|
bool progress = false;
|
|
|
|
if (brw_type_size_bytes(val.type) > 4)
|
|
return false;
|
|
|
|
/* If the size of the use type is smaller than the size of the entry,
|
|
* clamp the value to the range of the use type. This enables constant
|
|
* copy propagation in cases like
|
|
*
|
|
*
|
|
* mov(8) g12<1>UD 0x0000000cUD
|
|
* ...
|
|
* mul(8) g47<1>D g86<8,8,1>D g12<16,8,2>W
|
|
*/
|
|
if (brw_type_size_bits(inst->src[arg].type) <
|
|
brw_type_size_bits(dst_type)) {
|
|
if (brw_type_size_bytes(inst->src[arg].type) != 2 ||
|
|
brw_type_size_bytes(dst_type) != 4)
|
|
return false;
|
|
|
|
assert(inst->src[arg].subnr == 0 || inst->src[arg].subnr == 2);
|
|
|
|
/* When subnr is 0, we want the lower 16-bits, and when it's 2, we
|
|
* want the upper 16-bits. No other values of subnr are valid for a
|
|
* UD source.
|
|
*/
|
|
const uint16_t v = inst->src[arg].subnr == 2 ? val.ud >> 16 : val.ud;
|
|
|
|
val.ud = v | (uint32_t(v) << 16);
|
|
}
|
|
|
|
val.type = inst->src[arg].type;
|
|
|
|
if (inst->src[arg].abs) {
|
|
if (is_logic_op(inst->opcode) ||
|
|
!fs_reg_abs_immediate(&val)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (inst->src[arg].negate) {
|
|
if (is_logic_op(inst->opcode) ||
|
|
!fs_reg_negate_immediate(&val)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
switch (inst->opcode) {
|
|
case BRW_OPCODE_MOV:
|
|
case SHADER_OPCODE_LOAD_PAYLOAD:
|
|
case SHADER_OPCODE_POW:
|
|
case FS_OPCODE_PACK:
|
|
inst->src[arg] = val;
|
|
progress = true;
|
|
break;
|
|
|
|
case BRW_OPCODE_SUBB:
|
|
if (arg == 1) {
|
|
inst->src[arg] = val;
|
|
progress = true;
|
|
}
|
|
break;
|
|
|
|
case BRW_OPCODE_MACH:
|
|
case BRW_OPCODE_MUL:
|
|
case SHADER_OPCODE_MULH:
|
|
case BRW_OPCODE_ADD:
|
|
case BRW_OPCODE_XOR:
|
|
case BRW_OPCODE_ADDC:
|
|
if (arg == 1) {
|
|
inst->src[arg] = val;
|
|
progress = true;
|
|
} else if (arg == 0 && inst->src[1].file != IMM) {
|
|
/* We used to not copy propagate the constant in situations like
|
|
*
|
|
* mov(8) g8<1>D 0x7fffffffD
|
|
* mul(8) g16<1>D g8<8,8,1>D g15<16,8,2>W
|
|
*
|
|
* On platforms that only have a 32x16 multiplier, this would
|
|
* result in lowering the multiply to
|
|
*
|
|
* mul(8) g15<1>D g14<8,8,1>D 0xffffUW
|
|
* mul(8) g16<1>D g14<8,8,1>D 0x7fffUW
|
|
* add(8) g15.1<2>UW g15.1<16,8,2>UW g16<16,8,2>UW
|
|
*
|
|
* On Gfx8 and Gfx9, which have the full 32x32 multiplier, it
|
|
* would results in
|
|
*
|
|
* mul(8) g16<1>D g15<16,8,2>W 0x7fffffffD
|
|
*
|
|
* Volume 2a of the Skylake PRM says:
|
|
*
|
|
* When multiplying a DW and any lower precision integer, the
|
|
* DW operand must on src0.
|
|
*
|
|
* So it would have been invalid. However, brw_fs_combine_constants
|
|
* will now "fix" the constant.
|
|
*/
|
|
if (inst->opcode == BRW_OPCODE_MUL &&
|
|
brw_type_size_bytes(inst->src[1].type) < 4 &&
|
|
(inst->src[0].type == BRW_TYPE_D ||
|
|
inst->src[0].type == BRW_TYPE_UD)) {
|
|
inst->src[0] = val;
|
|
inst->src[0].type = BRW_TYPE_D;
|
|
progress = true;
|
|
break;
|
|
}
|
|
|
|
/* Fit this constant in by commuting the operands.
|
|
* Exception: we can't do this for 32-bit integer MUL/MACH
|
|
* because it's asymmetric.
|
|
*
|
|
* The BSpec says for Broadwell that
|
|
*
|
|
* "When multiplying DW x DW, the dst cannot be accumulator."
|
|
*
|
|
* Integer MUL with a non-accumulator destination will be lowered
|
|
* by lower_integer_multiplication(), so don't restrict it.
