mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-27 23:30:10 +01:00
9721 lines
366 KiB
C++
9721 lines
366 KiB
C++
/*
|
|
* Copyright © 2016 Red Hat.
|
|
* Copyright © 2016 Bas Nieuwenhuizen
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* based in part on anv driver which is:
|
|
* Copyright © 2015 Intel Corporation
|
|
*/
|
|
|
|
#include "tu_cmd_buffer.h"
|
|
|
|
#include "vk_common_entrypoints.h"
|
|
#include "vk_log.h"
|
|
#include "vk_render_pass.h"
|
|
#include "vk_util.h"
|
|
|
|
#include "tu_buffer.h"
|
|
#include "tu_clear_blit.h"
|
|
#include "tu_cs.h"
|
|
#include "tu_event.h"
|
|
#include "tu_image.h"
|
|
#include "tu_knl.h"
|
|
#include "tu_tracepoints.h"
|
|
|
|
#include "common/freedreno_gpu_event.h"
|
|
#include "common/freedreno_lrz.h"
|
|
#include "common/freedreno_vrs.h"
|
|
|
|
enum tu_cmd_buffer_status {
|
|
TU_CMD_BUFFER_STATUS_IDLE = 0,
|
|
TU_CMD_BUFFER_STATUS_ACTIVE = 1,
|
|
};
|
|
|
|
static struct tu_bo *
|
|
tu_cmd_buffer_setup_status_tracking(struct tu_device *device)
|
|
{
|
|
struct tu_bo *status_bo;
|
|
VkResult result;
|
|
|
|
result = tu_bo_init_new_explicit_iova(
|
|
device, NULL, &status_bo, sizeof(enum tu_cmd_buffer_status), 0,
|
|
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
TU_BO_ALLOC_INTERNAL_RESOURCE, NULL, "cmd_buffer_status");
|
|
if (result != VK_SUCCESS)
|
|
return NULL;
|
|
|
|
result = tu_bo_map(device, status_bo, NULL);
|
|
if (result != VK_SUCCESS)
|
|
return NULL;
|
|
|
|
return status_bo;
|
|
}
|
|
|
|
static VkResult
|
|
tu_cmd_buffer_status_check_idle(struct tu_cmd_buffer *cmd_buffer)
|
|
{
|
|
if (cmd_buffer->status_bo == NULL)
|
|
return VK_SUCCESS;
|
|
|
|
const enum tu_cmd_buffer_status status =
|
|
*(enum tu_cmd_buffer_status *)cmd_buffer->status_bo->map;
|
|
|
|
switch (status) {
|
|
case TU_CMD_BUFFER_STATUS_IDLE:
|
|
return VK_SUCCESS;
|
|
|
|
case TU_CMD_BUFFER_STATUS_ACTIVE:
|
|
mesa_loge("Trying to reset or destroy cmd_buffer %p while in use",
|
|
cmd_buffer);
|
|
return vk_errorf(cmd_buffer, VK_ERROR_UNKNOWN,
|
|
"Trying to reset or destroy while being used");
|
|
default:
|
|
mesa_loge("Something went wrong with cmd_buffer status tracking");
|
|
return vk_error(cmd_buffer, VK_ERROR_UNKNOWN);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
tu_cmd_buffer_status_gpu_write(struct tu_cmd_buffer *cmd_buffer,
|
|
enum tu_cmd_buffer_status status)
|
|
{
|
|
struct tu_cs *cs = &cmd_buffer->cs;
|
|
|
|
if (cmd_buffer->status_bo == NULL)
|
|
return;
|
|
|
|
static_assert(sizeof(uint32_t) == sizeof(status),
|
|
"Code below needs adjusting");
|
|
tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
|
|
tu_cs_emit_qw(cs, cmd_buffer->status_bo->iova);
|
|
tu_cs_emit(cs, (uint32_t)status);
|
|
}
|
|
|
|
static void
|
|
tu_clone_trace_range(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
|
|
struct u_trace *dst,
|
|
struct u_trace_iterator begin, struct u_trace_iterator end)
|
|
{
|
|
if (u_trace_iterator_equal(begin, end))
|
|
return;
|
|
|
|
tu_cs_emit_wfi(cs);
|
|
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
|
|
u_trace_clone_append(begin, end, &cmd->trace, cs, tu_copy_buffer);
|
|
}
|
|
|
|
static void
|
|
tu_clone_trace(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
|
|
struct u_trace *dst, struct u_trace *src)
|
|
{
|
|
tu_clone_trace_range(cmd, cs, dst, u_trace_begin_iterator(src),
|
|
u_trace_end_iterator(src));
|
|
}
|
|
|
|
template <chip CHIP>
|
|
void
|
|
tu_emit_raw_event_write(struct tu_cmd_buffer *cmd,
|
|
struct tu_cs *cs,
|
|
enum vgt_event_type event,
|
|
bool needs_seqno)
|
|
{
|
|
if (CHIP == A6XX) {
|
|
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, needs_seqno ? 4 : 1);
|
|
tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event));
|
|
} else {
|
|
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, needs_seqno ? 4 : 1);
|
|
tu_cs_emit(cs,
|
|
CP_EVENT_WRITE7_0(.event = event,
|
|
.write_src = EV_WRITE_USER_32B,
|
|
.write_dst = EV_DST_RAM,
|
|
.write_enabled = needs_seqno).value);
|
|
}
|
|
|
|
if (needs_seqno) {
|
|
tu_cs_emit_qw(cs, global_iova(cmd, seqno_dummy));
|
|
tu_cs_emit(cs, 0);
|
|
}
|
|
}
|
|
TU_GENX(tu_emit_raw_event_write);
|
|
|
|
template <chip CHIP>
|
|
void
|
|
tu_emit_event_write(struct tu_cmd_buffer *cmd,
|
|
struct tu_cs *cs,
|
|
enum fd_gpu_event event)
|
|
{
|
|
struct fd_gpu_event_info event_info = fd_gpu_events<CHIP>[event];
|
|
tu_emit_raw_event_write<CHIP>(cmd, cs, event_info.raw_event,
|
|
event_info.needs_seqno);
|
|
}
|
|
TU_GENX(tu_emit_event_write);
|
|
|
|
/* Emits the tessfactor address to the top-level CS if it hasn't been already.
|
|
* Updating this register requires a WFI if outstanding drawing is using it, but
|
|
* tu6_init_hardware() will have WFIed before we started and no other draws
|
|
* could be using the tessfactor address yet since we only emit one per cmdbuf.
|
|
*/
|
|
template <chip CHIP>
|
|
static void
|
|
tu6_lazy_emit_tessfactor_addr(struct tu_cmd_buffer *cmd)
|
|
{
|
|
if (cmd->state.tessfactor_addr_set)
|
|
return;
|
|
|
|
tu_cs_emit_regs(&cmd->cs, PC_TESS_BASE(CHIP, .qword = cmd->device->tess_bo->iova));
|
|
/* Updating PC_TESS_BASE could race with the next draw which uses it. */
|
|
cmd->state.cache.flush_bits |= TU_CMD_FLAG_WAIT_FOR_IDLE;
|
|
cmd->state.tessfactor_addr_set = true;
|
|
}
|
|
|
|
static void
|
|
tu6_lazy_init_vsc(struct tu_cmd_buffer *cmd)
|
|
{
|
|
struct tu_device *dev = cmd->device;
|
|
uint32_t num_vsc_pipes = dev->physical_device->info->num_vsc_pipes;
|
|
|
|
/* VSC buffers:
|
|
* use vsc pitches from the largest values used so far with this device
|
|
* if there hasn't been overflow, there will already be a scratch bo
|
|
* allocated for these sizes
|
|
*
|
|
* if overflow is detected, the stream size is increased by 2x
|
|
*/
|
|
mtx_lock(&dev->mutex);
|
|
|
|
struct tu6_global *global = dev->global_bo_map;
|
|
|
|
uint32_t vsc_draw_overflow = global->vsc_draw_overflow;
|
|
uint32_t vsc_prim_overflow = global->vsc_prim_overflow;
|
|
|
|
if (vsc_draw_overflow >= dev->vsc_draw_strm_pitch)
|
|
dev->vsc_draw_strm_pitch = (dev->vsc_draw_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
|
|
|
|
if (vsc_prim_overflow >= dev->vsc_prim_strm_pitch)
|
|
dev->vsc_prim_strm_pitch = (dev->vsc_prim_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
|
|
|
|
cmd->vsc_prim_strm_pitch = dev->vsc_prim_strm_pitch;
|
|
cmd->vsc_draw_strm_pitch = dev->vsc_draw_strm_pitch;
|
|
|
|
mtx_unlock(&dev->mutex);
|
|
|
|
uint32_t prim_strm_size = cmd->vsc_prim_strm_pitch * num_vsc_pipes;
|
|
uint32_t draw_strm_size = cmd->vsc_draw_strm_pitch * num_vsc_pipes;
|
|
uint32_t draw_strm_size_size = 4 * num_vsc_pipes;
|
|
uint32_t state_size = 4 * num_vsc_pipes;
|
|
|
|
cmd->vsc_size =
|
|
prim_strm_size + draw_strm_size + draw_strm_size_size + state_size;
|
|
|
|
cmd->vsc_prim_strm_offset = 0;
|
|
cmd->vsc_draw_strm_offset = prim_strm_size;
|
|
cmd->vsc_draw_strm_size_offset = cmd->vsc_draw_strm_offset + draw_strm_size;
|
|
cmd->vsc_state_offset = cmd->vsc_draw_strm_size_offset + draw_strm_size_size;
|
|
}
|
|
|
|
static void
|
|
tu_emit_vis_stream_patchpoint(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
|
|
uint32_t offset)
|
|
{
|
|
struct tu_vis_stream_patchpoint patchpoint = {
|
|
.render_pass_idx = cmd->state.tile_render_pass_count,
|
|
.data = cs->cur,
|
|
.iova = tu_cs_get_cur_iova(cs),
|
|
.offset = offset,
|
|
};
|
|
|
|
util_dynarray_append(&cmd->vis_stream_patchpoints, patchpoint);
|
|
tu_cs_emit_qw(cs, offset);
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu_emit_vsc(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
|
|
{
|
|
if (CHIP == A6XX) {
|
|
tu_cs_emit_pkt4(cs, REG_A6XX_VSC_SIZE_BASE, 2);
|
|
tu_emit_vis_stream_patchpoint(cmd, cs, cmd->vsc_draw_strm_size_offset);
|
|
tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_DATA_PRIM_BASE, 2);
|
|
tu_emit_vis_stream_patchpoint(cmd, cs, cmd->vsc_prim_strm_offset);
|
|
tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_DATA_DRAW_BASE, 2);
|
|
tu_emit_vis_stream_patchpoint(cmd, cs, cmd->vsc_draw_strm_offset);
|
|
} else {
|
|
tu_cs_emit_pkt7(cs, CP_SET_PSEUDO_REG, 3 * 3);
|
|
tu_cs_emit(cs, A6XX_CP_SET_PSEUDO_REG__0_PSEUDO_REG(VSC_PIPE_DATA_DRAW_BASE));
|
|
tu_emit_vis_stream_patchpoint(cmd, cs, cmd->vsc_draw_strm_offset);
|
|
tu_cs_emit(cs, A6XX_CP_SET_PSEUDO_REG__0_PSEUDO_REG(VSC_SIZE_BASE));
|
|
tu_emit_vis_stream_patchpoint(cmd, cs, cmd->vsc_draw_strm_size_offset);
|
|
tu_cs_emit(cs, A6XX_CP_SET_PSEUDO_REG__0_PSEUDO_REG(VSC_PIPE_DATA_PRIM_BASE));
|
|
tu_emit_vis_stream_patchpoint(cmd, cs, cmd->vsc_prim_strm_offset);
|
|
}
|
|
|
|
cmd->vsc_initialized = true;
|
|
}
|
|
|
|
/* This workaround, copied from the blob, seems to ensure that the BVH node
|
|
* cache is invalidated so that we don't read stale values when multiple BVHs
|
|
* share the same address.
