mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-21 18:00:13 +01:00
This function is going to be reused in multiple functions when storing or loading something in the LDS. Signed-off-by: Timur Kristóf <timur.kristof@gmail.com> Reviewed-by: Rhys Perry <pendingchaos02@gmail.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/3964>
9234 lines
382 KiB
C++
9234 lines
382 KiB
C++
/*
|
||
* Copyright © 2018 Valve Corporation
|
||
* Copyright © 2018 Google
|
||
*
|
||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||
* copy of this software and associated documentation files (the "Software"),
|
||
* to deal in the Software without restriction, including without limitation
|
||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
* and/or sell copies of the Software, and to permit persons to whom the
|
||
* Software is furnished to do so, subject to the following conditions:
|
||
*
|
||
* The above copyright notice and this permission notice (including the next
|
||
* paragraph) shall be included in all copies or substantial portions of the
|
||
* Software.
|
||
*
|
||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||
* IN THE SOFTWARE.
|
||
*
|
||
*/
|
||
|
||
#include <algorithm>
|
||
#include <array>
|
||
#include <stack>
|
||
#include <map>
|
||
|
||
#include "ac_shader_util.h"
|
||
#include "aco_ir.h"
|
||
#include "aco_builder.h"
|
||
#include "aco_interface.h"
|
||
#include "aco_instruction_selection_setup.cpp"
|
||
#include "util/fast_idiv_by_const.h"
|
||
|
||
namespace aco {
|
||
namespace {
|
||
|
||
class loop_info_RAII {
|
||
isel_context* ctx;
|
||
unsigned header_idx_old;
|
||
Block* exit_old;
|
||
bool divergent_cont_old;
|
||
bool divergent_branch_old;
|
||
bool divergent_if_old;
|
||
|
||
public:
|
||
loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
|
||
: ctx(ctx),
|
||
header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
|
||
divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
|
||
divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
|
||
divergent_if_old(ctx->cf_info.parent_if.is_divergent)
|
||
{
|
||
ctx->cf_info.parent_loop.header_idx = loop_header_idx;
|
||
ctx->cf_info.parent_loop.exit = loop_exit;
|
||
ctx->cf_info.parent_loop.has_divergent_continue = false;
|
||
ctx->cf_info.parent_loop.has_divergent_branch = false;
|
||
ctx->cf_info.parent_if.is_divergent = false;
|
||
ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
|
||
}
|
||
|
||
~loop_info_RAII()
|
||
{
|
||
ctx->cf_info.parent_loop.header_idx = header_idx_old;
|
||
ctx->cf_info.parent_loop.exit = exit_old;
|
||
ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
|
||
ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
|
||
ctx->cf_info.parent_if.is_divergent = divergent_if_old;
|
||
ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
|
||
if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
|
||
ctx->cf_info.exec_potentially_empty_discard = false;
|
||
}
|
||
};
|
||
|
||
struct if_context {
|
||
Temp cond;
|
||
|
||
bool divergent_old;
|
||
bool exec_potentially_empty_discard_old;
|
||
bool exec_potentially_empty_break_old;
|
||
uint16_t exec_potentially_empty_break_depth_old;
|
||
|
||
unsigned BB_if_idx;
|
||
unsigned invert_idx;
|
||
bool then_branch_divergent;
|
||
Block BB_invert;
|
||
Block BB_endif;
|
||
};
|
||
|
||
static void visit_cf_list(struct isel_context *ctx,
|
||
struct exec_list *list);
|
||
|
||
static void add_logical_edge(unsigned pred_idx, Block *succ)
|
||
{
|
||
succ->logical_preds.emplace_back(pred_idx);
|
||
}
|
||
|
||
|
||
static void add_linear_edge(unsigned pred_idx, Block *succ)
|
||
{
|
||
succ->linear_preds.emplace_back(pred_idx);
|
||
}
|
||
|
||
static void add_edge(unsigned pred_idx, Block *succ)
|
||
{
|
||
add_logical_edge(pred_idx, succ);
|
||
add_linear_edge(pred_idx, succ);
|
||
}
|
||
|
||
static void append_logical_start(Block *b)
|
||
{
|
||
Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
|
||
}
|
||
|
||
static void append_logical_end(Block *b)
|
||
{
|
||
Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
|
||
}
|
||
|
||
Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
|
||
{
|
||
assert(ctx->allocated[def->index].id());
|
||
return ctx->allocated[def->index];
|
||
}
|
||
|
||
Temp emit_mbcnt(isel_context *ctx, Definition dst,
|
||
Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
|
||
Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
|
||
|
||
if (ctx->program->wave_size == 32) {
|
||
return thread_id_lo;
|
||
} else {
|
||
Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
|
||
return thread_id_hi;
|
||
}
|
||
}
|
||
|
||
Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
|
||
if (!dst.id())
|
||
dst = bld.tmp(src.regClass());
|
||
|
||
assert(src.size() == dst.size());
|
||
|
||
if (ctx->stage != fragment_fs) {
|
||
if (!dst.id())
|
||
return src;
|
||
|
||
bld.copy(Definition(dst), src);
|
||
return dst;
|
||
}
|
||
|
||
bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
|
||
ctx->program->needs_wqm |= program_needs_wqm;
|
||
return dst;
|
||
}
|
||
|
||
static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
|
||
{
|
||
if (index.regClass() == s1)
|
||
return bld.readlane(bld.def(s1), data, index);
|
||
|
||
Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
|
||
|
||
/* Currently not implemented on GFX6-7 */
|
||
assert(ctx->options->chip_class >= GFX8);
|
||
|
||
if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
|
||
return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
|
||
}
|
||
|
||
/* GFX10, wave64 mode:
|
||
* The bpermute instruction is limited to half-wave operation, which means that it can't
|
||
* properly support subgroup shuffle like older generations (or wave32 mode), so we
|
||
* emulate it here.
|
||
*/
|
||
if (!ctx->has_gfx10_wave64_bpermute) {
|
||
ctx->has_gfx10_wave64_bpermute = true;
|
||
ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
|
||
ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
|
||
}
|
||
|
||
Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
|
||
Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
|
||
Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
|
||
Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
|
||
|
||
return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
|
||
bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
|
||
}
|
||
|
||
Temp as_vgpr(isel_context *ctx, Temp val)
|
||
{
|
||
if (val.type() == RegType::sgpr) {
|
||
Builder bld(ctx->program, ctx->block);
|
||
return bld.copy(bld.def(RegType::vgpr, val.size()), val);
|
||
}
|
||
assert(val.type() == RegType::vgpr);
|
||
return val;
|
||
}
|
||
|
||
//assumes a != 0xffffffff
|
||
void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
|
||
{
|
||
assert(b != 0);
|
||
Builder bld(ctx->program, ctx->block);
|
||
|
||
if (util_is_power_of_two_or_zero(b)) {
|
||
bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
|
||
return;
|
||
}
|
||
|
||
util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
|
||
|
||
assert(info.multiplier <= 0xffffffff);
|
||
|
||
bool pre_shift = info.pre_shift != 0;
|
||
bool increment = info.increment != 0;
|
||
bool multiply = true;
|
||
bool post_shift = info.post_shift != 0;
|
||
|
||
if (!pre_shift && !increment && !multiply && !post_shift) {
|
||
bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
|
||
return;
|
||
}
|
||
|
||
Temp pre_shift_dst = a;
|
||
if (pre_shift) {
|
||
pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
|
||
bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
|
||
}
|
||
|
||
Temp increment_dst = pre_shift_dst;
|
||
if (increment) {
|
||
increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
|
||
bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
|
||
}
|
||
|
||
Temp multiply_dst = increment_dst;
|
||
if (multiply) {
|
||
multiply_dst = post_shift ? bld.tmp(v1) : dst;
|
||
bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
|
||
bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
|
||
}
|
||
|
||
if (post_shift) {
|
||
bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
|
||
}
|
||
}
|
||
|
||
void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
|
||
}
|
||
|
||
|
||
Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
|
||
{
|
||
/* no need to extract the whole vector */
|
||
if (src.regClass() == dst_rc) {
|
||
assert(idx == 0);
|
||
return src;
|
||
}
|
||
assert(src.size() > idx);
|
||
Builder bld(ctx->program, ctx->block);
|
||
auto it = ctx->allocated_vec.find(src.id());
|
||
/* the size check needs to be early because elements other than 0 may be garbage */
|
||
if (it != ctx->allocated_vec.end() && it->second[0].size() == dst_rc.size()) {
|
||
if (it->second[idx].regClass() == dst_rc) {
|
||
return it->second[idx];
|
||
} else {
|
||
assert(dst_rc.size() == it->second[idx].regClass().size());
|
||
assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
|
||
return bld.copy(bld.def(dst_rc), it->second[idx]);
|
||
}
|
||
}
|
||
|
||
if (src.size() == dst_rc.size()) {
|
||
assert(idx == 0);
|
||
return bld.copy(bld.def(dst_rc), src);
|
||
} else {
|
||
Temp dst = bld.tmp(dst_rc);
|
||
emit_extract_vector(ctx, src, idx, dst);
|
||
return dst;
|
||
}
|
||
}
|
||
|
||
void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
|
||
{
|
||
if (num_components == 1)
|
||
return;
|
||
if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
|
||
return;
|
||
aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
|
||
split->operands[0] = Operand(vec_src);
|
||
std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
|
||
for (unsigned i = 0; i < num_components; i++) {
|
||
elems[i] = {ctx->program->allocateId(), RegClass(vec_src.type(), vec_src.size() / num_components)};
|
||
split->definitions[i] = Definition(elems[i]);
|
||
}
|
||
ctx->block->instructions.emplace_back(std::move(split));
|
||
ctx->allocated_vec.emplace(vec_src.id(), elems);
|
||
}
|
||
|
||
/* This vector expansion uses a mask to determine which elements in the new vector
|
||
* come from the original vector. The other elements are undefined. */
|
||
void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
|
||
{
|
||
emit_split_vector(ctx, vec_src, util_bitcount(mask));
|
||
|
||
if (vec_src == dst)
|
||
return;
|
||
|
||
Builder bld(ctx->program, ctx->block);
|
||
if (num_components == 1) {
|
||
if (dst.type() == RegType::sgpr)
|
||
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
|
||
else
|
||
bld.copy(Definition(dst), vec_src);
|
||
return;
|
||
}
|
||
|
||
unsigned component_size = dst.size() / num_components;
|
||
std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
|
||
|
||
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
|
||
vec->definitions[0] = Definition(dst);
|
||
unsigned k = 0;
|
||
for (unsigned i = 0; i < num_components; i++) {
|
||
if (mask & (1 << i)) {
|
||
Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
|
||
if (dst.type() == RegType::sgpr)
|
||
src = bld.as_uniform(src);
|
||
vec->operands[i] = Operand(src);
|
||
} else {
|
||
vec->operands[i] = Operand(0u);
|
||
}
|
||
elems[i] = vec->operands[i].getTemp();
|
||
}
|
||
ctx->block->instructions.emplace_back(std::move(vec));
|
||
ctx->allocated_vec.emplace(dst.id(), elems);
|
||
}
|
||
|
||
Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
if (!dst.id())
|
||
dst = bld.tmp(bld.lm);
|
||
|
||
assert(val.regClass() == s1);
|
||
assert(dst.regClass() == bld.lm);
|
||
|
||
return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
|
||
}
|
||
|
||
Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
if (!dst.id())
|
||
dst = bld.tmp(s1);
|
||
|
||
assert(val.regClass() == bld.lm);
|
||
assert(dst.regClass() == s1);
|
||
|
||
/* if we're currently in WQM mode, ensure that the source is also computed in WQM */
|
||
Temp tmp = bld.tmp(s1);
|
||
bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
|
||
return emit_wqm(ctx, tmp, dst);
|
||
}
|
||
|
||
Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
|
||
{
|
||
if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
|
||
return get_ssa_temp(ctx, src.src.ssa);
|
||
|
||
if (src.src.ssa->num_components == size) {
|
||
bool identity_swizzle = true;
|
||
for (unsigned i = 0; identity_swizzle && i < size; i++) {
|
||
if (src.swizzle[i] != i)
|
||
identity_swizzle = false;
|
||
}
|
||
if (identity_swizzle)
|
||
return get_ssa_temp(ctx, src.src.ssa);
|
||
}
|
||
|
||
Temp vec = get_ssa_temp(ctx, src.src.ssa);
|
||
unsigned elem_size = vec.size() / src.src.ssa->num_components;
|
||
assert(elem_size > 0); /* TODO: 8 and 16-bit vectors not supported */
|
||
assert(vec.size() % elem_size == 0);
|
||
|
||
RegClass elem_rc = RegClass(vec.type(), elem_size);
|
||
if (size == 1) {
|
||
return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
|
||
} else {
|
||
assert(size <= 4);
|
||
std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
|
||
aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
|
||
for (unsigned i = 0; i < size; ++i) {
|
||
elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
|
||
vec_instr->operands[i] = Operand{elems[i]};
|
||
}
|
||
Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size)};
|
||
vec_instr->definitions[0] = Definition(dst);
|
||
ctx->block->instructions.emplace_back(std::move(vec_instr));
|
||
ctx->allocated_vec.emplace(dst.id(), elems);
|
||
return dst;
|
||
}
|
||
}
|
||
|
||
Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
|
||
{
|
||
if (ptr.size() == 2)
|
||
return ptr;
|
||
Builder bld(ctx->program, ctx->block);
|
||
if (ptr.type() == RegType::vgpr)
|
||
ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
|
||
return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
|
||
ptr, Operand((unsigned)ctx->options->address32_hi));
|
||
}
|
||
|
||
void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
|
||
{
|
||
aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
|
||
sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
|
||
sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
|
||
sop2->definitions[0] = Definition(dst);
|
||
if (writes_scc)
|
||
sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
|
||
ctx->block->instructions.emplace_back(std::move(sop2));
|
||
}
|
||
|
||
void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
|
||
bool commutative, bool swap_srcs=false, bool flush_denorms = false)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
|
||
Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
|
||
if (src1.type() == RegType::sgpr) {
|
||
if (commutative && src0.type() == RegType::vgpr) {
|
||
Temp t = src0;
|
||
src0 = src1;
|
||
src1 = t;
|
||
} else if (src0.type() == RegType::vgpr &&
|
||
op != aco_opcode::v_madmk_f32 &&
|
||
op != aco_opcode::v_madak_f32 &&
|
||
op != aco_opcode::v_madmk_f16 &&
|
||
op != aco_opcode::v_madak_f16) {
|
||
/* If the instruction is not commutative, we emit a VOP3A instruction */
|
||
bld.vop2_e64(op, Definition(dst), src0, src1);
|
||
return;
|
||
} else {
|
||
src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
|
||
}
|
||
}
|
||
|
||
if (flush_denorms && ctx->program->chip_class < GFX9) {
|
||
assert(dst.size() == 1);
|
||
Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
|
||
bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
|
||
} else {
|
||
bld.vop2(op, Definition(dst), src0, src1);
|
||
}
|
||
}
|
||
|
||
void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
|
||
bool flush_denorms = false)
|
||
{
|
||
Temp src0 = get_alu_src(ctx, instr->src[0]);
|
||
Temp src1 = get_alu_src(ctx, instr->src[1]);
|
||
Temp src2 = get_alu_src(ctx, instr->src[2]);
|
||
|
||
/* ensure that the instruction has at most 1 sgpr operand
|
||
* The optimizer will inline constants for us */
|
||
if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
|
||
src0 = as_vgpr(ctx, src0);
|
||
if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
|
||
src1 = as_vgpr(ctx, src1);
|
||
if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
|
||
src2 = as_vgpr(ctx, src2);
|
||
|
||
Builder bld(ctx->program, ctx->block);
|
||
if (flush_denorms && ctx->program->chip_class < GFX9) {
|
||
assert(dst.size() == 1);
|
||
Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
|
||
bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
|
||
} else {
|
||
bld.vop3(op, Definition(dst), src0, src1, src2);
|
||
}
|
||
}
|
||
|
||
void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
|
||
}
|
||
|
||
void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
|
||
{
|
||
Temp src0 = get_alu_src(ctx, instr->src[0]);
|
||
Temp src1 = get_alu_src(ctx, instr->src[1]);
|
||
assert(src0.size() == src1.size());
|
||
|
||
aco_ptr<Instruction> vopc;
|
||
if (src1.type() == RegType::sgpr) {
|
||
if (src0.type() == RegType::vgpr) {
|
||
/* to swap the operands, we might also have to change the opcode */
|
||
switch (op) {
|
||
case aco_opcode::v_cmp_lt_f32:
|
||
op = aco_opcode::v_cmp_gt_f32;
|
||
break;
|
||
case aco_opcode::v_cmp_ge_f32:
|
||
op = aco_opcode::v_cmp_le_f32;
|
||
break;
|
||
case aco_opcode::v_cmp_lt_i32:
|
||
op = aco_opcode::v_cmp_gt_i32;
|
||
break;
|
||
case aco_opcode::v_cmp_ge_i32:
|
||
op = aco_opcode::v_cmp_le_i32;
|
||
break;
|
||
case aco_opcode::v_cmp_lt_u32:
|
||
op = aco_opcode::v_cmp_gt_u32;
|
||
break;
|
||
case aco_opcode::v_cmp_ge_u32:
|
||
op = aco_opcode::v_cmp_le_u32;
|
||
break;
|
||
case aco_opcode::v_cmp_lt_f64:
|
||
op = aco_opcode::v_cmp_gt_f64;
|
||
break;
|
||
case aco_opcode::v_cmp_ge_f64:
|
||
op = aco_opcode::v_cmp_le_f64;
|
||
break;
|
||
case aco_opcode::v_cmp_lt_i64:
|
||
op = aco_opcode::v_cmp_gt_i64;
|
||
break;
|
||
case aco_opcode::v_cmp_ge_i64:
|
||
op = aco_opcode::v_cmp_le_i64;
|
||
break;
|
||
case aco_opcode::v_cmp_lt_u64:
|
||
op = aco_opcode::v_cmp_gt_u64;
|
||
break;
|
||
case aco_opcode::v_cmp_ge_u64:
|
||
op = aco_opcode::v_cmp_le_u64;
|
||
break;
|
||
default: /* eq and ne are commutative */
|
||
break;
|
||
}
|
||
Temp t = src0;
|
||
src0 = src1;
|
||
src1 = t;
|
||
} else {
|
||
src1 = as_vgpr(ctx, src1);
|
||
}
|
||
}
|
||
|
||
Builder bld(ctx->program, ctx->block);
|
||
bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
|
||
}
|
||
|
||
void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
|
||
{
|
||
Temp src0 = get_alu_src(ctx, instr->src[0]);
|
||
Temp src1 = get_alu_src(ctx, instr->src[1]);
|
||
Builder bld(ctx->program, ctx->block);
|
||
|
||
assert(dst.regClass() == bld.lm);
|
||
assert(src0.type() == RegType::sgpr);
|
||
assert(src1.type() == RegType::sgpr);
|
||
assert(src0.regClass() == src1.regClass());
|
||
|
||
/* Emit the SALU comparison instruction */
|
||
Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
|
||
/* Turn the result into a per-lane bool */
|
||
bool_to_vector_condition(ctx, cmp, dst);
|
||
}
|
||
|
||
void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
|
||
aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
|
||
{
|
||
aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : s32_op;
|
||
aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : v32_op;
|
||
bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
|
||
bool use_valu = s_op == aco_opcode::num_opcodes ||
|
||
divergent_vals ||
|
||
ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
|
||
ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
|
||
aco_opcode op = use_valu ? v_op : s_op;
|
||
assert(op != aco_opcode::num_opcodes);
|
||
assert(dst.regClass() == ctx->program->lane_mask);
|
||
|
||
if (use_valu)
|
||
emit_vopc_instruction(ctx, instr, op, dst);
|
||
else
|
||
emit_sopc_instruction(ctx, instr, op, dst);
|
||
}
|
||
|
||
void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
Temp src0 = get_alu_src(ctx, instr->src[0]);
|
||
Temp src1 = get_alu_src(ctx, instr->src[1]);
|
||
|
||
assert(dst.regClass() == bld.lm);
|
||
assert(src0.regClass() == bld.lm);
|
||
assert(src1.regClass() == bld.lm);
|
||
|
||
bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
|
||
}
|
||
|
||
void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
Temp cond = get_alu_src(ctx, instr->src[0]);
|
||
Temp then = get_alu_src(ctx, instr->src[1]);
|
||
Temp els = get_alu_src(ctx, instr->src[2]);
|
||
|
||
assert(cond.regClass() == bld.lm);
|
||
|
||
if (dst.type() == RegType::vgpr) {
|
||
aco_ptr<Instruction> bcsel;
|
||
if (dst.size() == 1) {
|
||
then = as_vgpr(ctx, then);
|
||
els = as_vgpr(ctx, els);
|
||
|
||
bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
|
||
} else if (dst.size() == 2) {
|
||
Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
|
||
Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
|
||
|
||
Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
|
||
Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
|
||
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
return;
|
||
}
|
||
|
||
if (instr->dest.dest.ssa.bit_size == 1) {
|
||
assert(dst.regClass() == bld.lm);
|
||
assert(then.regClass() == bld.lm);
|
||
assert(els.regClass() == bld.lm);
|
||
}
|
||
|
||
if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
|
||
if (dst.regClass() == s1 || dst.regClass() == s2) {
|
||
assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
|
||
assert(dst.size() == then.size());
|
||
aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
|
||
bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
|
||
} else {
|
||
fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* divergent boolean bcsel
|
||
* this implements bcsel on bools: dst = s0 ? s1 : s2
|
||
* are going to be: dst = (s0 & s1) | (~s0 & s2) */
|
||
assert(instr->dest.dest.ssa.bit_size == 1);
|
||
|
||
if (cond.id() != then.id())
|
||
then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
|
||
|
||
if (cond.id() == els.id())
|
||
bld.sop1(Builder::s_mov, Definition(dst), then);
|
||
else
|
||
bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
|
||
bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
|
||
}
|
||
|
||
void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
|
||
aco_opcode op, uint32_t undo)
|
||
{
|
||
/* multiply by 16777216 to handle denormals */
|
||
Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
|
||
as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
|
||
Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
|
||
scaled = bld.vop1(op, bld.def(v1), scaled);
|
||
scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
|
||
|
||
Temp not_scaled = bld.vop1(op, bld.def(v1), val);
|
||
|
||
bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
|
||
}
|
||
|
||
void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
|
||
{
|
||
if (ctx->block->fp_mode.denorm32 == 0) {
|
||
bld.vop1(aco_opcode::v_rcp_f32, dst, val);
|
||
return;
|
||
}
|
||
|
||
emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
|
||
}
|
||
|
||
void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
|
||
{
|
||
if (ctx->block->fp_mode.denorm32 == 0) {
|
||
bld.vop1(aco_opcode::v_rsq_f32, dst, val);
|
||
return;
|
||
}
|
||
|
||
emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
|
||
}
|
||
|
||
void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
|
||
{
|
||
if (ctx->block->fp_mode.denorm32 == 0) {
|
||
bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
|
||
return;
|
||
}
|
||
|
||
emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
|
||
}
|
||
|
||
void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
|
||
{
|
||
if (ctx->block->fp_mode.denorm32 == 0) {
|
||
bld.vop1(aco_opcode::v_log_f32, dst, val);
|
||
return;
|
||
}
|
||
|
||
emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
|
||
}
|
||
|
||
Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
|
||
{
|
||
if (ctx->options->chip_class >= GFX7)
|
||
return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
|
||
|
||
/* GFX6 doesn't support V_TRUNC_F64, lower it. */
|
||
/* TODO: create more efficient code! */
|
||
if (val.type() == RegType::sgpr)
|
||
val = as_vgpr(ctx, val);
|
||
|
||
/* Split the input value. */
|
||
Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
|
||
|
||
/* Extract the exponent and compute the unbiased value. */
|
||
Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
|
||
|
||
/* Extract the fractional part. */
|
||
Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
|
||
fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
|
||
|
||
Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
|
||
|
||
Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
|
||
Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
|
||
fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
|
||
tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
|
||
fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
|
||
|
||
/* Get the sign bit. */
|
||
Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
|
||
|
||
/* Decide the operation to apply depending on the unbiased exponent. */
|
||
Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
|
||
Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
|
||
Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
|
||
Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
|
||
dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
|
||
dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
|
||
|
||
return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
|
||
}
|
||
|
||
Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
|
||
{
|
||
if (ctx->options->chip_class >= GFX7)
|
||
return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
|
||
|
||
/* GFX6 doesn't support V_FLOOR_F64, lower it. */
|
||
Temp src0 = as_vgpr(ctx, val);
|
||
|
||
Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
|
||
Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
|
||
|
||
Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
|
||
Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
|
||
Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
|
||
|
||
Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
|
||
Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
|
||
|
||
Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
|
||
Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
|
||
|
||
Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
|
||
|
||
Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
|
||
static_cast<VOP3A_instruction*>(add)->neg[1] = true;
|
||
|
||
return add->definitions[0].getTemp();
|
||
}
|
||
|
||
void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
|
||
{
|
||
if (!instr->dest.dest.is_ssa) {
|
||
fprintf(stderr, "nir alu dst not in ssa: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
abort();
|
||
}
|
||
Builder bld(ctx->program, ctx->block);
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
|
||
switch(instr->op) {
|
||
case nir_op_vec2:
|
||
case nir_op_vec3:
|
||
case nir_op_vec4: {
|
||
std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
|
||
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
|
||
for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i) {
|
||
elems[i] = get_alu_src(ctx, instr->src[i]);
|
||
vec->operands[i] = Operand{elems[i]};
|
||
}
|
||
vec->definitions[0] = Definition(dst);
|
||
ctx->block->instructions.emplace_back(std::move(vec));
|
||
ctx->allocated_vec.emplace(dst.id(), elems);
|
||
break;
|
||
}
|
||
case nir_op_mov: {
|
||
Temp src = get_alu_src(ctx, instr->src[0]);
|
||
aco_ptr<Instruction> mov;
|
||
if (dst.type() == RegType::sgpr) {
|
||
if (src.type() == RegType::vgpr)
|
||
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
|
||
else if (src.regClass() == s1)
|
||
bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
|
||
else if (src.regClass() == s2)
|
||
bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
|
||
else
|
||
unreachable("wrong src register class for nir_op_imov");
|
||
} else if (dst.regClass() == v1) {
|
||
bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
|
||
} else if (dst.regClass() == v2) {
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
|
||
} else {
|
||
nir_print_instr(&instr->instr, stderr);
|
||
unreachable("Should have been lowered to scalar.");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_inot: {
|
||
Temp src = get_alu_src(ctx, instr->src[0]);
|
||
if (instr->dest.dest.ssa.bit_size == 1) {
|
||
assert(src.regClass() == bld.lm);
|
||
assert(dst.regClass() == bld.lm);
|
||
/* Don't use s_andn2 here, this allows the optimizer to make a better decision */
|
||
Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
|
||
bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
|
||
} else if (dst.regClass() == v1) {
|
||
emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
|
||
} else if (dst.type() == RegType::sgpr) {
|
||
aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
|
||
bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_ineg: {
|
||
Temp src = get_alu_src(ctx, instr->src[0]);
|
||
if (dst.regClass() == v1) {
|
||
bld.vsub32(Definition(dst), Operand(0u), Operand(src));
|
||
} else if (dst.regClass() == s1) {
|
||
bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
|
||
} else if (dst.size() == 2) {
|
||
Temp src0 = bld.tmp(dst.type(), 1);
|
||
Temp src1 = bld.tmp(dst.type(), 1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
|
||
|
||
if (dst.regClass() == s2) {
|
||
Temp carry = bld.tmp(s1);
|
||
Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
|
||
Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
|
||
} else {
|
||
Temp lower = bld.tmp(v1);
|
||
Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
|
||
Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
|
||
}
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_iabs: {
|
||
if (dst.regClass() == s1) {
|
||
bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
|
||
} else if (dst.regClass() == v1) {
|
||
Temp src = get_alu_src(ctx, instr->src[0]);
|
||
bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_isign: {
|
||
Temp src = get_alu_src(ctx, instr->src[0]);
|
||
if (dst.regClass() == s1) {
|
||
Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
|
||
Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
|
||
bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
|
||
} else if (dst.regClass() == s2) {
|
||
Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
|
||
Temp neqz;
|
||
if (ctx->program->chip_class >= GFX8)
|
||
neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
|
||
else
|
||
neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
|
||
/* SCC gets zero-extended to 64 bit */
|
||
bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
|
||
} else if (dst.regClass() == v1) {
|
||
Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
|
||
Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
|
||
bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
|
||
} else if (dst.regClass() == v2) {
|
||
Temp upper = emit_extract_vector(ctx, src, 1, v1);
|
||
Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
|
||
Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
|
||
Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
|
||
upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_imax: {
|
||
if (dst.regClass() == v1) {
|
||
emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
|
||
} else if (dst.regClass() == s1) {
|
||
emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_umax: {
|
||
if (dst.regClass() == v1) {
|
||
emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
|
||
} else if (dst.regClass() == s1) {
|
||
emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_imin: {
|
||
if (dst.regClass() == v1) {
|
||
emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
|
||
} else if (dst.regClass() == s1) {
|
||
emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_umin: {
|
||
if (dst.regClass() == v1) {
|
||
emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
|
||
} else if (dst.regClass() == s1) {
|
||
emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_ior: {
|
||
if (instr->dest.dest.ssa.bit_size == 1) {
|
||
emit_boolean_logic(ctx, instr, Builder::s_or, dst);
|
||
} else if (dst.regClass() == v1) {
|
||
emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
|
||
} else if (dst.regClass() == s1) {
|
||
emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
|
||
} else if (dst.regClass() == s2) {
|
||
emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_iand: {
|
||
if (instr->dest.dest.ssa.bit_size == 1) {
|
||
emit_boolean_logic(ctx, instr, Builder::s_and, dst);
|
||
} else if (dst.regClass() == v1) {
|
||
emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
|
||
} else if (dst.regClass() == s1) {
|
||
emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
|
||
} else if (dst.regClass() == s2) {
|
||
emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_ixor: {
|
||
if (instr->dest.dest.ssa.bit_size == 1) {
|
||
emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
|
||
} else if (dst.regClass() == v1) {
|
||
emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
|
||
} else if (dst.regClass() == s1) {
|
||
emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
|
||
} else if (dst.regClass() == s2) {
|
||
emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_ushr: {
|
||
if (dst.regClass() == v1) {
|
||
emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
|
||
} else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
|
||
bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
|
||
get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
|
||
} else if (dst.regClass() == v2) {
|
||
bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
|
||
get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
|
||
} else if (dst.regClass() == s2) {
|
||
emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
|
||
} else if (dst.regClass() == s1) {
|
||
emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_ishl: {
|
||
if (dst.regClass() == v1) {
|
||
emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
|
||
} else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
|
||
bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
|
||
get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
|
||
} else if (dst.regClass() == v2) {
|
||
bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
|
||
get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
|
||
} else if (dst.regClass() == s1) {
|
||
emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
|
||
} else if (dst.regClass() == s2) {
|
||
emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_ishr: {
|
||
if (dst.regClass() == v1) {
|
||
emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
|
||
} else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
|
||
bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
|
||
get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
|
||
} else if (dst.regClass() == v2) {
|
||
bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
|
||
get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
|
||
} else if (dst.regClass() == s1) {
|
||
emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
|
||
} else if (dst.regClass() == s2) {
|
||
emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_find_lsb: {
|
||
Temp src = get_alu_src(ctx, instr->src[0]);
|
||
if (src.regClass() == s1) {
|
||
bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
|
||
} else if (src.regClass() == v1) {
|
||
emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
|
||
} else if (src.regClass() == s2) {
|
||
bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_ufind_msb:
|
||
case nir_op_ifind_msb: {
|
||
Temp src = get_alu_src(ctx, instr->src[0]);
|
||
if (src.regClass() == s1 || src.regClass() == s2) {
|
||
aco_opcode op = src.regClass() == s2 ?