|
|
*/
|
|
if (((inst->opcode == BRW_OPCODE_MUL &&
|
|
inst->dst.is_accumulator()) ||
|
|
inst->opcode == BRW_OPCODE_MACH) &&
|
|
(inst->src[1].type == BRW_TYPE_D ||
|
|
inst->src[1].type == BRW_TYPE_UD))
|
|
break;
|
|
inst->src[0] = inst->src[1];
|
|
inst->src[1] = val;
|
|
progress = true;
|
|
}
|
|
break;
|
|
|
|
case BRW_OPCODE_ADD3:
|
|
/* add3 can have a single imm16 source. Proceed if the source type is
|
|
* already W or UW or the value can be coerced to one of those types.
|
|
*/
|
|
if (val.type == BRW_TYPE_W || val.type == BRW_TYPE_UW)
|
|
; /* Nothing to do. */
|
|
else if (val.ud <= 0xffff)
|
|
val = brw_imm_uw(val.ud);
|
|
else if (val.d >= -0x8000 && val.d <= 0x7fff)
|
|
val = brw_imm_w(val.d);
|
|
else
|
|
break;
|
|
|
|
if (arg == 2) {
|
|
inst->src[arg] = val;
|
|
progress = true;
|
|
} else if (inst->src[2].file != IMM) {
|
|
inst->src[arg] = inst->src[2];
|
|
inst->src[2] = val;
|
|
progress = true;
|
|
}
|
|
|
|
break;
|
|
|
|
case BRW_OPCODE_CMP:
|
|
if (arg == 1) {
|
|
inst->src[arg] = val;
|
|
progress = true;
|
|
} else if (arg == 0 && inst->src[1].file != IMM) {
|
|
enum brw_conditional_mod new_cmod;
|
|
|
|
new_cmod = brw_swap_cmod(inst->conditional_mod);
|
|
if (new_cmod != BRW_CONDITIONAL_NONE) {
|
|
/* Fit this constant in by swapping the operands and
|
|
* flipping the test
|
|
*/
|
|
inst->src[0] = inst->src[1];
|
|
inst->src[1] = val;
|
|
inst->conditional_mod = new_cmod;
|
|
progress = true;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case BRW_OPCODE_SEL:
|
|
if (arg == 1) {
|
|
inst->src[arg] = val;
|
|
progress = true;
|
|
} else if (arg == 0) {
|
|
if (inst->src[1].file != IMM &&
|
|
(inst->conditional_mod == BRW_CONDITIONAL_NONE ||
|
|
/* Only GE and L are commutative. */
|
|
inst->conditional_mod == BRW_CONDITIONAL_GE ||
|
|
inst->conditional_mod == BRW_CONDITIONAL_L)) {
|
|
inst->src[0] = inst->src[1];
|
|
inst->src[1] = val;
|
|
|
|
/* If this was predicated, flipping operands means
|
|
* we also need to flip the predicate.
|
|
*/
|
|
if (inst->conditional_mod == BRW_CONDITIONAL_NONE) {
|
|
inst->predicate_inverse =
|
|
!inst->predicate_inverse;
|
|
}
|
|
} else {
|
|
inst->src[0] = val;
|
|
}
|
|
|
|
progress = true;
|
|
}
|
|
break;
|
|
|
|
case BRW_OPCODE_CSEL:
|
|
assert(inst->conditional_mod != BRW_CONDITIONAL_NONE);
|
|
|
|
if (arg == 0 &&
|
|
inst->src[1].file != IMM &&
|
|
(!brw_type_is_float(inst->src[1].type) ||
|
|
inst->conditional_mod == BRW_CONDITIONAL_NZ ||
|
|
inst->conditional_mod == BRW_CONDITIONAL_Z)) {
|
|
/* Only EQ and NE are commutative due to NaN issues. */
|
|
inst->src[0] = inst->src[1];
|
|
inst->src[1] = val;
|
|
inst->conditional_mod = brw_negate_cmod(inst->conditional_mod);
|
|
} else {
|
|
/* While CSEL is a 3-source instruction, the last source should never
|
|
* be a constant. We'll support that, but should it ever happen, we
|
|
* should add support to the constant folding pass.
|
|
*/
|
|
inst->src[arg] = val;
|
|
}
|
|
|
|
progress = true;
|
|
break;
|
|
|
|
case FS_OPCODE_FB_WRITE_LOGICAL:
|
|
/* The stencil and omask sources of FS_OPCODE_FB_WRITE_LOGICAL are
|
|
* bit-cast using a strided region so they cannot be immediates.