|
|
*/
|
|
template <chip CHIP>
|
|
static void
|
|
tu_emit_rt_workaround(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
|
|
{
|
|
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
|
|
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_RT_WA_START);
|
|
|
|
tu_cs_emit_regs(cs, SP_CS_UNKNOWN_A9BE(CHIP, .dword = 0x10000));
|
|
tu_cs_emit_regs(cs, SP_PS_UNKNOWN_A9AB(CHIP, .dword = 0x10000));
|
|
tu_emit_event_write<A7XX>(cmd, cs, FD_DUMMY_EVENT);
|
|
tu_cs_emit_regs(cs, SP_CS_UNKNOWN_A9BE(CHIP, .dword = 0));
|
|
tu_cs_emit_regs(cs, SP_PS_UNKNOWN_A9AB(CHIP, .dword = 0));
|
|
tu_emit_event_write<A7XX>(cmd, cs, FD_DUMMY_EVENT);
|
|
tu_emit_event_write<A7XX>(cmd, cs, FD_DUMMY_EVENT);
|
|
tu_emit_event_write<A7XX>(cmd, cs, FD_DUMMY_EVENT);
|
|
tu_emit_event_write<A7XX>(cmd, cs, FD_DUMMY_EVENT);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
|
|
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_RT_WA_END);
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer,
|
|
struct tu_cs *cs,
|
|
struct tu_cache_state *cache)
|
|
{
|
|
BITMASK_ENUM(tu_cmd_flush_bits) flushes = cache->flush_bits;
|
|
cache->flush_bits = 0;
|
|
|
|
if (TU_DEBUG(FLUSHALL))
|
|
flushes |= TU_CMD_FLAG_ALL_CLEAN | TU_CMD_FLAG_ALL_INVALIDATE;
|
|
|
|
if (TU_DEBUG(SYNCDRAW))
|
|
flushes |= TU_CMD_FLAG_WAIT_MEM_WRITES |
|
|
TU_CMD_FLAG_WAIT_FOR_IDLE |
|
|
TU_CMD_FLAG_WAIT_FOR_ME;
|
|
|
|
/* Experiments show that invalidating CCU while it still has data in it
|
|
* doesn't work, so make sure to always flush before invalidating in case
|
|
* any data remains that hasn't yet been made available through a barrier.
|
|
* However it does seem to work for UCHE.
|
|
*/
|
|
if (flushes & (TU_CMD_FLAG_CCU_CLEAN_COLOR |
|
|
TU_CMD_FLAG_CCU_INVALIDATE_COLOR))
|
|
tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_CLEAN_COLOR);
|
|
if (flushes & (TU_CMD_FLAG_CCU_CLEAN_DEPTH |
|
|
TU_CMD_FLAG_CCU_INVALIDATE_DEPTH))
|
|
tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_CLEAN_DEPTH);
|
|
if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR)
|
|
tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_INVALIDATE_COLOR);
|
|
if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)
|
|
tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_INVALIDATE_DEPTH);
|
|
if (flushes & TU_CMD_FLAG_CACHE_CLEAN)
|
|
tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CACHE_CLEAN);
|
|
if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE)
|
|
tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CACHE_INVALIDATE);
|
|
if (flushes & TU_CMD_FLAG_BINDLESS_DESCRIPTOR_INVALIDATE) {
|
|
tu_cs_emit_regs(cs, SP_UPDATE_CNTL(CHIP,
|
|
.cs_bindless = CHIP == A6XX ? 0x1f : 0xff,
|
|
.gfx_bindless = CHIP == A6XX ? 0x1f : 0xff,
|
|
));
|
|
}
|
|
if (CHIP >= A7XX && flushes & TU_CMD_FLAG_BLIT_CACHE_CLEAN)
|
|
/* On A7XX, blit cache flushes are required to ensure blit writes are visible
|
|
* via UCHE. This isn't necessary on A6XX, all writes should be visible implictly.
|
|
*/
|
|
tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_CLEAN_BLIT_CACHE);
|
|
if (CHIP >= A7XX && (flushes & TU_CMD_FLAG_CCHE_INVALIDATE) &&
|
|
/* Invalidating UCHE seems to also invalidate CCHE */
|
|
!(flushes & TU_CMD_FLAG_CACHE_INVALIDATE))
|
|
tu_cs_emit_pkt7(cs, CP_CCHE_INVALIDATE, 0);
|
|
if (CHIP >= A7XX && (flushes & TU_CMD_FLAG_RTU_INVALIDATE) &&
|
|
cmd_buffer->device->physical_device->info->props.has_rt_workaround)
|
|
tu_emit_rt_workaround<CHIP>(cmd_buffer, cs);
|
|
if (flushes & TU_CMD_FLAG_WAIT_MEM_WRITES)
|
|
tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
|
|
if (flushes & TU_CMD_FLAG_WAIT_FOR_IDLE)
|
|
tu_cs_emit_wfi(cs);
|
|
if (flushes & TU_CMD_FLAG_WAIT_FOR_ME)
|
|
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
|
|
}
|
|
|
|
static void
|
|
tu7_write_onchip_val(struct tu_cs *cs, enum tu_onchip_addr addr,
|
|
uint32_t val)
|
|
{
|
|
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, 4);
|
|
tu_cs_emit(cs, CP_EVENT_WRITE7_0_WRITE_DST(EV_DST_ONCHIP) |
|
|
CP_EVENT_WRITE7_0_WRITE_SRC(EV_WRITE_USER_32B) |
|
|
CP_EVENT_WRITE7_0_EVENT(DUMMY_EVENT) |
|
|
CP_EVENT_WRITE7_0_WRITE_ENABLED);
|
|
tu_cs_emit_qw(cs, addr);
|
|
tu_cs_emit(cs, val);
|
|
}
|
|
|
|
static void
|
|
tu_add_cb_barrier_info(struct tu_cmd_buffer *cmd_buffer)
|
|
{
|
|
/* Future concurrent binning cannot happen earlier than the barrier,
|
|
* so we won't need to patch previous patchpoints. Pop them now.
|
|
*/
|
|
uint32_t size = util_dynarray_num_elements(&cmd_buffer->cb_control_points,
|
|
struct tu_cb_control_point);
|
|
for (int32_t idx = size - 1; idx >= 0; idx--) {
|
|
struct tu_cb_control_point *info = util_dynarray_element(
|
|
&cmd_buffer->cb_control_points, struct tu_cb_control_point, idx);
|
|
if (info->type == TU_CB_CONTROL_TYPE_CB_ENABLED) {
|
|
break;
|
|
}
|
|
(void) util_dynarray_pop(&cmd_buffer->cb_control_points,
|
|
struct tu_cb_control_point);
|
|
}
|
|
|
|
struct tu_cb_control_point barrier_info = {
|
|
.type = TU_CB_CONTROL_TYPE_BARRIER,
|
|
};
|
|
util_dynarray_append(&cmd_buffer->cb_control_points, barrier_info);
|
|
}
|
|
|
|
void
|
|
tu7_set_thread_br_patchpoint(struct tu_cmd_buffer *cmd,
|
|
struct tu_cs *cs,
|
|
bool force_disable_cb)
|
|
{
|
|
tu_cs_emit_pkt7(cs, CP_THREAD_CONTROL, 1);
|
|
|
|
if (!force_disable_cb) {
|
|
struct tu_cb_control_point info = {
|
|
.type = TU_CB_CONTROL_TYPE_PATCHPOINT,
|
|
.patchpoint = cs->cur,
|
|
.patch_value = CP_THREAD_CONTROL_0_THREAD(CP_SET_THREAD_BR),
|
|
.original_value = CP_THREAD_CONTROL_0_THREAD(CP_SET_THREAD_BR) |
|
|
CP_THREAD_CONTROL_0_CONCURRENT_BIN_DISABLE,
|
|
};
|
|
util_dynarray_append(&cmd->cb_control_points, info);
|
|
}
|
|
|
|
tu_cs_emit(cs, CP_THREAD_CONTROL_0_THREAD(CP_SET_THREAD_BR) |
|
|
CP_THREAD_CONTROL_0_CONCURRENT_BIN_DISABLE);
|
|
}
|
|
|
|
/* "Normal" cache flushes outside the renderpass, that don't require any special handling */
|
|
template <chip CHIP>
|
|
void
|
|
tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer)
|
|
{
|
|
struct tu_cs *cs = &cmd_buffer->cs;
|
|
struct tu_cache_state *cache = &cmd_buffer->state.cache;
|
|
BITMASK_ENUM(tu_cmd_flush_bits) flushes = cache->flush_bits;
|
|
|
|
tu6_emit_flushes<CHIP>(cmd_buffer, cs, cache);
|
|
|
|
if ((flushes & TU_CMD_FLAG_WAIT_FOR_BR) && CHIP >= A7XX &&
|
|
!(cmd_buffer->state.pass && cmd_buffer->state.renderpass_cb_disabled) &&
|
|
!TU_DEBUG(NO_CONCURRENT_BINNING)) {
|
|
trace_start_concurrent_binning_barrier(&cmd_buffer->trace, cs, cmd_buffer);
|
|
|
|
/* Wait-for-BR when repeated a lot of times per frame can add up
|
|
* and tank performance.
|
|
*/
|
|
struct tu_cs_patchable_state cb_state = tu_cs_patchable_start(cs, 64);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_THREAD_CONTROL, 1);
|
|
tu_cs_emit(cs, CP_THREAD_CONTROL_0_THREAD(CP_SET_THREAD_BOTH));
|
|
|
|
tu_cs_emit_pkt7(cs, CP_MODIFY_TIMESTAMP, 1);
|
|
tu_cs_emit(cs, CP_MODIFY_TIMESTAMP_0_ADD(1) |
|
|
CP_MODIFY_TIMESTAMP_0_OP(MODIFY_TIMESTAMP_ADD_LOCAL));
|
|
|
|
tu7_thread_control(cs, CP_SET_THREAD_BV);
|
|
|
|
tu7_write_onchip_timestamp(cs, TU_ONCHIP_CB_BV_TIMESTAMP);
|
|
|
|
tu7_thread_control(cs, CP_SET_THREAD_BR);
|
|
|
|
/* Wait for the previous WAIT_FOR_BR to execute on BV and reset the wait
|
|
* value.
|
|
*/
|
|
tu7_wait_onchip_timestamp(cs, TU_ONCHIP_CB_BV_TIMESTAMP);
|
|
|
|
/* Signal the wait value. */
|
|
tu7_write_onchip_val(cs, TU_ONCHIP_BARRIER, 1);
|
|
|
|
tu7_thread_control(cs, CP_SET_THREAD_BV);
|
|
|
|
/* Wait for the value. Note that we must use CP_WAIT_REG_MEM due to a
|
|
* firmware bug which makes CP_WAIT_TIMESTAMP on BV deadlock with
|
|
* preemption when BV waits for BR. Without this bug the whole thing
|
|
* would be much, much simpler.