|
||
(instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
|
||
(instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
|
||
Temp msb_rev = bld.sop1(op, bld.def(s1), src);
|
||
|
||
Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
|
||
Operand(src.size() * 32u - 1u), msb_rev);
|
||
Temp msb = sub.def(0).getTemp();
|
||
Temp carry = sub.def(1).getTemp();
|
||
|
||
bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
|
||
} else if (src.regClass() == v1) {
|
||
aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
|
||
Temp msb_rev = bld.tmp(v1);
|
||
emit_vop1_instruction(ctx, instr, op, msb_rev);
|
||
Temp msb = bld.tmp(v1);
|
||
Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
|
||
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_bitfield_reverse: {
|
||
if (dst.regClass() == s1) {
|
||
bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
|
||
} else if (dst.regClass() == v1) {
|
||
bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_iadd: {
|
||
if (dst.regClass() == s1) {
|
||
emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
|
||
break;
|
||
}
|
||
|
||
Temp src0 = get_alu_src(ctx, instr->src[0]);
|
||
Temp src1 = get_alu_src(ctx, instr->src[1]);
|
||
if (dst.regClass() == v1) {
|
||
bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
|
||
break;
|
||
}
|
||
|
||
assert(src0.size() == 2 && src1.size() == 2);
|
||
Temp src00 = bld.tmp(src0.type(), 1);
|
||
Temp src01 = bld.tmp(dst.type(), 1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
|
||
Temp src10 = bld.tmp(src1.type(), 1);
|
||
Temp src11 = bld.tmp(dst.type(), 1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
|
||
|
||
if (dst.regClass() == s2) {
|
||
Temp carry = bld.tmp(s1);
|
||
Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
|
||
Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
|
||
} else if (dst.regClass() == v2) {
|
||
Temp dst0 = bld.tmp(v1);
|
||
Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
|
||
Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_uadd_sat: {
|
||
Temp src0 = get_alu_src(ctx, instr->src[0]);
|
||
Temp src1 = get_alu_src(ctx, instr->src[1]);
|
||
if (dst.regClass() == s1) {
|
||
Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
|
||
bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
|
||
src0, src1);
|
||
bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
|
||
} else if (dst.regClass() == v1) {
|
||
if (ctx->options->chip_class >= GFX9) {
|
||
aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
|
||
add->operands[0] = Operand(src0);
|
||
add->operands[1] = Operand(src1);
|
||
add->definitions[0] = Definition(dst);
|
||
add->clamp = 1;
|
||
ctx->block->instructions.emplace_back(std::move(add));
|
||
} else {
|
||
if (src1.regClass() != v1)
|
||
std::swap(src0, src1);
|
||
assert(src1.regClass() == v1);
|
||
Temp tmp = bld.tmp(v1);
|
||
Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
|
||
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
|
||
}
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_uadd_carry: {
|
||
Temp src0 = get_alu_src(ctx, instr->src[0]);
|
||
Temp src1 = get_alu_src(ctx, instr->src[1]);
|
||
if (dst.regClass() == s1) {
|
||
bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
|
||
break;
|
||
}
|
||
if (dst.regClass() == v1) {
|
||
Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
|
||
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
|
||
break;
|
||
}
|
||
|
||
Temp src00 = bld.tmp(src0.type(), 1);
|
||
Temp src01 = bld.tmp(dst.type(), 1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
|
||
Temp src10 = bld.tmp(src1.type(), 1);
|
||
Temp src11 = bld.tmp(dst.type(), 1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
|
||
if (dst.regClass() == s2) {
|
||
Temp carry = bld.tmp(s1);
|
||
bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
|
||
carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
|
||
} else if (dst.regClass() == v2) {
|
||
Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
|
||
carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
|
||
carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_isub: {
|
||
if (dst.regClass() == s1) {
|
||
emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
|
||
break;
|
||
}
|
||
|
||
Temp src0 = get_alu_src(ctx, instr->src[0]);
|
||
Temp src1 = get_alu_src(ctx, instr->src[1]);
|
||
if (dst.regClass() == v1) {
|
||
bld.vsub32(Definition(dst), src0, src1);
|
||
break;
|
||
}
|
||
|
||
Temp src00 = bld.tmp(src0.type(), 1);
|
||
Temp src01 = bld.tmp(dst.type(), 1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
|
||
Temp src10 = bld.tmp(src1.type(), 1);
|
||
Temp src11 = bld.tmp(dst.type(), 1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
|
||
if (dst.regClass() == s2) {
|
||
Temp carry = bld.tmp(s1);
|
||
Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
|
||
Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
|
||
} else if (dst.regClass() == v2) {
|
||
Temp lower = bld.tmp(v1);
|
||
Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
|
||
Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_usub_borrow: {
|
||
Temp src0 = get_alu_src(ctx, instr->src[0]);
|
||
Temp src1 = get_alu_src(ctx, instr->src[1]);
|
||
if (dst.regClass() == s1) {
|
||
bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
|
||
break;
|
||
} else if (dst.regClass() == v1) {
|
||
Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
|
||
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
|
||
break;
|
||
}
|
||
|
||
Temp src00 = bld.tmp(src0.type(), 1);
|
||
Temp src01 = bld.tmp(dst.type(), 1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
|
||
Temp src10 = bld.tmp(src1.type(), 1);
|
||
Temp src11 = bld.tmp(dst.type(), 1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
|
||
if (dst.regClass() == s2) {
|
||
Temp borrow = bld.tmp(s1);
|
||
bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
|
||
borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
|
||
} else if (dst.regClass() == v2) {
|
||
Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
|
||
borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
|
||
borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_imul: {
|
||
if (dst.regClass() == v1) {
|
||
bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
|
||
get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
|
||
} else if (dst.regClass() == s1) {
|
||
emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_umul_high: {
|
||
if (dst.regClass() == v1) {
|
||
bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
|
||
} else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
|
||
bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
|
||
} else if (dst.regClass() == s1) {
|
||
Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
|
||
as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
|
||
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_imul_high: {
|
||
if (dst.regClass() == v1) {
|
||
bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
|
||
} else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
|
||
bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
|
||
} else if (dst.regClass() == s1) {
|
||
Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
|
||
as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
|
||
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_fmul: {
|
||
if (dst.size() == 1) {
|
||
emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
|
||
} else if (dst.size() == 2) {
|
||
bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
|
||
as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_fadd: {
|
||
if (dst.size() == 1) {
|
||
emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
|
||
} else if (dst.size() == 2) {
|
||
bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
|
||
as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_fsub: {
|
||
Temp src0 = get_alu_src(ctx, instr->src[0]);
|
||
Temp src1 = get_alu_src(ctx, instr->src[1]);
|
||
if (dst.size() == 1) {
|
||
if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
|
||
emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
|
||
else
|
||
emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
|
||
} else if (dst.size() == 2) {
|
||
Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
|
||
get_alu_src(ctx, instr->src[0]),
|
||
as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
|
||
VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
|
||
sub->neg[1] = true;
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_fmax: {
|
||
if (dst.size() == 1) {
|
||
emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
|
||
} else if (dst.size() == 2) {
|
||
if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
|
||
Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2),
|
||
get_alu_src(ctx, instr->src[0]),
|
||
as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
|
||
bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
|
||
} else {
|
||
bld.vop3(aco_opcode::v_max_f64, Definition(dst),
|
||
get_alu_src(ctx, instr->src[0]),
|
||
as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
|
||
}
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_fmin: {
|
||
if (dst.size() == 1) {
|
||
emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
|
||
} else if (dst.size() == 2) {
|
||
if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
|
||
Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2),
|
||
get_alu_src(ctx, instr->src[0]),
|
||
as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
|
||
bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
|
||
} else {
|
||
bld.vop3(aco_opcode::v_min_f64, Definition(dst),
|
||
get_alu_src(ctx, instr->src[0]),
|
||
as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
|
||
}
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_fmax3: {
|
||
if (dst.size() == 1) {
|
||
emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_fmin3: {
|
||
if (dst.size() == 1) {
|
||
emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_fmed3: {
|
||
if (dst.size() == 1) {
|
||
emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_umax3: {
|
||
if (dst.size() == 1) {
|
||
emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_umin3: {
|
||
if (dst.size() == 1) {
|
||
emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_umed3: {
|
||
if (dst.size() == 1) {
|
||
emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_imax3: {
|
||
if (dst.size() == 1) {
|
||
emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_imin3: {
|
||
if (dst.size() == 1) {
|
||
emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_imed3: {
|
||
if (dst.size() == 1) {
|
||
emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_cube_face_coord: {
|
||
Temp in = get_alu_src(ctx, instr->src[0], 3);
|
||
Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
|
||
emit_extract_vector(ctx, in, 1, v1),
|
||
emit_extract_vector(ctx, in, 2, v1) };
|
||
Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
|
||
ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
|
||
Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
|
||
Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
|
||
sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
|
||
tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
|
||
break;
|
||
}
|
||
case nir_op_cube_face_index: {
|
||
Temp in = get_alu_src(ctx, instr->src[0], 3);
|
||
Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
|
||
emit_extract_vector(ctx, in, 1, v1),
|
||
emit_extract_vector(ctx, in, 2, v1) };
|
||
bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
|
||
break;
|
||
}
|
||
case nir_op_bcsel: {
|
||
emit_bcsel(ctx, instr, dst);
|
||
break;
|
||
}
|
||
case nir_op_frsq: {
|
||
if (dst.size() == 1) {
|
||
emit_rsq(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
|
||
} else if (dst.size() == 2) {
|
||
emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_fneg: {
|
||
Temp src = get_alu_src(ctx, instr->src[0]);
|
||
if (dst.size() == 1) {
|
||
if (ctx->block->fp_mode.must_flush_denorms32)
|
||
src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
|
||
bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
|
||
} else if (dst.size() == 2) {
|
||
if (ctx->block->fp_mode.must_flush_denorms16_64)
|
||
src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
|
||
Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
|
||
upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_fabs: {
|
||
Temp src = get_alu_src(ctx, instr->src[0]);
|
||
if (dst.size() == 1) {
|
||
if (ctx->block->fp_mode.must_flush_denorms32)
|
||
src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
|
||
bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
|
||
} else if (dst.size() == 2) {
|
||
if (ctx->block->fp_mode.must_flush_denorms16_64)
|
||
src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
|
||
Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
|
||
upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_fsat: {
|
||
Temp src = get_alu_src(ctx, instr->src[0]);
|
||
if (dst.size() == 1) {
|
||
bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
|
||
/* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
|
||
// TODO: confirm that this holds under any circumstances
|
||
} else if (dst.size() == 2) {
|
||
Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
|
||
VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
|
||
vop3->clamp = true;
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_flog2: {
|
||
if (dst.size() == 1) {
|
||
emit_log2(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_frcp: {
|
||
if (dst.size() == 1) {
|
||
emit_rcp(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
|
||
} else if (dst.size() == 2) {
|
||
emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_fexp2: {
|
||
if (dst.size() == 1) {
|
||
emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_fsqrt: {
|
||
if (dst.size() == 1) {
|
||
emit_sqrt(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
|
||
} else if (dst.size() == 2) {
|
||
emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_ffract: {
|
||
if (dst.size() == 1) {
|
||
emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
|
||
} else if (dst.size() == 2) {
|
||
emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_ffloor: {
|
||
if (dst.size() == 1) {
|
||
emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
|
||
} else if (dst.size() == 2) {
|
||
emit_floor_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_fceil: {
|
||
if (dst.size() == 1) {
|
||
emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
|
||
} else if (dst.size() == 2) {
|
||
if (ctx->options->chip_class >= GFX7) {
|
||
emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
|
||
} else {
|
||
/* GFX6 doesn't support V_CEIL_F64, lower it. */
|
||
Temp src0 = get_alu_src(ctx, instr->src[0]);
|
||
|
||
/* trunc = trunc(src0)
|
||
* if (src0 > 0.0 && src0 != trunc)
|
||
* trunc += 1.0
|
||
*/
|
||
Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
|
||
Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
|
||
Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
|
||
Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
|
||
Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
|
||
add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
|
||
bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
|
||
}
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_ftrunc: {
|
||
if (dst.size() == 1) {
|
||
emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
|
||
} else if (dst.size() == 2) {
|
||
emit_trunc_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_fround_even: {
|
||
if (dst.size() == 1) {
|
||
emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
|
||
} else if (dst.size() == 2) {
|
||
if (ctx->options->chip_class >= GFX7) {
|
||
emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
|
||
} else {
|
||
/* GFX6 doesn't support V_RNDNE_F64, lower it. */
|
||
Temp src0 = get_alu_src(ctx, instr->src[0]);
|
||
|
||
Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
|
||
|
||
Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
|
||
Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
|
||
Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
|
||
Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
|
||
static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
|
||
tmp = sub->definitions[0].getTemp();
|
||
|
||
Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
|
||
Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
|
||
static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
|
||
Temp cond = vop3->definitions[0].getTemp();
|
||
|
||
Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
|
||
Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
|
||
Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
|
||
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
|
||
}
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_fsin:
|
||
case nir_op_fcos: {
|
||
Temp src = get_alu_src(ctx, instr->src[0]);
|
||
aco_ptr<Instruction> norm;
|
||
if (dst.size() == 1) {
|
||
Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
|
||
Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, as_vgpr(ctx, src));
|
||
|
||
/* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
|
||
if (ctx->options->chip_class < GFX9)
|
||
tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
|
||
|
||
aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
|
||
bld.vop1(opcode, Definition(dst), tmp);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_ldexp: {
|
||
if (dst.size() == 1) {
|
||
bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
|
||
as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
|
||
get_alu_src(ctx, instr->src[1]));
|
||
} else if (dst.size() == 2) {
|
||
bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
|
||
as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
|
||
get_alu_src(ctx, instr->src[1]));
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_frexp_sig: {
|
||
if (dst.size() == 1) {
|
||
bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst),
|
||
get_alu_src(ctx, instr->src[0]));
|
||
} else if (dst.size() == 2) {
|
||
bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst),
|
||
get_alu_src(ctx, instr->src[0]));
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_frexp_exp: {
|
||
if (instr->src[0].src.ssa->bit_size == 32) {
|
||
bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst),
|
||
get_alu_src(ctx, instr->src[0]));
|
||
} else if (instr->src[0].src.ssa->bit_size == 64) {
|
||
bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst),
|
||
get_alu_src(ctx, instr->src[0]));
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_fsign: {
|
||
Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
|
||
if (dst.size() == 1) {
|
||
Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
|
||
src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
|
||
cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
|
||
bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
|
||
} else if (dst.size() == 2) {
|
||
Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
|
||
Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
|
||
Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
|
||
|
||
cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
|
||
tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
|
||
upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
|
||
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_f2f32: {
|
||
if (instr->src[0].src.ssa->bit_size == 64) {
|
||
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_f2f64: {
|
||
if (instr->src[0].src.ssa->bit_size == 32) {
|
||
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_f32, dst);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_i2f32: {
|
||
assert(dst.size() == 1);
|
||
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
|
||
break;
|
||
}
|
||
case nir_op_i2f64: {
|
||
if (instr->src[0].src.ssa->bit_size == 32) {
|
||
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
|
||
} else if (instr->src[0].src.ssa->bit_size == 64) {
|
||
Temp src = get_alu_src(ctx, instr->src[0]);
|
||
RegClass rc = RegClass(src.type(), 1);
|
||
Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
|
||
lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
|
||
upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
|
||
upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
|
||
bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
|
||
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_u2f32: {
|
||
assert(dst.size() == 1);
|
||
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
|
||
break;
|
||
}
|
||
case nir_op_u2f64: {
|
||
if (instr->src[0].src.ssa->bit_size == 32) {
|
||
emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
|
||
} else if (instr->src[0].src.ssa->bit_size == 64) {
|
||
Temp src = get_alu_src(ctx, instr->src[0]);
|
||
RegClass rc = RegClass(src.type(), 1);
|
||
Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
|
||
lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
|
||
upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
|
||
upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
|
||
bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_f2i32: {
|
||
Temp src = get_alu_src(ctx, instr->src[0]);
|
||
if (instr->src[0].src.ssa->bit_size == 32) {
|
||
if (dst.type() == RegType::vgpr)
|
||
bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
|
||
else
|
||
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
|
||
bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
|
||
|
||
} else if (instr->src[0].src.ssa->bit_size == 64) {
|
||
if (dst.type() == RegType::vgpr)
|
||
bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
|
||
else
|
||
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
|
||
bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
|
||
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_f2u32: {
|
||
Temp src = get_alu_src(ctx, instr->src[0]);
|
||
if (instr->src[0].src.ssa->bit_size == 32) {
|
||
if (dst.type() == RegType::vgpr)
|
||
bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
|
||
else
|
||
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
|
||
bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
|
||
|
||
} else if (instr->src[0].src.ssa->bit_size == 64) {
|
||
if (dst.type() == RegType::vgpr)
|
||
bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
|
||
else
|
||
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
|
||
bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
|
||
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_f2i64: {
|
||
Temp src = get_alu_src(ctx, instr->src[0]);
|
||
if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
|
||
Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
|
||
exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
|
||
Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
|
||
Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
|
||
mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
|
||
mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
|
||
mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
|
||
Temp new_exponent = bld.tmp(v1);
|
||
Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
|
||
if (ctx->program->chip_class >= GFX8)
|
||
mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
|
||
else
|
||
mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
|
||
Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
|
||
Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
|
||
lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
|
||
upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
|
||
lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
|
||
upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
|
||
Temp new_lower = bld.tmp(v1);
|
||
borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
|
||
Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
|
||
|
||
} else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
|
||
if (src.type() == RegType::vgpr)
|
||
src = bld.as_uniform(src);
|
||
Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
|
||
exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
|
||
exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
|
||
exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
|
||
Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
|
||
Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
|
||
mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
|
||
mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
|
||
mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
|
||
exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
|
||
mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
|
||
Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
|
||
Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
|
||
mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
|
||
Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
|
||
lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
|
||
upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
|
||
Temp borrow = bld.tmp(s1);
|
||
lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
|
||
upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
|
||
|
||
} else if (instr->src[0].src.ssa->bit_size == 64) {
|
||
Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
|
||
Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
|
||
Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
|
||
vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
|
||
Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
|
||
Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
|
||
Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
|
||
Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
|
||
if (dst.type() == RegType::sgpr) {
|
||
lower = bld.as_uniform(lower);
|
||
upper = bld.as_uniform(upper);
|
||
}
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
|
||
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_f2u64: {
|
||
Temp src = get_alu_src(ctx, instr->src[0]);
|
||
if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
|
||
Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
|
||
Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
|
||
exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
|
||
Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
|
||
mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
|
||
Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
|
||
Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
|
||
mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
|
||
Temp new_exponent = bld.tmp(v1);
|
||
Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
|
||
if (ctx->program->chip_class >= GFX8)
|
||
mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
|
||
else
|
||
mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
|
||
Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
|
||
lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
|
||
upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
|
||
lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
|
||
upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
|
||
|
||
} else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
|
||
if (src.type() == RegType::vgpr)
|
||
src = bld.as_uniform(src);
|
||
Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
|
||
exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
|
||
exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
|
||
Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
|
||
mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
|
||
Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
|
||
Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
|
||
mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
|
||
Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
|
||
mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
|
||
Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
|
||
mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
|
||
Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
|
||
Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
|
||
lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
|
||
upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
|
||
|
||
} else if (instr->src[0].src.ssa->bit_size == 64) {
|
||
Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
|
||
Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
|
||
Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
|
||
vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
|
||
Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
|
||
Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
|
||
Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
|
||
Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
|
||
if (dst.type() == RegType::sgpr) {
|
||
lower = bld.as_uniform(lower);
|
||
upper = bld.as_uniform(upper);
|
||
}
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
|
||
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_b2f32: {
|
||
Temp src = get_alu_src(ctx, instr->src[0]);
|
||
assert(src.regClass() == bld.lm);
|
||
|
||
if (dst.regClass() == s1) {
|
||
src = bool_to_scalar_condition(ctx, src);
|
||
bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
|
||
} else if (dst.regClass() == v1) {
|
||
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
|
||
} else {
|
||
unreachable("Wrong destination register class for nir_op_b2f32.");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_b2f64: {
|
||
Temp src = get_alu_src(ctx, instr->src[0]);
|
||
assert(src.regClass() == bld.lm);
|
||
|
||
if (dst.regClass() == s2) {
|
||
src = bool_to_scalar_condition(ctx, src);
|
||
bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
|
||
} else if (dst.regClass() == v2) {
|
||
Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
|
||
Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
|
||
} else {
|
||
unreachable("Wrong destination register class for nir_op_b2f64.");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_i2i32: {
|
||
Temp src = get_alu_src(ctx, instr->src[0]);
|
||
if (instr->src[0].src.ssa->bit_size == 64) {
|
||
/* we can actually just say dst = src, as it would map the lower register */
|
||
emit_extract_vector(ctx, src, 0, dst);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_u2u32: {
|
||
Temp src = get_alu_src(ctx, instr->src[0]);
|
||
if (instr->src[0].src.ssa->bit_size == 16) {
|
||
if (dst.regClass() == s1) {
|
||
bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
|
||
} else {
|
||
// TODO: do better with SDWA
|
||
bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0xFFFFu), src);
|
||
}
|
||
} else if (instr->src[0].src.ssa->bit_size == 64) {
|
||
/* we can actually just say dst = src, as it would map the lower register */
|
||
emit_extract_vector(ctx, src, 0, dst);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_i2i64: {
|
||
Temp src = get_alu_src(ctx, instr->src[0]);
|
||
if (src.regClass() == s1) {
|
||
Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
|
||
} else if (src.regClass() == v1) {
|
||
Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_u2u64: {
|
||
Temp src = get_alu_src(ctx, instr->src[0]);
|
||
if (instr->src[0].src.ssa->bit_size == 32) {
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_b2i32: {
|
||
Temp src = get_alu_src(ctx, instr->src[0]);
|
||
assert(src.regClass() == bld.lm);
|
||
|
||
if (dst.regClass() == s1) {
|
||
// TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
|
||
bool_to_scalar_condition(ctx, src, dst);
|
||
} else if (dst.regClass() == v1) {
|
||
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
|
||
} else {
|
||
unreachable("Invalid register class for b2i32");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_i2b1: {
|
||
Temp src = get_alu_src(ctx, instr->src[0]);
|
||
assert(dst.regClass() == bld.lm);
|
||
|
||
if (src.type() == RegType::vgpr) {
|
||
assert(src.regClass() == v1 || src.regClass() == v2);
|
||
assert(dst.regClass() == bld.lm);
|
||
bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
|
||
Definition(dst), Operand(0u), src).def(0).setHint(vcc);
|
||
} else {
|
||
assert(src.regClass() == s1 || src.regClass() == s2);
|
||
Temp tmp;
|
||
if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
|
||
tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
|
||
} else {
|
||
tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
|
||
bld.scc(bld.def(s1)), Operand(0u), src);
|
||
}
|
||
bool_to_vector_condition(ctx, tmp, dst);
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_pack_64_2x32_split: {
|
||
Temp src0 = get_alu_src(ctx, instr->src[0]);
|
||
Temp src1 = get_alu_src(ctx, instr->src[1]);
|
||
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
|
||
break;
|
||
}
|
||
case nir_op_unpack_64_2x32_split_x:
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
|
||
break;
|
||
case nir_op_unpack_64_2x32_split_y:
|
||
bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
|
||
break;
|
||
case nir_op_pack_half_2x16: {
|
||
Temp src = get_alu_src(ctx, instr->src[0], 2);
|
||
|
||
if (dst.regClass() == v1) {
|
||
Temp src0 = bld.tmp(v1);
|
||
Temp src1 = bld.tmp(v1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
|
||
if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
|
||
bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
|
||
else
|
||
bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
|
||
bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
|
||
bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_unpack_half_2x16_split_x: {
|
||
if (dst.regClass() == v1) {
|
||
Builder bld(ctx->program, ctx->block);
|
||
bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_unpack_half_2x16_split_y: {
|
||
if (dst.regClass() == v1) {
|
||
Builder bld(ctx->program, ctx->block);
|
||
/* TODO: use SDWA here */
|
||
bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
|
||
bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_fquantize2f16: {
|
||
Temp src = get_alu_src(ctx, instr->src[0]);
|
||
Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
|
||
Temp f32, cmp_res;
|
||
|
||
if (ctx->program->chip_class >= GFX8) {
|
||
Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
|
||
cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
|
||
f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
|
||
} else {
|
||
/* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
|
||
* so compare the result and flush to 0 if it's smaller.
|
||
*/
|
||
f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
|
||
Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
|
||
Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
|
||
static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
|
||
cmp_res = vop3->definitions[0].getTemp();
|
||
}
|
||
|
||
if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
|
||
Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
|
||
bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
|
||
} else {
|
||
bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_bfm: {
|
||
Temp bits = get_alu_src(ctx, instr->src[0]);
|
||
Temp offset = get_alu_src(ctx, instr->src[1]);
|
||
|
||
if (dst.regClass() == s1) {
|
||
bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
|
||
} else if (dst.regClass() == v1) {
|
||
bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_bitfield_select: {
|
||
/* (mask & insert) | (~mask & base) */
|
||
Temp bitmask = get_alu_src(ctx, instr->src[0]);
|
||
Temp insert = get_alu_src(ctx, instr->src[1]);
|
||
Temp base = get_alu_src(ctx, instr->src[2]);
|
||
|
||
/* dst = (insert & bitmask) | (base & ~bitmask) */
|
||
if (dst.regClass() == s1) {
|
||
aco_ptr<Instruction> sop2;
|
||
nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
|
||
nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
|
||
Operand lhs;
|
||
if (const_insert && const_bitmask) {
|
||
lhs = Operand(const_insert->u32 & const_bitmask->u32);
|
||
} else {
|
||
insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
|
||
lhs = Operand(insert);
|
||
}
|
||
|
||
Operand rhs;
|
||
nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
|
||
if (const_base && const_bitmask) {
|
||
rhs = Operand(const_base->u32 & ~const_bitmask->u32);
|
||
} else {
|
||
base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
|
||
rhs = Operand(base);
|
||
}
|
||
|
||
bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
|
||
|
||
} else if (dst.regClass() == v1) {
|
||
if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
|
||
base = as_vgpr(ctx, base);
|
||
if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
|
||
insert = as_vgpr(ctx, insert);
|
||
|
||
bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
|
||
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_ubfe:
|
||
case nir_op_ibfe: {
|
||
Temp base = get_alu_src(ctx, instr->src[0]);
|
||
Temp offset = get_alu_src(ctx, instr->src[1]);
|
||
Temp bits = get_alu_src(ctx, instr->src[2]);
|
||
|
||
if (dst.type() == RegType::sgpr) {
|
||
Operand extract;
|
||
nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
|
||
nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
|
||
if (const_offset && const_bits) {
|
||
uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
|
||
extract = Operand(const_extract);
|
||
} else {
|
||
Operand width;
|
||
if (const_bits) {
|
||
width = Operand(const_bits->u32 << 16);
|
||
} else {
|
||
width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
|
||
}
|
||
extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
|
||
}
|
||
|
||
aco_opcode opcode;
|
||
if (dst.regClass() == s1) {
|
||
if (instr->op == nir_op_ubfe)
|
||
opcode = aco_opcode::s_bfe_u32;
|
||
else
|
||
opcode = aco_opcode::s_bfe_i32;
|
||
} else if (dst.regClass() == s2) {
|
||
if (instr->op == nir_op_ubfe)
|
||
opcode = aco_opcode::s_bfe_u64;
|
||
else
|
||
opcode = aco_opcode::s_bfe_i64;
|
||
} else {
|
||
unreachable("Unsupported BFE bit size");
|
||
}
|
||
|
||
bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
|
||
|
||
} else {
|
||
aco_opcode opcode;
|
||
if (dst.regClass() == v1) {
|
||
if (instr->op == nir_op_ubfe)
|
||
opcode = aco_opcode::v_bfe_u32;
|
||
else
|
||
opcode = aco_opcode::v_bfe_i32;
|
||
} else {
|
||
unreachable("Unsupported BFE bit size");
|
||
}
|
||
|
||
emit_vop3a_instruction(ctx, instr, opcode, dst);
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_bit_count: {
|
||
Temp src = get_alu_src(ctx, instr->src[0]);
|
||
if (src.regClass() == s1) {
|
||
bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
|
||
} else if (src.regClass() == v1) {
|
||
bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
|
||
} else if (src.regClass() == v2) {
|
||
bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
|
||
emit_extract_vector(ctx, src, 1, v1),
|
||
bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
|
||
emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
|
||
} else if (src.regClass() == s2) {
|
||
bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_op_flt: {
|
||
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
|
||
break;
|
||
}
|
||
case nir_op_fge: {
|
||
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
|
||
break;
|
||
}
|
||
case nir_op_feq: {
|
||
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
|
||
break;
|
||
}
|
||
case nir_op_fne: {
|
||
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
|
||
break;
|
||
}
|
||
case nir_op_ilt: {
|
||
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
|
||
break;
|
||
}
|
||
case nir_op_ige: {
|
||
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
|
||
break;
|
||
}
|
||
case nir_op_ieq: {
|
||
if (instr->src[0].src.ssa->bit_size == 1)
|
||
emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
|
||
else
|
||
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
|
||
ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
|
||
break;
|
||
}
|
||
case nir_op_ine: {
|
||
if (instr->src[0].src.ssa->bit_size == 1)
|
||
emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
|
||
else
|
||
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
|
||
ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
|
||
break;
|
||
}
|
||
case nir_op_ult: {
|
||
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
|
||
break;
|
||
}
|
||
case nir_op_uge: {
|
||
emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
|
||
break;
|
||
}
|
||
case nir_op_fddx:
|
||
case nir_op_fddy:
|
||
case nir_op_fddx_fine:
|
||
case nir_op_fddy_fine:
|
||
case nir_op_fddx_coarse:
|
||
case nir_op_fddy_coarse: {
|
||
Temp src = get_alu_src(ctx, instr->src[0]);
|
||
uint16_t dpp_ctrl1, dpp_ctrl2;
|
||
if (instr->op == nir_op_fddx_fine) {
|
||
dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
|
||
dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
|
||
} else if (instr->op == nir_op_fddy_fine) {
|
||
dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
|
||
dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
|
||
} else {
|
||
dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
|
||
if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
|
||
dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
|
||
else
|
||
dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
|
||
}
|
||
|
||
Temp tmp;
|
||
if (ctx->program->chip_class >= GFX8) {
|
||
Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
|
||
tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
|
||
} else {
|
||
Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
|
||
Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
|
||
tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
|
||
}
|
||
emit_wqm(ctx, tmp, dst, true);
|
||
break;
|
||
}
|
||
default:
|
||
fprintf(stderr, "Unknown NIR ALU instr: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
}
|
||
|
||
void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
|
||
{
|
||
Temp dst = get_ssa_temp(ctx, &instr->def);
|
||
|
||
// TODO: we really want to have the resulting type as this would allow for 64bit literals
|
||
// which get truncated the lsb if double and msb if int
|
||
// for now, we only use s_mov_b64 with 64bit inline constants
|
||
assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
|
||
assert(dst.type() == RegType::sgpr);
|
||
|
||
Builder bld(ctx->program, ctx->block);
|
||
|
||
if (instr->def.bit_size == 1) {
|
||
assert(dst.regClass() == bld.lm);
|
||
int val = instr->value[0].b ? -1 : 0;
|
||
Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
|
||
bld.sop1(Builder::s_mov, Definition(dst), op);
|
||
} else if (dst.size() == 1) {
|
||
bld.copy(Definition(dst), Operand(instr->value[0].u32));
|
||
} else {
|
||
assert(dst.size() != 1);
|
||
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
|
||
if (instr->def.bit_size == 64)
|
||
for (unsigned i = 0; i < dst.size(); i++)
|
||
vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
|
||
else {
|
||
for (unsigned i = 0; i < dst.size(); i++)
|
||
vec->operands[i] = Operand{instr->value[i].u32};
|
||
}
|
||
vec->definitions[0] = Definition(dst);
|
||
ctx->block->instructions.emplace_back(std::move(vec));
|
||
}
|
||
}
|
||
|
||
uint32_t widen_mask(uint32_t mask, unsigned multiplier)
|
||
{
|
||
uint32_t new_mask = 0;
|
||
for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
|
||
if (mask & (1u << i))
|
||
new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
|
||
return new_mask;
|
||
}
|
||
|
||
Operand load_lds_size_m0(isel_context *ctx)
|
||
{
|
||
/* TODO: m0 does not need to be initialized on GFX9+ */
|
||
Builder bld(ctx->program, ctx->block);
|
||
return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
|
||
}
|
||
|
||
void load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
|
||
Temp address, unsigned base_offset, unsigned align)
|
||
{
|
||
assert(util_is_power_of_two_nonzero(align) && align >= 4);
|
||
|
||
Builder bld(ctx->program, ctx->block);
|
||
|
||
Operand m = load_lds_size_m0(ctx);
|
||
|
||
unsigned num_components = dst.size() * 4u / elem_size_bytes;
|
||
unsigned bytes_read = 0;
|
||
unsigned result_size = 0;
|
||
unsigned total_bytes = num_components * elem_size_bytes;
|
||
std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
|
||
bool large_ds_read = ctx->options->chip_class >= GFX7;
|
||
bool usable_read2 = ctx->options->chip_class >= GFX7;
|
||
|
||
while (bytes_read < total_bytes) {
|
||
unsigned todo = total_bytes - bytes_read;
|
||
bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
|
||
bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
|
||
|
||
aco_opcode op = aco_opcode::last_opcode;
|
||
bool read2 = false;
|
||
if (todo >= 16 && aligned16 && large_ds_read) {
|
||
op = aco_opcode::ds_read_b128;
|
||
todo = 16;
|
||
} else if (todo >= 16 && aligned8 && usable_read2) {
|
||
op = aco_opcode::ds_read2_b64;
|
||
read2 = true;
|
||
todo = 16;
|
||
} else if (todo >= 12 && aligned16 && large_ds_read) {
|
||
op = aco_opcode::ds_read_b96;
|
||
todo = 12;
|
||
} else if (todo >= 8 && aligned8) {
|
||
op = aco_opcode::ds_read_b64;
|
||
todo = 8;
|
||
} else if (todo >= 8 && usable_read2) {
|
||
op = aco_opcode::ds_read2_b32;
|
||
read2 = true;
|
||
todo = 8;
|
||
} else if (todo >= 4) {
|
||
op = aco_opcode::ds_read_b32;
|
||
todo = 4;
|
||
} else {
|
||
assert(false);
|
||
}
|
||
assert(todo % elem_size_bytes == 0);
|
||
unsigned num_elements = todo / elem_size_bytes;
|
||
unsigned offset = base_offset + bytes_read;
|
||
unsigned max_offset = read2 ? 1019 : 65535;
|
||
|
||
Temp address_offset = address;
|
||
if (offset > max_offset) {
|
||
address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
|
||
offset = bytes_read;
|
||
}
|
||
assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
|
||
|
||
Temp res;
|
||
if (num_components == 1 && dst.type() == RegType::vgpr)
|
||
res = dst;
|
||
else
|
||
res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
|
||
|
||
if (read2)
|
||
res = bld.ds(op, Definition(res), address_offset, m, offset >> 2, (offset >> 2) + 1);
|
||
else
|
||
res = bld.ds(op, Definition(res), address_offset, m, offset);
|
||
|
||
if (num_components == 1) {
|
||
assert(todo == total_bytes);
|
||
if (dst.type() == RegType::sgpr)
|
||
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
|
||
return;
|
||
}
|
||
|
||
if (dst.type() == RegType::sgpr) {
|
||
Temp new_res = bld.tmp(RegType::sgpr, res.size());
|
||
expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
|
||
res = new_res;
|
||
}
|
||
|
||
if (num_elements == 1) {
|
||
result[result_size++] = res;
|
||
} else {