|
|
*/
|
|
if (arg != FB_WRITE_LOGICAL_SRC_SRC_STENCIL &&
|
|
arg != FB_WRITE_LOGICAL_SRC_OMASK) {
|
|
inst->src[arg] = val;
|
|
progress = true;
|
|
}
|
|
break;
|
|
|
|
case SHADER_OPCODE_INT_QUOTIENT:
|
|
case SHADER_OPCODE_INT_REMAINDER:
|
|
case BRW_OPCODE_AND:
|
|
case BRW_OPCODE_ASR:
|
|
case BRW_OPCODE_BFE:
|
|
case BRW_OPCODE_BFI1:
|
|
case BRW_OPCODE_BFI2:
|
|
case BRW_OPCODE_ROL:
|
|
case BRW_OPCODE_ROR:
|
|
case BRW_OPCODE_SHL:
|
|
case BRW_OPCODE_SHR:
|
|
case BRW_OPCODE_OR:
|
|
case SHADER_OPCODE_TEX_LOGICAL:
|
|
case SHADER_OPCODE_TXD_LOGICAL:
|
|
case SHADER_OPCODE_TXF_LOGICAL:
|
|
case SHADER_OPCODE_TXL_LOGICAL:
|
|
case SHADER_OPCODE_TXS_LOGICAL:
|
|
case FS_OPCODE_TXB_LOGICAL:
|
|
case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
|
|
case SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL:
|
|
case SHADER_OPCODE_TXF_MCS_LOGICAL:
|
|
case SHADER_OPCODE_LOD_LOGICAL:
|
|
case SHADER_OPCODE_TG4_BIAS_LOGICAL:
|
|
case SHADER_OPCODE_TG4_EXPLICIT_LOD_LOGICAL:
|
|
case SHADER_OPCODE_TG4_IMPLICIT_LOD_LOGICAL:
|
|
case SHADER_OPCODE_TG4_LOGICAL:
|
|
case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
|
|
case SHADER_OPCODE_TG4_OFFSET_LOD_LOGICAL:
|
|
case SHADER_OPCODE_TG4_OFFSET_BIAS_LOGICAL:
|
|
case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
|
|
case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
|
|
case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
|
|
case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
|
|
case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
|
|
case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
|
|
case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
|
|
case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
|
|
case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
|
|
case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
|
|
case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
|
|
case SHADER_OPCODE_BROADCAST:
|
|
case BRW_OPCODE_MAD:
|
|
case BRW_OPCODE_LRP:
|
|
case FS_OPCODE_PACK_HALF_2x16_SPLIT:
|
|
case SHADER_OPCODE_SHUFFLE:
|
|
inst->src[arg] = val;
|
|
progress = true;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return progress;
|
|
}
|
|
|
|
|
|
static bool
|
|
try_constant_propagate(fs_inst *inst, acp_entry *entry, int arg)
|
|
{
|
|
if (inst->src[arg].file != VGRF)
|
|
return false;
|
|
|
|
assert(entry->dst.file == VGRF);
|
|
if (inst->src[arg].nr != entry->dst.nr)
|
|
return false;
|
|
|
|
/* Bail if inst is reading a range that isn't contained in the range
|
|
* that entry is writing.
|
|
*/
|
|
if (!region_contained_in(inst->src[arg], inst->size_read(arg),
|
|
entry->dst, entry->size_written))
|
|
return false;
|
|
|
|
/* If the size of the use type is larger than the size of the entry
|
|
* type, the entry doesn't contain all of the data that the user is
|
|
* trying to use.
|
|
*/
|
|
if (brw_type_size_bits(inst->src[arg].type) >
|
|
brw_type_size_bits(entry->dst.type))
|
|
return false;
|
|
|
|
return try_constant_propagate_value(entry->src, entry->dst.type, inst, arg);
|
|
}
|
|
|
|
static bool
|
|
can_propagate_from(fs_inst *inst)
|
|
{
|
|
return (inst->opcode == BRW_OPCODE_MOV &&
|
|
inst->dst.file == VGRF &&
|
|
((inst->src[0].file == VGRF &&
|
|
!grf_regions_overlap(inst->dst, inst->size_written,
|
|
inst->src[0], inst->size_read(0))) ||
|
|
inst->src[0].file == ATTR ||
|
|
inst->src[0].file == UNIFORM ||
|
|
inst->src[0].file == IMM ||
|
|
(inst->src[0].file == FIXED_GRF &&
|
|
inst->src[0].is_contiguous())) &&
|
|
inst->src[0].type == inst->dst.type &&
|
|
!inst->saturate &&
|
|
/* Subset of !is_partial_write() conditions. */
|
|
!inst->predicate && inst->dst.is_contiguous()) ||
|
|
is_identity_payload(FIXED_GRF, inst);
|
|
}
|
|
|
|
static void
|
|
commute_immediates(fs_inst *inst)
|
|
{
|
|
/* ADD3 can only have the immediate as src0. */
|
|
if (inst->opcode == BRW_OPCODE_ADD3) {
|
|
if (inst->src[2].file == IMM) {
|
|
const auto src0 = inst->src[0];
|
|
inst->src[0] = inst->src[2];
|
|
inst->src[2] = src0;
|
|
}
|
|
}
|
|
|
|
/* If only one of the sources of a 2-source, commutative instruction (e.g.,
|
|
* AND) is immediate, it must be src1. If both are immediate, opt_algebraic
|
|
* should fold it away.