|
|
*/
|
|
tu7_wait_onchip_val(cs, TU_ONCHIP_BARRIER, 1);
|
|
|
|
/* Reset the wait value. */
|
|
tu7_write_onchip_val(cs, TU_ONCHIP_BARRIER, 0);
|
|
|
|
/* Resetting the wait value happens asynchronously (since it's an
|
|
* EVENT_WRITE), but waiting for it happens synchronously. We need to
|
|
* prevent BV from racing ahead to the next wait before it's reset.
|
|
*/
|
|
tu7_wait_onchip_val(cs, TU_ONCHIP_BARRIER, 0);
|
|
|
|
tu7_thread_control(cs, CP_SET_THREAD_BR);
|
|
|
|
tu_cs_patchable_end(cs, false, &cb_state);
|
|
|
|
tu_add_cb_barrier_info(cmd_buffer);
|
|
|
|
struct tu_cb_control_point cb_patch = {
|
|
.type = TU_CB_CONTROL_TYPE_PATCHPOINT,
|
|
.patchpoint = cb_state.nop_header,
|
|
.patch_value = cb_state.enable_patch,
|
|
.original_value = cb_state.disable_patch,
|
|
};
|
|
util_dynarray_append(&cmd_buffer->cb_control_points, cb_patch);
|
|
|
|
trace_end_concurrent_binning_barrier(&cmd_buffer->trace, cs);
|
|
}
|
|
}
|
|
TU_GENX(tu_emit_cache_flush);
|
|
|
|
/* Renderpass cache flushes inside the draw_cs */
|
|
template <chip CHIP>
|
|
void
|
|
tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer)
|
|
{
|
|
if (!cmd_buffer->state.renderpass_cache.flush_bits &&
|
|
likely(!tu_env.debug))
|
|
return;
|
|
|
|
struct tu_cs *cs = &cmd_buffer->draw_cs;
|
|
struct tu_cache_state *cache = &cmd_buffer->state.renderpass_cache;
|
|
|
|
tu6_emit_flushes<CHIP>(cmd_buffer, cs, cache);
|
|
if (cmd_buffer->state.renderpass_cache.flush_bits &
|
|
TU_CMD_FLAG_BLIT_CACHE_CLEAN) {
|
|
cmd_buffer->state.blit_cache_cleaned = true;
|
|
}
|
|
}
|
|
TU_GENX(tu_emit_cache_flush_renderpass);
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
emit_vpc_attr_buf(struct tu_cs *cs, struct tu_device *dev, bool gmem)
|
|
{
|
|
if (!dev->physical_device->info->props.has_gmem_vpc_attr_buf)
|
|
return;
|
|
|
|
tu_cs_emit_regs(cs,
|
|
VPC_ATTR_BUF_GMEM_SIZE(CHIP,
|
|
gmem ? dev->physical_device->vpc_attr_buf_size_gmem
|
|
: dev->physical_device->vpc_attr_buf_size_bypass),
|
|
VPC_ATTR_BUF_GMEM_BASE(CHIP,
|
|
gmem ? dev->physical_device->vpc_attr_buf_offset_gmem
|
|
: dev->physical_device->vpc_attr_buf_offset_bypass), );
|
|
tu_cs_emit_regs(cs,
|
|
PC_ATTR_BUF_GMEM_SIZE(CHIP,
|
|
gmem ? dev->physical_device->vpc_attr_buf_size_gmem
|
|
: dev->physical_device->vpc_attr_buf_size_bypass), );
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
emit_rb_ccu_cntl(struct tu_cs *cs, struct tu_device *dev, bool gmem)
|
|
{
|
|
/* The CCUs are a cache that allocates memory from GMEM while facilitating
|
|
* framebuffer caching for sysmem rendering. The CCU is split into two parts,
|
|
* one for color and one for depth. The size and offset of these in GMEM can
|
|
* be configured separately.
|
|
*
|
|
* The most common configuration for the CCU is to occupy as much as possible
|
|
* of GMEM (CACHE_SIZE_FULL) during sysmem rendering as GMEM is unused. On
|
|
* the other hand, when rendering to GMEM, the CCUs can be left enabled at
|
|
* any configuration as they don't interfere with GMEM rendering and only
|
|
* overwrite GMEM when sysmem operations are performed.
|
|
*
|
|
* The vast majority of GMEM rendering doesn't need any sysmem operations
|
|
* but there are some cases where it is required. For example, when the
|
|
* framebuffer isn't aligned to the tile size or with certain MSAA resolves.
|
|
*
|
|
* To correctly handle these cases, we need to be able to switch between
|
|
* sysmem and GMEM rendering. We do this by allocating a carveout at the
|
|
* end of GMEM for the color CCU (as none of these operations are depth)
|
|
* which the color CCU offset is set to and the GMEM size available to the
|
|
* GMEM layout calculations is adjusted accordingly.
|
|
*/
|
|
uint32_t color_offset = gmem ? dev->physical_device->ccu_offset_gmem
|
|
: dev->physical_device->ccu_offset_bypass;
|
|
|
|
uint32_t color_offset_hi = color_offset >> 21;
|
|
color_offset &= 0x1fffff;
|
|
|
|
uint32_t depth_offset = gmem ? 0
|
|
: dev->physical_device->ccu_depth_offset_bypass;
|
|
|
|
uint32_t depth_offset_hi = depth_offset >> 21;
|
|
depth_offset &= 0x1fffff;
|
|
|
|
enum a6xx_ccu_cache_size color_cache_size = !gmem ? CCU_CACHE_SIZE_FULL : !gmem ? CCU_CACHE_SIZE_FULL :
|
|
(a6xx_ccu_cache_size)(dev->physical_device->info->props.gmem_ccu_color_cache_fraction);
|
|
|
|
if (CHIP == A7XX) {
|
|
tu_cs_emit_regs(cs, RB_CCU_CACHE_CNTL(CHIP,
|
|
.depth_offset_hi = depth_offset_hi,
|
|
.color_offset_hi = color_offset_hi,
|
|
.depth_cache_size = CCU_CACHE_SIZE_FULL,
|
|
.depth_offset = depth_offset,
|
|
.color_cache_size = color_cache_size,
|
|
.color_offset = color_offset
|
|
));
|
|
} else {
|
|
tu_cs_emit_regs(cs, RB_CCU_CNTL(CHIP,
|
|
.gmem_fast_clear_disable =
|
|
!dev->physical_device->info->props.has_gmem_fast_clear,
|
|
.concurrent_resolve =
|
|
dev->physical_device->info->props.concurrent_resolve,
|
|
.depth_offset_hi = 0,
|
|
.color_offset_hi = color_offset_hi,
|
|
.depth_cache_size = CCU_CACHE_SIZE_FULL,
|
|
.depth_offset = 0,
|
|
.color_cache_size = color_cache_size,
|
|
.color_offset = color_offset
|
|
));
|
|
}
|
|
}
|
|
|
|
/* Cache flushes for things that use the color/depth read/write path (i.e.
|
|
* blits and draws). This deals with changing CCU state as well as the usual
|
|
* cache flushing.
|
|
*/
|
|
template <chip CHIP>
|
|
void
|
|
tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
|
|
struct tu_cs *cs,
|
|
enum tu_cmd_ccu_state ccu_state)
|
|
{
|
|
assert(ccu_state != TU_CMD_CCU_UNKNOWN);
|
|
/* It's unsafe to flush inside condition because we clear flush_bits */
|
|
assert(!cs->cond_stack_depth);
|
|
|
|
/* Changing CCU state must involve invalidating the CCU. In sysmem mode,
|
|
* the CCU may also contain data that we haven't flushed out yet, so we
|
|
* also need to flush. Also, in order to program RB_CCU_CNTL, we need to
|
|
* emit a WFI as it isn't pipelined.
|
|
*
|
|
* Note: On A7XX, with the introduction of RB_CCU_CACHE_CNTL, we no longer need
|
|
* to emit a WFI when changing a subset of CCU state.