|
||
assert(res != dst && res.size() % num_elements == 0);
|
||
aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
|
||
split->operands[0] = Operand(res);
|
||
for (unsigned i = 0; i < num_elements; i++)
|
||
split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
|
||
ctx->block->instructions.emplace_back(std::move(split));
|
||
}
|
||
|
||
bytes_read += todo;
|
||
}
|
||
|
||
assert(result_size == num_components && result_size > 1);
|
||
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
|
||
for (unsigned i = 0; i < result_size; i++)
|
||
vec->operands[i] = Operand(result[i]);
|
||
vec->definitions[0] = Definition(dst);
|
||
ctx->block->instructions.emplace_back(std::move(vec));
|
||
ctx->allocated_vec.emplace(dst.id(), result);
|
||
}
|
||
|
||
Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
|
||
{
|
||
if (start == 0 && size == data.size())
|
||
return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
|
||
|
||
unsigned size_hint = 1;
|
||
auto it = ctx->allocated_vec.find(data.id());
|
||
if (it != ctx->allocated_vec.end())
|
||
size_hint = it->second[0].size();
|
||
if (size % size_hint || start % size_hint)
|
||
size_hint = 1;
|
||
|
||
start /= size_hint;
|
||
size /= size_hint;
|
||
|
||
Temp elems[size];
|
||
for (unsigned i = 0; i < size; i++)
|
||
elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
|
||
|
||
if (size == 1)
|
||
return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
|
||
|
||
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
|
||
for (unsigned i = 0; i < size; i++)
|
||
vec->operands[i] = Operand(elems[i]);
|
||
Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
|
||
vec->definitions[0] = Definition(res);
|
||
ctx->block->instructions.emplace_back(std::move(vec));
|
||
return res;
|
||
}
|
||
|
||
void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
unsigned bytes_written = 0;
|
||
bool large_ds_write = ctx->options->chip_class >= GFX7;
|
||
bool usable_write2 = ctx->options->chip_class >= GFX7;
|
||
|
||
while (bytes_written < total_size * 4) {
|
||
unsigned todo = total_size * 4 - bytes_written;
|
||
bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
|
||
bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
|
||
|
||
aco_opcode op = aco_opcode::last_opcode;
|
||
bool write2 = false;
|
||
unsigned size = 0;
|
||
if (todo >= 16 && aligned16 && large_ds_write) {
|
||
op = aco_opcode::ds_write_b128;
|
||
size = 4;
|
||
} else if (todo >= 16 && aligned8 && usable_write2) {
|
||
op = aco_opcode::ds_write2_b64;
|
||
write2 = true;
|
||
size = 4;
|
||
} else if (todo >= 12 && aligned16 && large_ds_write) {
|
||
op = aco_opcode::ds_write_b96;
|
||
size = 3;
|
||
} else if (todo >= 8 && aligned8) {
|
||
op = aco_opcode::ds_write_b64;
|
||
size = 2;
|
||
} else if (todo >= 8 && usable_write2) {
|
||
op = aco_opcode::ds_write2_b32;
|
||
write2 = true;
|
||
size = 2;
|
||
} else if (todo >= 4) {
|
||
op = aco_opcode::ds_write_b32;
|
||
size = 1;
|
||
} else {
|
||
assert(false);
|
||
}
|
||
|
||
unsigned offset = offset0 + offset1 + bytes_written;
|
||
unsigned max_offset = write2 ? 1020 : 65535;
|
||
Temp address_offset = address;
|
||
if (offset > max_offset) {
|
||
address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
|
||
offset = offset1 + bytes_written;
|
||
}
|
||
assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
|
||
|
||
if (write2) {
|
||
Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
|
||
Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
|
||
bld.ds(op, address_offset, val0, val1, m, offset >> 2, (offset >> 2) + 1);
|
||
} else {
|
||
Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
|
||
bld.ds(op, address_offset, val, m, offset);
|
||
}
|
||
|
||
bytes_written += size * 4;
|
||
}
|
||
}
|
||
|
||
void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
|
||
Temp address, unsigned base_offset, unsigned align)
|
||
{
|
||
assert(util_is_power_of_two_nonzero(align) && align >= 4);
|
||
|
||
Operand m = load_lds_size_m0(ctx);
|
||
|
||
/* we need at most two stores for 32bit variables */
|
||
int start[2], count[2];
|
||
u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
|
||
u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
|
||
assert(wrmask == 0);
|
||
|
||
/* one combined store is sufficient */
|
||
if (count[0] == count[1]) {
|
||
Builder bld(ctx->program, ctx->block);
|
||
|
||
Temp address_offset = address;
|
||
if ((base_offset >> 2) + start[1] > 255) {
|
||
address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
|
||
base_offset = 0;
|
||
}
|
||
|
||
assert(count[0] == 1);
|
||
Temp val0 = emit_extract_vector(ctx, data, start[0], v1);
|
||
Temp val1 = emit_extract_vector(ctx, data, start[1], v1);
|
||
aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
|
||
base_offset = base_offset / elem_size_bytes;
|
||
bld.ds(op, address_offset, val0, val1, m,
|
||
base_offset + start[0], base_offset + start[1]);
|
||
return;
|
||
}
|
||
|
||
for (unsigned i = 0; i < 2; i++) {
|
||
if (count[i] == 0)
|
||
continue;
|
||
|
||
unsigned elem_size_words = elem_size_bytes / 4;
|
||
ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
|
||
base_offset, start[i] * elem_size_bytes, align);
|
||
}
|
||
return;
|
||
}
|
||
|
||
unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
|
||
{
|
||
unsigned itemsize = ctx->program->info->vs.es_info.esgs_itemsize;
|
||
unsigned align = 16;
|
||
align = std::min(align, 1u << (ffs(itemsize) - 1));
|
||
if (const_offset)
|
||
align = std::min(align, 1u << (ffs(const_offset) - 1));
|
||
|
||
return align;
|
||
}
|
||
|
||
void visit_store_vsgs_output(isel_context *ctx, nir_intrinsic_instr *instr)
|
||
{
|
||
unsigned write_mask = nir_intrinsic_write_mask(instr);
|
||
unsigned component = nir_intrinsic_component(instr);
|
||
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
|
||
unsigned idx = (nir_intrinsic_base(instr) + component) * 4u;
|
||
Operand offset(s1);
|
||
Builder bld(ctx->program, ctx->block);
|
||
|
||
nir_instr *off_instr = instr->src[1].ssa->parent_instr;
|
||
if (off_instr->type != nir_instr_type_load_const)
|
||
offset = bld.v_mul24_imm(bld.def(v1), get_ssa_temp(ctx, instr->src[1].ssa), 16u);
|
||
else
|
||
idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 16u;
|
||
|
||
unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
|
||
if (ctx->stage == vertex_es) {
|
||
Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
|
||
|
||
Temp elems[NIR_MAX_VEC_COMPONENTS * 2];
|
||
if (elem_size_bytes == 8) {
|
||
for (unsigned i = 0; i < src.size() / 2; i++) {
|
||
Temp elem = emit_extract_vector(ctx, src, i, v2);
|
||
elems[i*2] = bld.tmp(v1);
|
||
elems[i*2+1] = bld.tmp(v1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(elems[i*2]), Definition(elems[i*2+1]), elem);
|
||
}
|
||
write_mask = widen_mask(write_mask, 2);
|
||
elem_size_bytes /= 2u;
|
||
} else {
|
||
for (unsigned i = 0; i < src.size(); i++)
|
||
elems[i] = emit_extract_vector(ctx, src, i, v1);
|
||
}
|
||
|
||
while (write_mask) {
|
||
unsigned index = u_bit_scan(&write_mask);
|
||
unsigned offset = index * elem_size_bytes;
|
||
Temp elem = emit_extract_vector(ctx, src, index, RegClass(RegType::vgpr, elem_size_bytes / 4));
|
||
|
||
Operand vaddr_offset(v1);
|
||
unsigned const_offset = idx + offset;
|
||
if (const_offset >= 4096u) {
|
||
vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
|
||
const_offset %= 4096u;
|
||
}
|
||
|
||
aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
|
||
mtbuf->operands[0] = Operand(esgs_ring);
|
||
mtbuf->operands[1] = vaddr_offset;
|
||
mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->es2gs_offset));
|
||
mtbuf->operands[3] = Operand(elem);
|
||
mtbuf->offen = !vaddr_offset.isUndefined();
|
||
mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
|
||
mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
|
||
mtbuf->offset = const_offset;
|
||
mtbuf->glc = true;
|
||
mtbuf->slc = true;
|
||
mtbuf->barrier = barrier_none;
|
||
mtbuf->can_reorder = true;
|
||
bld.insert(std::move(mtbuf));
|
||
}
|
||
} else {
|
||
unsigned itemsize = ctx->program->info->vs.es_info.esgs_itemsize;
|
||
|
||
Temp vertex_idx = emit_mbcnt(ctx, bld.def(v1));
|
||
Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
|
||
vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), vertex_idx,
|
||
bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
|
||
|
||
Temp lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
|
||
if (!offset.isUndefined())
|
||
lds_base = bld.vadd32(bld.def(v1), offset, lds_base);
|
||
|
||
unsigned align = calculate_lds_alignment(ctx, idx);
|
||
store_lds(ctx, elem_size_bytes, src, write_mask, lds_base, idx, align);
|
||
}
|
||
}
|
||
|
||
void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
|
||
{
|
||
if (ctx->stage == vertex_vs ||
|
||
ctx->stage == fragment_fs ||
|
||
ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
|
||
unsigned write_mask = nir_intrinsic_write_mask(instr);
|
||
unsigned component = nir_intrinsic_component(instr);
|
||
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
|
||
unsigned idx = nir_intrinsic_base(instr) + component;
|
||
|
||
nir_instr *off_instr = instr->src[1].ssa->parent_instr;
|
||
if (off_instr->type != nir_instr_type_load_const) {
|
||
fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
|
||
nir_print_instr(off_instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
|
||
|
||
if (instr->src[0].ssa->bit_size == 64)
|
||
write_mask = widen_mask(write_mask, 2);
|
||
|
||
for (unsigned i = 0; i < 8; ++i) {
|
||
if (write_mask & (1 << i)) {
|
||
ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
|
||
ctx->outputs.outputs[idx / 4u][idx % 4u] = emit_extract_vector(ctx, src, i, v1);
|
||
}
|
||
idx++;
|
||
}
|
||
} else if (ctx->stage == vertex_es ||
|
||
(ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX)) {
|
||
visit_store_vsgs_output(ctx, instr);
|
||
} else {
|
||
unreachable("Shader stage not implemented");
|
||
}
|
||
}
|
||
|
||
void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
|
||
{
|
||
Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
|
||
Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
|
||
|
||
Builder bld(ctx->program, ctx->block);
|
||
Temp tmp = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
|
||
bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), tmp, idx, component);
|
||
}
|
||
|
||
void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
|
||
{
|
||
aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
|
||
for (unsigned i = 0; i < num_components; i++)
|
||
vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
|
||
if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
|
||
assert(num_components == 4);
|
||
Builder bld(ctx->program, ctx->block);
|
||
vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
|
||
}
|
||
|
||
for (Operand& op : vec->operands)
|
||
op = op.isUndefined() ? Operand(0u) : op;
|
||
|
||
vec->definitions[0] = Definition(dst);
|
||
ctx->block->instructions.emplace_back(std::move(vec));
|
||
emit_split_vector(ctx, dst, num_components);
|
||
return;
|
||
}
|
||
|
||
void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
|
||
{
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
|
||
unsigned idx = nir_intrinsic_base(instr);
|
||
unsigned component = nir_intrinsic_component(instr);
|
||
Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
|
||
|
||
nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
|
||
if (offset) {
|
||
assert(offset->u32 == 0);
|
||
} else {
|
||
/* the lower 15bit of the prim_mask contain the offset into LDS
|
||
* while the upper bits contain the number of prims */
|
||
Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
|
||
assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
|
||
Builder bld(ctx->program, ctx->block);
|
||
Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
|
||
stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
|
||
stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
|
||
offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
|
||
prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
|
||
}
|
||
|
||
if (instr->dest.ssa.num_components == 1) {
|
||
emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
|
||
} else {
|
||
aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
|
||
for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
|
||
{
|
||
Temp tmp = {ctx->program->allocateId(), v1};
|
||
emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
|
||
vec->operands[i] = Operand(tmp);
|
||
}
|
||
vec->definitions[0] = Definition(dst);
|
||
ctx->block->instructions.emplace_back(std::move(vec));
|
||
}
|
||
}
|
||
|
||
bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
|
||
unsigned offset, unsigned stride, unsigned channels)
|
||
{
|
||
unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
|
||
if (vtx_info->chan_byte_size != 4 && channels == 3)
|
||
return false;
|
||
return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
|
||
(offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
|
||
}
|
||
|
||
uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
|
||
unsigned offset, unsigned stride, unsigned *channels)
|
||
{
|
||
if (!vtx_info->chan_byte_size) {
|
||
*channels = vtx_info->num_channels;
|
||
return vtx_info->chan_format;
|
||
}
|
||
|
||
unsigned num_channels = *channels;
|
||
if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
|
||
unsigned new_channels = num_channels + 1;
|
||
/* first, assume more loads is worse and try using a larger data format */
|
||
while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
|
||
new_channels++;
|
||
/* don't make the attribute potentially out-of-bounds */
|
||
if (offset + new_channels * vtx_info->chan_byte_size > stride)
|
||
new_channels = 5;
|
||
}
|
||
|
||
if (new_channels == 5) {
|
||
/* then try decreasing load size (at the cost of more loads) */
|
||
new_channels = *channels;
|
||
while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
|
||
new_channels--;
|
||
}
|
||
|
||
if (new_channels < *channels)
|
||
*channels = new_channels;
|
||
num_channels = new_channels;
|
||
}
|
||
|
||
switch (vtx_info->chan_format) {
|
||
case V_008F0C_BUF_DATA_FORMAT_8:
|
||
return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
|
||
V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
|
||
case V_008F0C_BUF_DATA_FORMAT_16:
|
||
return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
|
||
V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
|
||
case V_008F0C_BUF_DATA_FORMAT_32:
|
||
return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
|
||
V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
|
||
}
|
||
unreachable("shouldn't reach here");
|
||
return V_008F0C_BUF_DATA_FORMAT_INVALID;
|
||
}
|
||
|
||
/* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
|
||
* so we may need to fix it up. */
|
||
Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
|
||
if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
|
||
alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
|
||
|
||
/* For the integer-like cases, do a natural sign extension.
|
||
*
|
||
* For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
|
||
* and happen to contain 0, 1, 2, 3 as the two LSBs of the
|
||
* exponent.
|
||
*/
|
||
alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
|
||
alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
|
||
|
||
/* Convert back to the right type. */
|
||
if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
|
||
alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
|
||
Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
|
||
alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
|
||
} else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
|
||
alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
|
||
}
|
||
|
||
return alpha;
|
||
}
|
||
|
||
void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
|
||
|
||
nir_instr *off_instr = instr->src[0].ssa->parent_instr;
|
||
if (off_instr->type != nir_instr_type_load_const) {
|
||
fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
|
||
nir_print_instr(off_instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
|
||
|
||
Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
|
||
|
||
unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
|
||
unsigned component = nir_intrinsic_component(instr);
|
||
unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
|
||
uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
|
||
uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
|
||
unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
|
||
|
||
unsigned dfmt = attrib_format & 0xf;
|
||
unsigned nfmt = (attrib_format >> 4) & 0x7;
|
||
const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
|
||
|
||
unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
|
||
unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
|
||
unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
|
||
bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
|
||
if (post_shuffle)
|
||
num_channels = MAX2(num_channels, 3);
|
||
|
||
Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
|
||
Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
|
||
|
||
Temp index;
|
||
if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
|
||
uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
|
||
Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
|
||
if (divisor) {
|
||
Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
|
||
if (divisor != 1) {
|
||
Temp divided = bld.tmp(v1);
|
||
emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
|
||
index = bld.vadd32(bld.def(v1), start_instance, divided);
|
||
} else {
|
||
index = bld.vadd32(bld.def(v1), start_instance, instance_id);
|
||
}
|
||
} else {
|
||
index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
|
||
}
|
||
} else {
|
||
index = bld.vadd32(bld.def(v1),
|
||
get_arg(ctx, ctx->args->ac.base_vertex),
|
||
get_arg(ctx, ctx->args->ac.vertex_id));
|
||
}
|
||
|
||
Temp channels[num_channels];
|
||
unsigned channel_start = 0;
|
||
bool direct_fetch = false;
|
||
|
||
/* skip unused channels at the start */
|
||
if (vtx_info->chan_byte_size && !post_shuffle) {
|
||
channel_start = ffs(mask) - 1;
|
||
for (unsigned i = 0; i < channel_start; i++)
|
||
channels[i] = Temp(0, s1);
|
||
} else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
|
||
num_channels = 3 - (ffs(mask) - 1);
|
||
}
|
||
|
||
/* load channels */
|
||
while (channel_start < num_channels) {
|
||
unsigned fetch_size = num_channels - channel_start;
|
||
unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
|
||
bool expanded = false;
|
||
|
||
/* use MUBUF when possible to avoid possible alignment issues */
|
||
/* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
|
||
bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
|
||
nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
|
||
nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
|
||
vtx_info->chan_byte_size == 4;
|
||
unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
|
||
if (!use_mubuf) {
|
||
fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_size);
|
||
} else {
|
||
if (fetch_size == 3 && ctx->options->chip_class == GFX6) {
|
||
/* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
|
||
fetch_size = 4;
|
||
expanded = true;
|
||
}
|
||
}
|
||
|
||
Temp fetch_index = index;
|
||
if (attrib_stride != 0 && fetch_offset > attrib_stride) {
|
||
fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
|
||
fetch_offset = fetch_offset % attrib_stride;
|
||
}
|
||
|
||
Operand soffset(0u);
|
||
if (fetch_offset >= 4096) {
|
||
soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
|
||
fetch_offset %= 4096;
|
||
}
|
||
|
||
aco_opcode opcode;
|
||
switch (fetch_size) {
|
||
case 1:
|
||
opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
|
||
break;
|
||
case 2:
|
||
opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
|
||
break;
|
||
case 3:
|
||
assert(ctx->options->chip_class >= GFX7 ||
|
||
(!use_mubuf && ctx->options->chip_class == GFX6));
|
||
opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
|
||
break;
|
||
case 4:
|
||
opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
|
||
break;
|
||
default:
|
||
unreachable("Unimplemented load_input vector size");
|
||
}
|
||
|
||
Temp fetch_dst;
|
||
if (channel_start == 0 && fetch_size == dst.size() && !post_shuffle &&
|
||
!expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
|
||
num_channels <= 3)) {
|
||
direct_fetch = true;
|
||
fetch_dst = dst;
|
||
} else {
|
||
fetch_dst = bld.tmp(RegType::vgpr, fetch_size);
|
||
}
|
||
|
||
if (use_mubuf) {
|
||
Instruction *mubuf = bld.mubuf(opcode,
|
||
Definition(fetch_dst), list, fetch_index, soffset,
|
||
fetch_offset, false, true).instr;
|
||
static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
|
||
} else {
|
||
Instruction *mtbuf = bld.mtbuf(opcode,
|
||
Definition(fetch_dst), list, fetch_index, soffset,
|
||
fetch_dfmt, nfmt, fetch_offset, false, true).instr;
|
||
static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
|
||
}
|
||
|
||
emit_split_vector(ctx, fetch_dst, fetch_dst.size());
|
||
|
||
if (fetch_size == 1) {
|
||
channels[channel_start] = fetch_dst;
|
||
} else {
|
||
for (unsigned i = 0; i < MIN2(fetch_size, num_channels - channel_start); i++)
|
||
channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, v1);
|
||
}
|
||
|
||
channel_start += fetch_size;
|
||
}
|
||
|
||
if (!direct_fetch) {
|
||
bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
|
||
nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
|
||
|
||
static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
|
||
static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
|
||
const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
|
||
|
||
aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
|
||
std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
|
||
unsigned num_temp = 0;
|
||
for (unsigned i = 0; i < dst.size(); i++) {
|
||
unsigned idx = i + component;
|
||
if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
|
||
Temp channel = channels[swizzle[idx]];
|
||
if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
|
||
channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
|
||
vec->operands[i] = Operand(channel);
|
||
|
||
num_temp++;
|
||
elems[i] = channel;
|
||
} else if (is_float && idx == 3) {
|
||
vec->operands[i] = Operand(0x3f800000u);
|
||
} else if (!is_float && idx == 3) {
|
||
vec->operands[i] = Operand(1u);
|
||
} else {
|
||
vec->operands[i] = Operand(0u);
|
||
}
|
||
}
|
||
vec->definitions[0] = Definition(dst);
|
||
ctx->block->instructions.emplace_back(std::move(vec));
|
||
emit_split_vector(ctx, dst, dst.size());
|
||
|
||
if (num_temp == dst.size())
|
||
ctx->allocated_vec.emplace(dst.id(), elems);
|
||
}
|
||
} else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
|
||
unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
|
||
nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
|
||
if (off_instr->type != nir_instr_type_load_const ||
|
||
nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
|
||
fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
|
||
nir_print_instr(off_instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
|
||
Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
|
||
nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
|
||
if (offset) {
|
||
assert(offset->u32 == 0);
|
||
} else {
|
||
/* the lower 15bit of the prim_mask contain the offset into LDS
|
||
* while the upper bits contain the number of prims */
|
||
Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
|
||
assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
|
||
Builder bld(ctx->program, ctx->block);
|
||
Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
|
||
stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
|
||
stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
|
||
offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
|
||
prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
|
||
}
|
||
|
||
unsigned idx = nir_intrinsic_base(instr);
|
||
unsigned component = nir_intrinsic_component(instr);
|
||
unsigned vertex_id = 2; /* P0 */
|
||
|
||
if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
|
||
nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
|
||
switch (src0->u32) {
|
||
case 0:
|
||
vertex_id = 2; /* P0 */
|
||
break;
|
||
case 1:
|
||
vertex_id = 0; /* P10 */
|
||
break;
|
||
case 2:
|
||
vertex_id = 1; /* P20 */
|
||
break;
|
||
default:
|
||
unreachable("invalid vertex index");
|
||
}
|
||
}
|
||
|
||
if (dst.size() == 1) {
|
||
bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
|
||
} else {
|
||
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
|
||
for (unsigned i = 0; i < dst.size(); i++)
|
||
vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
|
||
vec->definitions[0] = Definition(dst);
|
||
bld.insert(std::move(vec));
|
||
}
|
||
|
||
} else {
|
||
unreachable("Shader stage not implemented");
|
||
}
|
||
}
|
||
|
||
void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
|
||
{
|
||
assert(ctx->stage == vertex_geometry_gs || ctx->stage == geometry_gs);
|
||
assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
|
||
|
||
Builder bld(ctx->program, ctx->block);
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
|
||
Temp offset = Temp();
|
||
if (instr->src[0].ssa->parent_instr->type != nir_instr_type_load_const) {
|
||
/* better code could be created, but this case probably doesn't happen
|
||
* much in practice */
|
||
Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
|
||
for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
|
||
Temp elem;
|
||
if (ctx->stage == vertex_geometry_gs) {
|
||
elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
|
||
if (i % 2u)
|
||
elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
|
||
} else {
|
||
elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
|
||
}
|
||
if (offset.id()) {
|
||
Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(s2)),
|
||
Operand(i), indirect_vertex);
|
||
offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), offset, elem, cond);
|
||
} else {
|
||
offset = elem;
|
||
}
|
||
}
|
||
if (ctx->stage == vertex_geometry_gs)
|
||
offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), offset);
|
||
} else {
|
||
unsigned vertex = nir_src_as_uint(instr->src[0]);
|
||
if (ctx->stage == vertex_geometry_gs)
|
||
offset = bld.vop3(
|
||
aco_opcode::v_bfe_u32, bld.def(v1), get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
|
||
Operand((vertex % 2u) * 16u), Operand(16u));
|
||
else
|
||
offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
|
||
}
|
||
|
||
unsigned const_offset = nir_intrinsic_base(instr);
|
||
const_offset += nir_intrinsic_component(instr);
|
||
|
||
nir_instr *off_instr = instr->src[1].ssa->parent_instr;
|
||
if (off_instr->type != nir_instr_type_load_const) {
|
||
Temp indirect_offset = get_ssa_temp(ctx, instr->src[1].ssa);
|
||
offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u),
|
||
bld.vadd32(bld.def(v1), indirect_offset, offset));
|
||
} else {
|
||
const_offset += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
|
||
}
|
||
const_offset *= 4u;
|
||
|
||
offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), offset);
|
||
|
||
unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
|
||
if (ctx->stage == geometry_gs) {
|
||
Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
|
||
|
||
const_offset *= ctx->program->wave_size;
|
||
|
||
std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
|
||
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
|
||
aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1)};
|
||
for (unsigned i = 0; i < instr->dest.ssa.num_components; i++) {
|
||
Temp subelems[2];
|
||
for (unsigned j = 0; j < elem_size_bytes / 4; j++) {
|
||
Operand soffset(0u);
|
||
if (const_offset >= 4096u)
|
||
soffset = bld.copy(bld.def(s1), Operand(const_offset / 4096u * 4096u));
|
||
|
||
aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
|
||
mubuf->definitions[0] = bld.def(v1);
|
||
subelems[j] = mubuf->definitions[0].getTemp();
|
||
mubuf->operands[0] = Operand(esgs_ring);
|
||
mubuf->operands[1] = Operand(offset);
|
||
mubuf->operands[2] = Operand(soffset);
|
||
mubuf->offen = true;
|
||
mubuf->offset = const_offset % 4096u;
|
||
mubuf->glc = true;
|
||
mubuf->dlc = ctx->options->chip_class >= GFX10;
|
||
mubuf->barrier = barrier_none;
|
||
mubuf->can_reorder = true;
|
||
bld.insert(std::move(mubuf));
|
||
|
||
const_offset += ctx->program->wave_size * 4u;
|
||
}
|
||
|
||
if (elem_size_bytes == 4)
|
||
elems[i] = subelems[0];
|
||
else
|
||
elems[i] = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), subelems[0], subelems[1]);
|
||
vec->operands[i] = Operand(elems[i]);
|
||
}
|
||
vec->definitions[0] = Definition(dst);
|
||
ctx->block->instructions.emplace_back(std::move(vec));
|
||
ctx->allocated_vec.emplace(dst.id(), elems);
|
||
} else {
|
||
unsigned align = calculate_lds_alignment(ctx, const_offset);
|
||
load_lds(ctx, elem_size_bytes, dst, offset, const_offset, align);
|
||
}
|
||
}
|
||
|
||
void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
|
||
{
|
||
assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
|
||
|
||
Builder bld(ctx->program, ctx->block);
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
|
||
Operand tes_u(get_arg(ctx, ctx->args->tes_u));
|
||
Operand tes_v(get_arg(ctx, ctx->args->tes_v));
|
||
Operand tes_w(0u);
|
||
|
||
if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
|
||
Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
|
||
tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
|
||
tes_w = Operand(tmp);
|
||
}
|
||
|
||
Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
|
||
emit_split_vector(ctx, tess_coord, 3);
|
||
}
|
||
|
||
Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
|
||
{
|
||
if (ctx->program->info->need_indirect_descriptor_sets) {
|
||
Builder bld(ctx->program, ctx->block);
|
||
Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
|
||
Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
|
||
return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
|
||
}
|
||
|
||
return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
|
||
}
|
||
|
||
|
||
void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
|
||
if (!ctx->divergent_vals[instr->dest.ssa.index])
|
||
index = bld.as_uniform(index);
|
||
unsigned desc_set = nir_intrinsic_desc_set(instr);
|
||
unsigned binding = nir_intrinsic_binding(instr);
|
||
|
||
Temp desc_ptr;
|
||
radv_pipeline_layout *pipeline_layout = ctx->options->layout;
|
||
radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
|
||
unsigned offset = layout->binding[binding].offset;
|
||
unsigned stride;
|
||
if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
|
||
layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
|
||
unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
|
||
desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
|
||
offset = pipeline_layout->push_constant_size + 16 * idx;
|
||
stride = 16;
|
||
} else {
|
||
desc_ptr = load_desc_ptr(ctx, desc_set);
|
||
stride = layout->binding[binding].size;
|
||
}
|
||
|
||
nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
|
||
unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
|
||
if (stride != 1) {
|
||
if (nir_const_index) {
|
||
const_index = const_index * stride;
|
||
} else if (index.type() == RegType::vgpr) {
|
||
bool index24bit = layout->binding[binding].array_size <= 0x1000000;
|
||
index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
|
||
} else {
|
||
index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
|
||
}
|
||
}
|
||
if (offset) {
|
||
if (nir_const_index) {
|
||
const_index = const_index + offset;
|
||
} else if (index.type() == RegType::vgpr) {
|
||
index = bld.vadd32(bld.def(v1), Operand(offset), index);
|
||
} else {
|
||
index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
|
||
}
|
||
}
|
||
|
||
if (nir_const_index && const_index == 0) {
|
||
index = desc_ptr;
|
||
} else if (index.type() == RegType::vgpr) {
|
||
index = bld.vadd32(bld.def(v1),
|
||
nir_const_index ? Operand(const_index) : Operand(index),
|
||
Operand(desc_ptr));
|
||
} else {
|
||
index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
|
||
nir_const_index ? Operand(const_index) : Operand(index),
|
||
Operand(desc_ptr));
|
||
}
|
||
|
||
bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
|
||
}
|
||
|
||
void load_buffer(isel_context *ctx, unsigned num_components, Temp dst,
|
||
Temp rsrc, Temp offset, bool glc=false, bool readonly=true)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
|
||
unsigned num_bytes = dst.size() * 4;
|
||
bool dlc = glc && ctx->options->chip_class >= GFX10;
|
||
|
||
aco_opcode op;
|
||
if (dst.type() == RegType::vgpr || (ctx->options->chip_class < GFX8 && !readonly)) {
|
||
Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
|
||
Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
|
||
unsigned const_offset = 0;
|
||
|
||
Temp lower = Temp();
|
||
if (num_bytes > 16) {
|
||
assert(num_components == 3 || num_components == 4);
|
||
op = aco_opcode::buffer_load_dwordx4;
|
||
lower = bld.tmp(v4);
|
||
aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
|
||
mubuf->definitions[0] = Definition(lower);
|
||
mubuf->operands[0] = Operand(rsrc);
|
||
mubuf->operands[1] = vaddr;
|
||
mubuf->operands[2] = soffset;
|
||
mubuf->offen = (offset.type() == RegType::vgpr);
|
||
mubuf->glc = glc;
|
||
mubuf->dlc = dlc;
|
||
mubuf->barrier = readonly ? barrier_none : barrier_buffer;
|
||
mubuf->can_reorder = readonly;
|
||
bld.insert(std::move(mubuf));
|
||
emit_split_vector(ctx, lower, 2);
|
||
num_bytes -= 16;
|
||
const_offset = 16;
|
||
} else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
|
||
/* GFX6 doesn't support loading vec3, expand to vec4. */
|
||
num_bytes = 16;
|
||
}
|
||
|
||
switch (num_bytes) {
|
||
case 4:
|
||
op = aco_opcode::buffer_load_dword;
|
||
break;
|
||
case 8:
|
||
op = aco_opcode::buffer_load_dwordx2;
|
||
break;
|
||
case 12:
|
||
assert(ctx->options->chip_class > GFX6);
|
||
op = aco_opcode::buffer_load_dwordx3;
|
||
break;
|
||
case 16:
|
||
op = aco_opcode::buffer_load_dwordx4;
|
||
break;
|
||
default:
|
||
unreachable("Load SSBO not implemented for this size.");
|
||
}
|
||
aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
|
||
mubuf->operands[0] = Operand(rsrc);
|
||
mubuf->operands[1] = vaddr;
|
||
mubuf->operands[2] = soffset;
|
||
mubuf->offen = (offset.type() == RegType::vgpr);
|
||
mubuf->glc = glc;
|
||
mubuf->dlc = dlc;
|
||
mubuf->barrier = readonly ? barrier_none : barrier_buffer;
|
||
mubuf->can_reorder = readonly;
|
||
mubuf->offset = const_offset;
|
||
aco_ptr<Instruction> instr = std::move(mubuf);
|
||
|
||
if (dst.size() > 4) {
|
||
assert(lower != Temp());
|
||
Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
|
||
instr->definitions[0] = Definition(upper);
|
||
bld.insert(std::move(instr));
|
||
if (dst.size() == 8)
|
||
emit_split_vector(ctx, upper, 2);
|
||
instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
|
||
instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
|
||
instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
|
||
instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
|
||
if (dst.size() == 8)
|
||
instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
|
||
} else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
|
||
Temp vec = bld.tmp(v4);
|
||
instr->definitions[0] = Definition(vec);
|
||
bld.insert(std::move(instr));
|
||
emit_split_vector(ctx, vec, 4);
|
||
|
||
instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
|
||
instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
|
||
instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
|
||
instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
|
||
}
|
||
|
||
if (dst.type() == RegType::sgpr) {
|
||
Temp vec = bld.tmp(RegType::vgpr, dst.size());
|
||
instr->definitions[0] = Definition(vec);
|
||
bld.insert(std::move(instr));
|
||
expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
|
||
} else {
|
||
instr->definitions[0] = Definition(dst);
|
||
bld.insert(std::move(instr));
|
||
emit_split_vector(ctx, dst, num_components);
|
||
}
|
||
} else {
|
||
switch (num_bytes) {
|
||
case 4:
|
||
op = aco_opcode::s_buffer_load_dword;
|
||
break;
|
||
case 8:
|
||
op = aco_opcode::s_buffer_load_dwordx2;
|
||
break;
|
||
case 12:
|
||
case 16:
|
||
op = aco_opcode::s_buffer_load_dwordx4;
|
||
break;
|
||
case 24:
|
||
case 32:
|
||
op = aco_opcode::s_buffer_load_dwordx8;
|
||
break;
|
||
default:
|
||
unreachable("Load SSBO not implemented for this size.");
|
||
}
|
||
aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
|
||
load->operands[0] = Operand(rsrc);
|
||
load->operands[1] = Operand(bld.as_uniform(offset));
|
||
assert(load->operands[1].getTemp().type() == RegType::sgpr);
|
||
load->definitions[0] = Definition(dst);
|
||
load->glc = glc;
|
||
load->dlc = dlc;
|
||
load->barrier = readonly ? barrier_none : barrier_buffer;
|
||
load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
|
||
assert(ctx->options->chip_class >= GFX8 || !glc);
|
||
|
||
/* trim vector */
|
||
if (dst.size() == 3) {
|
||
Temp vec = bld.tmp(s4);
|
||
load->definitions[0] = Definition(vec);
|
||
bld.insert(std::move(load));
|
||
emit_split_vector(ctx, vec, 4);
|
||
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
|
||
emit_extract_vector(ctx, vec, 0, s1),
|
||
emit_extract_vector(ctx, vec, 1, s1),
|
||
emit_extract_vector(ctx, vec, 2, s1));
|
||
} else if (dst.size() == 6) {
|
||
Temp vec = bld.tmp(s8);
|
||
load->definitions[0] = Definition(vec);
|
||
bld.insert(std::move(load));
|
||
emit_split_vector(ctx, vec, 4);
|
||
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
|
||
emit_extract_vector(ctx, vec, 0, s2),
|
||
emit_extract_vector(ctx, vec, 1, s2),
|
||
emit_extract_vector(ctx, vec, 2, s2));
|
||
} else {
|
||
bld.insert(std::move(load));
|
||
}
|
||
emit_split_vector(ctx, dst, num_components);
|
||
}
|
||
}
|
||
|
||
void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
|
||
{
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
|
||
|
||
Builder bld(ctx->program, ctx->block);
|
||
|
||
nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
|
||
unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
|
||
unsigned binding = nir_intrinsic_binding(idx_instr);
|
||
radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
|
||
|
||
if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
|
||
uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
|
||
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
|
||
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
|
||
S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
|
||
if (ctx->options->chip_class >= GFX10) {
|
||
desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
|
||
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
|
||
S_008F0C_RESOURCE_LEVEL(1);
|
||
} else {
|
||
desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
|
||
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
|
||
}
|
||
Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
|
||
Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
|
||
Operand(0xFFFFFFFFu),
|
||
Operand(desc_type));
|
||
rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
|
||
rsrc, upper_dwords);
|
||
} else {
|
||
rsrc = convert_pointer_to_64_bit(ctx, rsrc);
|
||
rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
|
||
}
|
||
|
||
load_buffer(ctx, instr->num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa));
|
||
}
|
||
|
||
void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
|
||
unsigned offset = nir_intrinsic_base(instr);
|
||
nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
|
||
if (index_cv && instr->dest.ssa.bit_size == 32) {
|
||
|
||
unsigned count = instr->dest.ssa.num_components;
|
||
unsigned start = (offset + index_cv->u32) / 4u;
|
||
start -= ctx->args->ac.base_inline_push_consts;
|
||
if (start + count <= ctx->args->ac.num_inline_push_consts) {
|
||
std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
|
||
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
|
||
for (unsigned i = 0; i < count; ++i) {
|
||
elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
|
||
vec->operands[i] = Operand{elems[i]};
|
||
}
|
||
vec->definitions[0] = Definition(dst);
|
||
ctx->block->instructions.emplace_back(std::move(vec));
|
||
ctx->allocated_vec.emplace(dst.id(), elems);
|
||
return;
|
||
}
|
||
}
|
||
|
||
Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
|
||
if (offset != 0) // TODO check if index != 0 as well
|
||
index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
|
||
Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
|
||
Temp vec = dst;
|
||
bool trim = false;
|
||
aco_opcode op;
|
||
|
||
switch (dst.size()) {
|
||
case 1:
|
||
op = aco_opcode::s_load_dword;
|
||
break;
|
||
case 2:
|
||
op = aco_opcode::s_load_dwordx2;
|
||
break;
|
||
case 3:
|
||
vec = bld.tmp(s4);
|
||
trim = true;
|
||
case 4:
|
||
op = aco_opcode::s_load_dwordx4;
|
||
break;
|
||
case 6:
|
||
vec = bld.tmp(s8);
|
||
trim = true;
|
||
case 8:
|
||
op = aco_opcode::s_load_dwordx8;
|
||
break;
|
||
default:
|
||
unreachable("unimplemented or forbidden load_push_constant.");
|
||
}
|
||
|
||
bld.smem(op, Definition(vec), ptr, index);
|
||
|
||
if (trim) {
|
||
emit_split_vector(ctx, vec, 4);
|
||
RegClass rc = dst.size() == 3 ? s1 : s2;
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
|
||
emit_extract_vector(ctx, vec, 0, rc),
|
||
emit_extract_vector(ctx, vec, 1, rc),
|
||
emit_extract_vector(ctx, vec, 2, rc));
|
||
|
||
}
|
||
emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
|
||
}
|
||
|
||
void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
|
||
{
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
|
||
Builder bld(ctx->program, ctx->block);
|
||
|
||
uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
|
||
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
|
||
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
|
||
S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
|
||
if (ctx->options->chip_class >= GFX10) {
|
||
desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
|
||
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
|
||
S_008F0C_RESOURCE_LEVEL(1);
|
||
} else {
|
||
desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
|
||
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
|
||
}
|
||
|
||
unsigned base = nir_intrinsic_base(instr);
|
||
unsigned range = nir_intrinsic_range(instr);
|
||
|
||
Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
|
||
if (base && offset.type() == RegType::sgpr)
|
||
offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
|
||
else if (base && offset.type() == RegType::vgpr)
|
||
offset = bld.vadd32(bld.def(v1), Operand(base), offset);
|
||
|
||
Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
|
||
bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
|
||
Operand(MIN2(base + range, ctx->shader->constant_data_size)),
|
||
Operand(desc_type));
|
||
|
||
load_buffer(ctx, instr->num_components, dst, rsrc, offset);
|
||
}
|
||
|
||
void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
|
||
{
|
||
if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
|
||
ctx->cf_info.exec_potentially_empty_discard = true;
|
||
|
||
ctx->program->needs_exact = true;
|
||
|
||
// TODO: optimize uniform conditions
|
||
Builder bld(ctx->program, ctx->block);
|
||
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
|
||
assert(src.regClass() == bld.lm);
|
||
src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
|
||
bld.pseudo(aco_opcode::p_discard_if, src);
|
||
ctx->block->kind |= block_kind_uses_discard_if;
|
||
return;
|
||
}
|
||
|
||
void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
|
||
if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
|
||
ctx->cf_info.exec_potentially_empty_discard = true;
|
||
|
||
bool divergent = ctx->cf_info.parent_if.is_divergent ||
|
||
ctx->cf_info.parent_loop.has_divergent_continue;
|
||
|
||
if (ctx->block->loop_nest_depth &&
|
||
((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
|
||
/* we handle discards the same way as jump instructions */
|
||
append_logical_end(ctx->block);
|
||
|
||
/* in loops, discard behaves like break */
|
||
Block *linear_target = ctx->cf_info.parent_loop.exit;
|
||
ctx->block->kind |= block_kind_discard;
|
||
|
||
if (!divergent) {
|
||
/* uniform discard - loop ends here */
|
||
assert(nir_instr_is_last(&instr->instr));
|
||
ctx->block->kind |= block_kind_uniform;
|
||
ctx->cf_info.has_branch = true;
|
||
bld.branch(aco_opcode::p_branch);
|
||
add_linear_edge(ctx->block->index, linear_target);
|
||
return;
|
||
}
|
||
|
||
/* we add a break right behind the discard() instructions */
|
||
ctx->block->kind |= block_kind_break;
|
||
unsigned idx = ctx->block->index;
|
||
|
||
/* remove critical edges from linear CFG */
|
||
bld.branch(aco_opcode::p_branch);
|
||
Block* break_block = ctx->program->create_and_insert_block();
|
||
break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
|
||
break_block->kind |= block_kind_uniform;
|
||
add_linear_edge(idx, break_block);
|
||
add_linear_edge(break_block->index, linear_target);
|
||
bld.reset(break_block);
|
||
bld.branch(aco_opcode::p_branch);
|
||
|
||
Block* continue_block = ctx->program->create_and_insert_block();
|
||
continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
|
||
add_linear_edge(idx, continue_block);
|
||
append_logical_start(continue_block);
|
||
ctx->block = continue_block;
|
||
|
||
return;
|
||
}
|
||
|
||
/* it can currently happen that NIR doesn't remove the unreachable code */
|
||
if (!nir_instr_is_last(&instr->instr)) {
|
||
ctx->program->needs_exact = true;
|
||
/* save exec somewhere temporarily so that it doesn't get
|
||
* overwritten before the discard from outer exec masks */
|
||
Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
|
||
bld.pseudo(aco_opcode::p_discard_if, cond);
|
||
ctx->block->kind |= block_kind_uses_discard_if;
|
||
return;
|
||
}
|
||
|
||
/* This condition is incorrect for uniformly branched discards in a loop
|
||
* predicated by a divergent condition, but the above code catches that case
|
||
* and the discard would end up turning into a discard_if.