|
|
*/
|
|
if (inst->sources == 2 && inst->is_commutative() &&
|
|
inst->src[0].file == IMM && inst->src[1].file != IMM) {
|
|
const auto src1 = inst->src[1];
|
|
inst->src[1] = inst->src[0];
|
|
inst->src[0] = src1;
|
|
}
|
|
}
|
|
|
|
/* Walks a basic block and does copy propagation on it using the acp
|
|
* list.
|
|
*/
|
|
static bool
|
|
opt_copy_propagation_local(const brw_compiler *compiler, linear_ctx *lin_ctx,
|
|
bblock_t *block, struct acp &acp,
|
|
const brw::simple_allocator &alloc,
|
|
uint8_t max_polygons)
|
|
{
|
|
bool progress = false;
|
|
|
|
foreach_inst_in_block(fs_inst, inst, block) {
|
|
/* Try propagating into this instruction. */
|
|
bool instruction_progress = false;
|
|
for (int i = inst->sources - 1; i >= 0; i--) {
|
|
if (inst->src[i].file != VGRF)
|
|
continue;
|
|
|
|
for (auto iter = acp.find_by_dst(inst->src[i].nr);
|
|
iter != acp.end() && (*iter)->dst.nr == inst->src[i].nr;
|
|
++iter) {
|
|
if ((*iter)->src.file == IMM) {
|
|
if (try_constant_propagate(inst, *iter, i)) {
|
|
instruction_progress = true;
|
|
break;
|
|
}
|
|
} else {
|
|
if (try_copy_propagate(compiler, inst, *iter, i, alloc,
|
|
max_polygons)) {
|
|
instruction_progress = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (instruction_progress) {
|
|
progress = true;
|
|
commute_immediates(inst);
|
|
}
|
|
|
|
/* kill the destination from the ACP */
|
|
if (inst->dst.file == VGRF || inst->dst.file == FIXED_GRF) {
|
|
for (auto iter = acp.find_by_dst(inst->dst.nr);
|
|
iter != acp.end() && (*iter)->dst.nr == inst->dst.nr;
|
|
++iter) {
|
|
if (grf_regions_overlap((*iter)->dst, (*iter)->size_written,
|
|
inst->dst, inst->size_written))
|
|
acp.remove(*iter);
|
|
}
|
|
|
|
for (auto iter = acp.find_by_src(inst->dst.nr);
|
|
iter != acp.end() && (*iter)->src.nr == inst->dst.nr;
|
|
++iter) {
|
|
/* Make sure we kill the entry if this instruction overwrites
|
|
* _any_ of the registers that it reads
|
|
*/
|
|
if (grf_regions_overlap((*iter)->src, (*iter)->size_read,
|
|
inst->dst, inst->size_written))
|
|
acp.remove(*iter);
|
|
}
|
|
}
|
|
|
|
/* If this instruction's source could potentially be folded into the
|
|
* operand of another instruction, add it to the ACP.
|
|
*/
|
|
if (can_propagate_from(inst)) {
|
|
acp_entry *entry = linear_zalloc(lin_ctx, acp_entry);
|
|
entry->dst = inst->dst;
|
|
entry->src = inst->src[0];
|
|
entry->size_written = inst->size_written;
|
|
for (unsigned i = 0; i < inst->sources; i++)
|
|
entry->size_read += inst->size_read(i);
|
|
entry->opcode = inst->opcode;
|
|
entry->is_partial_write = inst->is_partial_write();
|
|
entry->force_writemask_all = inst->force_writemask_all;
|
|
acp.add(entry);
|
|
} else if (inst->opcode == SHADER_OPCODE_LOAD_PAYLOAD &&
|
|
inst->dst.file == VGRF) {
|
|
int offset = 0;
|
|
for (int i = 0; i < inst->sources; i++) {
|
|
int effective_width = i < inst->header_size ? 8 : inst->exec_size;
|
|
const unsigned size_written =
|
|
effective_width * brw_type_size_bytes(inst->src[i].type);
|
|
if (inst->src[i].file == VGRF ||
|
|
(inst->src[i].file == FIXED_GRF &&
|
|
inst->src[i].is_contiguous())) {
|
|
const brw_reg_type t = i < inst->header_size ?