|
|
*/
|
|
if (ccu_state != cmd_buffer->state.ccu_state) {
|
|
if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) {
|
|
cmd_buffer->state.cache.flush_bits |=
|
|
TU_CMD_FLAG_CCU_CLEAN_COLOR |
|
|
TU_CMD_FLAG_CCU_CLEAN_DEPTH;
|
|
cmd_buffer->state.cache.pending_flush_bits &= ~(
|
|
TU_CMD_FLAG_CCU_CLEAN_COLOR |
|
|
TU_CMD_FLAG_CCU_CLEAN_DEPTH);
|
|
}
|
|
cmd_buffer->state.cache.flush_bits |=
|
|
TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
|
|
TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
|
|
(CHIP == A6XX ? TU_CMD_FLAG_WAIT_FOR_IDLE : 0);
|
|
cmd_buffer->state.cache.pending_flush_bits &= ~(
|
|
TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
|
|
TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
|
|
(CHIP == A6XX ? TU_CMD_FLAG_WAIT_FOR_IDLE : 0));
|
|
}
|
|
|
|
tu_emit_cache_flush<CHIP>(cmd_buffer);
|
|
|
|
if (ccu_state != cmd_buffer->state.ccu_state) {
|
|
emit_rb_ccu_cntl<CHIP>(cs, cmd_buffer->device,
|
|
ccu_state == TU_CMD_CCU_GMEM);
|
|
if (cmd_buffer->device->physical_device->info->props.has_gmem_vpc_attr_buf) {
|
|
tu7_thread_control(cs, CP_SET_THREAD_BOTH);
|
|
|
|
emit_vpc_attr_buf<CHIP>(cs, cmd_buffer->device,
|
|
ccu_state == TU_CMD_CCU_GMEM);
|
|
|
|
tu7_set_thread_br_patchpoint(cmd_buffer, cs, false);
|
|
}
|
|
cmd_buffer->state.ccu_state = ccu_state;
|
|
}
|
|
}
|
|
TU_GENX(tu_emit_cache_flush_ccu);
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu6_emit_zs(struct tu_cmd_buffer *cmd,
|
|
const struct tu_subpass *subpass,
|
|
struct tu_cs *cs)
|
|
{
|
|
const uint32_t a = subpass->depth_stencil_attachment.attachment;
|
|
if (a == VK_ATTACHMENT_UNUSED) {
|
|
tu_cs_emit_regs(cs,
|
|
RB_DEPTH_BUFFER_INFO(CHIP, .depth_format = DEPTH6_NONE),
|
|
A6XX_RB_DEPTH_BUFFER_PITCH(0),
|
|
A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0),
|
|
A6XX_RB_DEPTH_BUFFER_BASE(0),
|
|
A6XX_RB_DEPTH_GMEM_BASE(0));
|
|
|
|
tu_cs_emit_regs(cs,
|
|
GRAS_SU_DEPTH_BUFFER_INFO(CHIP, .depth_format = DEPTH6_NONE));
|
|
|
|
tu_cs_emit_regs(cs, RB_STENCIL_BUFFER_INFO(CHIP, 0));
|
|
|
|
return;
|
|
}
|
|
|
|
const struct tu_image_view *iview = cmd->state.attachments[a];
|
|
const struct tu_render_pass_attachment *attachment =
|
|
&cmd->state.pass->attachments[a];
|
|
enum a6xx_depth_format fmt = tu6_pipe2depth(attachment->format);
|
|
|
|
tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6);
|
|
tu_cs_emit(cs, RB_DEPTH_BUFFER_INFO(CHIP,
|
|
.depth_format = fmt,
|
|
.tilemode = TILE6_3,
|
|
.losslesscompen = iview->view.ubwc_enabled,
|
|
).value);
|
|
if (attachment->format == VK_FORMAT_D32_SFLOAT_S8_UINT)
|
|
tu_cs_image_depth_ref(cs, iview, 0);
|
|
else
|
|
tu_cs_image_ref(cs, &iview->view, 0);
|
|
tu_cs_emit(cs, tu_attachment_gmem_offset(cmd, attachment, 0));
|
|
|
|
tu_cs_emit_regs(cs, GRAS_SU_DEPTH_BUFFER_INFO(CHIP, .depth_format = fmt));
|
|
|
|
tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE, 3);
|
|
tu_cs_image_flag_ref(cs, &iview->view, 0);
|
|
|
|
if (attachment->format == VK_FORMAT_D32_SFLOAT_S8_UINT ||
|
|
attachment->format == VK_FORMAT_S8_UINT) {
|
|
|
|
tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_BUFFER_INFO, 6);
|
|
tu_cs_emit(cs, RB_STENCIL_BUFFER_INFO(CHIP,
|
|
.separate_stencil = true,
|
|
.tilemode = TILE6_3,
|
|
).value);
|
|
if (attachment->format == VK_FORMAT_D32_SFLOAT_S8_UINT) {
|
|
tu_cs_image_stencil_ref(cs, iview, 0);
|
|
tu_cs_emit(cs, tu_attachment_gmem_offset_stencil(cmd, attachment, 0));
|
|
} else {
|
|
tu_cs_image_ref(cs, &iview->view, 0);
|
|
tu_cs_emit(cs, tu_attachment_gmem_offset(cmd, attachment, 0));
|
|
}
|
|
} else {
|
|
tu_cs_emit_regs(cs,
|
|
RB_STENCIL_BUFFER_INFO(CHIP, 0));
|
|
}
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu6_emit_mrt(struct tu_cmd_buffer *cmd,
|
|
const struct tu_subpass *subpass,
|
|
struct tu_cs *cs)
|
|
{
|
|
const struct tu_framebuffer *fb = cmd->state.framebuffer;
|
|
|
|
enum a6xx_format mrt0_format = FMT6_NONE;
|
|
|
|
uint32_t written = 0;
|
|
for (uint32_t i = 0; i < subpass->color_count; ++i) {
|
|
uint32_t a = subpass->color_attachments[i].attachment;
|
|
unsigned remapped = cmd->vk.dynamic_graphics_state.cal.color_map[i];
|
|
if (a == VK_ATTACHMENT_UNUSED ||
|
|
remapped == MESA_VK_ATTACHMENT_UNUSED)
|
|
continue;
|
|
|
|
const struct tu_image_view *iview = cmd->state.attachments[a];
|
|
|
|
tu_cs_emit_regs(cs,
|
|
RB_MRT_BUF_INFO(CHIP, remapped, .dword = iview->view.RB_MRT_BUF_INFO),
|
|
A6XX_RB_MRT_PITCH(remapped, iview->view.pitch),
|
|
A6XX_RB_MRT_ARRAY_PITCH(remapped, iview->view.layer_size),
|
|
A6XX_RB_MRT_BASE(remapped, .qword = tu_layer_address(&iview->view, 0)),
|
|
A6XX_RB_MRT_BASE_GMEM(remapped,
|
|
tu_attachment_gmem_offset(cmd, &cmd->state.pass->attachments[a], 0)
|
|
),
|
|
);
|
|
|
|
tu_cs_emit_regs(cs,
|
|
A6XX_SP_PS_MRT_REG(remapped, .dword = iview->view.SP_PS_MRT_REG));
|
|
|
|
tu_cs_emit_pkt4(cs, REG_A6XX_RB_COLOR_FLAG_BUFFER_ADDR(remapped), 3);
|
|
tu_cs_image_flag_ref(cs, &iview->view, 0);
|
|
|
|
if (remapped == 0)
|
|
mrt0_format = (enum a6xx_format) (iview->view.SP_PS_MRT_REG & 0xff);
|
|
|
|
written |= 1u << remapped;
|
|
}
|
|
|
|
u_foreach_bit (i, ~written) {
|
|
if (i >= MAX_RTS)
|
|
break;
|
|
|
|
/* From the VkPipelineRenderingCreateInfo definition:
|
|
*
|
|
* Valid formats indicate that an attachment can be used - but it
|
|
* is still valid to set the attachment to NULL when beginning
|
|
* rendering.
|
|
*
|
|
* This means that with dynamic rendering, pipelines may write to
|
|
* some attachments that are UNUSED here. Setting the format to 0
|
|
* here should prevent them from writing to anything. This also seems
|
|
* to also be required for alpha-to-coverage which can use the alpha
|
|
* value for an otherwise-unused attachment.
|
|
*
|
|
* With VK_EXT_dynamic_rendering_unused_attachments, pipelines may also
|
|
* write to attachments beyond those that exist in the render pass, so
|
|
* we have all attachments not written up to MAX_RTS.
|
|
*/
|
|
tu_cs_emit_regs(cs,
|
|
RB_MRT_BUF_INFO(CHIP, i),
|
|
A6XX_RB_MRT_PITCH(i),
|
|
A6XX_RB_MRT_ARRAY_PITCH(i),
|
|
A6XX_RB_MRT_BASE(i),
|
|
A6XX_RB_MRT_BASE_GMEM(i),
|
|
);
|
|
|
|
tu_cs_emit_regs(cs,
|
|
A6XX_SP_PS_MRT_REG(i, .dword = 0));
|
|
}
|
|
|
|
tu_cs_emit_regs(cs, GRAS_LRZ_MRT_BUFFER_INFO_0(CHIP, .color_format = mrt0_format));
|
|
|
|
const bool dither = subpass->legacy_dithering_enabled;
|
|
const uint32_t dither_cntl =
|
|
A6XX_RB_DITHER_CNTL(
|
|
.dither_mode_mrt0 = dither ? DITHER_ALWAYS : DITHER_DISABLE,
|
|
.dither_mode_mrt1 = dither ? DITHER_ALWAYS : DITHER_DISABLE,
|
|
.dither_mode_mrt2 = dither ? DITHER_ALWAYS : DITHER_DISABLE,
|
|
.dither_mode_mrt3 = dither ? DITHER_ALWAYS : DITHER_DISABLE,
|
|
.dither_mode_mrt4 = dither ? DITHER_ALWAYS : DITHER_DISABLE,
|
|
.dither_mode_mrt5 = dither ? DITHER_ALWAYS : DITHER_DISABLE,
|
|
.dither_mode_mrt6 = dither ? DITHER_ALWAYS : DITHER_DISABLE,
|
|
.dither_mode_mrt7 = dither ? DITHER_ALWAYS : DITHER_DISABLE, )
|
|
.value;
|
|
tu_cs_emit_regs(cs, A6XX_RB_DITHER_CNTL(.dword = dither_cntl));
|
|
if (CHIP >= A7XX) {
|
|
tu_cs_emit_regs(cs, SP_DITHER_CNTL(CHIP, .dword = dither_cntl));
|
|
}
|
|
|
|
tu_cs_emit_regs(cs,
|
|
A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl));
|
|
tu_cs_emit_regs(cs,
|
|
A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl));
|
|
|
|
unsigned layers = MAX2(fb->layers, util_logbase2(subpass->multiview_mask) + 1);
|
|
tu_cs_emit_regs(cs, A6XX_GRAS_CL_ARRAY_SIZE(layers - 1));
|
|
}
|
|
|
|
struct tu_bin_size_params {
|
|
enum a6xx_render_mode render_mode;
|
|
bool force_lrz_write_dis;
|
|
enum a6xx_buffers_location buffers_location;
|
|
enum a6xx_lrz_feedback_mask lrz_feedback_zmode_mask;
|
|
bool force_lrz_dis;
|
|
};
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu6_emit_bin_size(struct tu_cs *cs,
|
|
uint32_t bin_w,
|
|
uint32_t bin_h,
|
|
struct tu_bin_size_params &&p)
|
|
{
|
|
if (CHIP == A6XX) {
|
|
tu_cs_emit_regs(
|
|
cs, GRAS_SC_BIN_CNTL(CHIP, .binw = bin_w,
|
|
.binh = bin_h,
|
|
.render_mode = p.render_mode,
|
|
.force_lrz_write_dis = p.force_lrz_write_dis,
|
|
.buffers_location = p.buffers_location,
|
|
.lrz_feedback_zmode_mask = p.lrz_feedback_zmode_mask, ));
|
|
} else {
|
|
tu_cs_emit_regs(cs,
|
|
GRAS_SC_BIN_CNTL(CHIP, .binw = bin_w,
|
|
.binh = bin_h,
|
|
.render_mode = p.render_mode,
|
|
.force_lrz_write_dis = p.force_lrz_write_dis,
|
|
.lrz_feedback_zmode_mask =
|
|
p.lrz_feedback_zmode_mask,
|
|
.force_lrz_dis = p.force_lrz_dis));
|
|
}
|
|
|
|
tu_cs_emit_regs(cs, RB_CNTL(CHIP,
|
|
.binw = bin_w,
|
|
.binh = bin_h,
|
|
.render_mode = p.render_mode,
|
|
.force_lrz_write_dis = p.force_lrz_write_dis,
|
|
.buffers_location = p.buffers_location,
|
|
.lrz_feedback_zmode_mask = p.lrz_feedback_zmode_mask, ));
|
|
|
|
/* no flag for RB_RESOLVE_CNTL_3... */
|
|
tu_cs_emit_regs(cs, RB_RESOLVE_CNTL_3(CHIP, .binw = bin_w, .binh = bin_h));
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu6_emit_render_cntl(struct tu_cmd_buffer *cmd,
|
|
const struct tu_subpass *subpass,
|
|
struct tu_cs *cs,
|
|
bool binning);
|
|
|
|
template <>
|
|
void
|
|
tu6_emit_render_cntl<A6XX>(struct tu_cmd_buffer *cmd,
|
|
const struct tu_subpass *subpass,
|
|
struct tu_cs *cs,
|
|
bool binning)
|
|
{
|
|
/* doesn't RB_RENDER_CNTL set differently for binning pass: */
|
|
bool no_track = !cmd->device->physical_device->info->props.has_cp_reg_write;
|
|
uint32_t cntl = 0;
|
|
cntl |= A6XX_RB_RENDER_CNTL_CCUSINGLECACHELINESIZE(2);
|
|
if (binning) {
|
|
if (no_track)
|
|
return;
|
|
cntl |= A6XX_RB_RENDER_CNTL_FS_DISABLE;
|
|
} else {
|
|
uint32_t mrts_ubwc_enable = 0;
|
|
for (uint32_t i = 0; i < subpass->color_count; ++i) {
|
|
uint32_t a = subpass->color_attachments[i].attachment;
|
|
unsigned remapped = cmd->vk.dynamic_graphics_state.cal.color_map[i];
|
|
if (a == VK_ATTACHMENT_UNUSED ||
|
|
remapped == MESA_VK_ATTACHMENT_UNUSED)
|
|
continue;
|
|
|
|
const struct tu_image_view *iview = cmd->state.attachments[a];
|
|
if (iview->view.ubwc_enabled)
|
|
mrts_ubwc_enable |= 1 << remapped;
|
|
}
|
|
|
|
cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable);
|
|
|
|
const uint32_t a = subpass->depth_stencil_attachment.attachment;
|
|
if (a != VK_ATTACHMENT_UNUSED) {
|
|
const struct tu_image_view *iview = cmd->state.attachments[a];
|
|
if (iview->view.ubwc_enabled)
|
|
cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH;
|
|
}
|
|
|
|
if (no_track) {
|
|
tu_cs_emit_pkt4(cs, REG_A6XX_RB_RENDER_CNTL, 1);
|
|
tu_cs_emit(cs, cntl);
|
|
return;
|
|
}
|
|
|
|
/* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs
|
|
* in order to set it correctly for the different subpasses. However,
|
|
* that means the packets we're emitting also happen during binning. So
|
|
* we need to guard the write on !BINNING at CP execution time.