|
||
* For example:
|
||
* if (divergent) {
|
||
* while (...) {
|
||
* if (uniform) {
|
||
* discard;
|
||
* }
|
||
* }
|
||
* }
|
||
*/
|
||
if (!ctx->cf_info.parent_if.is_divergent) {
|
||
/* program just ends here */
|
||
ctx->block->kind |= block_kind_uniform;
|
||
bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
|
||
0 /* enabled mask */, 9 /* dest */,
|
||
false /* compressed */, true/* done */, true /* valid mask */);
|
||
bld.sopp(aco_opcode::s_endpgm);
|
||
// TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
|
||
} else {
|
||
ctx->block->kind |= block_kind_discard;
|
||
/* branch and linear edge is added by visit_if() */
|
||
}
|
||
}
|
||
|
||
enum aco_descriptor_type {
|
||
ACO_DESC_IMAGE,
|
||
ACO_DESC_FMASK,
|
||
ACO_DESC_SAMPLER,
|
||
ACO_DESC_BUFFER,
|
||
ACO_DESC_PLANE_0,
|
||
ACO_DESC_PLANE_1,
|
||
ACO_DESC_PLANE_2,
|
||
};
|
||
|
||
static bool
|
||
should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
|
||
if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
|
||
return false;
|
||
ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
|
||
return dim == ac_image_cube ||
|
||
dim == ac_image_1darray ||
|
||
dim == ac_image_2darray ||
|
||
dim == ac_image_2darraymsaa;
|
||
}
|
||
|
||
Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
|
||
enum aco_descriptor_type desc_type,
|
||
const nir_tex_instr *tex_instr, bool image, bool write)
|
||
{
|
||
/* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
|
||
std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
|
||
if (it != ctx->tex_desc.end())
|
||
return it->second;
|
||
*/
|
||
Temp index = Temp();
|
||
bool index_set = false;
|
||
unsigned constant_index = 0;
|
||
unsigned descriptor_set;
|
||
unsigned base_index;
|
||
Builder bld(ctx->program, ctx->block);
|
||
|
||
if (!deref_instr) {
|
||
assert(tex_instr && !image);
|
||
descriptor_set = 0;
|
||
base_index = tex_instr->sampler_index;
|
||
} else {
|
||
while(deref_instr->deref_type != nir_deref_type_var) {
|
||
unsigned array_size = glsl_get_aoa_size(deref_instr->type);
|
||
if (!array_size)
|
||
array_size = 1;
|
||
|
||
assert(deref_instr->deref_type == nir_deref_type_array);
|
||
nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
|
||
if (const_value) {
|
||
constant_index += array_size * const_value->u32;
|
||
} else {
|
||
Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
|
||
if (indirect.type() == RegType::vgpr)
|
||
indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
|
||
|
||
if (array_size != 1)
|
||
indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
|
||
|
||
if (!index_set) {
|
||
index = indirect;
|
||
index_set = true;
|
||
} else {
|
||
index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
|
||
}
|
||
}
|
||
|
||
deref_instr = nir_src_as_deref(deref_instr->parent);
|
||
}
|
||
descriptor_set = deref_instr->var->data.descriptor_set;
|
||
base_index = deref_instr->var->data.binding;
|
||
}
|
||
|
||
Temp list = load_desc_ptr(ctx, descriptor_set);
|
||
list = convert_pointer_to_64_bit(ctx, list);
|
||
|
||
struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
|
||
struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
|
||
unsigned offset = binding->offset;
|
||
unsigned stride = binding->size;
|
||
aco_opcode opcode;
|
||
RegClass type;
|
||
|
||
assert(base_index < layout->binding_count);
|
||
|
||
switch (desc_type) {
|
||
case ACO_DESC_IMAGE:
|
||
type = s8;
|
||
opcode = aco_opcode::s_load_dwordx8;
|
||
break;
|
||
case ACO_DESC_FMASK:
|
||
type = s8;
|
||
opcode = aco_opcode::s_load_dwordx8;
|
||
offset += 32;
|
||
break;
|
||
case ACO_DESC_SAMPLER:
|
||
type = s4;
|
||
opcode = aco_opcode::s_load_dwordx4;
|
||
if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
|
||
offset += radv_combined_image_descriptor_sampler_offset(binding);
|
||
break;
|
||
case ACO_DESC_BUFFER:
|
||
type = s4;
|
||
opcode = aco_opcode::s_load_dwordx4;
|
||
break;
|
||
case ACO_DESC_PLANE_0:
|
||
case ACO_DESC_PLANE_1:
|
||
type = s8;
|
||
opcode = aco_opcode::s_load_dwordx8;
|
||
offset += 32 * (desc_type - ACO_DESC_PLANE_0);
|
||
break;
|
||
case ACO_DESC_PLANE_2:
|
||
type = s4;
|
||
opcode = aco_opcode::s_load_dwordx4;
|
||
offset += 64;
|
||
break;
|
||
default:
|
||
unreachable("invalid desc_type\n");
|
||
}
|
||
|
||
offset += constant_index * stride;
|
||
|
||
if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
|
||
(!index_set || binding->immutable_samplers_equal)) {
|
||
if (binding->immutable_samplers_equal)
|
||
constant_index = 0;
|
||
|
||
const uint32_t *samplers = radv_immutable_samplers(layout, binding);
|
||
return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
|
||
Operand(samplers[constant_index * 4 + 0]),
|
||
Operand(samplers[constant_index * 4 + 1]),
|
||
Operand(samplers[constant_index * 4 + 2]),
|
||
Operand(samplers[constant_index * 4 + 3]));
|
||
}
|
||
|
||
Operand off;
|
||
if (!index_set) {
|
||
off = bld.copy(bld.def(s1), Operand(offset));
|
||
} else {
|
||
off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
|
||
bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
|
||
}
|
||
|
||
Temp res = bld.smem(opcode, bld.def(type), list, off);
|
||
|
||
if (desc_type == ACO_DESC_PLANE_2) {
|
||
Temp components[8];
|
||
for (unsigned i = 0; i < 8; i++)
|
||
components[i] = bld.tmp(s1);
|
||
bld.pseudo(aco_opcode::p_split_vector,
|
||
Definition(components[0]),
|
||
Definition(components[1]),
|
||
Definition(components[2]),
|
||
Definition(components[3]),
|
||
res);
|
||
|
||
Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
|
||
bld.pseudo(aco_opcode::p_split_vector,
|
||
bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
|
||
Definition(components[4]),
|
||
Definition(components[5]),
|
||
Definition(components[6]),
|
||
Definition(components[7]),
|
||
desc2);
|
||
|
||
res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
|
||
components[0], components[1], components[2], components[3],
|
||
components[4], components[5], components[6], components[7]);
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
|
||
{
|
||
switch (dim) {
|
||
case GLSL_SAMPLER_DIM_BUF:
|
||
return 1;
|
||
case GLSL_SAMPLER_DIM_1D:
|
||
return array ? 2 : 1;
|
||
case GLSL_SAMPLER_DIM_2D:
|
||
return array ? 3 : 2;
|
||
case GLSL_SAMPLER_DIM_MS:
|
||
return array ? 4 : 3;
|
||
case GLSL_SAMPLER_DIM_3D:
|
||
case GLSL_SAMPLER_DIM_CUBE:
|
||
return 3;
|
||
case GLSL_SAMPLER_DIM_RECT:
|
||
case GLSL_SAMPLER_DIM_SUBPASS:
|
||
return 2;
|
||
case GLSL_SAMPLER_DIM_SUBPASS_MS:
|
||
return 3;
|
||
default:
|
||
break;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Adjust the sample index according to FMASK.
|
||
*
|
||
* For uncompressed MSAA surfaces, FMASK should return 0x76543210,
|
||
* which is the identity mapping. Each nibble says which physical sample
|
||
* should be fetched to get that sample.
|
||
*
|
||
* For example, 0x11111100 means there are only 2 samples stored and
|
||
* the second sample covers 3/4 of the pixel. When reading samples 0
|
||
* and 1, return physical sample 0 (determined by the first two 0s
|
||
* in FMASK), otherwise return physical sample 1.
|
||
*
|
||
* The sample index should be adjusted as follows:
|
||
* sample_index = (fmask >> (sample_index * 4)) & 0xF;
|
||
*/
|
||
static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
Temp fmask = bld.tmp(v1);
|
||
unsigned dim = ctx->options->chip_class >= GFX10
|
||
? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
|
||
: 0;
|
||
|
||
Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
|
||
bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
|
||
aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
|
||
load->operands[0] = Operand(fmask_desc_ptr);
|
||
load->operands[1] = Operand(s4); /* no sampler */
|
||
load->operands[2] = Operand(coord);
|
||
load->definitions[0] = Definition(fmask);
|
||
load->glc = false;
|
||
load->dlc = false;
|
||
load->dmask = 0x1;
|
||
load->unrm = true;
|
||
load->da = da;
|
||
load->dim = dim;
|
||
load->can_reorder = true; /* fmask images shouldn't be modified */
|
||
ctx->block->instructions.emplace_back(std::move(load));
|
||
|
||
Operand sample_index4;
|
||
if (sample_index.isConstant() && sample_index.constantValue() < 16) {
|
||
sample_index4 = Operand(sample_index.constantValue() << 2);
|
||
} else if (sample_index.regClass() == s1) {
|
||
sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
|
||
} else {
|
||
assert(sample_index.regClass() == v1);
|
||
sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
|
||
}
|
||
|
||
Temp final_sample;
|
||
if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
|
||
final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
|
||
else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
|
||
final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
|
||
else
|
||
final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
|
||
|
||
/* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
|
||
* resource descriptor is 0 (invalid),
|
||
*/
|
||
Temp compare = bld.tmp(bld.lm);
|
||
bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
|
||
Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
|
||
|
||
Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
|
||
|
||
/* Replace the MSAA sample index. */
|
||
return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
|
||
}
|
||
|
||
static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
|
||
{
|
||
|
||
Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
|
||
enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
|
||
bool is_array = glsl_sampler_type_is_array(type);
|
||
ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
|
||
assert(!add_frag_pos && "Input attachments should be lowered.");
|
||
bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
|
||
bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
|
||
int count = image_type_to_components_count(dim, is_array);
|
||
std::vector<Temp> coords(count);
|
||
Builder bld(ctx->program, ctx->block);
|
||
|
||
if (is_ms) {
|
||
count--;
|
||
Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
|
||
/* get sample index */
|
||
if (instr->intrinsic == nir_intrinsic_image_deref_load) {
|
||
nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
|
||
Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
|
||
std::vector<Temp> fmask_load_address;
|
||
for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
|
||
fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
|
||
|
||
Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
|
||
coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
|
||
} else {
|
||
coords[count] = emit_extract_vector(ctx, src2, 0, v1);
|
||
}
|
||
}
|
||
|
||
if (gfx9_1d) {
|
||
coords[0] = emit_extract_vector(ctx, src0, 0, v1);
|
||
coords.resize(coords.size() + 1);
|
||
coords[1] = bld.copy(bld.def(v1), Operand(0u));
|
||
if (is_array)
|
||
coords[2] = emit_extract_vector(ctx, src0, 1, v1);
|
||
} else {
|
||
for (int i = 0; i < count; i++)
|
||
coords[i] = emit_extract_vector(ctx, src0, i, v1);
|
||
}
|
||
|
||
if (instr->intrinsic == nir_intrinsic_image_deref_load ||
|
||
instr->intrinsic == nir_intrinsic_image_deref_store) {
|
||
int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
|
||
bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
|
||
|
||
if (!level_zero)
|
||
coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
|
||
}
|
||
|
||
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
|
||
for (unsigned i = 0; i < coords.size(); i++)
|
||
vec->operands[i] = Operand(coords[i]);
|
||
Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
|
||
vec->definitions[0] = Definition(res);
|
||
ctx->block->instructions.emplace_back(std::move(vec));
|
||
return res;
|
||
}
|
||
|
||
|
||
void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
|
||
const struct glsl_type *type = glsl_without_array(var->type);
|
||
const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
|
||
bool is_array = glsl_sampler_type_is_array(type);
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
|
||
if (dim == GLSL_SAMPLER_DIM_BUF) {
|
||
unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
|
||
unsigned num_channels = util_last_bit(mask);
|
||
Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
|
||
Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
|
||
|
||
aco_opcode opcode;
|
||
switch (num_channels) {
|
||
case 1:
|
||
opcode = aco_opcode::buffer_load_format_x;
|
||
break;
|
||
case 2:
|
||
opcode = aco_opcode::buffer_load_format_xy;
|
||
break;
|
||
case 3:
|
||
opcode = aco_opcode::buffer_load_format_xyz;
|
||
break;
|
||
case 4:
|
||
opcode = aco_opcode::buffer_load_format_xyzw;
|
||
break;
|
||
default:
|
||
unreachable(">4 channel buffer image load");
|
||
}
|
||
aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
|
||
load->operands[0] = Operand(rsrc);
|
||
load->operands[1] = Operand(vindex);
|
||
load->operands[2] = Operand((uint32_t) 0);
|
||
Temp tmp;
|
||
if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
|
||
tmp = dst;
|
||
else
|
||
tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
|
||
load->definitions[0] = Definition(tmp);
|
||
load->idxen = true;
|
||
load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
|
||
load->dlc = load->glc && ctx->options->chip_class >= GFX10;
|
||
load->barrier = barrier_image;
|
||
ctx->block->instructions.emplace_back(std::move(load));
|
||
|
||
expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
|
||
return;
|
||
}
|
||
|
||
Temp coords = get_image_coords(ctx, instr, type);
|
||
Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
|
||
|
||
unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
|
||
unsigned num_components = util_bitcount(dmask);
|
||
Temp tmp;
|
||
if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
|
||
tmp = dst;
|
||
else
|
||
tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
|
||
|
||
bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
|
||
aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
|
||
|
||
aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
|
||
load->operands[0] = Operand(resource);
|
||
load->operands[1] = Operand(s4); /* no sampler */
|
||
load->operands[2] = Operand(coords);
|
||
load->definitions[0] = Definition(tmp);
|
||
load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
|
||
load->dlc = load->glc && ctx->options->chip_class >= GFX10;
|
||
load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
|
||
load->dmask = dmask;
|
||
load->unrm = true;
|
||
load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
|
||
load->barrier = barrier_image;
|
||
ctx->block->instructions.emplace_back(std::move(load));
|
||
|
||
expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
|
||
return;
|
||
}
|
||
|
||
void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
|
||
{
|
||
const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
|
||
const struct glsl_type *type = glsl_without_array(var->type);
|
||
const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
|
||
bool is_array = glsl_sampler_type_is_array(type);
|
||
Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
|
||
|
||
bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
|
||
|
||
if (dim == GLSL_SAMPLER_DIM_BUF) {
|
||
Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
|
||
Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
|
||
aco_opcode opcode;
|
||
switch (data.size()) {
|
||
case 1:
|
||
opcode = aco_opcode::buffer_store_format_x;
|
||
break;
|
||
case 2:
|
||
opcode = aco_opcode::buffer_store_format_xy;
|
||
break;
|
||
case 3:
|
||
opcode = aco_opcode::buffer_store_format_xyz;
|
||
break;
|
||
case 4:
|
||
opcode = aco_opcode::buffer_store_format_xyzw;
|
||
break;
|
||
default:
|
||
unreachable(">4 channel buffer image store");
|
||
}
|
||
aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
|
||
store->operands[0] = Operand(rsrc);
|
||
store->operands[1] = Operand(vindex);
|
||
store->operands[2] = Operand((uint32_t) 0);
|
||
store->operands[3] = Operand(data);
|
||
store->idxen = true;
|
||
store->glc = glc;
|
||
store->dlc = false;
|
||
store->disable_wqm = true;
|
||
store->barrier = barrier_image;
|
||
ctx->program->needs_exact = true;
|
||
ctx->block->instructions.emplace_back(std::move(store));
|
||
return;
|
||
}
|
||
|
||
assert(data.type() == RegType::vgpr);
|
||
Temp coords = get_image_coords(ctx, instr, type);
|
||
Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
|
||
|
||
bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
|
||
aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
|
||
|
||
aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
|
||
store->operands[0] = Operand(resource);
|
||
store->operands[1] = Operand(data);
|
||
store->operands[2] = Operand(coords);
|
||
store->glc = glc;
|
||
store->dlc = false;
|
||
store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
|
||
store->dmask = (1 << data.size()) - 1;
|
||
store->unrm = true;
|
||
store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
|
||
store->disable_wqm = true;
|
||
store->barrier = barrier_image;
|
||
ctx->program->needs_exact = true;
|
||
ctx->block->instructions.emplace_back(std::move(store));
|
||
return;
|
||
}
|
||
|
||
void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
|
||
{
|
||
/* return the previous value if dest is ever used */
|
||
bool return_previous = false;
|
||
nir_foreach_use_safe(use_src, &instr->dest.ssa) {
|
||
return_previous = true;
|
||
break;
|
||
}
|
||
nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
|
||
return_previous = true;
|
||
break;
|
||
}
|
||
|
||
const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
|
||
const struct glsl_type *type = glsl_without_array(var->type);
|
||
const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
|
||
bool is_array = glsl_sampler_type_is_array(type);
|
||
Builder bld(ctx->program, ctx->block);
|
||
|
||
Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
|
||
assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
|
||
|
||
if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
|
||
data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
|
||
|
||
aco_opcode buf_op, image_op;
|
||
switch (instr->intrinsic) {
|
||
case nir_intrinsic_image_deref_atomic_add:
|
||
buf_op = aco_opcode::buffer_atomic_add;
|
||
image_op = aco_opcode::image_atomic_add;
|
||
break;
|
||
case nir_intrinsic_image_deref_atomic_umin:
|
||
buf_op = aco_opcode::buffer_atomic_umin;
|
||
image_op = aco_opcode::image_atomic_umin;
|
||
break;
|
||
case nir_intrinsic_image_deref_atomic_imin:
|
||
buf_op = aco_opcode::buffer_atomic_smin;
|
||
image_op = aco_opcode::image_atomic_smin;
|
||
break;
|
||
case nir_intrinsic_image_deref_atomic_umax:
|
||
buf_op = aco_opcode::buffer_atomic_umax;
|
||
image_op = aco_opcode::image_atomic_umax;
|
||
break;
|
||
case nir_intrinsic_image_deref_atomic_imax:
|
||
buf_op = aco_opcode::buffer_atomic_smax;
|
||
image_op = aco_opcode::image_atomic_smax;
|
||
break;
|
||
case nir_intrinsic_image_deref_atomic_and:
|
||
buf_op = aco_opcode::buffer_atomic_and;
|
||
image_op = aco_opcode::image_atomic_and;
|
||
break;
|
||
case nir_intrinsic_image_deref_atomic_or:
|
||
buf_op = aco_opcode::buffer_atomic_or;
|
||
image_op = aco_opcode::image_atomic_or;
|
||
break;
|
||
case nir_intrinsic_image_deref_atomic_xor:
|
||
buf_op = aco_opcode::buffer_atomic_xor;
|
||
image_op = aco_opcode::image_atomic_xor;
|
||
break;
|
||
case nir_intrinsic_image_deref_atomic_exchange:
|
||
buf_op = aco_opcode::buffer_atomic_swap;
|
||
image_op = aco_opcode::image_atomic_swap;
|
||
break;
|
||
case nir_intrinsic_image_deref_atomic_comp_swap:
|
||
buf_op = aco_opcode::buffer_atomic_cmpswap;
|
||
image_op = aco_opcode::image_atomic_cmpswap;
|
||
break;
|
||
default:
|
||
unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
|
||
}
|
||
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
|
||
if (dim == GLSL_SAMPLER_DIM_BUF) {
|
||
Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
|
||
Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
|
||
//assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
|
||
aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
|
||
mubuf->operands[0] = Operand(resource);
|
||
mubuf->operands[1] = Operand(vindex);
|
||
mubuf->operands[2] = Operand((uint32_t)0);
|
||
mubuf->operands[3] = Operand(data);
|
||
if (return_previous)
|
||
mubuf->definitions[0] = Definition(dst);
|
||
mubuf->offset = 0;
|
||
mubuf->idxen = true;
|
||
mubuf->glc = return_previous;
|
||
mubuf->dlc = false; /* Not needed for atomics */
|
||
mubuf->disable_wqm = true;
|
||
mubuf->barrier = barrier_image;
|
||
ctx->program->needs_exact = true;
|
||
ctx->block->instructions.emplace_back(std::move(mubuf));
|
||
return;
|
||
}
|
||
|
||
Temp coords = get_image_coords(ctx, instr, type);
|
||
Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
|
||
aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
|
||
mimg->operands[0] = Operand(resource);
|
||
mimg->operands[1] = Operand(data);
|
||
mimg->operands[2] = Operand(coords);
|
||
if (return_previous)
|
||
mimg->definitions[0] = Definition(dst);
|
||
mimg->glc = return_previous;
|
||
mimg->dlc = false; /* Not needed for atomics */
|
||
mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
|
||
mimg->dmask = (1 << data.size()) - 1;
|
||
mimg->unrm = true;
|
||
mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
|
||
mimg->disable_wqm = true;
|
||
mimg->barrier = barrier_image;
|
||
ctx->program->needs_exact = true;
|
||
ctx->block->instructions.emplace_back(std::move(mimg));
|
||
return;
|
||
}
|
||
|
||
void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
|
||
{
|
||
if (in_elements && ctx->options->chip_class == GFX8) {
|
||
/* we only have to divide by 1, 2, 4, 8, 12 or 16 */
|
||
Builder bld(ctx->program, ctx->block);
|
||
|
||
Temp size = emit_extract_vector(ctx, desc, 2, s1);
|
||
|
||
Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
|
||
size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
|
||
|
||
Temp stride = emit_extract_vector(ctx, desc, 1, s1);
|
||
stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
|
||
|
||
Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
|
||
size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
|
||
|
||
Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
|
||
bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
|
||
size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
|
||
if (dst.type() == RegType::vgpr)
|
||
bld.copy(Definition(dst), shr_dst);
|
||
|
||
/* TODO: we can probably calculate this faster with v_skip when stride != 12 */
|
||
} else {
|
||
emit_extract_vector(ctx, desc, 2, dst);
|
||
}
|
||
}
|
||
|
||
void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
|
||
{
|
||
const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
|
||
const struct glsl_type *type = glsl_without_array(var->type);
|
||
const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
|
||
bool is_array = glsl_sampler_type_is_array(type);
|
||
Builder bld(ctx->program, ctx->block);
|
||
|
||
if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
|
||
Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
|
||
return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
|
||
}
|
||
|
||
/* LOD */
|
||
Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
|
||
|
||
/* Resource */
|
||
Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
|
||
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
|
||
aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
|
||
mimg->operands[0] = Operand(resource);
|
||
mimg->operands[1] = Operand(s4); /* no sampler */
|
||
mimg->operands[2] = Operand(lod);
|
||
uint8_t& dmask = mimg->dmask;
|
||
mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
|
||
mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
|
||
mimg->da = glsl_sampler_type_is_array(type);
|
||
mimg->can_reorder = true;
|
||
Definition& def = mimg->definitions[0];
|
||
ctx->block->instructions.emplace_back(std::move(mimg));
|
||
|
||
if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
|
||
glsl_sampler_type_is_array(type)) {
|
||
|
||
assert(instr->dest.ssa.num_components == 3);
|
||
Temp tmp = {ctx->program->allocateId(), v3};
|
||
def = Definition(tmp);
|
||
emit_split_vector(ctx, tmp, 3);
|
||
|
||
/* divide 3rd value by 6 by multiplying with magic number */
|
||
Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
|
||
Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
|
||
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
|
||
emit_extract_vector(ctx, tmp, 0, v1),
|
||
emit_extract_vector(ctx, tmp, 1, v1),
|
||
by_6);
|
||
|
||
} else if (ctx->options->chip_class == GFX9 &&
|
||
glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
|
||
glsl_sampler_type_is_array(type)) {
|
||
assert(instr->dest.ssa.num_components == 2);
|
||
def = Definition(dst);
|
||
dmask = 0x5;
|
||
} else {
|
||
def = Definition(dst);
|
||
}
|
||
|
||
emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
|
||
}
|
||
|
||
void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
unsigned num_components = instr->num_components;
|
||
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
|
||
rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
|
||
|
||
bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
|
||
load_buffer(ctx, num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), glc, false);
|
||
}
|
||
|
||
void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
|
||
unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
|
||
unsigned writemask = nir_intrinsic_write_mask(instr);
|
||
Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
|
||
|
||
Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
|
||
rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
|
||
|
||
bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
|
||
ctx->options->chip_class >= GFX8;
|
||
if (smem)
|
||
offset = bld.as_uniform(offset);
|
||
bool smem_nonfs = smem && ctx->stage != fragment_fs;
|
||
|
||
while (writemask) {
|
||
int start, count;
|
||
u_bit_scan_consecutive_range(&writemask, &start, &count);
|
||
if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
|
||
/* GFX6 doesn't support storing vec3, split it. */
|
||
writemask |= 1u << (start + 2);
|
||
count = 2;
|
||
}
|
||
int num_bytes = count * elem_size_bytes;
|
||
|
||
if (num_bytes > 16) {
|
||
assert(elem_size_bytes == 8);
|
||
writemask |= (((count - 2) << 1) - 1) << (start + 2);
|
||
count = 2;
|
||
num_bytes = 16;
|
||
}
|
||
|
||
// TODO: check alignment of sub-dword stores
|
||
// TODO: split 3 bytes. there is no store instruction for that
|
||
|
||
Temp write_data;
|
||
if (count != instr->num_components) {
|
||
emit_split_vector(ctx, data, instr->num_components);
|
||
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
|
||
for (int i = 0; i < count; i++) {
|
||
Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
|
||
vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
|
||
}
|
||
write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
|
||
vec->definitions[0] = Definition(write_data);
|
||
ctx->block->instructions.emplace_back(std::move(vec));
|
||
} else if (!smem && data.type() != RegType::vgpr) {
|
||
assert(num_bytes % 4 == 0);
|
||
write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
|
||
} else if (smem_nonfs && data.type() == RegType::vgpr) {
|
||
assert(num_bytes % 4 == 0);
|
||
write_data = bld.as_uniform(data);
|
||
} else {
|
||
write_data = data;
|
||
}
|
||
|
||
aco_opcode vmem_op, smem_op;
|
||
switch (num_bytes) {
|
||
case 4:
|
||
vmem_op = aco_opcode::buffer_store_dword;
|
||
smem_op = aco_opcode::s_buffer_store_dword;
|
||
break;
|
||
case 8:
|
||
vmem_op = aco_opcode::buffer_store_dwordx2;
|
||
smem_op = aco_opcode::s_buffer_store_dwordx2;
|
||
break;
|
||
case 12:
|
||
vmem_op = aco_opcode::buffer_store_dwordx3;
|
||
smem_op = aco_opcode::last_opcode;
|
||
assert(!smem && ctx->options->chip_class > GFX6);
|
||
break;
|
||
case 16:
|
||
vmem_op = aco_opcode::buffer_store_dwordx4;
|
||
smem_op = aco_opcode::s_buffer_store_dwordx4;
|
||
break;
|
||
default:
|
||
unreachable("Store SSBO not implemented for this size.");
|
||
}
|
||
if (ctx->stage == fragment_fs)
|
||
smem_op = aco_opcode::p_fs_buffer_store_smem;
|
||
|
||
if (smem) {
|
||
aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
|
||
store->operands[0] = Operand(rsrc);
|
||
if (start) {
|
||
Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
|
||
offset, Operand(start * elem_size_bytes));
|
||
store->operands[1] = Operand(off);
|
||
} else {
|
||
store->operands[1] = Operand(offset);
|
||
}
|
||
if (smem_op != aco_opcode::p_fs_buffer_store_smem)
|
||
store->operands[1].setFixed(m0);
|
||
store->operands[2] = Operand(write_data);
|
||
store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
|
||
store->dlc = false;
|
||
store->disable_wqm = true;
|
||
store->barrier = barrier_buffer;
|
||
ctx->block->instructions.emplace_back(std::move(store));
|
||
ctx->program->wb_smem_l1_on_end = true;
|
||
if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
|
||
ctx->block->kind |= block_kind_needs_lowering;
|
||
ctx->program->needs_exact = true;
|
||
}
|
||
} else {
|
||
aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
|
||
store->operands[0] = Operand(rsrc);
|
||
store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
|
||
store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
|
||
store->operands[3] = Operand(write_data);
|
||
store->offset = start * elem_size_bytes;
|
||
store->offen = (offset.type() == RegType::vgpr);
|
||
store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
|
||
store->dlc = false;
|
||
store->disable_wqm = true;
|
||
store->barrier = barrier_buffer;
|
||
ctx->program->needs_exact = true;
|
||
ctx->block->instructions.emplace_back(std::move(store));
|
||
}
|
||
}
|
||
}
|
||
|
||
void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
|
||
{
|
||
/* return the previous value if dest is ever used */
|
||
bool return_previous = false;
|
||
nir_foreach_use_safe(use_src, &instr->dest.ssa) {
|
||
return_previous = true;
|
||
break;
|
||
}
|
||
nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
|
||
return_previous = true;
|
||
break;
|
||
}
|
||
|
||
Builder bld(ctx->program, ctx->block);
|
||
Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
|
||
|
||
if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
|
||
data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
|
||
get_ssa_temp(ctx, instr->src[3].ssa), data);
|
||
|
||
Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
|
||
Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
|
||
rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
|
||
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
|
||
aco_opcode op32, op64;
|
||
switch (instr->intrinsic) {
|
||
case nir_intrinsic_ssbo_atomic_add:
|
||
op32 = aco_opcode::buffer_atomic_add;
|
||
op64 = aco_opcode::buffer_atomic_add_x2;
|
||
break;
|
||
case nir_intrinsic_ssbo_atomic_imin:
|
||
op32 = aco_opcode::buffer_atomic_smin;
|
||
op64 = aco_opcode::buffer_atomic_smin_x2;
|
||
break;
|
||
case nir_intrinsic_ssbo_atomic_umin:
|
||
op32 = aco_opcode::buffer_atomic_umin;
|
||
op64 = aco_opcode::buffer_atomic_umin_x2;
|
||
break;
|
||
case nir_intrinsic_ssbo_atomic_imax:
|
||
op32 = aco_opcode::buffer_atomic_smax;
|
||
op64 = aco_opcode::buffer_atomic_smax_x2;
|
||
break;
|
||
case nir_intrinsic_ssbo_atomic_umax:
|
||
op32 = aco_opcode::buffer_atomic_umax;
|
||
op64 = aco_opcode::buffer_atomic_umax_x2;
|
||
break;
|
||
case nir_intrinsic_ssbo_atomic_and:
|
||
op32 = aco_opcode::buffer_atomic_and;
|
||
op64 = aco_opcode::buffer_atomic_and_x2;
|
||
break;
|
||
case nir_intrinsic_ssbo_atomic_or:
|
||
op32 = aco_opcode::buffer_atomic_or;
|
||
op64 = aco_opcode::buffer_atomic_or_x2;
|
||
break;
|
||
case nir_intrinsic_ssbo_atomic_xor:
|
||
op32 = aco_opcode::buffer_atomic_xor;
|
||
op64 = aco_opcode::buffer_atomic_xor_x2;
|
||
break;
|
||
case nir_intrinsic_ssbo_atomic_exchange:
|
||
op32 = aco_opcode::buffer_atomic_swap;
|
||
op64 = aco_opcode::buffer_atomic_swap_x2;
|
||
break;
|
||
case nir_intrinsic_ssbo_atomic_comp_swap:
|
||
op32 = aco_opcode::buffer_atomic_cmpswap;
|
||
op64 = aco_opcode::buffer_atomic_cmpswap_x2;
|
||
break;
|
||
default:
|
||
unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
|
||
}
|
||
aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
|
||
aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
|
||
mubuf->operands[0] = Operand(rsrc);
|
||
mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
|
||
mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
|
||
mubuf->operands[3] = Operand(data);
|
||
if (return_previous)
|
||
mubuf->definitions[0] = Definition(dst);
|
||
mubuf->offset = 0;
|
||
mubuf->offen = (offset.type() == RegType::vgpr);
|
||
mubuf->glc = return_previous;
|
||
mubuf->dlc = false; /* Not needed for atomics */
|
||
mubuf->disable_wqm = true;
|
||
mubuf->barrier = barrier_buffer;
|
||
ctx->program->needs_exact = true;
|
||
ctx->block->instructions.emplace_back(std::move(mubuf));
|
||
}
|
||
|
||
void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
|
||
|
||
Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
|
||
Builder bld(ctx->program, ctx->block);
|
||
Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
|
||
get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
|
||
}
|
||
|
||
Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
|
||
{
|
||
uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
|
||
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
|
||
|
||
if (addr.type() == RegType::vgpr)
|
||
return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
|
||
return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
|
||
}
|
||
|
||
void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
unsigned num_components = instr->num_components;
|
||
unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
|
||
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
|
||
|
||
bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
|
||
bool dlc = glc && ctx->options->chip_class >= GFX10;
|
||
aco_opcode op;
|
||
if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
|
||
bool global = ctx->options->chip_class >= GFX9;
|
||
|
||
if (ctx->options->chip_class >= GFX7) {
|
||
aco_opcode op;
|
||
switch (num_bytes) {
|
||
case 4:
|
||
op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
|
||
break;
|
||
case 8:
|
||
op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
|
||
break;
|
||
case 12:
|
||
op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
|
||
break;
|
||
case 16:
|
||
op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
|
||
break;
|
||
default:
|
||
unreachable("load_global not implemented for this size.");
|
||
}
|
||
|
||
aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
|
||
flat->operands[0] = Operand(addr);
|
||
flat->operands[1] = Operand(s1);
|
||
flat->glc = glc;
|
||
flat->dlc = dlc;
|
||
flat->barrier = barrier_buffer;
|
||
|
||
if (dst.type() == RegType::sgpr) {
|
||
Temp vec = bld.tmp(RegType::vgpr, dst.size());
|
||
flat->definitions[0] = Definition(vec);
|
||
ctx->block->instructions.emplace_back(std::move(flat));
|
||
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
|
||
} else {
|
||
flat->definitions[0] = Definition(dst);
|
||
ctx->block->instructions.emplace_back(std::move(flat));
|
||
}
|
||
emit_split_vector(ctx, dst, num_components);
|
||
} else {
|
||
assert(ctx->options->chip_class == GFX6);
|
||
|
||
/* GFX6 doesn't support loading vec3, expand to vec4. */
|
||
num_bytes = num_bytes == 12 ? 16 : num_bytes;
|
||
|
||
aco_opcode op;
|
||
switch (num_bytes) {
|
||
case 4:
|
||
op = aco_opcode::buffer_load_dword;
|
||
break;
|
||
case 8:
|
||
op = aco_opcode::buffer_load_dwordx2;
|
||
break;
|
||
case 16:
|
||
op = aco_opcode::buffer_load_dwordx4;
|
||
break;
|
||
default:
|
||
unreachable("load_global not implemented for this size.");
|
||
}
|
||
|
||
Temp rsrc = get_gfx6_global_rsrc(bld, addr);
|
||
|
||
aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
|
||
mubuf->operands[0] = Operand(rsrc);
|
||
mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
|
||
mubuf->operands[2] = Operand(0u);
|
||
mubuf->glc = glc;
|
||
mubuf->dlc = false;
|
||
mubuf->offset = 0;
|
||
mubuf->addr64 = addr.type() == RegType::vgpr;
|
||
mubuf->disable_wqm = false;
|
||
mubuf->barrier = barrier_buffer;
|
||
aco_ptr<Instruction> instr = std::move(mubuf);
|
||
|
||
/* expand vector */
|
||
if (dst.size() == 3) {
|
||
Temp vec = bld.tmp(v4);
|
||
instr->definitions[0] = Definition(vec);
|
||
bld.insert(std::move(instr));
|
||
emit_split_vector(ctx, vec, 4);
|
||
|
||
instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
|
||
instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
|
||
instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
|
||
instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
|
||
}
|
||
|
||
if (dst.type() == RegType::sgpr) {
|
||
Temp vec = bld.tmp(RegType::vgpr, dst.size());
|
||
instr->definitions[0] = Definition(vec);
|
||
bld.insert(std::move(instr));
|
||
expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
|
||
bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
|
||
} else {
|
||
instr->definitions[0] = Definition(dst);
|
||
bld.insert(std::move(instr));
|
||
emit_split_vector(ctx, dst, num_components);
|
||
}
|
||
}
|
||
} else {
|
||
switch (num_bytes) {
|
||
case 4:
|
||
op = aco_opcode::s_load_dword;
|
||
break;
|
||
case 8:
|
||
op = aco_opcode::s_load_dwordx2;
|
||
break;
|
||
case 12:
|
||
case 16:
|
||
op = aco_opcode::s_load_dwordx4;
|
||
break;
|
||
default:
|
||
unreachable("load_global not implemented for this size.");
|
||
}
|
||
aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