|
|
BRW_TYPE_UD : inst->src[i].type;
|
|
fs_reg dst = byte_offset(retype(inst->dst, t), offset);
|
|
if (!dst.equals(inst->src[i])) {
|
|
acp_entry *entry = linear_zalloc(lin_ctx, acp_entry);
|
|
entry->dst = dst;
|
|
entry->src = retype(inst->src[i], t);
|
|
entry->size_written = size_written;
|
|
entry->size_read = inst->size_read(i);
|
|
entry->opcode = inst->opcode;
|
|
entry->force_writemask_all = inst->force_writemask_all;
|
|
acp.add(entry);
|
|
}
|
|
}
|
|
offset += size_written;
|
|
}
|
|
}
|
|
}
|
|
|
|
return progress;
|
|
}
|
|
|
|
bool
|
|
brw_fs_opt_copy_propagation(fs_visitor &s)
|
|
{
|
|
bool progress = false;
|
|
void *copy_prop_ctx = ralloc_context(NULL);
|
|
linear_ctx *lin_ctx = linear_context(copy_prop_ctx);
|
|
struct acp out_acp[s.cfg->num_blocks];
|
|
|
|
const fs_live_variables &live = s.live_analysis.require();
|
|
|
|
/* First, walk through each block doing local copy propagation and getting
|
|
* the set of copies available at the end of the block.
|
|
*/
|
|
foreach_block (block, s.cfg) {
|
|
progress = opt_copy_propagation_local(s.compiler, lin_ctx, block,
|
|
out_acp[block->num], s.alloc,
|
|
s.max_polygons) || progress;
|
|
|
|
/* If the destination of an ACP entry exists only within this block,
|
|
* then there's no need to keep it for dataflow analysis. We can delete
|
|
* it from the out_acp table and avoid growing the bitsets any bigger
|
|
* than we absolutely have to.
|
|
*
|
|
* Because nothing in opt_copy_propagation_local touches the block
|
|
* start/end IPs and opt_copy_propagation_local is incapable of
|
|
* extending the live range of an ACP destination beyond the block,
|
|
* it's safe to use the liveness information in this way.
|
|
*/
|
|
for (auto iter = out_acp[block->num].begin();
|
|
iter != out_acp[block->num].end(); ++iter) {
|
|
assert((*iter)->dst.file == VGRF);
|
|
if (block->start_ip <= live.vgrf_start[(*iter)->dst.nr] &&
|
|
live.vgrf_end[(*iter)->dst.nr] <= block->end_ip) {
|
|
out_acp[block->num].remove(*iter);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Do dataflow analysis for those available copies. */
|
|
fs_copy_prop_dataflow dataflow(lin_ctx, s.cfg, live, out_acp);
|
|
|
|
/* Next, re-run local copy propagation, this time with the set of copies
|
|
* provided by the dataflow analysis available at the start of a block.
|
|
*/
|
|
foreach_block (block, s.cfg) {
|
|
struct acp in_acp;
|
|
|
|
for (int i = 0; i < dataflow.num_acp; i++) {
|
|
if (BITSET_TEST(dataflow.bd[block->num].livein, i) &&
|
|
!BITSET_TEST(dataflow.bd[block->num].exec_mismatch, i)) {
|
|
struct acp_entry *entry = dataflow.acp[i];
|
|
in_acp.add(entry);
|
|
}
|
|
}
|
|
|
|
progress = opt_copy_propagation_local(s.compiler, lin_ctx, block,
|
|
in_acp, s.alloc, s.max_polygons) ||
|
|
progress;
|
|
}
|
|
|
|
ralloc_free(copy_prop_ctx);
|
|
|
|
if (progress)
|
|
s.invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW |
|
|
DEPENDENCY_INSTRUCTION_DETAIL);
|
|
|
|
return progress;
|
|
}
|
|
|
|
static bool
|
|
try_copy_propagate_def(const brw_compiler *compiler,
|
|
const brw::simple_allocator &alloc,
|
|
fs_inst *def, const fs_reg &val,
|
|
fs_inst *inst, int arg,
|
|
uint8_t max_polygons)
|
|
{
|
|
const struct intel_device_info *devinfo = compiler->devinfo;
|
|
|
|
assert(val.file != BAD_FILE);
|
|
|
|
/* We can't generally copy-propagate UD negations because we can end up
|
|
* accessing the resulting values as signed integers instead.
|
|
*/
|
|
if (val.negate && val.type == BRW_TYPE_UD)
|
|
return false;
|
|
|
|
/* Bail if the instruction type is larger than the execution type of the
|
|
* copy, what implies that each channel is reading multiple channels of the
|
|
* destination of the copy, and simply replacing the sources would give a
|
|
* program with different semantics.
|
|
*/
|
|
if (inst->opcode != BRW_OPCODE_MOV &&
|
|
brw_type_size_bits(def->dst.type) <
|
|
brw_type_size_bits(inst->src[arg].type))
|
|
return false;
|
|
|
|
const bool has_source_modifiers = val.abs || val.negate;
|
|
|
|
if (has_source_modifiers) {
|
|
if (is_logic_op(inst->opcode) || !inst->can_do_source_mods(devinfo))
|
|
return false;
|
|
|
|
/* Since semantics of source modifiers are type-dependent we need to
|
|
* ensure that the meaning of the instruction remains the same if we
|
|
* change the type. If the sizes of the types are different the new
|
|
* instruction will read a different amount of data than the original
|
|
* and the semantics will always be different.