|
|
*/
|
|
tu_cs_reserve(cs, 3 + 4);
|
|
tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
|
|
tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
|
|
CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM);
|
|
tu_cs_emit(cs, RENDER_MODE_CP_COND_REG_EXEC_1_DWORDS(4));
|
|
}
|
|
|
|
tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3);
|
|
tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL));
|
|
tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL);
|
|
tu_cs_emit(cs, cntl);
|
|
}
|
|
|
|
template <>
|
|
void
|
|
tu6_emit_render_cntl<A7XX>(struct tu_cmd_buffer *cmd,
|
|
const struct tu_subpass *subpass,
|
|
struct tu_cs *cs,
|
|
bool binning)
|
|
{
|
|
}
|
|
|
|
static void
|
|
tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align,
|
|
bool used_by_sysmem)
|
|
{
|
|
struct tu_physical_device *phys_dev = cmd->device->physical_device;
|
|
const VkRect2D *render_area = &cmd->state.render_area;
|
|
|
|
/* Avoid assertion fails with an empty render area at (0, 0) where the
|
|
* subtraction below wraps around. Empty render areas should be forced to
|
|
* the sysmem path by use_sysmem_rendering(). It's not even clear whether
|
|
* an empty scissor here works, and the blob seems to force sysmem too as
|
|
* it sets something wrong (non-empty) for the scissor.
|
|
*/
|
|
if (render_area->extent.width == 0 ||
|
|
render_area->extent.height == 0)
|
|
return;
|
|
|
|
uint32_t x1 = render_area->offset.x;
|
|
uint32_t y1 = render_area->offset.y;
|
|
uint32_t x2 = x1 + render_area->extent.width - 1;
|
|
uint32_t y2 = y1 + render_area->extent.height - 1;
|
|
|
|
if (align) {
|
|
x1 = x1 & ~(phys_dev->info->gmem_align_w - 1);
|
|
y1 = y1 & ~(phys_dev->info->gmem_align_h - 1);
|
|
x2 = ALIGN_POT(x2 + 1, phys_dev->info->gmem_align_w) - 1;
|
|
y2 = ALIGN_POT(y2 + 1, phys_dev->info->gmem_align_h) - 1;
|
|
}
|
|
|
|
/* With FDM offset, bins are shifted to the right in GMEM space compared to
|
|
* framebuffer space. We do not use RB_BLIT_SCISSOR_* for loads and stores
|
|
* because those do not use the fast path, but we do use it for
|
|
* LOAD_OP_CLEAR. Expand the render area so that GMEM clears work
|
|
* correctly. We may over-clear but that's ok because the store is clipped
|
|
* to the render area.
|
|
*/
|
|
if (tu_enable_fdm_offset(cmd)) {
|
|
const struct tu_tiling_config *tiling = cmd->state.tiling;
|
|
|
|
/* If this is a generic clear that's also used in sysmem mode then we
|
|
* need to emit the unmodified render area in sysmem mode because
|
|
* over-clearing is not allowed.
|
|
*/
|
|
if (used_by_sysmem) {
|
|
tu_cs_emit_regs(cs,
|
|
A6XX_RB_RESOLVE_CNTL_1(.x = x1, .y = y1),
|
|
A6XX_RB_RESOLVE_CNTL_2(.x = x2, .y = y2));
|
|
tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
|
|
CP_COND_REG_EXEC_0_GMEM);
|
|
}
|
|
|
|
x2 += tiling->tile0.width;
|
|
y2 += tiling->tile0.height;
|
|
tu_cs_emit_regs(cs,
|
|
A6XX_RB_RESOLVE_CNTL_1(.x = x1, .y = y1),
|
|
A6XX_RB_RESOLVE_CNTL_2(.x = x2, .y = y2));
|
|
|
|
if (used_by_sysmem) {
|
|
tu_cond_exec_end(cs);
|
|
}
|
|
} else {
|
|
tu_cs_emit_regs(cs,
|
|
A6XX_RB_RESOLVE_CNTL_1(.x = x1, .y = y1),
|
|
A6XX_RB_RESOLVE_CNTL_2(.x = x2, .y = y2));
|
|
}
|
|
}
|
|
|
|
template <chip CHIP>
|
|
void
|
|
tu6_emit_window_scissor(struct tu_cs *cs,
|
|
uint32_t x1,
|
|
uint32_t y1,
|
|
uint32_t x2,
|
|
uint32_t y2)
|
|
{
|
|
tu_cs_emit_regs(cs,
|
|
GRAS_SC_WINDOW_SCISSOR_TL(CHIP, .x = x1, .y = y1),
|
|
GRAS_SC_WINDOW_SCISSOR_BR(CHIP, .x = x2, .y = y2));
|
|
|
|
tu_cs_emit_regs(cs,
|
|
GRAS_A2D_SCISSOR_TL(CHIP, .x = x1, .y = y1),
|
|
GRAS_A2D_SCISSOR_BR(CHIP, .x = x2, .y = y2));
|
|
}
|
|
TU_GENX(tu6_emit_window_scissor);
|
|
|
|
template <chip CHIP>
|
|
void
|
|
tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1)
|
|
{
|
|
tu_cs_emit_regs(cs,
|
|
A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1));
|
|
|
|
tu_cs_emit_regs(cs,
|
|
A6XX_RB_RESOLVE_WINDOW_OFFSET(.x = x1, .y = y1));
|
|
|
|
tu_cs_emit_regs(cs,
|
|
SP_WINDOW_OFFSET(CHIP, .x = x1, .y = y1));
|
|
|
|
tu_cs_emit_regs(cs,
|
|
A6XX_TPL1_WINDOW_OFFSET(.x = x1, .y = y1));
|
|
|
|
if (CHIP >= A7XX) {
|
|
tu_cs_emit_regs(cs,
|
|
TPL1_A2D_WINDOW_OFFSET(CHIP, .x = x1, .y = y1));
|
|
}
|
|
}
|
|
|
|
void
|
|
tu6_apply_depth_bounds_workaround(struct tu_device *device,
|
|
uint32_t *rb_depth_cntl)
|
|
{
|
|
if (!device->physical_device->info->props.depth_bounds_require_depth_test_quirk)
|
|
return;
|
|
|
|
/* On some GPUs it is necessary to enable z test for depth bounds test when
|
|
* UBWC is enabled. Otherwise, the GPU would hang. FUNC_ALWAYS is required to
|
|
* pass z test. Relevant tests:
|
|
* dEQP-VK.pipeline.extended_dynamic_state.two_draws_dynamic.depth_bounds_test_disable
|
|
* dEQP-VK.dynamic_state.ds_state.depth_bounds_1
|
|
*/
|
|
*rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE |
|
|
A6XX_RB_DEPTH_CNTL_ZFUNC(FUNC_ALWAYS);
|
|
}
|
|
|
|
static void
|
|
tu_cs_emit_draw_state(struct tu_cs *cs, uint32_t id, struct tu_draw_state state)
|
|
{
|
|
uint32_t enable_mask;
|
|
switch (id) {
|
|
case TU_DRAW_STATE_VS:
|
|
case TU_DRAW_STATE_FS:
|
|
case TU_DRAW_STATE_VPC:
|
|
/* The blob seems to not enable this (DESC_SETS_LOAD) for binning, even
|
|
* when resources would actually be used in the binning shader.
|
|
* Presumably the overhead of prefetching the resources isn't
|
|
* worth it.
|
|
*/
|
|
case TU_DRAW_STATE_DESC_SETS_LOAD:
|
|
enable_mask = CP_SET_DRAW_STATE__0_GMEM |
|
|
CP_SET_DRAW_STATE__0_SYSMEM;
|
|
break;
|
|
case TU_DRAW_STATE_VS_BINNING:
|
|
case TU_DRAW_STATE_GS_BINNING:
|
|
enable_mask = CP_SET_DRAW_STATE__0_BINNING;
|
|
break;
|
|
case TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM:
|
|
enable_mask = CP_SET_DRAW_STATE__0_GMEM;
|
|
break;
|
|
case TU_DRAW_STATE_PRIM_MODE_GMEM:
|
|
/* On a7xx the prim mode is the same for gmem and sysmem, and it no
|
|
* longer depends on dynamic state, so we reuse the gmem state for
|
|
* everything:
|
|
*/
|
|
if (cs->device->physical_device->info->props.has_coherent_ubwc_flag_caches) {
|
|
enable_mask = CP_SET_DRAW_STATE__0_GMEM |
|
|
CP_SET_DRAW_STATE__0_SYSMEM |
|
|
CP_SET_DRAW_STATE__0_BINNING;
|
|
} else {
|
|
enable_mask = CP_SET_DRAW_STATE__0_GMEM;
|
|
}
|
|
break;
|
|
case TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM:
|
|
enable_mask = CP_SET_DRAW_STATE__0_SYSMEM;
|
|
break;
|
|
case TU_DRAW_STATE_DYNAMIC + TU_DYNAMIC_STATE_PRIM_MODE_SYSMEM:
|
|
if (!cs->device->physical_device->info->props.has_coherent_ubwc_flag_caches) {
|
|
/* By also applying the state during binning we ensure that there
|
|
* is no rotation applied, by previous A6XX_GRAS_SC_CNTL::rotation.
|
|
*/
|
|
enable_mask =
|
|
CP_SET_DRAW_STATE__0_SYSMEM | CP_SET_DRAW_STATE__0_BINNING;
|
|
} else {
|
|
static_assert(TU_DYNAMIC_STATE_PRIM_MODE_SYSMEM ==
|
|
TU_DYNAMIC_STATE_A7XX_FRAGMENT_SHADING_RATE);
|
|
enable_mask = CP_SET_DRAW_STATE__0_GMEM |
|
|
CP_SET_DRAW_STATE__0_SYSMEM |
|
|
CP_SET_DRAW_STATE__0_BINNING;
|
|
}
|
|
|
|
break;
|
|
default:
|
|
enable_mask = CP_SET_DRAW_STATE__0_GMEM |
|
|
CP_SET_DRAW_STATE__0_SYSMEM |
|
|
CP_SET_DRAW_STATE__0_BINNING;
|
|
break;
|
|
}
|
|
|
|
STATIC_ASSERT(TU_DRAW_STATE_COUNT <= 32);
|
|
|
|
/* We need to reload the descriptors every time the descriptor sets
|
|
* change. However, the commands we send only depend on the pipeline
|
|
* because the whole point is to cache descriptors which are used by the
|
|
* pipeline. There's a problem here, in that the firmware has an
|
|
* "optimization" which skips executing groups that are set to the same
|
|
* value as the last draw. This means that if the descriptor sets change
|
|
* but not the pipeline, we'd try to re-execute the same buffer which
|
|
* the firmware would ignore and we wouldn't pre-load the new
|
|
* descriptors. Set the DIRTY bit to avoid this optimization.