|
||
load->operands[0] = Operand(addr);
|
||
load->operands[1] = Operand(0u);
|
||
load->definitions[0] = Definition(dst);
|
||
load->glc = glc;
|
||
load->dlc = dlc;
|
||
load->barrier = barrier_buffer;
|
||
assert(ctx->options->chip_class >= GFX8 || !glc);
|
||
|
||
if (dst.size() == 3) {
|
||
/* trim vector */
|
||
Temp vec = bld.tmp(s4);
|
||
load->definitions[0] = Definition(vec);
|
||
ctx->block->instructions.emplace_back(std::move(load));
|
||
emit_split_vector(ctx, vec, 4);
|
||
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
|
||
emit_extract_vector(ctx, vec, 0, s1),
|
||
emit_extract_vector(ctx, vec, 1, s1),
|
||
emit_extract_vector(ctx, vec, 2, s1));
|
||
} else {
|
||
ctx->block->instructions.emplace_back(std::move(load));
|
||
}
|
||
}
|
||
}
|
||
|
||
void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
|
||
|
||
Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
|
||
Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
|
||
|
||
if (ctx->options->chip_class >= GFX7)
|
||
addr = as_vgpr(ctx, addr);
|
||
|
||
unsigned writemask = nir_intrinsic_write_mask(instr);
|
||
while (writemask) {
|
||
int start, count;
|
||
u_bit_scan_consecutive_range(&writemask, &start, &count);
|
||
if (count == 3 && ctx->options->chip_class == GFX6) {
|
||
/* GFX6 doesn't support storing vec3, split it. */
|
||
writemask |= 1u << (start + 2);
|
||
count = 2;
|
||
}
|
||
unsigned num_bytes = count * elem_size_bytes;
|
||
|
||
Temp write_data = data;
|
||
if (count != instr->num_components) {
|
||
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
|
||
for (int i = 0; i < count; i++)
|
||
vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
|
||
write_data = bld.tmp(RegType::vgpr, count);
|
||
vec->definitions[0] = Definition(write_data);
|
||
ctx->block->instructions.emplace_back(std::move(vec));
|
||
}
|
||
|
||
bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
|
||
unsigned offset = start * elem_size_bytes;
|
||
|
||
if (ctx->options->chip_class >= GFX7) {
|
||
if (offset > 0 && ctx->options->chip_class < GFX9) {
|
||
Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
|
||
Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
|
||
Temp carry = bld.tmp(bld.lm);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
|
||
|
||
bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
|
||
Operand(offset), addr0);
|
||
bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
|
||
Operand(0u), addr1,
|
||
carry).def(1).setHint(vcc);
|
||
|
||
addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
|
||
|
||
offset = 0;
|
||
}
|
||
|
||
bool global = ctx->options->chip_class >= GFX9;
|
||
aco_opcode op;
|
||
switch (num_bytes) {
|
||
case 4:
|
||
op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
|
||
break;
|
||
case 8:
|
||
op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
|
||
break;
|
||
case 12:
|
||
op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
|
||
break;
|
||
case 16:
|
||
op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
|
||
break;
|
||
default:
|
||
unreachable("store_global not implemented for this size.");
|
||
}
|
||
|
||
aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
|
||
flat->operands[0] = Operand(addr);
|
||
flat->operands[1] = Operand(s1);
|
||
flat->operands[2] = Operand(data);
|
||
flat->glc = glc;
|
||
flat->dlc = false;
|
||
flat->offset = offset;
|
||
flat->disable_wqm = true;
|
||
flat->barrier = barrier_buffer;
|
||
ctx->program->needs_exact = true;
|
||
ctx->block->instructions.emplace_back(std::move(flat));
|
||
} else {
|
||
assert(ctx->options->chip_class == GFX6);
|
||
|
||
aco_opcode op;
|
||
switch (num_bytes) {
|
||
case 4:
|
||
op = aco_opcode::buffer_store_dword;
|
||
break;
|
||
case 8:
|
||
op = aco_opcode::buffer_store_dwordx2;
|
||
break;
|
||
case 16:
|
||
op = aco_opcode::buffer_store_dwordx4;
|
||
break;
|
||
default:
|
||
unreachable("store_global not implemented for this size.");
|
||
}
|
||
|
||
Temp rsrc = get_gfx6_global_rsrc(bld, addr);
|
||
|
||
aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
|
||
mubuf->operands[0] = Operand(rsrc);
|
||
mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
|
||
mubuf->operands[2] = Operand(0u);
|
||
mubuf->operands[3] = Operand(write_data);
|
||
mubuf->glc = glc;
|
||
mubuf->dlc = false;
|
||
mubuf->offset = offset;
|
||
mubuf->addr64 = addr.type() == RegType::vgpr;
|
||
mubuf->disable_wqm = true;
|
||
mubuf->barrier = barrier_buffer;
|
||
ctx->program->needs_exact = true;
|
||
ctx->block->instructions.emplace_back(std::move(mubuf));
|
||
}
|
||
}
|
||
}
|
||
|
||
void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
|
||
{
|
||
/* return the previous value if dest is ever used */
|
||
bool return_previous = false;
|
||
nir_foreach_use_safe(use_src, &instr->dest.ssa) {
|
||
return_previous = true;
|
||
break;
|
||
}
|
||
nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
|
||
return_previous = true;
|
||
break;
|
||
}
|
||
|
||
Builder bld(ctx->program, ctx->block);
|
||
Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
|
||
Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
|
||
|
||
if (ctx->options->chip_class >= GFX7)
|
||
addr = as_vgpr(ctx, addr);
|
||
|
||
if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
|
||
data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
|
||
get_ssa_temp(ctx, instr->src[2].ssa), data);
|
||
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
|
||
aco_opcode op32, op64;
|
||
|
||
if (ctx->options->chip_class >= GFX7) {
|
||
bool global = ctx->options->chip_class >= GFX9;
|
||
switch (instr->intrinsic) {
|
||
case nir_intrinsic_global_atomic_add:
|
||
op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
|
||
op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
|
||
break;
|
||
case nir_intrinsic_global_atomic_imin:
|
||
op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
|
||
op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
|
||
break;
|
||
case nir_intrinsic_global_atomic_umin:
|
||
op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
|
||
op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
|
||
break;
|
||
case nir_intrinsic_global_atomic_imax:
|
||
op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
|
||
op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
|
||
break;
|
||
case nir_intrinsic_global_atomic_umax:
|
||
op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
|
||
op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
|
||
break;
|
||
case nir_intrinsic_global_atomic_and:
|
||
op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
|
||
op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
|
||
break;
|
||
case nir_intrinsic_global_atomic_or:
|
||
op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
|
||
op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
|
||
break;
|
||
case nir_intrinsic_global_atomic_xor:
|
||
op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
|
||
op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
|
||
break;
|
||
case nir_intrinsic_global_atomic_exchange:
|
||
op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
|
||
op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
|
||
break;
|
||
case nir_intrinsic_global_atomic_comp_swap:
|
||
op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
|
||
op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
|
||
break;
|
||
default:
|
||
unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
|
||
}
|
||
|
||
aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
|
||
aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
|
||
flat->operands[0] = Operand(addr);
|
||
flat->operands[1] = Operand(s1);
|
||
flat->operands[2] = Operand(data);
|
||
if (return_previous)
|
||
flat->definitions[0] = Definition(dst);
|
||
flat->glc = return_previous;
|
||
flat->dlc = false; /* Not needed for atomics */
|
||
flat->offset = 0;
|
||
flat->disable_wqm = true;
|
||
flat->barrier = barrier_buffer;
|
||
ctx->program->needs_exact = true;
|
||
ctx->block->instructions.emplace_back(std::move(flat));
|
||
} else {
|
||
assert(ctx->options->chip_class == GFX6);
|
||
|
||
switch (instr->intrinsic) {
|
||
case nir_intrinsic_global_atomic_add:
|
||
op32 = aco_opcode::buffer_atomic_add;
|
||
op64 = aco_opcode::buffer_atomic_add_x2;
|
||
break;
|
||
case nir_intrinsic_global_atomic_imin:
|
||
op32 = aco_opcode::buffer_atomic_smin;
|
||
op64 = aco_opcode::buffer_atomic_smin_x2;
|
||
break;
|
||
case nir_intrinsic_global_atomic_umin:
|
||
op32 = aco_opcode::buffer_atomic_umin;
|
||
op64 = aco_opcode::buffer_atomic_umin_x2;
|
||
break;
|
||
case nir_intrinsic_global_atomic_imax:
|
||
op32 = aco_opcode::buffer_atomic_smax;
|
||
op64 = aco_opcode::buffer_atomic_smax_x2;
|
||
break;
|
||
case nir_intrinsic_global_atomic_umax:
|
||
op32 = aco_opcode::buffer_atomic_umax;
|
||
op64 = aco_opcode::buffer_atomic_umax_x2;
|
||
break;
|
||
case nir_intrinsic_global_atomic_and:
|
||
op32 = aco_opcode::buffer_atomic_and;
|
||
op64 = aco_opcode::buffer_atomic_and_x2;
|
||
break;
|
||
case nir_intrinsic_global_atomic_or:
|
||
op32 = aco_opcode::buffer_atomic_or;
|
||
op64 = aco_opcode::buffer_atomic_or_x2;
|
||
break;
|
||
case nir_intrinsic_global_atomic_xor:
|
||
op32 = aco_opcode::buffer_atomic_xor;
|
||
op64 = aco_opcode::buffer_atomic_xor_x2;
|
||
break;
|
||
case nir_intrinsic_global_atomic_exchange:
|
||
op32 = aco_opcode::buffer_atomic_swap;
|
||
op64 = aco_opcode::buffer_atomic_swap_x2;
|
||
break;
|
||
case nir_intrinsic_global_atomic_comp_swap:
|
||
op32 = aco_opcode::buffer_atomic_cmpswap;
|
||
op64 = aco_opcode::buffer_atomic_cmpswap_x2;
|
||
break;
|
||
default:
|
||
unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
|
||
}
|
||
|
||
Temp rsrc = get_gfx6_global_rsrc(bld, addr);
|
||
|
||
aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
|
||
|
||
aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
|
||
mubuf->operands[0] = Operand(rsrc);
|
||
mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
|
||
mubuf->operands[2] = Operand(0u);
|
||
mubuf->operands[3] = Operand(data);
|
||
if (return_previous)
|
||
mubuf->definitions[0] = Definition(dst);
|
||
mubuf->glc = return_previous;
|
||
mubuf->dlc = false;
|
||
mubuf->offset = 0;
|
||
mubuf->addr64 = addr.type() == RegType::vgpr;
|
||
mubuf->disable_wqm = true;
|
||
mubuf->barrier = barrier_buffer;
|
||
ctx->program->needs_exact = true;
|
||
ctx->block->instructions.emplace_back(std::move(mubuf));
|
||
}
|
||
}
|
||
|
||
void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
|
||
Builder bld(ctx->program, ctx->block);
|
||
switch(instr->intrinsic) {
|
||
case nir_intrinsic_group_memory_barrier:
|
||
case nir_intrinsic_memory_barrier:
|
||
bld.barrier(aco_opcode::p_memory_barrier_common);
|
||
break;
|
||
case nir_intrinsic_memory_barrier_buffer:
|
||
bld.barrier(aco_opcode::p_memory_barrier_buffer);
|
||
break;
|
||
case nir_intrinsic_memory_barrier_image:
|
||
bld.barrier(aco_opcode::p_memory_barrier_image);
|
||
break;
|
||
case nir_intrinsic_memory_barrier_tcs_patch:
|
||
case nir_intrinsic_memory_barrier_shared:
|
||
bld.barrier(aco_opcode::p_memory_barrier_shared);
|
||
break;
|
||
default:
|
||
unreachable("Unimplemented memory barrier intrinsic");
|
||
break;
|
||
}
|
||
}
|
||
|
||
void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
|
||
{
|
||
// TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
|
||
Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
|
||
Builder bld(ctx->program, ctx->block);
|
||
|
||
unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
|
||
unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
|
||
load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
|
||
}
|
||
|
||
void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
|
||
{
|
||
unsigned writemask = nir_intrinsic_write_mask(instr);
|
||
Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
|
||
Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
|
||
unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
|
||
assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
|
||
|
||
unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
|
||
store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
|
||
}
|
||
|
||
void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
|
||
{
|
||
unsigned offset = nir_intrinsic_base(instr);
|
||
Operand m = load_lds_size_m0(ctx);
|
||
Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
|
||
Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
|
||
|
||
unsigned num_operands = 3;
|
||
aco_opcode op32, op64, op32_rtn, op64_rtn;
|
||
switch(instr->intrinsic) {
|
||
case nir_intrinsic_shared_atomic_add:
|
||
op32 = aco_opcode::ds_add_u32;
|
||
op64 = aco_opcode::ds_add_u64;
|
||
op32_rtn = aco_opcode::ds_add_rtn_u32;
|
||
op64_rtn = aco_opcode::ds_add_rtn_u64;
|
||
break;
|
||
case nir_intrinsic_shared_atomic_imin:
|
||
op32 = aco_opcode::ds_min_i32;
|
||
op64 = aco_opcode::ds_min_i64;
|
||
op32_rtn = aco_opcode::ds_min_rtn_i32;
|
||
op64_rtn = aco_opcode::ds_min_rtn_i64;
|
||
break;
|
||
case nir_intrinsic_shared_atomic_umin:
|
||
op32 = aco_opcode::ds_min_u32;
|
||
op64 = aco_opcode::ds_min_u64;
|
||
op32_rtn = aco_opcode::ds_min_rtn_u32;
|
||
op64_rtn = aco_opcode::ds_min_rtn_u64;
|
||
break;
|
||
case nir_intrinsic_shared_atomic_imax:
|
||
op32 = aco_opcode::ds_max_i32;
|
||
op64 = aco_opcode::ds_max_i64;
|
||
op32_rtn = aco_opcode::ds_max_rtn_i32;
|
||
op64_rtn = aco_opcode::ds_max_rtn_i64;
|
||
break;
|
||
case nir_intrinsic_shared_atomic_umax:
|
||
op32 = aco_opcode::ds_max_u32;
|
||
op64 = aco_opcode::ds_max_u64;
|
||
op32_rtn = aco_opcode::ds_max_rtn_u32;
|
||
op64_rtn = aco_opcode::ds_max_rtn_u64;
|
||
break;
|
||
case nir_intrinsic_shared_atomic_and:
|
||
op32 = aco_opcode::ds_and_b32;
|
||
op64 = aco_opcode::ds_and_b64;
|
||
op32_rtn = aco_opcode::ds_and_rtn_b32;
|
||
op64_rtn = aco_opcode::ds_and_rtn_b64;
|
||
break;
|
||
case nir_intrinsic_shared_atomic_or:
|
||
op32 = aco_opcode::ds_or_b32;
|
||
op64 = aco_opcode::ds_or_b64;
|
||
op32_rtn = aco_opcode::ds_or_rtn_b32;
|
||
op64_rtn = aco_opcode::ds_or_rtn_b64;
|
||
break;
|
||
case nir_intrinsic_shared_atomic_xor:
|
||
op32 = aco_opcode::ds_xor_b32;
|
||
op64 = aco_opcode::ds_xor_b64;
|
||
op32_rtn = aco_opcode::ds_xor_rtn_b32;
|
||
op64_rtn = aco_opcode::ds_xor_rtn_b64;
|
||
break;
|
||
case nir_intrinsic_shared_atomic_exchange:
|
||
op32 = aco_opcode::ds_write_b32;
|
||
op64 = aco_opcode::ds_write_b64;
|
||
op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
|
||
op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
|
||
break;
|
||
case nir_intrinsic_shared_atomic_comp_swap:
|
||
op32 = aco_opcode::ds_cmpst_b32;
|
||
op64 = aco_opcode::ds_cmpst_b64;
|
||
op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
|
||
op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
|
||
num_operands = 4;
|
||
break;
|
||
default:
|
||
unreachable("Unhandled shared atomic intrinsic");
|
||
}
|
||
|
||
/* return the previous value if dest is ever used */
|
||
bool return_previous = false;
|
||
nir_foreach_use_safe(use_src, &instr->dest.ssa) {
|
||
return_previous = true;
|
||
break;
|
||
}
|
||
nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
|
||
return_previous = true;
|
||
break;
|
||
}
|
||
|
||
aco_opcode op;
|
||
if (data.size() == 1) {
|
||
assert(instr->dest.ssa.bit_size == 32);
|
||
op = return_previous ? op32_rtn : op32;
|
||
} else {
|
||
assert(instr->dest.ssa.bit_size == 64);
|
||
op = return_previous ? op64_rtn : op64;
|
||
}
|
||
|
||
if (offset > 65535) {
|
||
Builder bld(ctx->program, ctx->block);
|
||
address = bld.vadd32(bld.def(v1), Operand(offset), address);
|
||
offset = 0;
|
||
}
|
||
|
||
aco_ptr<DS_instruction> ds;
|
||
ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
|
||
ds->operands[0] = Operand(address);
|
||
ds->operands[1] = Operand(data);
|
||
if (num_operands == 4)
|
||
ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
|
||
ds->operands[num_operands - 1] = m;
|
||
ds->offset0 = offset;
|
||
if (return_previous)
|
||
ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
|
||
ctx->block->instructions.emplace_back(std::move(ds));
|
||
}
|
||
|
||
Temp get_scratch_resource(isel_context *ctx)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
Temp scratch_addr = ctx->program->private_segment_buffer;
|
||
if (ctx->stage != compute_cs)
|
||
scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
|
||
|
||
uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
|
||
S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
|
||
|
||
if (ctx->program->chip_class >= GFX10) {
|
||
rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
|
||
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
|
||
S_008F0C_RESOURCE_LEVEL(1);
|
||
} else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
|
||
rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
|
||
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
|
||
}
|
||
|
||
/* older generations need element size = 16 bytes. element size removed in GFX9 */
|
||
if (ctx->program->chip_class <= GFX8)
|
||
rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
|
||
|
||
return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
|
||
}
|
||
|
||
void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
|
||
assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
|
||
Builder bld(ctx->program, ctx->block);
|
||
Temp rsrc = get_scratch_resource(ctx);
|
||
Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
|
||
aco_opcode op;
|
||
switch (dst.size()) {
|
||
case 1:
|
||
op = aco_opcode::buffer_load_dword;
|
||
break;
|
||
case 2:
|
||
op = aco_opcode::buffer_load_dwordx2;
|
||
break;
|
||
case 3:
|
||
op = aco_opcode::buffer_load_dwordx3;
|
||
break;
|
||
case 4:
|
||
op = aco_opcode::buffer_load_dwordx4;
|
||
break;
|
||
case 6:
|
||
case 8: {
|
||
std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
|
||
Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
|
||
bld.def(v4), rsrc, offset,
|
||
ctx->program->scratch_offset, 0, true);
|
||
Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
|
||
aco_opcode::buffer_load_dwordx4,
|
||
dst.size() == 6 ? bld.def(v2) : bld.def(v4),
|
||
rsrc, offset, ctx->program->scratch_offset, 16, true);
|
||
emit_split_vector(ctx, lower, 2);
|
||
elems[0] = emit_extract_vector(ctx, lower, 0, v2);
|
||
elems[1] = emit_extract_vector(ctx, lower, 1, v2);
|
||
if (dst.size() == 8) {
|
||
emit_split_vector(ctx, upper, 2);
|
||
elems[2] = emit_extract_vector(ctx, upper, 0, v2);
|
||
elems[3] = emit_extract_vector(ctx, upper, 1, v2);
|
||
} else {
|
||
elems[2] = upper;
|
||
}
|
||
|
||
aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
|
||
Format::PSEUDO, dst.size() / 2, 1)};
|
||
for (unsigned i = 0; i < dst.size() / 2; i++)
|
||
vec->operands[i] = Operand(elems[i]);
|
||
vec->definitions[0] = Definition(dst);
|
||
bld.insert(std::move(vec));
|
||
ctx->allocated_vec.emplace(dst.id(), elems);
|
||
return;
|
||
}
|
||
default:
|
||
unreachable("Wrong dst size for nir_intrinsic_load_scratch");
|
||
}
|
||
|
||
bld.mubuf(op, Definition(dst), rsrc, offset, ctx->program->scratch_offset, 0, true);
|
||
emit_split_vector(ctx, dst, instr->num_components);
|
||
}
|
||
|
||
void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
|
||
assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
|
||
Builder bld(ctx->program, ctx->block);
|
||
Temp rsrc = get_scratch_resource(ctx);
|
||
Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
|
||
Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
|
||
|
||
unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
|
||
unsigned writemask = nir_intrinsic_write_mask(instr);
|
||
|
||
while (writemask) {
|
||
int start, count;
|
||
u_bit_scan_consecutive_range(&writemask, &start, &count);
|
||
int num_bytes = count * elem_size_bytes;
|
||
|
||
if (num_bytes > 16) {
|
||
assert(elem_size_bytes == 8);
|
||
writemask |= (((count - 2) << 1) - 1) << (start + 2);
|
||
count = 2;
|
||
num_bytes = 16;
|
||
}
|
||
|
||
// TODO: check alignment of sub-dword stores
|
||
// TODO: split 3 bytes. there is no store instruction for that
|
||
|
||
Temp write_data;
|
||
if (count != instr->num_components) {
|
||
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
|
||
for (int i = 0; i < count; i++) {
|
||
Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
|
||
vec->operands[i] = Operand(elem);
|
||
}
|
||
write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
|
||
vec->definitions[0] = Definition(write_data);
|
||
ctx->block->instructions.emplace_back(std::move(vec));
|
||
} else {
|
||
write_data = data;
|
||
}
|
||
|
||
aco_opcode op;
|
||
switch (num_bytes) {
|
||
case 4:
|
||
op = aco_opcode::buffer_store_dword;
|
||
break;
|
||
case 8:
|
||
op = aco_opcode::buffer_store_dwordx2;
|
||
break;
|
||
case 12:
|
||
op = aco_opcode::buffer_store_dwordx3;
|
||
break;
|
||
case 16:
|
||
op = aco_opcode::buffer_store_dwordx4;
|
||
break;
|
||
default:
|
||
unreachable("Invalid data size for nir_intrinsic_store_scratch.");
|
||
}
|
||
|
||
bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
|
||
}
|
||
}
|
||
|
||
void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
|
||
uint8_t log2_ps_iter_samples;
|
||
if (ctx->program->info->ps.force_persample) {
|
||
log2_ps_iter_samples =
|
||
util_logbase2(ctx->options->key.fs.num_samples);
|
||
} else {
|
||
log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
|
||
}
|
||
|
||
/* The bit pattern matches that used by fixed function fragment
|
||
* processing. */
|
||
static const unsigned ps_iter_masks[] = {
|
||
0xffff, /* not used */
|
||
0x5555,
|
||
0x1111,
|
||
0x0101,
|
||
0x0001,
|
||
};
|
||
assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
|
||
|
||
Builder bld(ctx->program, ctx->block);
|
||
|
||
Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
|
||
get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
|
||
Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
|
||
Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
|
||
}
|
||
|
||
void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
|
||
Builder bld(ctx->program, ctx->block);
|
||
|
||
unsigned stream = nir_intrinsic_stream_id(instr);
|
||
Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
|
||
next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
|
||
nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
|
||
|
||
/* get GSVS ring */
|
||
Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
|
||
|
||
unsigned num_components =
|
||
ctx->program->info->gs.num_stream_output_components[stream];
|
||
assert(num_components);
|
||
|
||
unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
|
||
unsigned stream_offset = 0;
|
||
for (unsigned i = 0; i < stream; i++) {
|
||
unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
|
||
stream_offset += prev_stride * ctx->program->wave_size;
|
||
}
|
||
|
||
/* Limit on the stride field for <= GFX7. */
|
||
assert(stride < (1 << 14));
|
||
|
||
Temp gsvs_dwords[4];
|
||
for (unsigned i = 0; i < 4; i++)
|
||
gsvs_dwords[i] = bld.tmp(s1);
|
||
bld.pseudo(aco_opcode::p_split_vector,
|
||
Definition(gsvs_dwords[0]),
|
||
Definition(gsvs_dwords[1]),
|
||
Definition(gsvs_dwords[2]),
|
||
Definition(gsvs_dwords[3]),
|
||
gsvs_ring);
|
||
|
||
if (stream_offset) {
|
||
Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
|
||
|
||
Temp carry = bld.tmp(s1);
|
||
gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
|
||
gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
|
||
}
|
||
|
||
gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
|
||
gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
|
||
|
||
gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
|
||
gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
|
||
|
||
unsigned offset = 0;
|
||
for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
|
||
if (ctx->program->info->gs.output_streams[i] != stream)
|
||
continue;
|
||
|
||
for (unsigned j = 0; j < 4; j++) {
|
||
if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
|
||
continue;
|
||
|
||
if (ctx->outputs.mask[i] & (1 << j)) {
|
||
Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
|
||
unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
|
||
if (const_offset >= 4096u) {
|
||
if (vaddr_offset.isUndefined())
|
||
vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
|
||
else
|
||
vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
|
||
const_offset %= 4096u;
|
||
}
|
||
|
||
aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
|
||
mtbuf->operands[0] = Operand(gsvs_ring);
|
||
mtbuf->operands[1] = vaddr_offset;
|
||
mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
|
||
mtbuf->operands[3] = Operand(ctx->outputs.outputs[i][j]);
|
||
mtbuf->offen = !vaddr_offset.isUndefined();
|
||
mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
|
||
mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
|
||
mtbuf->offset = const_offset;
|
||
mtbuf->glc = true;
|
||
mtbuf->slc = true;
|
||
mtbuf->barrier = barrier_gs_data;
|
||
mtbuf->can_reorder = true;
|
||
bld.insert(std::move(mtbuf));
|
||
}
|
||
|
||
offset += ctx->shader->info.gs.vertices_out;
|
||
}
|
||
|
||
/* outputs for the next vertex are undefined and keeping them around can
|
||
* create invalid IR with control flow */
|
||
ctx->outputs.mask[i] = 0;
|
||
}
|
||
|
||
bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
|
||
}
|
||
|
||
Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
|
||
if (cluster_size == 1) {
|
||
return src;
|
||
} if (op == nir_op_iand && cluster_size == 4) {
|
||
//subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
|
||
Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
|
||
return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
|
||
bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
|
||
} else if (op == nir_op_ior && cluster_size == 4) {
|
||
//subgroupClusteredOr(val, 4) -> wqm(val & exec)
|
||
return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
|
||
bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
|
||
} else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
|
||
//subgroupAnd(val) -> (exec & ~val) == 0
|
||
Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
|
||
Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
|
||
return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
|
||
} else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
|
||
//subgroupOr(val) -> (val & exec) != 0
|
||
Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
|
||
return bool_to_vector_condition(ctx, tmp);
|
||
} else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
|
||
//subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
|
||
Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
|
||
tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
|
||
tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
|
||
return bool_to_vector_condition(ctx, tmp);
|
||
} else {
|
||
//subgroupClustered{And,Or,Xor}(val, n) ->
|
||
//lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
|
||
//cluster_offset = ~(n - 1) & lane_id
|
||
//cluster_mask = ((1 << n) - 1)
|
||
//subgroupClusteredAnd():
|
||
// return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
|
||
//subgroupClusteredOr():
|
||
// return ((val & exec) >> cluster_offset) & cluster_mask != 0
|
||
//subgroupClusteredXor():
|
||
// return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
|
||
Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
|
||
Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
|
||
|
||
Temp tmp;
|
||
if (op == nir_op_iand)
|
||
tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
|
||
else
|
||
tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
|
||
|
||
uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
|
||
|
||
if (ctx->program->chip_class <= GFX7)
|
||
tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
|
||
else if (ctx->program->wave_size == 64)
|
||
tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
|
||
else
|
||
tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
|
||
tmp = emit_extract_vector(ctx, tmp, 0, v1);
|
||
if (cluster_mask != 0xffffffff)
|
||
tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
|
||
|
||
Definition cmp_def = Definition();
|
||
if (op == nir_op_iand) {
|
||
cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
|
||
} else if (op == nir_op_ior) {
|
||
cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
|
||
} else if (op == nir_op_ixor) {
|
||
tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
|
||
bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
|
||
cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
|
||
}
|
||
cmp_def.setHint(vcc);
|
||
return cmp_def.getTemp();
|
||
}
|
||
}
|
||
|
||
Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
|
||
//subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
|
||
//subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
|
||
//subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
|
||
Temp tmp;
|
||
if (op == nir_op_iand)
|
||
tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
|
||
else
|
||
tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
|
||
|
||
Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
|
||
Temp lo = lohi.def(0).getTemp();
|
||
Temp hi = lohi.def(1).getTemp();
|
||
Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
|
||
|
||
Definition cmp_def = Definition();
|
||
if (op == nir_op_iand)
|
||
cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
|
||
else if (op == nir_op_ior)
|
||
cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
|
||
else if (op == nir_op_ixor)
|
||
cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
|
||
bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
|
||
cmp_def.setHint(vcc);
|
||
return cmp_def.getTemp();
|
||
}
|
||
|
||
Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
|
||
//subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
|
||
//subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
|
||
//subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
|
||
Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
|
||
if (op == nir_op_iand)
|
||
return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
|
||
else if (op == nir_op_ior)
|
||
return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
|
||
else if (op == nir_op_ixor)
|
||
return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
|
||
|
||
assert(false);
|
||
return Temp();
|
||
}
|
||
|
||
void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
|
||
if (src.regClass().type() == RegType::vgpr) {
|
||
bld.pseudo(aco_opcode::p_as_uniform, dst, src);
|
||
} else if (src.regClass() == s1) {
|
||
bld.sop1(aco_opcode::s_mov_b32, dst, src);
|
||
} else if (src.regClass() == s2) {
|
||
bld.sop1(aco_opcode::s_mov_b64, dst, src);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
}
|
||
|
||
void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
|
||
Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
|
||
Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
|
||
|
||
Temp ddx_1, ddx_2, ddy_1, ddy_2;
|
||
uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
|
||
uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
|
||
uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
|
||
|
||
/* Build DD X/Y */
|
||
if (ctx->program->chip_class >= GFX8) {
|
||
Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
|
||
ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
|
||
ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
|
||
Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
|
||
ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
|
||
ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
|
||
} else {
|
||
Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
|
||
ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
|
||
ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
|
||
ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
|
||
ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
|
||
Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
|
||
ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
|
||
ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
|
||
ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
|
||
ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
|
||
}
|
||
|
||
/* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
|
||
Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
|
||
Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
|
||
tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
|
||
tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
|
||
Temp wqm1 = bld.tmp(v1);
|
||
emit_wqm(ctx, tmp1, wqm1, true);
|
||
Temp wqm2 = bld.tmp(v1);
|
||
emit_wqm(ctx, tmp2, wqm2, true);
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
|
||
return;
|
||
}
|
||
|
||
void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
switch(instr->intrinsic) {
|
||
case nir_intrinsic_load_barycentric_sample:
|
||
case nir_intrinsic_load_barycentric_pixel:
|
||
case nir_intrinsic_load_barycentric_centroid: {
|
||
glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
|
||
Temp bary = Temp(0, s2);
|
||
switch (mode) {
|
||
case INTERP_MODE_SMOOTH:
|
||
case INTERP_MODE_NONE:
|
||
if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
|
||
bary = get_arg(ctx, ctx->args->ac.persp_center);
|
||
else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
|
||
bary = ctx->persp_centroid;
|
||
else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
|
||
bary = get_arg(ctx, ctx->args->ac.persp_sample);
|
||
break;
|
||
case INTERP_MODE_NOPERSPECTIVE:
|
||
if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
|
||
bary = get_arg(ctx, ctx->args->ac.linear_center);
|
||
else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
|
||
bary = ctx->linear_centroid;
|
||
else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
|
||
bary = get_arg(ctx, ctx->args->ac.linear_sample);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
|
||
Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
|
||
Operand(p1), Operand(p2));
|
||
emit_split_vector(ctx, dst, 2);
|
||
break;
|
||
}
|
||
case nir_intrinsic_load_barycentric_model: {
|
||
Temp model = get_arg(ctx, ctx->args->ac.pull_model);
|
||
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
Temp p1 = emit_extract_vector(ctx, model, 0, v1);
|
||
Temp p2 = emit_extract_vector(ctx, model, 1, v1);
|
||
Temp p3 = emit_extract_vector(ctx, model, 2, v1);
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
|
||
Operand(p1), Operand(p2), Operand(p3));
|
||
emit_split_vector(ctx, dst, 3);
|
||
break;
|
||
}
|
||
case nir_intrinsic_load_barycentric_at_sample: {
|
||
uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
|
||
switch (ctx->options->key.fs.num_samples) {
|
||
case 2: sample_pos_offset += 1 << 3; break;
|
||
case 4: sample_pos_offset += 3 << 3; break;
|
||
case 8: sample_pos_offset += 7 << 3; break;
|
||
default: break;
|
||
}
|
||
Temp sample_pos;
|
||
Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
|
||
nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
|
||
Temp private_segment_buffer = ctx->program->private_segment_buffer;
|
||
if (addr.type() == RegType::sgpr) {
|
||
Operand offset;
|
||
if (const_addr) {
|
||
sample_pos_offset += const_addr->u32 << 3;
|
||
offset = Operand(sample_pos_offset);
|
||
} else if (ctx->options->chip_class >= GFX9) {
|
||
offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
|
||
} else {
|
||
offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
|
||
offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
|
||
}
|
||
|
||
Operand off = bld.copy(bld.def(s1), Operand(offset));
|
||
sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
|
||
|
||
} else if (ctx->options->chip_class >= GFX9) {
|
||
addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
|
||
sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
|
||
} else if (ctx->options->chip_class >= GFX7) {
|
||
/* addr += private_segment_buffer + sample_pos_offset */
|
||
Temp tmp0 = bld.tmp(s1);
|
||
Temp tmp1 = bld.tmp(s1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
|
||
Definition scc_tmp = bld.def(s1, scc);
|
||
tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
|
||
tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
|
||
addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
|
||
Temp pck0 = bld.tmp(v1);
|
||
Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
|
||
tmp1 = as_vgpr(ctx, tmp1);
|
||
Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
|
||
addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
|
||
|
||
/* sample_pos = flat_load_dwordx2 addr */
|
||
sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
|
||
} else {
|
||
assert(ctx->options->chip_class == GFX6);
|
||
|
||
uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
|
||
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
|
||
Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
|
||
|
||
addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
|
||
addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
|
||
|
||
sample_pos = bld.tmp(v2);
|
||
|
||
aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
|
||
load->definitions[0] = Definition(sample_pos);
|
||
load->operands[0] = Operand(rsrc);
|
||
load->operands[1] = Operand(addr);
|
||
load->operands[2] = Operand(0u);
|
||
load->offset = sample_pos_offset;
|
||
load->offen = 0;
|
||
load->addr64 = true;
|
||
load->glc = false;
|
||
load->dlc = false;
|
||
load->disable_wqm = false;
|
||
load->barrier = barrier_none;
|
||
load->can_reorder = true;
|
||
ctx->block->instructions.emplace_back(std::move(load));
|
||
}
|
||
|
||
/* sample_pos -= 0.5 */
|
||
Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
|
||
Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
|
||
pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
|
||
pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
|
||
|
||
emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
|
||
break;
|
||
}
|
||
case nir_intrinsic_load_barycentric_at_offset: {
|
||
Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
|
||
RegClass rc = RegClass(offset.type(), 1);
|
||
Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
|
||
emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
|
||
break;
|
||
}
|
||
case nir_intrinsic_load_front_face: {
|
||
bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
|
||
Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
|
||
break;
|
||
}
|
||
case nir_intrinsic_load_view_index: {
|
||
if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
|
||
break;
|
||
}
|
||
|
||
/* fallthrough */
|
||
}
|
||
case nir_intrinsic_load_layer_id: {
|
||
unsigned idx = nir_intrinsic_base(instr);
|
||
bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
|
||
Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
|
||
break;
|
||
}
|
||
case nir_intrinsic_load_frag_coord: {
|
||
emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
|
||
break;
|
||
}
|
||
case nir_intrinsic_load_sample_pos: {
|
||
Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
|
||
Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
|
||
posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
|
||
posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
|
||
break;
|
||
}
|
||
case nir_intrinsic_load_tess_coord:
|
||
visit_load_tess_coord(ctx, instr);
|
||
break;
|
||
case nir_intrinsic_load_interpolated_input:
|
||
visit_load_interpolated_input(ctx, instr);
|
||
break;
|
||
case nir_intrinsic_store_output:
|
||
visit_store_output(ctx, instr);
|
||
break;
|
||
case nir_intrinsic_load_input:
|
||
case nir_intrinsic_load_input_vertex:
|
||
visit_load_input(ctx, instr);
|
||
break;
|
||
case nir_intrinsic_load_per_vertex_input:
|
||
visit_load_per_vertex_input(ctx, instr);
|
||
break;
|
||
case nir_intrinsic_load_ubo:
|
||
visit_load_ubo(ctx, instr);
|
||
break;
|
||
case nir_intrinsic_load_push_constant:
|
||
visit_load_push_constant(ctx, instr);
|
||
break;
|
||
case nir_intrinsic_load_constant:
|
||
visit_load_constant(ctx, instr);
|
||
break;
|
||
case nir_intrinsic_vulkan_resource_index:
|
||
visit_load_resource(ctx, instr);
|
||
break;
|
||
case nir_intrinsic_discard:
|
||
visit_discard(ctx, instr);
|
||
break;
|
||
case nir_intrinsic_discard_if:
|
||
visit_discard_if(ctx, instr);
|
||
break;
|
||
case nir_intrinsic_load_shared:
|
||
visit_load_shared(ctx, instr);
|
||
break;
|
||
case nir_intrinsic_store_shared:
|
||
visit_store_shared(ctx, instr);
|
||
break;
|
||
case nir_intrinsic_shared_atomic_add:
|
||
case nir_intrinsic_shared_atomic_imin:
|
||
case nir_intrinsic_shared_atomic_umin:
|
||
case nir_intrinsic_shared_atomic_imax:
|
||
case nir_intrinsic_shared_atomic_umax:
|
||
case nir_intrinsic_shared_atomic_and:
|
||
case nir_intrinsic_shared_atomic_or:
|
||
case nir_intrinsic_shared_atomic_xor:
|
||
case nir_intrinsic_shared_atomic_exchange:
|
||
case nir_intrinsic_shared_atomic_comp_swap:
|
||
visit_shared_atomic(ctx, instr);
|
||
break;
|
||
case nir_intrinsic_image_deref_load:
|
||
visit_image_load(ctx, instr);
|
||
break;
|
||
case nir_intrinsic_image_deref_store:
|
||
visit_image_store(ctx, instr);
|
||
break;
|
||
case nir_intrinsic_image_deref_atomic_add:
|
||
case nir_intrinsic_image_deref_atomic_umin:
|
||
case nir_intrinsic_image_deref_atomic_imin:
|
||
case nir_intrinsic_image_deref_atomic_umax:
|
||
case nir_intrinsic_image_deref_atomic_imax:
|
||
case nir_intrinsic_image_deref_atomic_and:
|
||
case nir_intrinsic_image_deref_atomic_or:
|
||
case nir_intrinsic_image_deref_atomic_xor:
|
||
case nir_intrinsic_image_deref_atomic_exchange:
|
||
case nir_intrinsic_image_deref_atomic_comp_swap:
|
||
visit_image_atomic(ctx, instr);
|
||
break;
|
||
case nir_intrinsic_image_deref_size:
|
||
visit_image_size(ctx, instr);
|
||
break;
|
||
case nir_intrinsic_load_ssbo:
|
||
visit_load_ssbo(ctx, instr);
|
||
break;
|
||
case nir_intrinsic_store_ssbo:
|
||
visit_store_ssbo(ctx, instr);
|
||
break;
|
||
case nir_intrinsic_load_global:
|
||
visit_load_global(ctx, instr);
|
||
break;
|
||
case nir_intrinsic_store_global:
|
||
visit_store_global(ctx, instr);
|
||
break;
|
||
case nir_intrinsic_global_atomic_add:
|
||
case nir_intrinsic_global_atomic_imin:
|
||
case nir_intrinsic_global_atomic_umin:
|
||
case nir_intrinsic_global_atomic_imax:
|
||
case nir_intrinsic_global_atomic_umax:
|
||
case nir_intrinsic_global_atomic_and:
|
||
case nir_intrinsic_global_atomic_or:
|
||
case nir_intrinsic_global_atomic_xor:
|
||
case nir_intrinsic_global_atomic_exchange:
|
||
case nir_intrinsic_global_atomic_comp_swap:
|
||
visit_global_atomic(ctx, instr);
|
||
break;
|
||
case nir_intrinsic_ssbo_atomic_add:
|
||
case nir_intrinsic_ssbo_atomic_imin:
|
||
case nir_intrinsic_ssbo_atomic_umin:
|
||
case nir_intrinsic_ssbo_atomic_imax:
|
||
case nir_intrinsic_ssbo_atomic_umax:
|
||
case nir_intrinsic_ssbo_atomic_and:
|
||
case nir_intrinsic_ssbo_atomic_or:
|
||
case nir_intrinsic_ssbo_atomic_xor:
|
||
case nir_intrinsic_ssbo_atomic_exchange:
|
||
case nir_intrinsic_ssbo_atomic_comp_swap:
|
||
visit_atomic_ssbo(ctx, instr);
|
||
break;
|
||
case nir_intrinsic_load_scratch:
|
||
visit_load_scratch(ctx, instr);
|
||
break;
|
||
case nir_intrinsic_store_scratch:
|
||
visit_store_scratch(ctx, instr);
|
||
break;
|
||
case nir_intrinsic_get_buffer_size:
|
||
visit_get_buffer_size(ctx, instr);
|
||
break;
|
||
case nir_intrinsic_control_barrier: {
|
||
if (ctx->program->chip_class == GFX6 && ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
|
||
/* GFX6 only (thanks to a hw bug workaround):
|
||
* The real barrier instruction isn’t needed, because an entire patch
|
||
* always fits into a single wave.
|
||
*/
|
||
break;
|
||
}
|
||
|
||
if (ctx->shader->info.stage == MESA_SHADER_COMPUTE) {
|
||
unsigned* bsize = ctx->program->info->cs.block_size;
|
||
unsigned workgroup_size = bsize[0] * bsize[1] * bsize[2];
|
||
if (workgroup_size > ctx->program->wave_size)
|
||
bld.sopp(aco_opcode::s_barrier);
|
||
} else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
|
||
/* For each patch provided during rendering, n TCS shader invocations will be processed,
|
||
* where n is the number of vertices in the output patch.
|
||
*/
|
||
unsigned workgroup_size = ctx->tcs_num_patches * ctx->shader->info.tess.tcs_vertices_out;
|
||
if (workgroup_size > ctx->program->wave_size)
|
||
bld.sopp(aco_opcode::s_barrier);
|
||
} else {
|
||
/* We don't know the workgroup size, so always emit the s_barrier. */
|
||
bld.sopp(aco_opcode::s_barrier);
|
||
}
|
||
|
||
break;
|
||
}
|
||
case nir_intrinsic_memory_barrier_tcs_patch:
|
||
case nir_intrinsic_group_memory_barrier:
|
||
case nir_intrinsic_memory_barrier:
|
||
case nir_intrinsic_memory_barrier_buffer:
|
||
case nir_intrinsic_memory_barrier_image:
|
||
case nir_intrinsic_memory_barrier_shared:
|
||
emit_memory_barrier(ctx, instr);
|
||
break;
|
||
case nir_intrinsic_load_num_work_groups: {
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
|
||
emit_split_vector(ctx, dst, 3);
|
||
break;
|
||
}
|
||
case nir_intrinsic_load_local_invocation_id: {
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
|
||
emit_split_vector(ctx, dst, 3);
|
||
break;
|
||
}
|
||
case nir_intrinsic_load_work_group_id: {
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
struct ac_arg *args = ctx->args->ac.workgroup_ids;
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
|
||
args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
|
||
args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
|
||
args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
|
||
emit_split_vector(ctx, dst, 3);
|
||
break;
|
||
}
|
||
case nir_intrinsic_load_local_invocation_index: {
|
||
Temp id = emit_mbcnt(ctx, bld.def(v1));
|
||
|
||
/* The tg_size bits [6:11] contain the subgroup id,
|
||
* we need this multiplied by the wave size, and then OR the thread id to it.
|
||
*/
|
||
if (ctx->program->wave_size == 64) {
|
||
/* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
|
||
Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
|
||
get_arg(ctx, ctx->args->ac.tg_size));
|
||
bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
|
||
} else {
|
||
/* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
|
||
Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
|
||
get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
|
||
bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
|
||
}
|
||
break;
|
||
}
|
||
case nir_intrinsic_load_subgroup_id: {
|
||
if (ctx->stage == compute_cs) {
|
||
bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
|
||
get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
|
||
} else {
|
||
bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
|
||
}
|
||
break;
|
||
}
|
||
case nir_intrinsic_load_subgroup_invocation: {
|
||
emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
|
||
break;
|
||
}
|
||
case nir_intrinsic_load_num_subgroups: {
|
||
if (ctx->stage == compute_cs)
|
||
bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
|
||
get_arg(ctx, ctx->args->ac.tg_size));
|
||
else
|
||
bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
|
||
break;
|
||
}
|
||
case nir_intrinsic_ballot: {
|
||
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
Definition tmp = bld.def(dst.regClass());
|
||
Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
|
||
if (instr->src[0].ssa->bit_size == 1) {
|
||
assert(src.regClass() == bld.lm);
|
||
bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
|
||
} else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
|
||
bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
|
||
} else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
|
||
bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
if (dst.size() != bld.lm.size()) {
|
||
/* Wave32 with ballot size set to 64 */
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
|
||
}
|
||
emit_wqm(ctx, tmp.getTemp(), dst);
|
||
break;
|
||
}
|
||
case nir_intrinsic_shuffle:
|
||
case nir_intrinsic_read_invocation: {
|
||
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
|
||
if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
|
||
emit_uniform_subgroup(ctx, instr, src);
|
||
} else {
|
||
Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
|
||
if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
|
||
tid = bld.as_uniform(tid);
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
if (src.regClass() == v1) {
|
||
emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
|
||
} else if (src.regClass() == v2) {
|
||
Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
|
||
lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
|
||
hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
|
||
emit_split_vector(ctx, dst, 2);
|
||
} else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
|
||
assert(src.regClass() == bld.lm);
|
||
Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
|
||
bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
|
||
} else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
|
||
assert(src.regClass() == bld.lm);
|
||
Temp tmp;
|
||
if (ctx->program->chip_class <= GFX7)
|
||
tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
|
||
else if (ctx->program->wave_size == 64)
|
||
tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
|
||
else
|
||
tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
|
||
tmp = emit_extract_vector(ctx, tmp, 0, v1);
|
||
tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
|
||
emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
case nir_intrinsic_load_sample_id: {
|
||
bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
|
||
get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
|
||
break;
|
||
}
|
||
case nir_intrinsic_load_sample_mask_in: {
|
||
visit_load_sample_mask_in(ctx, instr);
|
||
break;
|
||
}
|
||
case nir_intrinsic_read_first_invocation: {
|
||
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
if (src.regClass() == v1) {
|
||
emit_wqm(ctx,
|
||
bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
|
||
dst);
|
||
} else if (src.regClass() == v2) {
|
||
Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
|
||
lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
|
||
hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
|
||
emit_split_vector(ctx, dst, 2);
|
||
} else if (instr->dest.ssa.bit_size == 1) {
|
||
assert(src.regClass() == bld.lm);
|
||
Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
|
||
bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
|
||
bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
|
||
} else if (src.regClass() == s1) {
|
||
bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
|
||
} else if (src.regClass() == s2) {
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_intrinsic_vote_all: {
|
||
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
assert(src.regClass() == bld.lm);
|
||
assert(dst.regClass() == bld.lm);
|
||
|
||
Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
|
||
Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
|
||
bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
|
||
break;
|
||
}
|
||
case nir_intrinsic_vote_any: {
|
||
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
assert(src.regClass() == bld.lm);
|
||
assert(dst.regClass() == bld.lm);
|
||
|
||
Temp tmp = bool_to_scalar_condition(ctx, src);
|
||
bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
|
||
break;
|
||
}
|
||
case nir_intrinsic_reduce:
|
||
case nir_intrinsic_inclusive_scan:
|
||
case nir_intrinsic_exclusive_scan: {
|
||
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
|
||
unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
|
||
nir_intrinsic_cluster_size(instr) : 0;
|
||
cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
|
||
|
||
if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
|
||
emit_uniform_subgroup(ctx, instr, src);
|
||
} else if (instr->dest.ssa.bit_size == 1) {
|
||
if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
|
||
op = nir_op_iand;
|
||
else if (op == nir_op_iadd)
|
||
op = nir_op_ixor;
|
||
else if (op == nir_op_umax || op == nir_op_imax)
|
||
op = nir_op_ior;
|
||
assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
|
||
|
||
switch (instr->intrinsic) {
|
||
case nir_intrinsic_reduce:
|
||
emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
|
||
break;
|
||
case nir_intrinsic_exclusive_scan:
|
||
emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
|
||
break;
|
||
case nir_intrinsic_inclusive_scan:
|
||
emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
|
||
break;
|
||
default:
|
||
assert(false);
|
||
}
|
||
} else if (cluster_size == 1) {
|
||
bld.copy(Definition(dst), src);
|
||
} else {
|
||
src = as_vgpr(ctx, src);
|
||
|
||
ReduceOp reduce_op;
|
||
switch (op) {
|
||
#define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
|
||
CASE(iadd)
|
||
CASE(imul)
|
||
CASE(fadd)
|
||
CASE(fmul)
|
||
CASE(imin)
|
||
CASE(umin)
|
||
CASE(fmin)
|
||
CASE(imax)
|
||
CASE(umax)
|
||
CASE(fmax)
|
||
CASE(iand)
|
||
CASE(ior)
|
||
CASE(ixor)
|
||
default:
|
||
unreachable("unknown reduction op");
|
||
#undef CASE
|
||
}
|
||
|
||
aco_opcode aco_op;
|
||
switch (instr->intrinsic) {
|
||
case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
|
||
case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
|
||
case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
|
||
default:
|
||
unreachable("unknown reduce intrinsic");
|
||
}
|
||
|
||
aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
|
||
reduce->operands[0] = Operand(src);
|
||
// filled in by aco_reduce_assign.cpp, used internally as part of the
|
||
// reduce sequence
|
||
assert(dst.size() == 1 || dst.size() == 2);
|
||
reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
|
||
reduce->operands[2] = Operand(v1.as_linear());
|
||
|
||
Temp tmp_dst = bld.tmp(dst.regClass());
|
||
reduce->definitions[0] = Definition(tmp_dst);
|
||
reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
|
||
reduce->definitions[2] = Definition();
|
||
reduce->definitions[3] = Definition(scc, s1);
|
||
reduce->definitions[4] = Definition();
|
||
reduce->reduce_op = reduce_op;
|
||
reduce->cluster_size = cluster_size;
|
||
ctx->block->instructions.emplace_back(std::move(reduce));
|
||
|
||
emit_wqm(ctx, tmp_dst, dst);
|
||
}
|
||
break;
|
||
}
|
||
case nir_intrinsic_quad_broadcast: {
|
||
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
|
||
if (!ctx->divergent_vals[instr->dest.ssa.index]) {
|
||
emit_uniform_subgroup(ctx, instr, src);
|
||
} else {
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
|
||
uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
|
||
|
||
if (instr->dest.ssa.bit_size == 1) {
|
||
assert(src.regClass() == bld.lm);
|
||
assert(dst.regClass() == bld.lm);
|
||
uint32_t half_mask = 0x11111111u << lane;
|
||
Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
|
||
Temp tmp = bld.tmp(bld.lm);
|
||
bld.sop1(Builder::s_wqm, Definition(tmp),
|
||
bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
|
||
bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
|
||
emit_wqm(ctx, tmp, dst);
|
||
} else if (instr->dest.ssa.bit_size == 32) {
|
||
if (ctx->program->chip_class >= GFX8)
|
||
emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
|
||
else
|
||
emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
|
||
} else if (instr->dest.ssa.bit_size == 64) {
|
||
Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
|
||
if (ctx->program->chip_class >= GFX8) {
|
||
lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
|
||
hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
|
||
} else {
|
||
lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
|
||
hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
|
||
}
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
|
||
emit_split_vector(ctx, dst, 2);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
case nir_intrinsic_quad_swap_horizontal:
|
||
case nir_intrinsic_quad_swap_vertical:
|
||
case nir_intrinsic_quad_swap_diagonal:
|
||
case nir_intrinsic_quad_swizzle_amd: {
|
||
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
|
||
if (!ctx->divergent_vals[instr->dest.ssa.index]) {
|
||
emit_uniform_subgroup(ctx, instr, src);
|
||
break;
|
||
}
|
||
uint16_t dpp_ctrl = 0;
|
||
switch (instr->intrinsic) {
|
||
case nir_intrinsic_quad_swap_horizontal:
|
||
dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
|
||
break;
|
||
case nir_intrinsic_quad_swap_vertical:
|
||
dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
|
||
break;
|
||
case nir_intrinsic_quad_swap_diagonal:
|
||
dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
|
||
break;
|
||
case nir_intrinsic_quad_swizzle_amd:
|
||
dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
if (ctx->program->chip_class < GFX8)
|
||
dpp_ctrl |= (1 << 15);
|
||
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
if (instr->dest.ssa.bit_size == 1) {
|
||
assert(src.regClass() == bld.lm);
|
||
src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
|
||
if (ctx->program->chip_class >= GFX8)
|
||
src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
|
||
else
|
||
src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
|
||
Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
|
||
emit_wqm(ctx, tmp, dst);
|
||
} else if (instr->dest.ssa.bit_size == 32) {
|
||
Temp tmp;
|
||
if (ctx->program->chip_class >= GFX8)
|
||
tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
|
||
else
|
||
tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
|
||
emit_wqm(ctx, tmp, dst);
|
||
} else if (instr->dest.ssa.bit_size == 64) {
|
||
Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
|
||
if (ctx->program->chip_class >= GFX8) {
|
||
lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
|
||
hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
|
||
} else {
|
||
lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
|
||
hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
|
||
}
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
|
||
emit_split_vector(ctx, dst, 2);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_intrinsic_masked_swizzle_amd: {
|
||
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
|
||
if (!ctx->divergent_vals[instr->dest.ssa.index]) {
|
||
emit_uniform_subgroup(ctx, instr, src);
|
||
break;
|
||
}
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
uint32_t mask = nir_intrinsic_swizzle_mask(instr);
|
||
if (dst.regClass() == v1) {
|
||
emit_wqm(ctx,
|
||
bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
|
||
dst);
|
||
} else if (dst.regClass() == v2) {
|
||
Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
|
||
lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
|
||
hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
|
||
emit_split_vector(ctx, dst, 2);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_intrinsic_write_invocation_amd: {
|
||
Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
|
||
Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
|
||
Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
if (dst.regClass() == v1) {
|
||
/* src2 is ignored for writelane. RA assigns the same reg for dst */
|
||
emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
|
||
} else if (dst.regClass() == v2) {
|
||
Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
|
||
Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
|
||
Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
|
||
Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
|
||
emit_split_vector(ctx, dst, 2);
|
||
} else {
|
||
fprintf(stderr, "Unimplemented NIR instr bit size: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
}
|
||
break;
|
||
}
|
||
case nir_intrinsic_mbcnt_amd: {
|
||
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
|
||
RegClass rc = RegClass(src.type(), 1);
|
||
Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
|
||
emit_wqm(ctx, wqm_tmp, dst);
|
||
break;
|
||
}
|
||
case nir_intrinsic_load_helper_invocation: {
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
|
||
ctx->block->kind |= block_kind_needs_lowering;
|
||
ctx->program->needs_exact = true;
|
||
break;
|
||
}
|
||
case nir_intrinsic_is_helper_invocation: {
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
|
||
ctx->block->kind |= block_kind_needs_lowering;
|
||
ctx->program->needs_exact = true;
|
||
break;
|
||
}
|
||
case nir_intrinsic_demote:
|
||
bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
|
||
|
||
if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
|
||
ctx->cf_info.exec_potentially_empty_discard = true;
|
||
ctx->block->kind |= block_kind_uses_demote;
|
||
ctx->program->needs_exact = true;
|
||
break;
|
||
case nir_intrinsic_demote_if: {
|
||
Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
|
||
assert(src.regClass() == bld.lm);
|
||
Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
|
||
bld.pseudo(aco_opcode::p_demote_to_helper, cond);
|
||
|
||
if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
|
||
ctx->cf_info.exec_potentially_empty_discard = true;
|
||
ctx->block->kind |= block_kind_uses_demote;
|
||
ctx->program->needs_exact = true;
|
||
break;
|
||
}
|
||
case nir_intrinsic_first_invocation: {
|
||
emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
|
||
get_ssa_temp(ctx, &instr->dest.ssa));
|
||
break;
|
||
}
|
||
case nir_intrinsic_shader_clock:
|
||
bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
|
||
emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
|
||
break;
|
||
case nir_intrinsic_load_vertex_id_zero_base: {
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
|
||
break;
|
||
}
|
||
case nir_intrinsic_load_first_vertex: {
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
|
||
break;
|
||
}
|
||
case nir_intrinsic_load_base_instance: {
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
|
||
break;
|
||
}
|
||
case nir_intrinsic_load_instance_id: {
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
|
||
break;
|
||
}
|
||
case nir_intrinsic_load_draw_id: {
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
|
||
break;
|
||
}
|
||
case nir_intrinsic_load_invocation_id: {
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
|
||
if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
|
||
if (ctx->options->chip_class >= GFX10)
|
||
bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
|
||
else
|
||
bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
|
||
} else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
|
||
bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
|
||
get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
|
||
} else {
|
||
unreachable("Unsupported stage for load_invocation_id");
|
||
}
|
||
|
||
break;
|
||
}
|
||
case nir_intrinsic_load_primitive_id: {
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
|
||
switch (ctx->shader->info.stage) {
|
||
case MESA_SHADER_GEOMETRY:
|
||
bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
|
||
break;
|
||
case MESA_SHADER_TESS_CTRL:
|
||
bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
|
||
break;
|
||
case MESA_SHADER_TESS_EVAL:
|
||
bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
|
||
break;
|
||
default:
|
||
unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
|
||
}
|
||
|
||
break;
|
||
}
|
||
case nir_intrinsic_load_patch_vertices_in: {
|
||
assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
|
||
ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
|
||
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
|
||
break;
|
||
}
|
||
case nir_intrinsic_emit_vertex_with_counter: {
|
||
visit_emit_vertex_with_counter(ctx, instr);
|
||
break;
|
||
}
|
||
case nir_intrinsic_end_primitive_with_counter: {
|
||
unsigned stream = nir_intrinsic_stream_id(instr);
|
||
bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
|
||
break;
|
||
}
|
||
case nir_intrinsic_set_vertex_count: {
|
||
/* unused, the HW keeps track of this for us */
|
||
break;
|
||
}
|
||
default:
|
||
fprintf(stderr, "Unimplemented intrinsic instr: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
abort();
|
||
|
||
break;
|
||
}
|
||
}
|
||
|
||
|
||
void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
|
||
Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
|
||
enum glsl_base_type *stype)
|
||
{
|
||
nir_deref_instr *texture_deref_instr = NULL;
|
||
nir_deref_instr *sampler_deref_instr = NULL;
|
||
int plane = -1;
|
||
|
||
for (unsigned i = 0; i < instr->num_srcs; i++) {
|
||
switch (instr->src[i].src_type) {
|
||
case nir_tex_src_texture_deref:
|
||
texture_deref_instr = nir_src_as_deref(instr->src[i].src);
|
||
break;
|
||
case nir_tex_src_sampler_deref:
|
||
sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
|
||
break;
|
||
case nir_tex_src_plane:
|
||
plane = nir_src_as_int(instr->src[i].src);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
*stype = glsl_get_sampler_result_type(texture_deref_instr->type);
|
||
|
||
if (!sampler_deref_instr)
|
||
sampler_deref_instr = texture_deref_instr;
|
||
|
||
if (plane >= 0) {
|
||
assert(instr->op != nir_texop_txf_ms &&
|
||
instr->op != nir_texop_samples_identical);
|
||
assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
|
||
*res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
|
||
} else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
|
||
*res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
|
||
} else if (instr->op == nir_texop_fragment_mask_fetch) {
|
||
*res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
|
||
} else {
|
||
*res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
|
||
}
|
||
if (samp_ptr) {
|
||
*samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
|
||
|
||
if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
|
||
/* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
|
||
Builder bld(ctx->program, ctx->block);
|
||
|
||
/* to avoid unnecessary moves, we split and recombine sampler and image */
|
||
Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
|
||
bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
|
||
Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
|
||
Definition(img[2]), Definition(img[3]), Definition(img[4]),
|
||
Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
|
||
bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
|
||
Definition(samp[2]), Definition(samp[3]), *samp_ptr);
|
||
|
||
samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
|
||
*res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
|
||
img[0], img[1], img[2], img[3],
|
||
img[4], img[5], img[6], img[7]);
|
||
*samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
|
||
samp[0], samp[1], samp[2], samp[3]);
|
||
}
|
||
}
|
||
if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
|
||
instr->op == nir_texop_samples_identical))
|
||
*fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
|
||
}
|
||
|
||
void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
|
||
Temp *out_ma, Temp *out_sc, Temp *out_tc)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
|
||
Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
|
||
Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
|
||
Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
|
||
|
||
Operand neg_one(0xbf800000u);
|
||
Operand one(0x3f800000u);
|
||
Operand two(0x40000000u);
|
||
Operand four(0x40800000u);
|
||
|
||
Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
|
||
Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
|
||
Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
|
||
|
||
Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
|
||
Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
|
||
is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
|
||
Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
|
||
|
||
// select sc
|
||
Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
|
||
Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
|
||
bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
|
||
one, is_ma_y);
|
||
*out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
|
||
|
||
// select tc
|
||
tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
|
||
sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
|
||
*out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
|
||
|
||
// select ma
|
||
tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
|
||
bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
|
||
deriv_z, is_ma_z);
|
||
tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
|
||
*out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
|
||
}
|
||
|
||
void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
Temp ma, tc, sc, id;
|
||
|
||
if (is_array) {
|
||
coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
|
||
|
||
// see comment in ac_prepare_cube_coords()
|
||
if (ctx->options->chip_class <= GFX8)
|
||
coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
|
||
}
|
||
|
||
ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
|
||
|
||
aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
|
||
vop3a->operands[0] = Operand(ma);
|
||
vop3a->abs[0] = true;
|
||
Temp invma = bld.tmp(v1);
|
||
vop3a->definitions[0] = Definition(invma);
|
||
ctx->block->instructions.emplace_back(std::move(vop3a));
|
||
|
||
sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
|
||
if (!is_deriv)
|
||
sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
|
||
|
||
tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
|
||
if (!is_deriv)
|
||
tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
|
||
|
||
id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
|
||
|
||
if (is_deriv) {
|
||
sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
|
||
tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
|
||
|
||
for (unsigned i = 0; i < 2; i++) {
|
||
// see comment in ac_prepare_cube_coords()
|
||
Temp deriv_ma;
|
||
Temp deriv_sc, deriv_tc;
|
||
build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
|
||
&deriv_ma, &deriv_sc, &deriv_tc);
|
||
|
||
deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
|
||
|
||
Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
|
||
bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
|
||
bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
|
||
Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
|
||
bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
|
||
bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
|
||
*(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
|
||
}
|
||
|
||
sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
|
||
tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
|
||
}
|
||
|
||
if (is_array)
|
||
id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
|
||
coords.resize(3);
|
||
coords[0] = sc;
|
||
coords[1] = tc;
|
||
coords[2] = id;
|
||
}
|
||
|
||
void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
|
||
{
|
||
if (vec->parent_instr->type != nir_instr_type_alu)
|
||
return;
|
||
nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
|
||
if (vec_instr->op != nir_op_vec(vec->num_components))
|
||
return;
|
||
|
||
for (unsigned i = 0; i < vec->num_components; i++) {
|
||
cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
|
||
nir_src_as_const_value(vec_instr->src[i].src) : NULL;
|
||
}
|
||
}
|
||
|
||
void visit_tex(isel_context *ctx, nir_tex_instr *instr)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
|
||
has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
|
||
Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
|
||
lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp();
|
||
std::vector<Temp> coords;
|
||
std::vector<Temp> derivs;
|
||
nir_const_value *sample_index_cv = NULL;
|
||
nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
|
||
enum glsl_base_type stype;
|
||
tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
|
||
|
||
bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
|
||
(stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
|
||
bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
|
||
instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
|
||
|
||
for (unsigned i = 0; i < instr->num_srcs; i++) {
|
||
switch (instr->src[i].src_type) {
|
||
case nir_tex_src_coord: {
|
||
Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
|
||
for (unsigned i = 0; i < coord.size(); i++)
|
||
coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
|
||
break;
|
||
}
|
||
case nir_tex_src_bias:
|
||
if (instr->op == nir_texop_txb) {
|
||
bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
|
||
has_bias = true;
|
||
}
|
||
break;
|
||
case nir_tex_src_lod: {
|
||
nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
|
||
|
||
if (val && val->f32 <= 0.0) {
|
||
level_zero = true;
|
||
} else {
|
||
lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
|
||
has_lod = true;
|
||
}
|
||
break;
|
||
}
|
||
case nir_tex_src_comparator:
|
||
if (instr->is_shadow) {
|
||
compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
|
||
has_compare = true;
|
||
}
|
||
break;
|
||
case nir_tex_src_offset:
|
||
offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
|
||
get_const_vec(instr->src[i].src.ssa, const_offset);
|
||
has_offset = true;
|
||
break;
|
||
case nir_tex_src_ddx:
|
||
ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
|
||
has_ddx = true;
|
||
break;
|
||
case nir_tex_src_ddy:
|
||
ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
|
||
has_ddy = true;
|
||
break;
|
||
case nir_tex_src_ms_index:
|
||
sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
|
||
sample_index_cv = nir_src_as_const_value(instr->src[i].src);
|
||
has_sample_index = true;
|
||
break;
|
||
case nir_tex_src_texture_offset:
|
||
case nir_tex_src_sampler_offset:
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
|
||
return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
|
||
|
||
if (instr->op == nir_texop_texture_samples) {
|
||
Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
|
||
|
||
Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
|
||
Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
|
||
Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
|
||
Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
|
||
|
||
bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
|
||
samples, Operand(1u), bld.scc(is_msaa));
|
||
return;
|
||
}
|
||
|
||
if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
|
||
aco_ptr<Instruction> tmp_instr;
|
||
Temp acc, pack = Temp();
|
||
|
||
uint32_t pack_const = 0;
|
||
for (unsigned i = 0; i < offset.size(); i++) {
|
||
if (!const_offset[i])
|
||
continue;
|
||
pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
|
||
}
|
||
|
||
if (offset.type() == RegType::sgpr) {
|
||
for (unsigned i = 0; i < offset.size(); i++) {
|
||
if (const_offset[i])
|
||
continue;
|
||
|
||
acc = emit_extract_vector(ctx, offset, i, s1);
|
||
acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
|
||
|
||
if (i) {
|
||
acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
|
||
}
|
||
|
||
if (pack == Temp()) {
|
||
pack = acc;
|
||
} else {
|
||
pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
|
||
}
|
||
}
|
||
|
||
if (pack_const && pack != Temp())
|
||
pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
|
||
} else {
|
||
for (unsigned i = 0; i < offset.size(); i++) {
|
||
if (const_offset[i])
|
||
continue;
|
||
|
||
acc = emit_extract_vector(ctx, offset, i, v1);
|
||
acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