|
|
*/
|
|
if (def->dst.type != inst->src[arg].type &&
|
|
(!inst->can_change_types() ||
|
|
brw_type_size_bits(def->dst.type) !=
|
|
brw_type_size_bits(inst->src[arg].type)))
|
|
return false;
|
|
}
|
|
|
|
/* Send messages with EOT set are restricted to use g112-g127 (and we
|
|
* sometimes need g127 for other purposes), so avoid copy propagating
|
|
* anything that would make it impossible to satisfy that restriction.
|
|
*/
|
|
if (inst->eot) {
|
|
/* Don't propagate things that are already pinned. */
|
|
if (val.file != VGRF)
|
|
return false;
|
|
|
|
/* We might be propagating from a large register, while the SEND only
|
|
* is reading a portion of it (say the .A channel in an RGBA value).
|
|
* We need to pin both split SEND sources in g112-g126/127, so only
|
|
* allow this if the registers aren't too large.
|
|
*/
|
|
if (inst->opcode == SHADER_OPCODE_SEND && inst->sources >= 4 &&
|
|
val.file == VGRF) {
|
|
int other_src = arg == 2 ? 3 : 2;
|
|
unsigned other_size = inst->src[other_src].file == VGRF ?
|
|
alloc.sizes[inst->src[other_src].nr] :
|
|
inst->size_read(other_src);
|
|
unsigned prop_src_size = alloc.sizes[val.nr];
|
|
if (other_size + prop_src_size > 15)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Reject cases that would violate register regioning restrictions. */
|
|
if ((val.file == UNIFORM || !val.is_contiguous()) &&
|
|
(inst->is_send_from_grf() || inst->uses_indirect_addressing())) {
|
|
return false;
|
|
}
|
|
|
|
/* Some instructions implemented in the generator backend, such as
|
|
* derivatives, assume that their operands are packed so we can't
|
|
* generally propagate strided regions to them.
|
|
*/
|
|
const unsigned entry_stride = val.file == FIXED_GRF ? 1 : val.stride;
|
|
if (instruction_requires_packed_data(inst) && entry_stride != 1)
|
|
return false;
|
|
|
|
const brw_reg_type dst_type = (has_source_modifiers &&
|
|
def->dst.type != inst->src[arg].type) ?
|
|
def->dst.type : inst->dst.type;
|
|
|
|
/* Bail if the result of composing both strides would exceed the
|
|
* hardware limit.
|
|
*/
|
|
if (!can_take_stride(inst, dst_type, arg,
|
|
entry_stride * inst->src[arg].stride,
|
|
compiler))
|
|
return false;
|
|
|
|
/* Bail if the source FIXED_GRF region of the copy cannot be trivially
|
|
* composed with the source region of the instruction -- E.g. because the
|
|
* copy uses some extended stride greater than 4 not supported natively by
|
|
* the hardware as a horizontal stride, or because instruction compression
|
|
* could require us to use a vertical stride shorter than a GRF.
|
|
*/
|
|
if (val.file == FIXED_GRF &&
|
|
(inst->src[arg].stride > 4 ||
|
|
inst->dst.component_size(inst->exec_size) >
|
|
inst->src[arg].component_size(inst->exec_size)))
|
|
return false;
|
|
|
|
/* Bail if the result of composing both strides cannot be expressed
|
|
* as another stride. This avoids, for example, trying to transform
|
|
* this:
|
|
*
|
|
* MOV (8) rX<1>UD rY<0;1,0>UD
|
|
* FOO (8) ... rX<8;8,1>UW
|
|
*
|
|
* into this:
|
|
*
|
|
* FOO (8) ... rY<0;1,0>UW
|
|
*
|
|
* Which would have different semantics.
|
|
*/
|
|
if (entry_stride != 1 &&
|
|
(inst->src[arg].stride *
|
|
brw_type_size_bytes(inst->src[arg].type)) % brw_type_size_bytes(val.type) != 0)
|
|
return false;
|
|
|
|
/* From the Cherry Trail/Braswell PRMs, Volume 7: 3D Media GPGPU:
|
|
* EU Overview
|
|
* Register Region Restrictions
|
|
* Special Requirements for Handling Double Precision Data Types :
|
|
*
|
|
* "When source or destination datatype is 64b or operation is integer
|
|
* DWord multiply, regioning in Align1 must follow these rules:
|
|
*
|
|
* 1. Source and Destination horizontal stride must be aligned to the
|
|
* same qword.
|
|
* 2. Regioning must ensure Src.Vstride = Src.Width * Src.Hstride.
|
|
* 3. Source and Destination offset must be the same, except the case
|
|
* of scalar source."
|
|
*
|
|
* Most of this is already checked in can_take_stride(), we're only left
|
|
* with checking 3.