|
|
*
|
|
* We set the dirty bit for shader draw states because they contain
|
|
* CP_LOAD_STATE packets that are invalidated by the PROGRAM_CONFIG draw
|
|
* state, so if PROGRAM_CONFIG changes but one of the shaders stays the
|
|
* same then we still need to re-emit everything. The GLES blob which
|
|
* implements separate shader draw states does the same thing.
|
|
*
|
|
* We also need to set this bit for draw states which may be patched by the
|
|
* GPU, because their underlying memory may change between setting the draw
|
|
* state.
|
|
*/
|
|
if (id == TU_DRAW_STATE_DESC_SETS_LOAD ||
|
|
id == TU_DRAW_STATE_VS ||
|
|
id == TU_DRAW_STATE_VS_BINNING ||
|
|
id == TU_DRAW_STATE_HS ||
|
|
id == TU_DRAW_STATE_DS ||
|
|
id == TU_DRAW_STATE_GS ||
|
|
id == TU_DRAW_STATE_GS_BINNING ||
|
|
id == TU_DRAW_STATE_FS ||
|
|
state.writeable)
|
|
enable_mask |= CP_SET_DRAW_STATE__0_DIRTY;
|
|
|
|
tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(state.size) |
|
|
enable_mask |
|
|
CP_SET_DRAW_STATE__0_GROUP_ID(id) |
|
|
COND(!state.size || !state.iova, CP_SET_DRAW_STATE__0_DISABLE));
|
|
tu_cs_emit_qw(cs, state.iova);
|
|
}
|
|
|
|
template <chip CHIP>
|
|
void
|
|
tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples,
|
|
bool msaa_disable)
|
|
{
|
|
const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples);
|
|
msaa_disable |= (samples == MSAA_ONE);
|
|
tu_cs_emit_regs(cs,
|
|
A6XX_TPL1_RAS_MSAA_CNTL(samples),
|
|
A6XX_TPL1_DEST_MSAA_CNTL(.samples = samples,
|
|
.msaa_disable = msaa_disable));
|
|
|
|
tu_cs_emit_regs(cs,
|
|
GRAS_SC_RAS_MSAA_CNTL(CHIP, samples),
|
|
GRAS_SC_DEST_MSAA_CNTL(CHIP, .samples = samples,
|
|
.msaa_disable = msaa_disable));
|
|
|
|
tu_cs_emit_regs(cs,
|
|
A6XX_RB_RAS_MSAA_CNTL(samples),
|
|
A6XX_RB_DEST_MSAA_CNTL(.samples = samples,
|
|
.msaa_disable = msaa_disable));
|
|
}
|
|
TU_GENX(tu6_emit_msaa);
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu6_update_msaa(struct tu_cmd_buffer *cmd)
|
|
{
|
|
VkSampleCountFlagBits samples =
|
|
cmd->vk.dynamic_graphics_state.ms.rasterization_samples;;
|
|
|
|
/* The samples may not be set by the pipeline or dynamically if raster
|
|
* discard is enabled. We can set any valid value, but don't set the
|
|
* default invalid value of 0.
|
|
*/
|
|
if (samples == 0)
|
|
samples = VK_SAMPLE_COUNT_1_BIT;
|
|
tu6_emit_msaa<CHIP>(&cmd->draw_cs, samples, cmd->state.msaa_disable);
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu6_update_msaa_disable(struct tu_cmd_buffer *cmd)
|
|
{
|
|
VkPrimitiveTopology topology =
|
|
(VkPrimitiveTopology)cmd->vk.dynamic_graphics_state.ia.primitive_topology;
|
|
bool is_line =
|
|
topology == VK_PRIMITIVE_TOPOLOGY_LINE_LIST ||
|
|
topology == VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY ||
|
|
topology == VK_PRIMITIVE_TOPOLOGY_LINE_STRIP ||
|
|
topology == VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY ||
|
|
(topology == VK_PRIMITIVE_TOPOLOGY_PATCH_LIST &&
|
|
cmd->state.shaders[MESA_SHADER_TESS_EVAL] &&
|
|
cmd->state.shaders[MESA_SHADER_TESS_EVAL]->variant &&
|
|
cmd->state.shaders[MESA_SHADER_TESS_EVAL]->variant->key.tessellation == IR3_TESS_ISOLINES);
|
|
bool msaa_disable = is_line &&
|
|
cmd->vk.dynamic_graphics_state.rs.line.mode == VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR;
|
|
|
|
if (cmd->state.msaa_disable != msaa_disable) {
|
|
cmd->state.msaa_disable = msaa_disable;
|
|
tu6_update_msaa<CHIP>(cmd);
|
|
}
|
|
}
|
|
|
|
static const struct tu_vsc_config *
|
|
tu_vsc_config(struct tu_cmd_buffer *cmd, const struct tu_tiling_config *tiling)
|
|
{
|
|
if (tu_enable_fdm_offset(cmd))
|
|
return &tiling->fdm_offset_vsc;
|
|
return &tiling->vsc;
|
|
}
|
|
|
|
static bool
|
|
use_hw_binning(struct tu_cmd_buffer *cmd)
|
|
{
|
|
const struct tu_framebuffer *fb = cmd->state.framebuffer;
|
|
const struct tu_tiling_config *tiling = &fb->tiling[cmd->state.gmem_layout];
|
|
const struct tu_vsc_config *vsc = tu_vsc_config(cmd, tiling);
|
|
|
|
/* XFB commands are emitted for BINNING || SYSMEM, which makes it
|
|
* incompatible with non-hw binning GMEM rendering. this is required because
|
|
* some of the XFB commands need to only be executed once.
|
|
* use_sysmem_rendering() should have made sure we only ended up here if no
|
|
* XFB was used.
|
|
*/
|
|
if (cmd->state.rp.xfb_used) {
|
|
assert(vsc->binning_possible);
|
|
return true;
|
|
}
|
|
|
|
/* VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT emulates GL_PRIMITIVES_GENERATED,
|
|
* which wasn't designed to care about tilers and expects the result not to
|
|
* be multiplied by tile count.
|
|
* See https://gitlab.khronos.org/vulkan/vulkan/-/issues/3131
|
|
*/
|
|
if (cmd->state.rp.has_prim_generated_query_in_rp ||
|
|
cmd->state.prim_generated_query_running_before_rp) {
|
|
assert(vsc->binning_possible);
|
|
return true;
|
|
}
|
|
|
|
return vsc->binning;
|
|
}
|
|
|
|
static bool
|
|
use_sysmem_rendering(struct tu_cmd_buffer *cmd,
|
|
struct tu_renderpass_result **autotune_result)
|
|
{
|
|
if (TU_DEBUG(SYSMEM)) {
|
|
cmd->state.rp.gmem_disable_reason = "TU_DEBUG(SYSMEM)";
|
|
return true;
|
|
}
|
|
|
|
/* can't fit attachments into gmem */
|
|
if (!cmd->state.tiling->possible) {
|
|
cmd->state.rp.gmem_disable_reason = "Can't fit attachments into gmem";
|
|
return true;
|
|
}
|
|
|
|
/* Use sysmem for empty render areas */
|
|
if (cmd->state.render_area.extent.width == 0 ||
|
|
cmd->state.render_area.extent.height == 0) {
|
|
cmd->state.rp.gmem_disable_reason = "Render area is empty";
|
|
return true;
|
|
}
|
|
|
|
if (cmd->state.rp.has_tess) {
|
|
cmd->state.rp.gmem_disable_reason = "Uses tessellation shaders";
|
|
return true;
|
|
}
|
|
|
|
if (cmd->state.rp.disable_gmem) {
|
|
/* gmem_disable_reason is set where disable_gmem is set. */
|
|
return true;
|
|
}
|
|
|
|
const struct tu_vsc_config *vsc = tu_vsc_config(cmd, cmd->state.tiling);
|
|
|
|
/* XFB is incompatible with non-hw binning GMEM rendering, see use_hw_binning */
|
|
if (cmd->state.rp.xfb_used && !vsc->binning_possible) {
|
|
cmd->state.rp.gmem_disable_reason =
|
|
"XFB is incompatible with non-hw binning GMEM rendering";
|
|
return true;
|
|
}
|
|
|
|
/* QUERY_TYPE_PRIMITIVES_GENERATED is incompatible with non-hw binning
|
|
* GMEM rendering, see use_hw_binning.
|
|
*/
|
|
if ((cmd->state.rp.has_prim_generated_query_in_rp ||
|
|
cmd->state.prim_generated_query_running_before_rp) &&
|
|
!vsc->binning_possible) {
|
|
cmd->state.rp.gmem_disable_reason =
|
|
"QUERY_TYPE_PRIMITIVES_GENERATED is incompatible with non-hw binning GMEM rendering";
|
|
return true;
|
|
}
|
|
|
|
if (TU_DEBUG(GMEM))
|
|
return false;
|
|
|
|
bool use_sysmem = tu_autotune_use_bypass(&cmd->device->autotune,
|
|
cmd, autotune_result);
|
|
if (*autotune_result) {
|
|
list_addtail(&(*autotune_result)->node, &cmd->renderpass_autotune_results);
|
|
}
|
|
|
|
if (use_sysmem) {
|
|
cmd->state.rp.gmem_disable_reason = "Autotune selected sysmem";
|
|
}
|
|
|
|
return use_sysmem;
|
|
}
|
|
|
|
/* Optimization: there is no reason to load gmem if there is no
|
|
* geometry to process. COND_REG_EXEC predicate is set here,
|
|
* but the actual skip happens in tu_load_gmem_attachment() and tile_store_cs,
|
|
* for each blit separately.
|
|
*/
|
|
template <chip CHIP>
|
|
static void
|
|
tu6_emit_cond_for_load_stores(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
|
|
uint32_t pipe, uint32_t slot, bool skip_wfm)
|
|
{
|
|
const struct tu_vsc_config *vsc = tu_vsc_config(cmd, cmd->state.tiling);
|
|
|
|
if (vsc->binning_possible &&
|
|
cmd->state.pass->has_cond_load_store) {
|
|
if (CHIP >= A7XX) {
|
|
tu_cs_emit_pkt7(cs, CP_REG_TEST, 1);
|
|
tu_cs_emit(cs, A6XX_CP_REG_TEST_0_SCRATCH_MEM_OFFSET(pipe) |
|
|
A6XX_CP_REG_TEST_0_SOURCE(SOURCE_SCRATCH_MEM) |
|
|
A6XX_CP_REG_TEST_0_BIT(slot) |
|
|
A6XX_CP_REG_TEST_0_SKIP_WAIT_FOR_ME);
|
|
} else {
|
|
tu_cs_emit_pkt7(cs, CP_REG_TEST, 1);
|
|
tu_cs_emit(cs, A6XX_CP_REG_TEST_0_REG(REG_A6XX_VSC_CHANNEL_VISIBILITY(pipe)) |
|
|
A6XX_CP_REG_TEST_0_BIT(slot) |
|
|
COND(skip_wfm, A6XX_CP_REG_TEST_0_SKIP_WAIT_FOR_ME));
|
|
}
|
|
} else {
|
|
/* COND_REG_EXECs are not emitted in non-binning case */
|
|
}
|
|
}
|
|
|
|
struct tu_tile_config {
|
|
VkOffset2D pos;
|
|
uint32_t pipe;
|
|
uint32_t slot_mask;
|
|
VkExtent2D extent;
|
|
VkExtent2D frag_areas[MAX_VIEWS];
|
|
};
|
|
|
|
/* For bin offsetting we want to do "Euclidean division," where the remainder
|
|
* (i.e. the offset of the bin) is always positive. Unfortunately C/C++
|
|
* remainder and division don't do this, so we have to implement it ourselves.