|
||
|
||
if (i) {
|
||
acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
|
||
}
|
||
|
||
if (pack == Temp()) {
|
||
pack = acc;
|
||
} else {
|
||
pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
|
||
}
|
||
}
|
||
|
||
if (pack_const && pack != Temp())
|
||
pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
|
||
}
|
||
if (pack_const && pack == Temp())
|
||
offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
|
||
else if (pack == Temp())
|
||
has_offset = false;
|
||
else
|
||
offset = pack;
|
||
}
|
||
|
||
if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
|
||
prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
|
||
|
||
/* pack derivatives */
|
||
if (has_ddx || has_ddy) {
|
||
if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
|
||
assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
|
||
Temp zero = bld.copy(bld.def(v1), Operand(0u));
|
||
derivs = {ddy, zero, ddy, zero};
|
||
} else {
|
||
for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
|
||
derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
|
||
for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
|
||
derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
|
||
}
|
||
has_derivs = true;
|
||
}
|
||
|
||
if (instr->coord_components > 1 &&
|
||
instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
|
||
instr->is_array &&
|
||
instr->op != nir_texop_txf)
|
||
coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
|
||
|
||
if (instr->coord_components > 2 &&
|
||
(instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
|
||
instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
|
||
instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
|
||
instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
|
||
instr->is_array &&
|
||
instr->op != nir_texop_txf &&
|
||
instr->op != nir_texop_txf_ms &&
|
||
instr->op != nir_texop_fragment_fetch &&
|
||
instr->op != nir_texop_fragment_mask_fetch)
|
||
coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
|
||
|
||
if (ctx->options->chip_class == GFX9 &&
|
||
instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
|
||
instr->op != nir_texop_lod && instr->coord_components) {
|
||
assert(coords.size() > 0 && coords.size() < 3);
|
||
|
||
coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
|
||
Operand((uint32_t) 0) :
|
||
Operand((uint32_t) 0x3f000000)));
|
||
}
|
||
|
||
bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
|
||
|
||
if (instr->op == nir_texop_samples_identical)
|
||
resource = fmask_ptr;
|
||
|
||
else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
|
||
instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
|
||
instr->op != nir_texop_txs &&
|
||
instr->op != nir_texop_fragment_fetch &&
|
||
instr->op != nir_texop_fragment_mask_fetch) {
|
||
assert(has_sample_index);
|
||
Operand op(sample_index);
|
||
if (sample_index_cv)
|
||
op = Operand(sample_index_cv->u32);
|
||
sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
|
||
}
|
||
|
||
if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
|
||
for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
|
||
Temp off = emit_extract_vector(ctx, offset, i, v1);
|
||
coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
|
||
}
|
||
has_offset = false;
|
||
}
|
||
|
||
/* Build tex instruction */
|
||
unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
|
||
unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
|
||
? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
|
||
: 0;
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
Temp tmp_dst = dst;
|
||
|
||
/* gather4 selects the component by dmask and always returns vec4 */
|
||
if (instr->op == nir_texop_tg4) {
|
||
assert(instr->dest.ssa.num_components == 4);
|
||
if (instr->is_shadow)
|
||
dmask = 1;
|
||
else
|
||
dmask = 1 << instr->component;
|
||
if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
|
||
tmp_dst = bld.tmp(v4);
|
||
} else if (instr->op == nir_texop_samples_identical) {
|
||
tmp_dst = bld.tmp(v1);
|
||
} else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
|
||
tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
|
||
}
|
||
|
||
aco_ptr<MIMG_instruction> tex;
|
||
if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
|
||
if (!has_lod)
|
||
lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
|
||
|
||
bool div_by_6 = instr->op == nir_texop_txs &&
|
||
instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
|
||
instr->is_array &&
|
||
(dmask & (1 << 2));
|
||
if (tmp_dst.id() == dst.id() && div_by_6)
|
||
tmp_dst = bld.tmp(tmp_dst.regClass());
|
||
|
||
tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
|
||
tex->operands[0] = Operand(resource);
|
||
tex->operands[1] = Operand(s4); /* no sampler */
|
||
tex->operands[2] = Operand(as_vgpr(ctx,lod));
|
||
if (ctx->options->chip_class == GFX9 &&
|
||
instr->op == nir_texop_txs &&
|
||
instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
|
||
instr->is_array) {
|
||
tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
|
||
} else if (instr->op == nir_texop_query_levels) {
|
||
tex->dmask = 1 << 3;
|
||
} else {
|
||
tex->dmask = dmask;
|
||
}
|
||
tex->da = da;
|
||
tex->definitions[0] = Definition(tmp_dst);
|
||
tex->dim = dim;
|
||
tex->can_reorder = true;
|
||
ctx->block->instructions.emplace_back(std::move(tex));
|
||
|
||
if (div_by_6) {
|
||
/* divide 3rd value by 6 by multiplying with magic number */
|
||
emit_split_vector(ctx, tmp_dst, tmp_dst.size());
|
||
Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
|
||
Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
|
||
assert(instr->dest.ssa.num_components == 3);
|
||
Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
|
||
tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
|
||
emit_extract_vector(ctx, tmp_dst, 0, v1),
|
||
emit_extract_vector(ctx, tmp_dst, 1, v1),
|
||
by_6);
|
||
|
||
}
|
||
|
||
expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
|
||
return;
|
||
}
|
||
|
||
Temp tg4_compare_cube_wa64 = Temp();
|
||
|
||
if (tg4_integer_workarounds) {
|
||
tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
|
||
tex->operands[0] = Operand(resource);
|
||
tex->operands[1] = Operand(s4); /* no sampler */
|
||
tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
|
||
tex->dim = dim;
|
||
tex->dmask = 0x3;
|
||
tex->da = da;
|
||
Temp size = bld.tmp(v2);
|
||
tex->definitions[0] = Definition(size);
|
||
tex->can_reorder = true;
|
||
ctx->block->instructions.emplace_back(std::move(tex));
|
||
emit_split_vector(ctx, size, size.size());
|
||
|
||
Temp half_texel[2];
|
||
for (unsigned i = 0; i < 2; i++) {
|
||
half_texel[i] = emit_extract_vector(ctx, size, i, v1);
|
||
half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
|
||
half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
|
||
half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
|
||
}
|
||
|
||
Temp new_coords[2] = {
|
||
bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
|
||
bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
|
||
};
|
||
|
||
if (tg4_integer_cube_workaround) {
|
||
// see comment in ac_nir_to_llvm.c's lower_gather4_integer()
|
||
Temp desc[resource.size()];
|
||
aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
|
||
Format::PSEUDO, 1, resource.size())};
|
||
split->operands[0] = Operand(resource);
|
||
for (unsigned i = 0; i < resource.size(); i++) {
|
||
desc[i] = bld.tmp(s1);
|
||
split->definitions[i] = Definition(desc[i]);
|
||
}
|
||
ctx->block->instructions.emplace_back(std::move(split));
|
||
|
||
Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
|
||
Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
|
||
Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
|
||
|
||
Temp nfmt;
|
||
if (stype == GLSL_TYPE_UINT) {
|
||
nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
|
||
Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
|
||
Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
|
||
bld.scc(compare_cube_wa));
|
||
} else {
|
||
nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
|
||
Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
|
||
Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
|
||
bld.scc(compare_cube_wa));
|
||
}
|
||
tg4_compare_cube_wa64 = bld.tmp(bld.lm);
|
||
bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
|
||
|
||
nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
|
||
|
||
desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
|
||
Operand((uint32_t)C_008F14_NUM_FORMAT));
|
||
desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
|
||
|
||
aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
|
||
Format::PSEUDO, resource.size(), 1)};
|
||
for (unsigned i = 0; i < resource.size(); i++)
|
||
vec->operands[i] = Operand(desc[i]);
|
||
resource = bld.tmp(resource.regClass());
|
||
vec->definitions[0] = Definition(resource);
|
||
ctx->block->instructions.emplace_back(std::move(vec));
|
||
|
||
new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
|
||
new_coords[0], coords[0], tg4_compare_cube_wa64);
|
||
new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
|
||
new_coords[1], coords[1], tg4_compare_cube_wa64);
|
||
}
|
||
coords[0] = new_coords[0];
|
||
coords[1] = new_coords[1];
|
||
}
|
||
|
||
if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
|
||
//FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
|
||
|
||
assert(coords.size() == 1);
|
||
unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
|
||
aco_opcode op;
|
||
switch (last_bit) {
|
||
case 1:
|
||
op = aco_opcode::buffer_load_format_x; break;
|
||
case 2:
|
||
op = aco_opcode::buffer_load_format_xy; break;
|
||
case 3:
|
||
op = aco_opcode::buffer_load_format_xyz; break;
|
||
case 4:
|
||
op = aco_opcode::buffer_load_format_xyzw; break;
|
||
default:
|
||
unreachable("Tex instruction loads more than 4 components.");
|
||
}
|
||
|
||
/* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
|
||
if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
|
||
tmp_dst = dst;
|
||
else
|
||
tmp_dst = bld.tmp(RegType::vgpr, last_bit);
|
||
|
||
aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
|
||
mubuf->operands[0] = Operand(resource);
|
||
mubuf->operands[1] = Operand(coords[0]);
|
||
mubuf->operands[2] = Operand((uint32_t) 0);
|
||
mubuf->definitions[0] = Definition(tmp_dst);
|
||
mubuf->idxen = true;
|
||
mubuf->can_reorder = true;
|
||
ctx->block->instructions.emplace_back(std::move(mubuf));
|
||
|
||
expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
|
||
return;
|
||
}
|
||
|
||
/* gather MIMG address components */
|
||
std::vector<Temp> args;
|
||
if (has_offset)
|
||
args.emplace_back(offset);
|
||
if (has_bias)
|
||
args.emplace_back(bias);
|
||
if (has_compare)
|
||
args.emplace_back(compare);
|
||
if (has_derivs)
|
||
args.insert(args.end(), derivs.begin(), derivs.end());
|
||
|
||
args.insert(args.end(), coords.begin(), coords.end());
|
||
if (has_sample_index)
|
||
args.emplace_back(sample_index);
|
||
if (has_lod)
|
||
args.emplace_back(lod);
|
||
|
||
Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
|
||
aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
|
||
vec->definitions[0] = Definition(arg);
|
||
for (unsigned i = 0; i < args.size(); i++)
|
||
vec->operands[i] = Operand(args[i]);
|
||
ctx->block->instructions.emplace_back(std::move(vec));
|
||
|
||
|
||
if (instr->op == nir_texop_txf ||
|
||
instr->op == nir_texop_txf_ms ||
|
||
instr->op == nir_texop_samples_identical ||
|
||
instr->op == nir_texop_fragment_fetch ||
|
||
instr->op == nir_texop_fragment_mask_fetch) {
|
||
aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
|
||
tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
|
||
tex->operands[0] = Operand(resource);
|
||
tex->operands[1] = Operand(s4); /* no sampler */
|
||
tex->operands[2] = Operand(arg);
|
||
tex->dim = dim;
|
||
tex->dmask = dmask;
|
||
tex->unrm = true;
|
||
tex->da = da;
|
||
tex->definitions[0] = Definition(tmp_dst);
|
||
tex->can_reorder = true;
|
||
ctx->block->instructions.emplace_back(std::move(tex));
|
||
|
||
if (instr->op == nir_texop_samples_identical) {
|
||
assert(dmask == 1 && dst.regClass() == v1);
|
||
assert(dst.id() != tmp_dst.id());
|
||
|
||
Temp tmp = bld.tmp(bld.lm);
|
||
bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
|
||
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
|
||
|
||
} else {
|
||
expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
|
||
}
|
||
return;
|
||
}
|
||
|
||
// TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
|
||
aco_opcode opcode = aco_opcode::image_sample;
|
||
if (has_offset) { /* image_sample_*_o */
|
||
if (has_compare) {
|
||
opcode = aco_opcode::image_sample_c_o;
|
||
if (has_derivs)
|
||
opcode = aco_opcode::image_sample_c_d_o;
|
||
if (has_bias)
|
||
opcode = aco_opcode::image_sample_c_b_o;
|
||
if (level_zero)
|
||
opcode = aco_opcode::image_sample_c_lz_o;
|
||
if (has_lod)
|
||
opcode = aco_opcode::image_sample_c_l_o;
|
||
} else {
|
||
opcode = aco_opcode::image_sample_o;
|
||
if (has_derivs)
|
||
opcode = aco_opcode::image_sample_d_o;
|
||
if (has_bias)
|
||
opcode = aco_opcode::image_sample_b_o;
|
||
if (level_zero)
|
||
opcode = aco_opcode::image_sample_lz_o;
|
||
if (has_lod)
|
||
opcode = aco_opcode::image_sample_l_o;
|
||
}
|
||
} else { /* no offset */
|
||
if (has_compare) {
|
||
opcode = aco_opcode::image_sample_c;
|
||
if (has_derivs)
|
||
opcode = aco_opcode::image_sample_c_d;
|
||
if (has_bias)
|
||
opcode = aco_opcode::image_sample_c_b;
|
||
if (level_zero)
|
||
opcode = aco_opcode::image_sample_c_lz;
|
||
if (has_lod)
|
||
opcode = aco_opcode::image_sample_c_l;
|
||
} else {
|
||
opcode = aco_opcode::image_sample;
|
||
if (has_derivs)
|
||
opcode = aco_opcode::image_sample_d;
|
||
if (has_bias)
|
||
opcode = aco_opcode::image_sample_b;
|
||
if (level_zero)
|
||
opcode = aco_opcode::image_sample_lz;
|
||
if (has_lod)
|
||
opcode = aco_opcode::image_sample_l;
|
||
}
|
||
}
|
||
|
||
if (instr->op == nir_texop_tg4) {
|
||
if (has_offset) {
|
||
opcode = aco_opcode::image_gather4_lz_o;
|
||
if (has_compare)
|
||
opcode = aco_opcode::image_gather4_c_lz_o;
|
||
} else {
|
||
opcode = aco_opcode::image_gather4_lz;
|
||
if (has_compare)
|
||
opcode = aco_opcode::image_gather4_c_lz;
|
||
}
|
||
} else if (instr->op == nir_texop_lod) {
|
||
opcode = aco_opcode::image_get_lod;
|
||
}
|
||
|
||
/* we don't need the bias, sample index, compare value or offset to be
|
||
* computed in WQM but if the p_create_vector copies the coordinates, then it
|
||
* needs to be in WQM */
|
||
if (ctx->stage == fragment_fs &&
|
||
!has_derivs && !has_lod && !level_zero &&
|
||
instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
|
||
instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
|
||
arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
|
||
|
||
tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
|
||
tex->operands[0] = Operand(resource);
|
||
tex->operands[1] = Operand(sampler);
|
||
tex->operands[2] = Operand(arg);
|
||
tex->dim = dim;
|
||
tex->dmask = dmask;
|
||
tex->da = da;
|
||
tex->definitions[0] = Definition(tmp_dst);
|
||
tex->can_reorder = true;
|
||
ctx->block->instructions.emplace_back(std::move(tex));
|
||
|
||
if (tg4_integer_cube_workaround) {
|
||
assert(tmp_dst.id() != dst.id());
|
||
assert(tmp_dst.size() == dst.size() && dst.size() == 4);
|
||
|
||
emit_split_vector(ctx, tmp_dst, tmp_dst.size());
|
||
Temp val[4];
|
||
for (unsigned i = 0; i < dst.size(); i++) {
|
||
val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
|
||
Temp cvt_val;
|
||
if (stype == GLSL_TYPE_UINT)
|
||
cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
|
||
else
|
||
cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
|
||
val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
|
||
}
|
||
Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
|
||
tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
|
||
val[0], val[1], val[2], val[3]);
|
||
}
|
||
unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
|
||
expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
|
||
|
||
}
|
||
|
||
|
||
Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
|
||
{
|
||
Temp tmp = get_ssa_temp(ctx, ssa);
|
||
if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
|
||
return Operand(tmp.regClass());
|
||
else
|
||
return Operand(tmp);
|
||
}
|
||
|
||
void visit_phi(isel_context *ctx, nir_phi_instr *instr)
|
||
{
|
||
aco_ptr<Pseudo_instruction> phi;
|
||
Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
|
||
assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
|
||
|
||
bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
|
||
logical |= ctx->block->kind & block_kind_merge;
|
||
aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
|
||
|
||
/* we want a sorted list of sources, since the predecessor list is also sorted */
|
||
std::map<unsigned, nir_ssa_def*> phi_src;
|
||
nir_foreach_phi_src(src, instr)
|
||
phi_src[src->pred->index] = src->src.ssa;
|
||
|
||
std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
|
||
unsigned num_operands = 0;
|
||
Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size())];
|
||
unsigned num_defined = 0;
|
||
unsigned cur_pred_idx = 0;
|
||
for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
|
||
if (cur_pred_idx < preds.size()) {
|
||
/* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
|
||
unsigned block = ctx->cf_info.nir_to_aco[src.first];
|
||
unsigned skipped = 0;
|
||
while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
|
||
skipped++;
|
||
if (cur_pred_idx + skipped < preds.size()) {
|
||
for (unsigned i = 0; i < skipped; i++)
|
||
operands[num_operands++] = Operand(dst.regClass());
|
||
cur_pred_idx += skipped;
|
||
} else {
|
||
continue;
|
||
}
|
||
}
|
||
cur_pred_idx++;
|
||
Operand op = get_phi_operand(ctx, src.second);
|
||
operands[num_operands++] = op;
|
||
num_defined += !op.isUndefined();
|
||
}
|
||
/* handle block_kind_continue_or_break at loop exit blocks */
|
||
while (cur_pred_idx++ < preds.size())
|
||
operands[num_operands++] = Operand(dst.regClass());
|
||
|
||
if (num_defined == 0) {
|
||
Builder bld(ctx->program, ctx->block);
|
||
if (dst.regClass() == s1) {
|
||
bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
|
||
} else if (dst.regClass() == v1) {
|
||
bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
|
||
} else {
|
||
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
|
||
for (unsigned i = 0; i < dst.size(); i++)
|
||
vec->operands[i] = Operand(0u);
|
||
vec->definitions[0] = Definition(dst);
|
||
ctx->block->instructions.emplace_back(std::move(vec));
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* we can use a linear phi in some cases if one src is undef */
|
||
if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
|
||
phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
|
||
|
||
Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
|
||
Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
|
||
assert(invert->kind & block_kind_invert);
|
||
|
||
unsigned then_block = invert->linear_preds[0];
|
||
|
||
Block* insert_block = NULL;
|
||
for (unsigned i = 0; i < num_operands; i++) {
|
||
Operand op = operands[i];
|
||
if (op.isUndefined())
|
||
continue;
|
||
insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
|
||
phi->operands[0] = op;
|
||
break;
|
||
}
|
||
assert(insert_block); /* should be handled by the "num_defined == 0" case above */
|
||
phi->operands[1] = Operand(dst.regClass());
|
||
phi->definitions[0] = Definition(dst);
|
||
insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
|
||
return;
|
||
}
|
||
|
||
/* try to scalarize vector phis */
|
||
if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
|
||
// TODO: scalarize linear phis on divergent ifs
|
||
bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
|
||
std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
|
||
for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
|
||
Operand src = operands[i];
|
||
if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
|
||
can_scalarize = false;
|
||
}
|
||
if (can_scalarize) {
|
||
unsigned num_components = instr->dest.ssa.num_components;
|
||
assert(dst.size() % num_components == 0);
|
||
RegClass rc = RegClass(dst.type(), dst.size() / num_components);
|
||
|
||
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
|
||
for (unsigned k = 0; k < num_components; k++) {
|
||
phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
|
||
for (unsigned i = 0; i < num_operands; i++) {
|
||
Operand src = operands[i];
|
||
phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
|
||
}
|
||
Temp phi_dst = {ctx->program->allocateId(), rc};
|
||
phi->definitions[0] = Definition(phi_dst);
|
||
ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
|
||
new_vec[k] = phi_dst;
|
||
vec->operands[k] = Operand(phi_dst);
|
||
}
|
||
vec->definitions[0] = Definition(dst);
|
||
ctx->block->instructions.emplace_back(std::move(vec));
|
||
ctx->allocated_vec.emplace(dst.id(), new_vec);
|
||
return;
|
||
}
|
||
}
|
||
|
||
phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
|
||
for (unsigned i = 0; i < num_operands; i++)
|
||
phi->operands[i] = operands[i];
|
||
phi->definitions[0] = Definition(dst);
|
||
ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
|
||
}
|
||
|
||
|
||
void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
|
||
{
|
||
Temp dst = get_ssa_temp(ctx, &instr->def);
|
||
|
||
assert(dst.type() == RegType::sgpr);
|
||
|
||
if (dst.size() == 1) {
|
||
Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
|
||
} else {
|
||
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
|
||
for (unsigned i = 0; i < dst.size(); i++)
|
||
vec->operands[i] = Operand(0u);
|
||
vec->definitions[0] = Definition(dst);
|
||
ctx->block->instructions.emplace_back(std::move(vec));
|
||
}
|
||
}
|
||
|
||
void visit_jump(isel_context *ctx, nir_jump_instr *instr)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
Block *logical_target;
|
||
append_logical_end(ctx->block);
|
||
unsigned idx = ctx->block->index;
|
||
|
||
switch (instr->type) {
|
||
case nir_jump_break:
|
||
logical_target = ctx->cf_info.parent_loop.exit;
|
||
add_logical_edge(idx, logical_target);
|
||
ctx->block->kind |= block_kind_break;
|
||
|
||
if (!ctx->cf_info.parent_if.is_divergent &&
|
||
!ctx->cf_info.parent_loop.has_divergent_continue) {
|
||
/* uniform break - directly jump out of the loop */
|
||
ctx->block->kind |= block_kind_uniform;
|
||
ctx->cf_info.has_branch = true;
|
||
bld.branch(aco_opcode::p_branch);
|
||
add_linear_edge(idx, logical_target);
|
||
return;
|
||
}
|
||
ctx->cf_info.parent_loop.has_divergent_branch = true;
|
||
ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
|
||
break;
|
||
case nir_jump_continue:
|
||
logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
|
||
add_logical_edge(idx, logical_target);
|
||
ctx->block->kind |= block_kind_continue;
|
||
|
||
if (ctx->cf_info.parent_if.is_divergent) {
|
||
/* for potential uniform breaks after this continue,
|
||
we must ensure that they are handled correctly */
|
||
ctx->cf_info.parent_loop.has_divergent_continue = true;
|
||
ctx->cf_info.parent_loop.has_divergent_branch = true;
|
||
ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
|
||
} else {
|
||
/* uniform continue - directly jump to the loop header */
|
||
ctx->block->kind |= block_kind_uniform;
|
||
ctx->cf_info.has_branch = true;
|
||
bld.branch(aco_opcode::p_branch);
|
||
add_linear_edge(idx, logical_target);
|
||
return;
|
||
}
|
||
break;
|
||
default:
|
||
fprintf(stderr, "Unknown NIR jump instr: ");
|
||
nir_print_instr(&instr->instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
abort();
|
||
}
|
||
|
||
if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
|
||
ctx->cf_info.exec_potentially_empty_break = true;
|
||
ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
|
||
}
|
||
|
||
/* remove critical edges from linear CFG */
|
||
bld.branch(aco_opcode::p_branch);
|
||
Block* break_block = ctx->program->create_and_insert_block();
|
||
break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
|
||
break_block->kind |= block_kind_uniform;
|
||
add_linear_edge(idx, break_block);
|
||
/* the loop_header pointer might be invalidated by this point */
|
||
if (instr->type == nir_jump_continue)
|
||
logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
|
||
add_linear_edge(break_block->index, logical_target);
|
||
bld.reset(break_block);
|
||
bld.branch(aco_opcode::p_branch);
|
||
|
||
Block* continue_block = ctx->program->create_and_insert_block();
|
||
continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
|
||
add_linear_edge(idx, continue_block);
|
||
append_logical_start(continue_block);
|
||
ctx->block = continue_block;
|
||
return;
|
||
}
|
||
|
||
void visit_block(isel_context *ctx, nir_block *block)
|
||
{
|
||
nir_foreach_instr(instr, block) {
|
||
switch (instr->type) {
|
||
case nir_instr_type_alu:
|
||
visit_alu_instr(ctx, nir_instr_as_alu(instr));
|
||
break;
|
||
case nir_instr_type_load_const:
|
||
visit_load_const(ctx, nir_instr_as_load_const(instr));
|
||
break;
|
||
case nir_instr_type_intrinsic:
|
||
visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
|
||
break;
|
||
case nir_instr_type_tex:
|
||
visit_tex(ctx, nir_instr_as_tex(instr));
|
||
break;
|
||
case nir_instr_type_phi:
|
||
visit_phi(ctx, nir_instr_as_phi(instr));
|
||
break;
|
||
case nir_instr_type_ssa_undef:
|
||
visit_undef(ctx, nir_instr_as_ssa_undef(instr));
|
||
break;
|
||
case nir_instr_type_deref:
|
||
break;
|
||
case nir_instr_type_jump:
|
||
visit_jump(ctx, nir_instr_as_jump(instr));
|
||
break;
|
||
default:
|
||
fprintf(stderr, "Unknown NIR instr type: ");
|
||
nir_print_instr(instr, stderr);
|
||
fprintf(stderr, "\n");
|
||
//abort();
|
||
}
|
||
}
|
||
|
||
if (!ctx->cf_info.parent_loop.has_divergent_branch)
|
||
ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
|
||
}
|
||
|
||
|
||
|
||
static void visit_loop(isel_context *ctx, nir_loop *loop)
|
||
{
|
||
//TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
|
||
append_logical_end(ctx->block);
|
||
ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
|
||
Builder bld(ctx->program, ctx->block);
|
||
bld.branch(aco_opcode::p_branch);
|
||
unsigned loop_preheader_idx = ctx->block->index;
|
||
|
||
Block loop_exit = Block();
|
||
loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
|
||
loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
|
||
|
||
Block* loop_header = ctx->program->create_and_insert_block();
|
||
loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
|
||
loop_header->kind |= block_kind_loop_header;
|
||
add_edge(loop_preheader_idx, loop_header);
|
||
ctx->block = loop_header;
|
||
|
||
/* emit loop body */
|
||
unsigned loop_header_idx = loop_header->index;
|
||
loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
|
||
append_logical_start(ctx->block);
|
||
visit_cf_list(ctx, &loop->body);
|
||
|
||
//TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
|
||
if (!ctx->cf_info.has_branch) {
|
||
append_logical_end(ctx->block);
|
||
if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
|
||
/* Discards can result in code running with an empty exec mask.
|
||
* This would result in divergent breaks not ever being taken. As a
|
||
* workaround, break the loop when the loop mask is empty instead of
|
||
* always continuing. */
|
||
ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
|
||
unsigned block_idx = ctx->block->index;
|
||
|
||
/* create helper blocks to avoid critical edges */
|
||
Block *break_block = ctx->program->create_and_insert_block();
|
||
break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
|
||
break_block->kind = block_kind_uniform;
|
||
bld.reset(break_block);
|
||
bld.branch(aco_opcode::p_branch);
|
||
add_linear_edge(block_idx, break_block);
|
||
add_linear_edge(break_block->index, &loop_exit);
|
||
|
||
Block *continue_block = ctx->program->create_and_insert_block();
|
||
continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
|
||
continue_block->kind = block_kind_uniform;
|
||
bld.reset(continue_block);
|
||
bld.branch(aco_opcode::p_branch);
|
||
add_linear_edge(block_idx, continue_block);
|
||
add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
|
||
|
||
if (!ctx->cf_info.parent_loop.has_divergent_branch)
|
||
add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
|
||
ctx->block = &ctx->program->blocks[block_idx];
|
||
} else {
|
||
ctx->block->kind |= (block_kind_continue | block_kind_uniform);
|
||
if (!ctx->cf_info.parent_loop.has_divergent_branch)
|
||
add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
|
||
else
|
||
add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
|
||
}
|
||
|
||
bld.reset(ctx->block);
|
||
bld.branch(aco_opcode::p_branch);
|
||
}
|
||
|
||
/* fixup phis in loop header from unreachable blocks */
|
||
if (ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch) {
|
||
bool linear = ctx->cf_info.has_branch;
|
||
bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
|
||
for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
|
||
if ((logical && instr->opcode == aco_opcode::p_phi) ||
|
||
(linear && instr->opcode == aco_opcode::p_linear_phi)) {
|
||
/* the last operand should be the one that needs to be removed */
|
||
instr->operands.pop_back();
|
||
} else if (!is_phi(instr)) {
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
ctx->cf_info.has_branch = false;
|
||
|
||
// TODO: if the loop has not a single exit, we must add one °°
|
||
/* emit loop successor block */
|
||
ctx->block = ctx->program->insert_block(std::move(loop_exit));
|
||
append_logical_start(ctx->block);
|
||
|
||
#if 0
|
||
// TODO: check if it is beneficial to not branch on continues
|
||
/* trim linear phis in loop header */
|
||
for (auto&& instr : loop_entry->instructions) {
|
||
if (instr->opcode == aco_opcode::p_linear_phi) {
|
||
aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
|
||
new_phi->definitions[0] = instr->definitions[0];
|
||
for (unsigned i = 0; i < new_phi->operands.size(); i++)
|
||
new_phi->operands[i] = instr->operands[i];
|
||
/* check that the remaining operands are all the same */
|
||
for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
|
||
assert(instr->operands[i].tempId() == instr->operands.back().tempId());
|
||
instr.swap(new_phi);
|
||
} else if (instr->opcode == aco_opcode::p_phi) {
|
||
continue;
|
||
} else {
|
||
break;
|
||
}
|
||
}
|
||
#endif
|
||
}
|
||
|
||
static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
|
||
{
|
||
ic->cond = cond;
|
||
|
||
append_logical_end(ctx->block);
|
||
ctx->block->kind |= block_kind_branch;
|
||
|
||
/* branch to linear then block */
|
||
assert(cond.regClass() == ctx->program->lane_mask);
|
||
aco_ptr<Pseudo_branch_instruction> branch;
|
||
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
|
||
branch->operands[0] = Operand(cond);
|
||
ctx->block->instructions.push_back(std::move(branch));
|
||
|
||
ic->BB_if_idx = ctx->block->index;
|
||
ic->BB_invert = Block();
|
||
ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
|
||
/* Invert blocks are intentionally not marked as top level because they
|
||
* are not part of the logical cfg. */
|
||
ic->BB_invert.kind |= block_kind_invert;
|
||
ic->BB_endif = Block();
|
||
ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
|
||
ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
|
||
|
||
ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
|
||
ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
|
||
ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
|
||
ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
|
||
ctx->cf_info.parent_if.is_divergent = true;
|
||
|
||
/* divergent branches use cbranch_execz */
|
||
ctx->cf_info.exec_potentially_empty_discard = false;
|
||
ctx->cf_info.exec_potentially_empty_break = false;
|
||
ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
|
||
|
||
/** emit logical then block */
|
||
Block* BB_then_logical = ctx->program->create_and_insert_block();
|
||
BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
|
||
add_edge(ic->BB_if_idx, BB_then_logical);
|
||
ctx->block = BB_then_logical;
|
||
append_logical_start(BB_then_logical);
|
||
}
|
||
|
||
static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
|
||
{
|
||
Block *BB_then_logical = ctx->block;
|
||
append_logical_end(BB_then_logical);
|
||
/* branch from logical then block to invert block */
|
||
aco_ptr<Pseudo_branch_instruction> branch;
|
||
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
|
||
BB_then_logical->instructions.emplace_back(std::move(branch));
|
||
add_linear_edge(BB_then_logical->index, &ic->BB_invert);
|
||
if (!ctx->cf_info.parent_loop.has_divergent_branch)
|
||
add_logical_edge(BB_then_logical->index, &ic->BB_endif);
|
||
BB_then_logical->kind |= block_kind_uniform;
|
||
assert(!ctx->cf_info.has_branch);
|
||
ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
|
||
ctx->cf_info.parent_loop.has_divergent_branch = false;
|
||
|
||
/** emit linear then block */
|
||
Block* BB_then_linear = ctx->program->create_and_insert_block();
|
||
BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
|
||
BB_then_linear->kind |= block_kind_uniform;
|
||
add_linear_edge(ic->BB_if_idx, BB_then_linear);
|
||
/* branch from linear then block to invert block */
|
||
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
|
||
BB_then_linear->instructions.emplace_back(std::move(branch));
|
||
add_linear_edge(BB_then_linear->index, &ic->BB_invert);
|
||
|
||
/** emit invert merge block */
|
||
ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
|
||
ic->invert_idx = ctx->block->index;
|
||
|
||
/* branch to linear else block (skip else) */
|
||
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
|
||
branch->operands[0] = Operand(ic->cond);
|
||
ctx->block->instructions.push_back(std::move(branch));
|
||
|
||
ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
|
||
ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
|
||
ic->exec_potentially_empty_break_depth_old =
|
||
std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
|
||
/* divergent branches use cbranch_execz */
|
||
ctx->cf_info.exec_potentially_empty_discard = false;
|
||
ctx->cf_info.exec_potentially_empty_break = false;
|
||
ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
|
||
|
||
/** emit logical else block */
|
||
Block* BB_else_logical = ctx->program->create_and_insert_block();
|
||
BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
|
||
add_logical_edge(ic->BB_if_idx, BB_else_logical);
|
||
add_linear_edge(ic->invert_idx, BB_else_logical);
|
||
ctx->block = BB_else_logical;
|
||
append_logical_start(BB_else_logical);
|
||
}
|
||
|
||
static void end_divergent_if(isel_context *ctx, if_context *ic)
|
||
{
|
||
Block *BB_else_logical = ctx->block;
|
||
append_logical_end(BB_else_logical);
|
||
|
||
/* branch from logical else block to endif block */
|
||
aco_ptr<Pseudo_branch_instruction> branch;
|
||
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
|
||
BB_else_logical->instructions.emplace_back(std::move(branch));
|
||
add_linear_edge(BB_else_logical->index, &ic->BB_endif);
|
||
if (!ctx->cf_info.parent_loop.has_divergent_branch)
|
||
add_logical_edge(BB_else_logical->index, &ic->BB_endif);
|
||
BB_else_logical->kind |= block_kind_uniform;
|
||
|
||
assert(!ctx->cf_info.has_branch);
|
||
ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
|
||
|
||
|
||
/** emit linear else block */
|
||
Block* BB_else_linear = ctx->program->create_and_insert_block();
|
||
BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
|
||
BB_else_linear->kind |= block_kind_uniform;
|
||
add_linear_edge(ic->invert_idx, BB_else_linear);
|
||
|
||
/* branch from linear else block to endif block */
|
||
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
|
||
BB_else_linear->instructions.emplace_back(std::move(branch));
|
||
add_linear_edge(BB_else_linear->index, &ic->BB_endif);
|
||
|
||
|
||
/** emit endif merge block */
|
||
ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
|
||
append_logical_start(ctx->block);
|
||
|
||
|
||
ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
|
||
ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
|
||
ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
|
||
ctx->cf_info.exec_potentially_empty_break_depth =
|
||
std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
|
||
if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
|
||
!ctx->cf_info.parent_if.is_divergent) {
|
||
ctx->cf_info.exec_potentially_empty_break = false;
|
||
ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
|
||
}
|
||
/* uniform control flow never has an empty exec-mask */
|
||
if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
|
||
ctx->cf_info.exec_potentially_empty_discard = false;
|
||
ctx->cf_info.exec_potentially_empty_break = false;
|
||
ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
|
||
}
|
||
}
|
||
|
||
static void visit_if(isel_context *ctx, nir_if *if_stmt)
|
||
{
|
||
Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
|
||
Builder bld(ctx->program, ctx->block);
|
||
aco_ptr<Pseudo_branch_instruction> branch;
|
||
|
||
if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
|
||
/**
|
||
* Uniform conditionals are represented in the following way*) :
|
||
*
|
||
* The linear and logical CFG:
|
||
* BB_IF
|
||
* / \
|
||
* BB_THEN (logical) BB_ELSE (logical)
|
||
* \ /
|
||
* BB_ENDIF
|
||
*
|
||
* *) Exceptions may be due to break and continue statements within loops
|
||
* If a break/continue happens within uniform control flow, it branches
|
||
* to the loop exit/entry block. Otherwise, it branches to the next
|
||
* merge block.