|
|
*/
|
|
if (has_dst_aligned_region_restriction(devinfo, inst, dst_type) &&
|
|
entry_stride != 0 &&
|
|
(reg_offset(inst->dst) % (REG_SIZE * reg_unit(devinfo))) != (reg_offset(val) % (REG_SIZE * reg_unit(devinfo))))
|
|
return false;
|
|
|
|
/* The <8;8,0> regions used for FS attributes in multipolygon
|
|
* dispatch mode could violate regioning restrictions, don't copy
|
|
* propagate them in such cases.
|
|
*/
|
|
if (max_polygons > 1 && val.file == ATTR &&
|
|
(has_dst_aligned_region_restriction(devinfo, inst, dst_type) ||
|
|
instruction_requires_packed_data(inst) ||
|
|
(inst->is_3src(compiler) && arg == 2) ||
|
|
def->dst.type != inst->src[arg].type))
|
|
return false;
|
|
|
|
/* Fold the copy into the instruction consuming it. */
|
|
inst->src[arg].file = val.file;
|
|
inst->src[arg].nr = val.nr;
|
|
inst->src[arg].subnr = val.subnr;
|
|
inst->src[arg].offset = val.offset;
|
|
|
|
/* Compose the strides of both regions. */
|
|
if (val.file == FIXED_GRF) {
|
|
if (inst->src[arg].stride) {
|
|
const unsigned orig_width = 1 << val.width;
|
|
const unsigned reg_width =
|
|
REG_SIZE / (brw_type_size_bytes(inst->src[arg].type) *
|
|
inst->src[arg].stride);
|
|
inst->src[arg].width = cvt(MIN2(orig_width, reg_width)) - 1;
|
|
inst->src[arg].hstride = cvt(inst->src[arg].stride);
|
|
inst->src[arg].vstride = inst->src[arg].hstride + inst->src[arg].width;
|
|
} else {
|
|
inst->src[arg].vstride = inst->src[arg].hstride =
|
|
inst->src[arg].width = 0;
|
|
}
|
|
|
|
inst->src[arg].stride = 1;
|
|
|
|
/* Hopefully no Align16 around here... */
|
|
assert(val.swizzle == BRW_SWIZZLE_XYZW);
|
|
inst->src[arg].swizzle = val.swizzle;
|
|
} else {
|
|
inst->src[arg].stride *= val.stride;
|
|
}
|
|
|
|
/* Handle NoMask cases where the def replicates a small scalar to a number
|
|
* of channels, but the use is a lower SIMD width but larger type, so each
|
|
* invocation reads multiple channels worth of data, e.g.
|
|
*
|
|
* mov(16) vgrf1:UW, u0<0>:UW NoMask
|
|
* mov(8) vgrf2:UD, vgrf1:UD NoMask group0
|
|
*
|
|
* In this case, we should just use the scalar's type.
|
|
*/
|
|
if (val.stride == 0 &&
|
|
inst->opcode == BRW_OPCODE_MOV &&
|
|
inst->force_writemask_all && def->force_writemask_all &&
|
|
inst->exec_size < def->exec_size &&
|
|
(inst->exec_size * brw_type_size_bytes(inst->src[arg].type) ==
|
|
def->exec_size * brw_type_size_bytes(val.type))) {
|
|
inst->src[arg].type = val.type;
|
|
inst->dst.type = val.type;
|
|
inst->exec_size = def->exec_size;
|
|
}
|
|
|
|
if (has_source_modifiers) {
|
|
if (def->dst.type != inst->src[arg].type) {
|
|
/* We are propagating source modifiers from a MOV with a different
|
|
* type. If we got here, then we can just change the source and
|
|
* destination types of the instruction and keep going.
|
|
*/
|
|
for (int i = 0; i < inst->sources; i++) {
|
|
inst->src[i].type = def->dst.type;
|
|
}
|
|
inst->dst.type = def->dst.type;
|
|
}
|
|
|
|
if (!inst->src[arg].abs) {
|
|
inst->src[arg].abs = val.abs;
|
|
inst->src[arg].negate ^= val.negate;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
try_constant_propagate_def(fs_inst *def, fs_reg val, fs_inst *inst, int arg)
|
|
{
|
|
/* Bail if inst is reading more than a single vector component of entry */
|
|
if (inst->size_read(arg) > def->dst.component_size(inst->exec_size))
|
|
return false;
|
|
|
|
return try_constant_propagate_value(val, def->dst.type, inst, arg);
|
|
}
|
|
|
|
/**
|
|
* Handle cases like UW subreads of a UD immediate, with an offset.