|
|
*
|
|
* For example, we should have:
|
|
*
|
|
* euclid_rem(-3, 4) = 1
|
|
* euclid_rem(-4, 4) = 0
|
|
* euclid_rem(-4, 4) = 3
|
|
*/
|
|
|
|
static int32_t
|
|
euclid_rem(int32_t divisor, int32_t divisend)
|
|
{
|
|
if (divisor >= 0)
|
|
return divisor % divisend;
|
|
int32_t tmp = divisend - (-divisor % divisend);
|
|
return tmp == divisend ? 0 : tmp;
|
|
}
|
|
|
|
/* Calculate how much the bins for a given view should be shifted to the left
|
|
* and upwards, given the application-provided FDM offset.
|
|
*/
|
|
static VkOffset2D
|
|
tu_bin_offset(VkOffset2D fdm_offset, const struct tu_tiling_config *tiling)
|
|
{
|
|
return (VkOffset2D) {
|
|
euclid_rem(-fdm_offset.x, tiling->tile0.width),
|
|
euclid_rem(-fdm_offset.y, tiling->tile0.height),
|
|
};
|
|
}
|
|
|
|
static uint32_t
|
|
tu_fdm_num_layers(const struct tu_cmd_buffer *cmd)
|
|
{
|
|
return cmd->state.pass->num_views ? cmd->state.pass->num_views :
|
|
(cmd->state.fdm_per_layer ? cmd->state.framebuffer->layers : 1);
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu6_emit_tile_select(struct tu_cmd_buffer *cmd,
|
|
struct tu_cs *cs,
|
|
const struct tu_tile_config *tile,
|
|
bool fdm, const VkOffset2D *fdm_offsets)
|
|
{
|
|
struct tu_physical_device *phys_dev = cmd->device->physical_device;
|
|
const struct tu_tiling_config *tiling = cmd->state.tiling;
|
|
const struct tu_framebuffer *fb = cmd->state.framebuffer;
|
|
const struct tu_vsc_config *vsc = tu_vsc_config(cmd, tiling);
|
|
bool hw_binning = use_hw_binning(cmd);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
|
|
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BIN_RENDER_START) |
|
|
A6XX_CP_SET_MARKER_0_USES_GMEM);
|
|
|
|
if (CHIP == A6XX && cmd->device->physical_device->has_preemption) {
|
|
if (cmd->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT)
|
|
tu_cs_set_writeable(cs, true);
|
|
|
|
tu_emit_vsc<CHIP>(cmd, &cmd->cs);
|
|
|
|
if (cmd->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT)
|
|
tu_cs_set_writeable(cs, false);
|
|
}
|
|
|
|
unsigned views = tu_fdm_num_layers(cmd);
|
|
bool bin_is_scaled = false;
|
|
|
|
if (fdm) {
|
|
for (unsigned i = 0; i < views; i++) {
|
|
if (tile->frag_areas[i].width != 1 ||
|
|
tile->frag_areas[i].height != 1) {
|
|
bin_is_scaled = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool bin_scale_en =
|
|
cmd->device->physical_device->info->props.has_hw_bin_scaling &&
|
|
views <= MAX_HW_SCALED_VIEWS && !cmd->state.rp.shared_viewport &&
|
|
bin_is_scaled;
|
|
|
|
/* We cannot support LRZ if we cannot use HW bin scaling and the bin is
|
|
* scaled (i.e. less than full resolution)
|
|
*/
|
|
bool disable_lrz = bin_is_scaled && !bin_scale_en;
|
|
|
|
/* We cannot support LRZ for the first row and column because the offset
|
|
* required wouldn't be aligned to HW requirements.
|
|
*/
|
|
if (fdm_offsets && (tile->pos.x == 0 || tile->pos.y == 0))
|
|
disable_lrz = true;
|
|
|
|
tu6_emit_bin_size<CHIP>(
|
|
cs, tiling->tile0.width, tiling->tile0.height,
|
|
{
|
|
.render_mode = RENDERING_PASS,
|
|
.force_lrz_write_dis = !phys_dev->info->props.has_lrz_feedback,
|
|
.buffers_location = BUFFERS_IN_GMEM,
|
|
.lrz_feedback_zmode_mask =
|
|
phys_dev->info->props.has_lrz_feedback && !bin_is_scaled
|
|
? (hw_binning ? LRZ_FEEDBACK_EARLY_Z_OR_EARLY_Z_LATE_Z :
|
|
LRZ_FEEDBACK_EARLY_Z_LATE_Z)
|
|
: LRZ_FEEDBACK_NONE,
|
|
.force_lrz_dis = CHIP >= A7XX && disable_lrz,
|
|
});
|
|
|
|
tu_cs_emit_regs(cs,
|
|
A6XX_VFD_RENDER_MODE(RENDERING_PASS));
|
|
|
|
const uint32_t x1 = tiling->tile0.width * tile->pos.x;
|
|
const uint32_t y1 = tiling->tile0.height * tile->pos.y;
|
|
|
|
const uint32_t x2 = MIN2(x1 + tiling->tile0.width, MAX_VIEWPORT_SIZE);
|
|
const uint32_t y2 = MIN2(y1 + tiling->tile0.height, MAX_VIEWPORT_SIZE);
|
|
|
|
if (bin_scale_en) {
|
|
/* It seems that the window scissor happens *before*
|
|
* GRAS_BIN_FOVEAT_OFFSET_* is applied to the fragment coordinates,
|
|
* unlike the window offset which happens after it is applied. This
|
|
* means that the window scissor cannot do its job and we have to
|
|
* disable it by setting it to the entire FB size (plus an extra tile
|
|
* size, in case GRAS_BIN_FOVEAT_OFFSET_* is not in use). With FDM it is
|
|
* effectively replaced by the user's scissor anyway.
|
|
*/
|
|
uint32_t width = fb->width + tiling->tile0.width;
|
|
uint32_t height = fb->height + tiling->tile0.height;
|
|
tu6_emit_window_scissor<CHIP>(cs, 0, 0, width, height);
|
|
} else {
|
|
tu6_emit_window_scissor<CHIP>(cs, x1, y1, x2 - 1, y2 - 1);
|
|
}
|
|
tu6_emit_window_offset<CHIP>(cs, x1, y1);
|
|
|
|
unsigned slot = ffs(tile->slot_mask) - 1;
|
|
|
|
if (hw_binning) {
|
|
bool abs_mask =
|
|
cmd->device->physical_device->info->props.has_abs_bin_mask;
|
|
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
|
|
tu_cs_emit(cs, 0x0);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5_OFFSET, abs_mask ? 5 : 4);
|
|
/* A702 also sets BIT(0) but that hangchecks */
|
|
tu_cs_emit(cs, vsc->pipe_sizes[tile->pipe] |
|
|
CP_SET_BIN_DATA5_0_VSC_N(slot) |
|
|
CP_SET_BIN_DATA5_0_VSC_MASK(tile->slot_mask >> slot) |
|
|
COND(abs_mask, CP_SET_BIN_DATA5_0_ABS_MASK(ABS_MASK)));
|
|
if (abs_mask)
|
|
tu_cs_emit(cs, tile->slot_mask);
|
|
tu_cs_emit(cs, tile->pipe * cmd->vsc_draw_strm_pitch);
|
|
tu_cs_emit(cs, tile->pipe * 4);
|
|
tu_cs_emit(cs, tile->pipe * cmd->vsc_prim_strm_pitch);
|
|
}
|
|
|
|
if (util_is_power_of_two_nonzero(tile->slot_mask))
|
|
tu6_emit_cond_for_load_stores<CHIP>(cmd, cs, tile->pipe, slot, hw_binning);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
|
|
tu_cs_emit(cs, !hw_binning);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
|
|
tu_cs_emit(cs, 0x0);
|
|
|
|
if (fdm) {
|
|
VkRect2D bin = {
|
|
{ x1, y1 },
|
|
{ (x2 - x1) * tile->extent.width, (y2 - y1) * tile->extent.height }
|
|
};
|
|
VkRect2D bins[views];
|
|
VkOffset2D frag_offsets[MAX_VIEWS];
|
|
for (unsigned i = 0; i < views; i++) {
|
|
frag_offsets[i] = (VkOffset2D) { 0, 0 };
|
|
|
|
if (!fdm_offsets || cmd->state.rp.shared_viewport) {
|
|
bins[i] = bin;
|
|
continue;
|
|
}
|
|
|
|
VkOffset2D bin_offset = tu_bin_offset(fdm_offsets[i], tiling);
|
|
|
|
bins[i].offset.x = MAX2(0, (int32_t)x1 - bin_offset.x);
|
|
bins[i].offset.y = MAX2(0, (int32_t)y1 - bin_offset.y);
|
|
bins[i].extent.width =
|
|
MAX2(MIN2((int32_t)x1 + bin.extent.width - bin_offset.x, MAX_VIEWPORT_SIZE) - bins[i].offset.x, 0);
|
|
bins[i].extent.height =
|
|
MAX2(MIN2((int32_t)y1 + bin.extent.height - bin_offset.y, MAX_VIEWPORT_SIZE) - bins[i].offset.y, 0);
|
|
}
|
|
|
|
if (cmd->device->physical_device->info->props.has_hw_bin_scaling) {
|
|
if (bin_scale_en) {
|
|
VkExtent2D frag_areas[MAX_HW_SCALED_VIEWS];
|
|
for (unsigned i = 0; i < MAX_HW_SCALED_VIEWS; i++) {
|
|
if (i >= views) {
|
|
/* Make sure unused views aren't garbage */
|
|
frag_areas[i] = (VkExtent2D) {1, 1};
|
|
frag_offsets[i] = (VkOffset2D) { 0, 0 };
|
|
continue;
|
|
}
|
|
|
|
frag_areas[i] = tile->frag_areas[i];
|
|
frag_offsets[i].x = x1 - x1 / tile->frag_areas[i].width;
|
|
frag_offsets[i].y = y1 - y1 / tile->frag_areas[i].height;
|
|
}
|
|
|
|
tu_cs_emit_regs(cs, GRAS_BIN_FOVEAT(CHIP,
|
|
.binscaleen = bin_scale_en,
|
|
.xscale_0 = (enum a7xx_bin_scale)util_logbase2(frag_areas[0].width),
|
|
.yscale_0 = (enum a7xx_bin_scale)util_logbase2(frag_areas[0].height),
|
|
.xscale_1 = (enum a7xx_bin_scale)util_logbase2(frag_areas[1].width),
|
|
.yscale_1 = (enum a7xx_bin_scale)util_logbase2(frag_areas[1].height),
|
|
.xscale_2 = (enum a7xx_bin_scale)util_logbase2(frag_areas[2].width),
|
|
.yscale_2 = (enum a7xx_bin_scale)util_logbase2(frag_areas[2].height),
|
|
.xscale_3 = (enum a7xx_bin_scale)util_logbase2(frag_areas[3].width),
|
|
.yscale_3 = (enum a7xx_bin_scale)util_logbase2(frag_areas[3].height),
|
|
.xscale_4 = (enum a7xx_bin_scale)util_logbase2(frag_areas[4].width),
|
|
.yscale_4 = (enum a7xx_bin_scale)util_logbase2(frag_areas[4].height),
|
|
.xscale_5 = (enum a7xx_bin_scale)util_logbase2(frag_areas[5].width),
|
|
.yscale_5 = (enum a7xx_bin_scale)util_logbase2(frag_areas[5].height)),
|
|
GRAS_BIN_FOVEAT_OFFSET_0(CHIP,
|
|
.xoffset_0 = frag_offsets[0].x,
|
|
.xoffset_1 = frag_offsets[1].x,
|
|
.xoffset_2 = frag_offsets[2].x),
|
|
GRAS_BIN_FOVEAT_OFFSET_1(CHIP,
|
|
.xoffset_3 = frag_offsets[3].x,
|
|
.xoffset_4 = frag_offsets[4].x,
|
|
.xoffset_5 = frag_offsets[5].x),
|
|
GRAS_BIN_FOVEAT_OFFSET_2(CHIP,
|
|
.yoffset_0 = frag_offsets[0].y,
|
|
.yoffset_1 = frag_offsets[1].y,
|
|
.yoffset_2 = frag_offsets[2].y),
|
|
GRAS_BIN_FOVEAT_OFFSET_3(CHIP,
|
|
.yoffset_3 = frag_offsets[3].y,
|
|
.yoffset_4 = frag_offsets[4].y,
|
|
.yoffset_5 = frag_offsets[5].y));
|
|
|
|
tu_cs_emit_regs(cs, RB_BIN_FOVEAT(CHIP,
|
|
.binscaleen = bin_scale_en));
|
|
} else {
|
|
tu_cs_emit_regs(cs, GRAS_BIN_FOVEAT(CHIP));
|
|
tu_cs_emit_regs(cs, RB_BIN_FOVEAT(CHIP));
|
|
}
|
|
}
|
|
|
|
util_dynarray_foreach (&cmd->fdm_bin_patchpoints,
|
|
struct tu_fdm_bin_patchpoint, patch) {
|
|
tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 2 + patch->size);
|
|
tu_cs_emit_qw(cs, patch->iova);
|
|
patch->apply(cmd, cs, patch->data, (VkOffset2D) { x1, y1 },
|
|
frag_offsets, views, tile->frag_areas, bins);
|
|
}
|
|
|
|
/* Make the CP wait until the CP_MEM_WRITE's to the command buffers
|
|
* land. When loading FS params via UBOs, we also need to invalidate
|
|
* UCHE because the FS param patchpoint is read through UCHE.