|
||
**/
|
||
append_logical_end(ctx->block);
|
||
ctx->block->kind |= block_kind_uniform;
|
||
|
||
/* emit branch */
|
||
assert(cond.regClass() == bld.lm);
|
||
// TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
|
||
cond = bool_to_scalar_condition(ctx, cond);
|
||
|
||
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
|
||
branch->operands[0] = Operand(cond);
|
||
branch->operands[0].setFixed(scc);
|
||
ctx->block->instructions.emplace_back(std::move(branch));
|
||
|
||
unsigned BB_if_idx = ctx->block->index;
|
||
Block BB_endif = Block();
|
||
BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
|
||
BB_endif.kind |= ctx->block->kind & block_kind_top_level;
|
||
|
||
/** emit then block */
|
||
Block* BB_then = ctx->program->create_and_insert_block();
|
||
BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
|
||
add_edge(BB_if_idx, BB_then);
|
||
append_logical_start(BB_then);
|
||
ctx->block = BB_then;
|
||
visit_cf_list(ctx, &if_stmt->then_list);
|
||
BB_then = ctx->block;
|
||
bool then_branch = ctx->cf_info.has_branch;
|
||
bool then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
|
||
|
||
if (!then_branch) {
|
||
append_logical_end(BB_then);
|
||
/* branch from then block to endif block */
|
||
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
|
||
BB_then->instructions.emplace_back(std::move(branch));
|
||
add_linear_edge(BB_then->index, &BB_endif);
|
||
if (!then_branch_divergent)
|
||
add_logical_edge(BB_then->index, &BB_endif);
|
||
BB_then->kind |= block_kind_uniform;
|
||
}
|
||
|
||
ctx->cf_info.has_branch = false;
|
||
ctx->cf_info.parent_loop.has_divergent_branch = false;
|
||
|
||
/** emit else block */
|
||
Block* BB_else = ctx->program->create_and_insert_block();
|
||
BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
|
||
add_edge(BB_if_idx, BB_else);
|
||
append_logical_start(BB_else);
|
||
ctx->block = BB_else;
|
||
visit_cf_list(ctx, &if_stmt->else_list);
|
||
BB_else = ctx->block;
|
||
|
||
if (!ctx->cf_info.has_branch) {
|
||
append_logical_end(BB_else);
|
||
/* branch from then block to endif block */
|
||
branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
|
||
BB_else->instructions.emplace_back(std::move(branch));
|
||
add_linear_edge(BB_else->index, &BB_endif);
|
||
if (!ctx->cf_info.parent_loop.has_divergent_branch)
|
||
add_logical_edge(BB_else->index, &BB_endif);
|
||
BB_else->kind |= block_kind_uniform;
|
||
}
|
||
|
||
ctx->cf_info.has_branch &= then_branch;
|
||
ctx->cf_info.parent_loop.has_divergent_branch &= then_branch_divergent;
|
||
|
||
/** emit endif merge block */
|
||
if (!ctx->cf_info.has_branch) {
|
||
ctx->block = ctx->program->insert_block(std::move(BB_endif));
|
||
append_logical_start(ctx->block);
|
||
}
|
||
} else { /* non-uniform condition */
|
||
/**
|
||
* To maintain a logical and linear CFG without critical edges,
|
||
* non-uniform conditionals are represented in the following way*) :
|
||
*
|
||
* The linear CFG:
|
||
* BB_IF
|
||
* / \
|
||
* BB_THEN (logical) BB_THEN (linear)
|
||
* \ /
|
||
* BB_INVERT (linear)
|
||
* / \
|
||
* BB_ELSE (logical) BB_ELSE (linear)
|
||
* \ /
|
||
* BB_ENDIF
|
||
*
|
||
* The logical CFG:
|
||
* BB_IF
|
||
* / \
|
||
* BB_THEN (logical) BB_ELSE (logical)
|
||
* \ /
|
||
* BB_ENDIF
|
||
*
|
||
* *) Exceptions may be due to break and continue statements within loops
|
||
**/
|
||
|
||
if_context ic;
|
||
|
||
begin_divergent_if_then(ctx, &ic, cond);
|
||
visit_cf_list(ctx, &if_stmt->then_list);
|
||
|
||
begin_divergent_if_else(ctx, &ic);
|
||
visit_cf_list(ctx, &if_stmt->else_list);
|
||
|
||
end_divergent_if(ctx, &ic);
|
||
}
|
||
}
|
||
|
||
static void visit_cf_list(isel_context *ctx,
|
||
struct exec_list *list)
|
||
{
|
||
foreach_list_typed(nir_cf_node, node, node, list) {
|
||
switch (node->type) {
|
||
case nir_cf_node_block:
|
||
visit_block(ctx, nir_cf_node_as_block(node));
|
||
break;
|
||
case nir_cf_node_if:
|
||
visit_if(ctx, nir_cf_node_as_if(node));
|
||
break;
|
||
case nir_cf_node_loop:
|
||
visit_loop(ctx, nir_cf_node_as_loop(node));
|
||
break;
|
||
default:
|
||
unreachable("unimplemented cf list type");
|
||
}
|
||
}
|
||
}
|
||
|
||
static void export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
|
||
{
|
||
int offset = ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
|
||
uint64_t mask = ctx->outputs.mask[slot];
|
||
if (!is_pos && !mask)
|
||
return;
|
||
if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
|
||
return;
|
||
aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
|
||
exp->enabled_mask = mask;
|
||
for (unsigned i = 0; i < 4; ++i) {
|
||
if (mask & (1 << i))
|
||
exp->operands[i] = Operand(ctx->outputs.outputs[slot][i]);
|
||
else
|
||
exp->operands[i] = Operand(v1);
|
||
}
|
||
/* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
|
||
* Setting valid_mask=1 prevents it and has no other effect.
|
||
*/
|
||
exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
|
||
exp->done = false;
|
||
exp->compressed = false;
|
||
if (is_pos)
|
||
exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
|
||
else
|
||
exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
|
||
ctx->block->instructions.emplace_back(std::move(exp));
|
||
}
|
||
|
||
static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
|
||
{
|
||
aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
|
||
exp->enabled_mask = 0;
|
||
for (unsigned i = 0; i < 4; ++i)
|
||
exp->operands[i] = Operand(v1);
|
||
if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
|
||
exp->operands[0] = Operand(ctx->outputs.outputs[VARYING_SLOT_PSIZ][0]);
|
||
exp->enabled_mask |= 0x1;
|
||
}
|
||
if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
|
||
exp->operands[2] = Operand(ctx->outputs.outputs[VARYING_SLOT_LAYER][0]);
|
||
exp->enabled_mask |= 0x4;
|
||
}
|
||
if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
|
||
if (ctx->options->chip_class < GFX9) {
|
||
exp->operands[3] = Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]);
|
||
exp->enabled_mask |= 0x8;
|
||
} else {
|
||
Builder bld(ctx->program, ctx->block);
|
||
|
||
Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
|
||
Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]));
|
||
if (exp->operands[2].isTemp())
|
||
out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
|
||
|
||
exp->operands[2] = Operand(out);
|
||
exp->enabled_mask |= 0x4;
|
||
}
|
||
}
|
||
exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
|
||
exp->done = false;
|
||
exp->compressed = false;
|
||
exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
|
||
ctx->block->instructions.emplace_back(std::move(exp));
|
||
}
|
||
|
||
static void create_vs_exports(isel_context *ctx)
|
||
{
|
||
radv_vs_output_info *outinfo = &ctx->program->info->vs.outinfo;
|
||
|
||
if (outinfo->export_prim_id) {
|
||
ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
|
||
ctx->outputs.outputs[VARYING_SLOT_PRIMITIVE_ID][0] = get_arg(ctx, ctx->args->vs_prim_id);
|
||
}
|
||
|
||
if (ctx->options->key.has_multiview_view_index) {
|
||
ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
|
||
ctx->outputs.outputs[VARYING_SLOT_LAYER][0] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
|
||
}
|
||
|
||
/* the order these position exports are created is important */
|
||
int next_pos = 0;
|
||
export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
|
||
if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
|
||
export_vs_psiz_layer_viewport(ctx, &next_pos);
|
||
}
|
||
if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
|
||
export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
|
||
if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
|
||
export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
|
||
|
||
if (ctx->export_clip_dists) {
|
||
if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
|
||
export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
|
||
if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
|
||
export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
|
||
}
|
||
|
||
for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
|
||
if (i < VARYING_SLOT_VAR0 && i != VARYING_SLOT_LAYER &&
|
||
i != VARYING_SLOT_PRIMITIVE_ID)
|
||
continue;
|
||
|
||
export_vs_varying(ctx, i, false, NULL);
|
||
}
|
||
}
|
||
|
||
static void export_fs_mrt_z(isel_context *ctx)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
unsigned enabled_channels = 0;
|
||
bool compr = false;
|
||
Operand values[4];
|
||
|
||
for (unsigned i = 0; i < 4; ++i) {
|
||
values[i] = Operand(v1);
|
||
}
|
||
|
||
/* Both stencil and sample mask only need 16-bits. */
|
||
if (!ctx->program->info->ps.writes_z &&
|
||
(ctx->program->info->ps.writes_stencil ||
|
||
ctx->program->info->ps.writes_sample_mask)) {
|
||
compr = true; /* COMPR flag */
|
||
|
||
if (ctx->program->info->ps.writes_stencil) {
|
||
/* Stencil should be in X[23:16]. */
|
||
values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
|
||
values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
|
||
enabled_channels |= 0x3;
|
||
}
|
||
|
||
if (ctx->program->info->ps.writes_sample_mask) {
|
||
/* SampleMask should be in Y[15:0]. */
|
||
values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
|
||
enabled_channels |= 0xc;
|
||
}
|
||
} else {
|
||
if (ctx->program->info->ps.writes_z) {
|
||
values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_DEPTH][0]);
|
||
enabled_channels |= 0x1;
|
||
}
|
||
|
||
if (ctx->program->info->ps.writes_stencil) {
|
||
values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
|
||
enabled_channels |= 0x2;
|
||
}
|
||
|
||
if (ctx->program->info->ps.writes_sample_mask) {
|
||
values[2] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
|
||
enabled_channels |= 0x4;
|
||
}
|
||
}
|
||
|
||
/* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
|
||
* writemask component.
|
||
*/
|
||
if (ctx->options->chip_class == GFX6 &&
|
||
ctx->options->family != CHIP_OLAND &&
|
||
ctx->options->family != CHIP_HAINAN) {
|
||
enabled_channels |= 0x1;
|
||
}
|
||
|
||
bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
|
||
enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
|
||
}
|
||
|
||
static void export_fs_mrt_color(isel_context *ctx, int slot)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
unsigned write_mask = ctx->outputs.mask[slot];
|
||
Operand values[4];
|
||
|
||
for (unsigned i = 0; i < 4; ++i) {
|
||
if (write_mask & (1 << i)) {
|
||
values[i] = Operand(ctx->outputs.outputs[slot][i]);
|
||
} else {
|
||
values[i] = Operand(v1);
|
||
}
|
||
}
|
||
|
||
unsigned target, col_format;
|
||
unsigned enabled_channels = 0;
|
||
aco_opcode compr_op = (aco_opcode)0;
|
||
|
||
slot -= FRAG_RESULT_DATA0;
|
||
target = V_008DFC_SQ_EXP_MRT + slot;
|
||
col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
|
||
|
||
bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
|
||
bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
|
||
|
||
switch (col_format)
|
||
{
|
||
case V_028714_SPI_SHADER_ZERO:
|
||
enabled_channels = 0; /* writemask */
|
||
target = V_008DFC_SQ_EXP_NULL;
|
||
break;
|
||
|
||
case V_028714_SPI_SHADER_32_R:
|
||
enabled_channels = 1;
|
||
break;
|
||
|
||
case V_028714_SPI_SHADER_32_GR:
|
||
enabled_channels = 0x3;
|
||
break;
|
||
|
||
case V_028714_SPI_SHADER_32_AR:
|
||
if (ctx->options->chip_class >= GFX10) {
|
||
/* Special case: on GFX10, the outputs are different for 32_AR */
|
||
enabled_channels = 0x3;
|
||
values[1] = values[3];
|
||
values[3] = Operand(v1);
|
||
} else {
|
||
enabled_channels = 0x9;
|
||
}
|
||
break;
|
||
|
||
case V_028714_SPI_SHADER_FP16_ABGR:
|
||
enabled_channels = 0x5;
|
||
compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
|
||
break;
|
||
|
||
case V_028714_SPI_SHADER_UNORM16_ABGR:
|
||
enabled_channels = 0x5;
|
||
compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
|
||
break;
|
||
|
||
case V_028714_SPI_SHADER_SNORM16_ABGR:
|
||
enabled_channels = 0x5;
|
||
compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
|
||
break;
|
||
|
||
case V_028714_SPI_SHADER_UINT16_ABGR: {
|
||
enabled_channels = 0x5;
|
||
compr_op = aco_opcode::v_cvt_pk_u16_u32;
|
||
if (is_int8 || is_int10) {
|
||
/* clamp */
|
||
uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
|
||
Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
|
||
|
||
for (unsigned i = 0; i < 4; i++) {
|
||
if ((write_mask >> i) & 1) {
|
||
values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
|
||
i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
|
||
values[i]);
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
|
||
case V_028714_SPI_SHADER_SINT16_ABGR:
|
||
enabled_channels = 0x5;
|
||
compr_op = aco_opcode::v_cvt_pk_i16_i32;
|
||
if (is_int8 || is_int10) {
|
||
/* clamp */
|
||
uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
|
||
uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
|
||
Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
|
||
Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
|
||
|
||
for (unsigned i = 0; i < 4; i++) {
|
||
if ((write_mask >> i) & 1) {
|
||
values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
|
||
i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
|
||
values[i]);
|
||
values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
|
||
i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
|
||
values[i]);
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
|
||
case V_028714_SPI_SHADER_32_ABGR:
|
||
enabled_channels = 0xF;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (target == V_008DFC_SQ_EXP_NULL)
|
||
return;
|
||
|
||
if ((bool) compr_op) {
|
||
for (int i = 0; i < 2; i++) {
|
||
/* check if at least one of the values to be compressed is enabled */
|
||
unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
|
||
if (enabled) {
|
||
enabled_channels |= enabled << (i*2);
|
||
values[i] = bld.vop3(compr_op, bld.def(v1),
|
||
values[i*2].isUndefined() ? Operand(0u) : values[i*2],
|
||
values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
|
||
} else {
|
||
values[i] = Operand(v1);
|
||
}
|
||
}
|
||
values[2] = Operand(v1);
|
||
values[3] = Operand(v1);
|
||
} else {
|
||
for (int i = 0; i < 4; i++)
|
||
values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
|
||
}
|
||
|
||
bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
|
||
enabled_channels, target, (bool) compr_op);
|
||
}
|
||
|
||
static void create_fs_exports(isel_context *ctx)
|
||
{
|
||
/* Export depth, stencil and sample mask. */
|
||
if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
|
||
ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
|
||
ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK]) {
|
||
export_fs_mrt_z(ctx);
|
||
}
|
||
|
||
/* Export all color render targets. */
|
||
for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i) {
|
||
if (ctx->outputs.mask[i])
|
||
export_fs_mrt_color(ctx, i);
|
||
}
|
||
}
|
||
|
||
static void emit_stream_output(isel_context *ctx,
|
||
Temp const *so_buffers,
|
||
Temp const *so_write_offset,
|
||
const struct radv_stream_output *output)
|
||
{
|
||
unsigned num_comps = util_bitcount(output->component_mask);
|
||
unsigned writemask = (1 << num_comps) - 1;
|
||
unsigned loc = output->location;
|
||
unsigned buf = output->buffer;
|
||
|
||
assert(num_comps && num_comps <= 4);
|
||
if (!num_comps || num_comps > 4)
|
||
return;
|
||
|
||
unsigned start = ffs(output->component_mask) - 1;
|
||
|
||
Temp out[4];
|
||
bool all_undef = true;
|
||
assert(ctx->stage == vertex_vs || ctx->stage == gs_copy_vs);
|
||
for (unsigned i = 0; i < num_comps; i++) {
|
||
out[i] = ctx->outputs.outputs[loc][start + i];
|
||
all_undef = all_undef && !out[i].id();
|
||
}
|
||
if (all_undef)
|
||
return;
|
||
|
||
while (writemask) {
|
||
int start, count;
|
||
u_bit_scan_consecutive_range(&writemask, &start, &count);
|
||
if (count == 3 && ctx->options->chip_class == GFX6) {
|
||
/* GFX6 doesn't support storing vec3, split it. */
|
||
writemask |= 1u << (start + 2);
|
||
count = 2;
|
||
}
|
||
|
||
unsigned offset = output->offset + start * 4;
|
||
|
||
Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
|
||
aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
|
||
for (int i = 0; i < count; ++i)
|
||
vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
|
||
vec->definitions[0] = Definition(write_data);
|
||
ctx->block->instructions.emplace_back(std::move(vec));
|
||
|
||
aco_opcode opcode;
|
||
switch (count) {
|
||
case 1:
|
||
opcode = aco_opcode::buffer_store_dword;
|
||
break;
|
||
case 2:
|
||
opcode = aco_opcode::buffer_store_dwordx2;
|
||
break;
|
||
case 3:
|
||
opcode = aco_opcode::buffer_store_dwordx3;
|
||
break;
|
||
case 4:
|
||
opcode = aco_opcode::buffer_store_dwordx4;
|
||
break;
|
||
default:
|
||
unreachable("Unsupported dword count.");
|
||
}
|
||
|
||
aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
|
||
store->operands[0] = Operand(so_buffers[buf]);
|
||
store->operands[1] = Operand(so_write_offset[buf]);
|
||
store->operands[2] = Operand((uint32_t) 0);
|
||
store->operands[3] = Operand(write_data);
|
||
if (offset > 4095) {
|
||
/* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
|
||
Builder bld(ctx->program, ctx->block);
|
||
store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
|
||
} else {
|
||
store->offset = offset;
|
||
}
|
||
store->offen = true;
|
||
store->glc = true;
|
||
store->dlc = false;
|
||
store->slc = true;
|
||
store->can_reorder = true;
|
||
ctx->block->instructions.emplace_back(std::move(store));
|
||
}
|
||
}
|
||
|
||
static void emit_streamout(isel_context *ctx, unsigned stream)
|
||
{
|
||
Builder bld(ctx->program, ctx->block);
|
||
|
||
Temp so_buffers[4];
|
||
Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
|
||
for (unsigned i = 0; i < 4; i++) {
|
||
unsigned stride = ctx->program->info->so.strides[i];
|
||
if (!stride)
|
||
continue;
|
||
|
||
Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
|
||
so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
|
||
}
|
||
|
||
Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
|
||
get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
|
||
|
||
Temp tid = emit_mbcnt(ctx, bld.def(v1));
|
||
|
||
Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
|
||
|
||
if_context ic;
|
||
begin_divergent_if_then(ctx, &ic, can_emit);
|
||
|
||
bld.reset(ctx->block);
|
||
|
||
Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
|
||
|
||
Temp so_write_offset[4];
|
||
|
||
for (unsigned i = 0; i < 4; i++) {
|
||
unsigned stride = ctx->program->info->so.strides[i];
|
||
if (!stride)
|
||
continue;
|
||
|
||
if (stride == 1) {
|
||
Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
|
||
get_arg(ctx, ctx->args->streamout_write_idx),
|
||
get_arg(ctx, ctx->args->streamout_offset[i]));
|
||
Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
|
||
|
||
so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
|
||
} else {
|
||
Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
|
||
Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
|
||
get_arg(ctx, ctx->args->streamout_offset[i]));
|
||
so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
|
||
}
|
||
}
|
||
|
||
for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
|
||
struct radv_stream_output *output =
|
||
&ctx->program->info->so.outputs[i];
|
||
if (stream != output->stream)
|
||
continue;
|
||
|
||
emit_stream_output(ctx, so_buffers, so_write_offset, output);
|
||
}
|
||
|
||
begin_divergent_if_else(ctx, &ic);
|
||
end_divergent_if(ctx, &ic);
|
||
}
|
||
|
||
} /* end namespace */
|
||
|
||
void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
|
||
{
|
||
/* Split all arguments except for the first (ring_offsets) and the last
|
||
* (exec) so that the dead channels don't stay live throughout the program.
|
||
*/
|
||
for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
|
||
if (startpgm->definitions[i].regClass().size() > 1) {
|
||
emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
|
||
startpgm->definitions[i].regClass().size());
|
||
}
|
||
}
|
||
}
|
||
|
||
void handle_bc_optimize(isel_context *ctx)
|
||
{
|
||
/* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
|
||
Builder bld(ctx->program, ctx->block);
|
||
uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
|
||
bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
|
||
bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
|
||
ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
|
||
ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
|
||
if (uses_center && uses_centroid) {
|
||
Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
|
||
get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
|
||
|
||
if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
|
||
Temp new_coord[2];
|
||
for (unsigned i = 0; i < 2; i++) {
|
||
Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
|
||
Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
|
||
new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
|
||
persp_centroid, persp_center, sel);
|
||
}
|
||
ctx->persp_centroid = bld.tmp(v2);
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
|
||
Operand(new_coord[0]), Operand(new_coord[1]));
|
||
emit_split_vector(ctx, ctx->persp_centroid, 2);
|
||
}
|
||
|
||
if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
|
||
Temp new_coord[2];
|
||
for (unsigned i = 0; i < 2; i++) {
|
||
Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
|
||
Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
|
||
new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
|
||
linear_centroid, linear_center, sel);
|
||
}
|
||
ctx->linear_centroid = bld.tmp(v2);
|
||
bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
|
||
Operand(new_coord[0]), Operand(new_coord[1]));
|
||
emit_split_vector(ctx, ctx->linear_centroid, 2);
|
||
}
|
||
}
|
||
}
|
||
|
||
void setup_fp_mode(isel_context *ctx, nir_shader *shader)
|
||
{
|
||
Program *program = ctx->program;
|
||
|
||
unsigned float_controls = shader->info.float_controls_execution_mode;
|
||
|
||
program->next_fp_mode.preserve_signed_zero_inf_nan32 =
|
||
float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
|
||
program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
|
||
float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
|
||
FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
|
||
|
||
program->next_fp_mode.must_flush_denorms32 =
|
||
float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
|
||
program->next_fp_mode.must_flush_denorms16_64 =
|
||
float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
|
||
FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
|
||
|
||
program->next_fp_mode.care_about_round32 =
|
||
float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
|
||
|
||
program->next_fp_mode.care_about_round16_64 =
|
||
float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
|
||
FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
|
||
|
||
/* default to preserving fp16 and fp64 denorms, since it's free */
|
||
if (program->next_fp_mode.must_flush_denorms16_64)
|
||
program->next_fp_mode.denorm16_64 = 0;
|
||
else
|
||
program->next_fp_mode.denorm16_64 = fp_denorm_keep;
|
||
|
||
/* preserving fp32 denorms is expensive, so only do it if asked */
|
||
if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
|
||
program->next_fp_mode.denorm32 = fp_denorm_keep;
|
||
else
|
||
program->next_fp_mode.denorm32 = 0;
|
||
|
||
if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
|
||
program->next_fp_mode.round32 = fp_round_tz;
|
||
else
|
||
program->next_fp_mode.round32 = fp_round_ne;
|
||
|
||
if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
|
||
program->next_fp_mode.round16_64 = fp_round_tz;
|
||
else
|
||
program->next_fp_mode.round16_64 = fp_round_ne;
|
||
|
||
ctx->block->fp_mode = program->next_fp_mode;
|
||
}
|
||
|
||
void cleanup_cfg(Program *program)
|
||
{
|
||
/* create linear_succs/logical_succs */
|
||
for (Block& BB : program->blocks) {
|
||
for (unsigned idx : BB.linear_preds)
|
||
program->blocks[idx].linear_succs.emplace_back(BB.index);
|
||
for (unsigned idx : BB.logical_preds)
|
||
program->blocks[idx].logical_succs.emplace_back(BB.index);
|
||
}
|
||
}
|
||
|
||
void select_program(Program *program,
|
||
unsigned shader_count,
|
||
struct nir_shader *const *shaders,
|
||
ac_shader_config* config,
|
||
struct radv_shader_args *args)
|
||
{
|
||
isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
|
||
|
||
for (unsigned i = 0; i < shader_count; i++) {
|
||
nir_shader *nir = shaders[i];
|
||
init_context(&ctx, nir);
|
||
|
||
setup_fp_mode(&ctx, nir);
|
||
|
||
if (!i) {
|
||
/* needs to be after init_context() for FS */
|
||
Pseudo_instruction *startpgm = add_startpgm(&ctx);
|
||
append_logical_start(ctx.block);
|
||
split_arguments(&ctx, startpgm);
|
||
}
|
||
|
||
if_context ic;
|
||
if (shader_count >= 2) {
|
||
Builder bld(ctx.program, ctx.block);
|
||
Temp count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | (i * 8u)));
|
||
Temp thread_id = emit_mbcnt(&ctx, bld.def(v1));
|
||
Temp cond = bld.vopc(aco_opcode::v_cmp_gt_u32, bld.hint_vcc(bld.def(bld.lm)), count, thread_id);
|
||
|
||
begin_divergent_if_then(&ctx, &ic, cond);
|
||
}
|
||
|
||
if (i) {
|
||
Builder bld(ctx.program, ctx.block);
|
||
|
||
bld.barrier(aco_opcode::p_memory_barrier_shared);
|
||
bld.sopp(aco_opcode::s_barrier);
|
||
|
||
if (ctx.stage == vertex_geometry_gs) {
|
||
ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
|
||
}
|
||
} else if (ctx.stage == geometry_gs)
|
||
ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
|
||
|
||
if (ctx.stage == fragment_fs)
|
||
handle_bc_optimize(&ctx);
|
||
|
||
nir_function_impl *func = nir_shader_get_entrypoint(nir);
|
||
visit_cf_list(&ctx, &func->body);
|
||
|
||
if (ctx.program->info->so.num_outputs && ctx.stage == vertex_vs)
|
||
emit_streamout(&ctx, 0);
|
||
|
||
if (ctx.stage == vertex_vs) {
|
||
create_vs_exports(&ctx);
|
||
} else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
|
||
Builder bld(ctx.program, ctx.block);
|
||
bld.barrier(aco_opcode::p_memory_barrier_gs_data);
|
||
bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
|
||
}
|
||
|
||
if (ctx.stage == fragment_fs)
|
||
create_fs_exports(&ctx);
|
||
|
||
if (shader_count >= 2) {
|
||
begin_divergent_if_else(&ctx, &ic);
|
||
end_divergent_if(&ctx, &ic);
|
||
}
|
||
|
||
ralloc_free(ctx.divergent_vals);
|
||
}
|
||
|
||
program->config->float_mode = program->blocks[0].fp_mode.val;
|
||
|
||
append_logical_end(ctx.block);
|
||
ctx.block->kind |= block_kind_uniform | block_kind_export_end;
|
||
Builder bld(ctx.program, ctx.block);
|
||
if (ctx.program->wb_smem_l1_on_end)
|
||
bld.smem(aco_opcode::s_dcache_wb, false);
|
||
bld.sopp(aco_opcode::s_endpgm);
|
||
|
||
cleanup_cfg(program);
|
||
}
|
||
|
||
void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
|
||
ac_shader_config* config,
|
||
struct radv_shader_args *args)
|
||
{
|
||
isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
|
||
|
||
program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
|
||
program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
|
||
program->next_fp_mode.must_flush_denorms32 = false;
|
||
program->next_fp_mode.must_flush_denorms16_64 = false;
|
||
program->next_fp_mode.care_about_round32 = false;
|
||
program->next_fp_mode.care_about_round16_64 = false;
|
||
program->next_fp_mode.denorm16_64 = fp_denorm_keep;
|
||
program->next_fp_mode.denorm32 = 0;
|
||
program->next_fp_mode.round32 = fp_round_ne;
|
||
program->next_fp_mode.round16_64 = fp_round_ne;
|
||
ctx.block->fp_mode = program->next_fp_mode;
|
||
|
||
add_startpgm(&ctx);
|
||
append_logical_start(ctx.block);
|
||
|
||
Builder bld(ctx.program, ctx.block);
|
||
|
||
Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
|
||
|
||
Operand stream_id(0u);
|
||
if (args->shader_info->so.num_outputs)
|
||
stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
|
||
get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
|
||
|
||
Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
|
||
|
||
std::stack<Block> endif_blocks;
|
||
|
||
for (unsigned stream = 0; stream < 4; stream++) {
|
||
if (stream_id.isConstant() && stream != stream_id.constantValue())
|
||
continue;
|
||
|
||
unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
|
||
if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
|
||
continue;
|
||
|
||
memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
|
||
|
||
unsigned BB_if_idx = ctx.block->index;
|
||
Block BB_endif = Block();
|
||
if (!stream_id.isConstant()) {
|
||
/* begin IF */
|
||
Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
|
||
append_logical_end(ctx.block);
|
||
ctx.block->kind |= block_kind_uniform;
|
||
bld.branch(aco_opcode::p_cbranch_z, cond);
|
||
|
||
BB_endif.kind |= ctx.block->kind & block_kind_top_level;
|
||
|
||
ctx.block = ctx.program->create_and_insert_block();
|
||
add_edge(BB_if_idx, ctx.block);
|
||
bld.reset(ctx.block);
|
||
append_logical_start(ctx.block);
|
||
}
|
||
|
||
unsigned offset = 0;
|
||
for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
|
||
if (args->shader_info->gs.output_streams[i] != stream)
|
||
continue;
|
||
|
||
unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
|
||
unsigned length = util_last_bit(output_usage_mask);
|
||
for (unsigned j = 0; j < length; ++j) {
|
||
if (!(output_usage_mask & (1 << j)))
|
||
continue;
|
||
|
||
unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
|
||
Temp voffset = vtx_offset;
|
||
if (const_offset >= 4096u) {
|
||
voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
|
||
const_offset %= 4096u;
|
||
}
|
||
|
||
aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
|
||
mubuf->definitions[0] = bld.def(v1);
|
||
mubuf->operands[0] = Operand(gsvs_ring);
|
||
mubuf->operands[1] = Operand(voffset);
|
||
mubuf->operands[2] = Operand(0u);
|
||
mubuf->offen = true;
|
||
mubuf->offset = const_offset;
|
||
mubuf->glc = true;
|
||
mubuf->slc = true;
|
||
mubuf->dlc = args->options->chip_class >= GFX10;
|
||
mubuf->barrier = barrier_none;
|
||
mubuf->can_reorder = true;
|
||
|
||
ctx.outputs.mask[i] |= 1 << j;
|
||
ctx.outputs.outputs[i][j] = mubuf->definitions[0].getTemp();
|
||
|
||
bld.insert(std::move(mubuf));
|
||
|
||
offset++;
|
||
}
|
||
}
|
||
|
||
if (args->shader_info->so.num_outputs) {
|
||
emit_streamout(&ctx, stream);
|
||
bld.reset(ctx.block);
|
||
}
|
||
|
||
if (stream == 0) {
|
||
create_vs_exports(&ctx);
|
||
ctx.block->kind |= block_kind_export_end;
|
||
}
|
||
|
||
if (!stream_id.isConstant()) {
|
||
append_logical_end(ctx.block);
|
||
|
||
/* branch from then block to endif block */
|
||
bld.branch(aco_opcode::p_branch);
|
||
add_edge(ctx.block->index, &BB_endif);
|
||
ctx.block->kind |= block_kind_uniform;
|
||
|
||
/* emit else block */
|
||
ctx.block = ctx.program->create_and_insert_block();
|
||
add_edge(BB_if_idx, ctx.block);
|
||
bld.reset(ctx.block);
|
||
append_logical_start(ctx.block);
|
||
|
||
endif_blocks.push(std::move(BB_endif));
|
||
}
|
||
}
|
||
|
||
while (!endif_blocks.empty()) {
|
||
Block BB_endif = std::move(endif_blocks.top());
|
||
endif_blocks.pop();
|
||
|
||
Block *BB_else = ctx.block;
|
||
|
||
append_logical_end(BB_else);
|
||
/* branch from else block to endif block */
|
||
bld.branch(aco_opcode::p_branch);
|
||
add_edge(BB_else->index, &BB_endif);
|
||
BB_else->kind |= block_kind_uniform;
|
||
|
||
/** emit endif merge block */
|
||
ctx.block = program->insert_block(std::move(BB_endif));
|
||
bld.reset(ctx.block);
|
||
append_logical_start(ctx.block);
|
||
}
|
||
|
||
program->config->float_mode = program->blocks[0].fp_mode.val;
|
||
|
||
append_logical_end(ctx.block);
|
||
ctx.block->kind |= block_kind_uniform;
|
||
bld.sopp(aco_opcode::s_endpgm);
|
||
|
||
cleanup_cfg(program);
|
||
}
|
||
}
|