|
|
*/
|
|
static fs_reg
|
|
extract_imm(fs_reg val, brw_reg_type type, unsigned offset)
|
|
{
|
|
assert(val.file == IMM);
|
|
|
|
const unsigned bitsize = brw_type_size_bits(type);
|
|
|
|
if (offset == 0 || bitsize == brw_type_size_bits(val.type))
|
|
return val;
|
|
|
|
assert(bitsize < brw_type_size_bits(val.type));
|
|
|
|
switch (val.type) {
|
|
case BRW_TYPE_UD:
|
|
val.ud = (val.ud >> (bitsize * offset)) & ((1u << bitsize) - 1);
|
|
break;
|
|
case BRW_TYPE_D:
|
|
val.d = (val.d << (bitsize * (32/bitsize - 1 - offset))) >> ((32/bitsize - 1) * bitsize);
|
|
break;
|
|
default:
|
|
return fs_reg();
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
static fs_reg
|
|
find_value_for_offset(fs_inst *def, const fs_reg &src, unsigned src_size)
|
|
{
|
|
fs_reg val;
|
|
|
|
switch (def->opcode) {
|
|
case BRW_OPCODE_MOV:
|
|
if (def->dst.type == def->src[0].type && def->src[0].stride <= 1) {
|
|
val = def->src[0];
|
|
|
|
unsigned rel_offset = src.offset - def->dst.offset;
|
|
|
|
if (val.stride == 0)
|
|
rel_offset %= brw_type_size_bytes(def->dst.type);
|
|
|
|
if (val.file == IMM)
|
|
val = extract_imm(val, src.type, rel_offset);
|
|
else
|
|
val = byte_offset(def->src[0], rel_offset);
|
|
}
|
|
break;
|
|
case SHADER_OPCODE_LOAD_PAYLOAD: {
|
|
unsigned offset = 0;
|
|
for (int i = def->header_size; i < def->sources; i++) {
|
|
const unsigned splat = def->src[i].stride == 0 ? def->exec_size : 1;
|
|
if (offset == src.offset) {
|
|
if (def->dst.type == def->src[i].type &&
|
|
def->src[i].stride <= 1 &&
|
|
def->src[i].component_size(def->exec_size) * splat == src_size)
|
|
val = def->src[i];
|
|
|
|
break;
|
|
}
|
|
|
|
offset += def->exec_size * brw_type_size_bytes(def->src[i].type);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
bool
|
|
brw_fs_opt_copy_propagation_defs(fs_visitor &s)
|
|
{
|
|
const brw::def_analysis &defs = s.def_analysis.require();
|
|
unsigned *uses_deleted = new unsigned[defs.count()]();
|
|
bool progress = false;
|
|
|
|
foreach_block_and_inst_safe(block, fs_inst, inst, s.cfg) {
|
|
/* Try propagating into this instruction. */
|
|
bool instruction_progress = false;
|
|
|
|
for (int i = inst->sources - 1; i >= 0; i--) {
|
|
fs_inst *def = defs.get(inst->src[i]);
|
|
|
|
if (!def || def->saturate)
|
|
continue;
|
|
|
|
bool source_progress = false;
|
|
|
|
if (def->opcode == SHADER_OPCODE_LOAD_PAYLOAD) {
|
|
if (inst->size_read(i) == def->size_written &&
|
|
def->src[0].file != BAD_FILE && def->src[0].file != IMM &&
|
|
is_identity_payload(def->src[0].file, def)) {
|
|
source_progress =
|
|
try_copy_propagate_def(s.compiler, s.alloc, def, def->src[0],
|
|
inst, i, s.max_polygons);
|
|
|
|
if (source_progress) {
|
|
instruction_progress = true;
|
|
++uses_deleted[def->dst.nr];
|
|
if (defs.get_use_count(def->dst) == uses_deleted[def->dst.nr])
|
|
def->remove(defs.get_block(def->dst), true);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
}
|
|
|
|
fs_reg val =
|
|
find_value_for_offset(def, inst->src[i], inst->size_read(i));
|
|
|
|
if (val.file == IMM) {
|
|
source_progress =
|
|
try_constant_propagate_def(def, val, inst, i);
|
|
} else if (val.file == VGRF ||
|
|
val.file == ATTR || val.file == UNIFORM ||
|
|
(val.file == FIXED_GRF && val.is_contiguous())) {
|
|
source_progress =
|
|
try_copy_propagate_def(s.compiler, s.alloc, def, val, inst, i,
|
|
s.max_polygons);
|
|
}
|
|
|
|
if (source_progress) {
|
|
instruction_progress = true;
|
|
++uses_deleted[def->dst.nr];
|
|
if (defs.get_use_count(def->dst) == uses_deleted[def->dst.nr])
|
|
def->remove(defs.get_block(def->dst), true);
|
|
}
|
|
}
|
|
|
|
if (instruction_progress) {
|
|
progress = true;
|
|
commute_immediates(inst);
|
|
}
|
|
}
|
|
|
|
if (progress) {
|
|
s.cfg->adjust_block_ips();
|
|
s.invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW |
|
|
DEPENDENCY_INSTRUCTION_DETAIL);
|
|
}
|
|
|
|
delete [] uses_deleted;
|
|
|
|
return progress;
|
|
}
|