|
|
*/
|
|
tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
|
|
if (cmd->device->compiler->load_shader_consts_via_preamble) {
|
|
tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
|
|
tu_cs_emit_wfi(cs);
|
|
}
|
|
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
|
|
} else if (cmd->device->physical_device->info->props.has_hw_bin_scaling) {
|
|
tu_cs_emit_regs(cs, GRAS_BIN_FOVEAT(CHIP, 0));
|
|
tu_cs_emit_regs(cs, RB_BIN_FOVEAT(CHIP, 0));
|
|
}
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
|
|
struct tu_cs *cs,
|
|
uint32_t layer_mask,
|
|
uint32_t a,
|
|
uint32_t gmem_a)
|
|
{
|
|
const struct tu_framebuffer *fb = cmd->state.framebuffer;
|
|
const struct tu_image_view *dst = cmd->state.attachments[a];
|
|
const struct tu_image_view *src = cmd->state.attachments[gmem_a];
|
|
|
|
tu_resolve_sysmem<CHIP>(cmd, cs, src, dst, layer_mask, fb->layers, &cmd->state.render_area);
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd,
|
|
struct tu_cs *cs,
|
|
const struct tu_subpass *subpass)
|
|
{
|
|
if (subpass->resolve_attachments) {
|
|
/* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass
|
|
* Commands":
|
|
*
|
|
* End-of-subpass multisample resolves are treated as color
|
|
* attachment writes for the purposes of synchronization.
|
|
* This applies to resolve operations for both color and
|
|
* depth/stencil attachments. That is, they are considered to
|
|
* execute in the VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT
|
|
* pipeline stage and their writes are synchronized with
|
|
* VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
|
|
* rendering within a subpass and any resolve operations at the end
|
|
* of the subpass occurs automatically, without need for explicit
|
|
* dependencies or pipeline barriers. However, if the resolve
|
|
* attachment is also used in a different subpass, an explicit
|
|
* dependency is needed.
|
|
*
|
|
* We use the CP_BLIT path for sysmem resolves, which is really a
|
|
* transfer command, so we have to manually flush similar to the gmem
|
|
* resolve case. However, a flush afterwards isn't needed because of the
|
|
* last sentence and the fact that we're in sysmem mode.
|
|
*/
|
|
tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_CLEAN_COLOR);
|
|
if (subpass->resolve_depth_stencil)
|
|
tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_CLEAN_DEPTH);
|
|
|
|
tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
|
|
|
|
/* Wait for the flushes to land before using the 2D engine */
|
|
tu_cs_emit_wfi(cs);
|
|
|
|
for (unsigned i = 0; i < subpass->resolve_count; i++) {
|
|
uint32_t a = subpass->resolve_attachments[i].attachment;
|
|
if (a == VK_ATTACHMENT_UNUSED)
|
|
continue;
|
|
|
|
uint32_t gmem_a = tu_subpass_get_attachment_to_resolve(subpass, i);
|
|
|
|
tu6_emit_sysmem_resolve<CHIP>(cmd, cs, subpass->multiview_mask, a, gmem_a);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu6_emit_sysmem_unresolve(struct tu_cmd_buffer *cmd,
|
|
struct tu_cs *cs,
|
|
uint32_t layer_mask,
|
|
uint32_t a,
|
|
uint32_t gmem_a)
|
|
{
|
|
const struct tu_framebuffer *fb = cmd->state.framebuffer;
|
|
const struct tu_image_view *src = cmd->state.attachments[a];
|
|
const struct tu_image_view *dst = cmd->state.attachments[gmem_a];
|
|
|
|
tu_resolve_sysmem<CHIP>(cmd, cs, src, dst, layer_mask, fb->layers, &cmd->state.render_area);
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu6_emit_sysmem_unresolves(struct tu_cmd_buffer *cmd,
|
|
struct tu_cs *cs,
|
|
const struct tu_subpass *subpass)
|
|
{
|
|
if (subpass->unresolve_count) {
|
|
/* Similar to above, we need to explicitly flush afterwards to keep this
|
|
* in sync with draw commands. However we also don't currently insert
|
|
* dependencies when a resolve is followed by an unresolve so we also
|
|
* need to manually flush for that case.
|
|
*/
|
|
tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_CLEAN_COLOR);
|
|
tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
|
|
|
|
/* Wait for the flushes to land before using the 2D engine */
|
|
tu_cs_emit_wfi(cs);
|
|
|
|
bool unresolve_ds = false;
|
|
for (unsigned i = 0; i < subpass->unresolve_count; i++) {
|
|
uint32_t a = subpass->unresolve_attachments[i].attachment;
|
|
if (a == VK_ATTACHMENT_UNUSED)
|
|
continue;
|
|
|
|
if (vk_format_is_depth_or_stencil(cmd->state.pass->attachments[a].format))
|
|
unresolve_ds = true;
|
|
|
|
uint32_t gmem_a = tu_subpass_get_attachment_to_unresolve(subpass, i);
|
|
|
|
tu6_emit_sysmem_unresolve<CHIP>(cmd, cs, subpass->multiview_mask, a, gmem_a);
|
|
}
|
|
|
|
tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_CLEAN_COLOR);
|
|
tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_INVALIDATE_COLOR);
|
|
if (unresolve_ds) {
|
|
tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_CLEAN_DEPTH);
|
|
tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_INVALIDATE_DEPTH);
|
|
}
|
|
tu_cs_emit_wfi(cs);
|
|
}
|
|
}
|
|
template <chip CHIP>
|
|
static void
|
|
tu6_emit_gmem_resolves(struct tu_cmd_buffer *cmd,
|
|
const struct tu_subpass *subpass,
|
|
struct tu_resolve_group *resolve_group,
|
|
struct tu_cs *cs)
|
|
{
|
|
const struct tu_render_pass *pass = cmd->state.pass;
|
|
const struct tu_framebuffer *fb = cmd->state.framebuffer;
|
|
|
|
if (subpass->resolve_attachments) {
|
|
for (unsigned i = 0; i < subpass->resolve_count; i++) {
|
|
uint32_t a = subpass->resolve_attachments[i].attachment;
|
|
if (a == VK_ATTACHMENT_UNUSED)
|
|
continue;
|
|
|
|
uint32_t gmem_a = tu_subpass_get_attachment_to_resolve(subpass, i);
|
|
|
|
tu_store_gmem_attachment<CHIP>(cmd, cs, resolve_group, a, gmem_a,
|
|
fb->layers, subpass->multiview_mask,
|
|
false);
|
|
|
|
if (pass->attachments[a].gmem) {
|
|
/* check if the resolved attachment is needed by later subpasses,
|
|
* if it is, should be doing a GMEM->GMEM resolve instead of
|
|
* GMEM->MEM->GMEM..
|
|
*/
|
|
perf_debug(cmd->device,
|
|
"TODO: missing GMEM->GMEM resolve path\n");
|
|
if (CHIP >= A7XX)
|
|
tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_CLEAN_BLIT_CACHE);
|
|
tu_load_gmem_attachment<CHIP>(cmd, cs, resolve_group, a, a, false, true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Emits any tile stores at the end of a subpass.
|
|
*
|
|
* These are emitted into draw_cs for non-final subpasses, and tile_store_cs for
|
|
* the final subpass. The draw_cs ones mean that we have to disable IB2 skipping
|
|
* for the draw_cs so we don't exit before storing. The separate tile_store_cs
|
|
* lets us leave IB2 skipping enabled in the common case of a single-subpass
|
|
* renderpass (or dynamic rendering).
|
|
*
|
|
* To do better in the multi-subpass case, we'd need the individual CS entries
|
|
* of draw_cs to have a flag for whether they can be skipped or not, and
|
|
* interleave drawing cs entries with store cs entries.
|
|
*
|
|
* This is independent of cond_store_allowed, which is about "can we skip doing
|
|
* the store if no other rendering happened in the tile?" We can only skip if
|
|
* the cond that we set up at the start of the tile (or reset just before
|
|
* calling tile_store_cs) is still in place.
|
|
*/
|
|
template <chip CHIP>
|
|
static void
|
|
tu6_emit_gmem_stores(struct tu_cmd_buffer *cmd,
|
|
struct tu_cs *cs,
|
|
struct tu_resolve_group *resolve_group,
|
|
const struct tu_subpass *subpass)
|
|
{
|
|
const struct tu_render_pass *pass = cmd->state.pass;
|
|
const struct tu_framebuffer *fb = cmd->state.framebuffer;
|
|
const struct tu_vsc_config *vsc = tu_vsc_config(cmd, cmd->state.tiling);
|
|
uint32_t subpass_idx = subpass - cmd->state.pass->subpasses;
|
|
const bool cond_exec_allowed = vsc->binning_possible &&
|
|
cmd->state.pass->has_cond_load_store &&
|
|
(!cmd->state.rp.draw_cs_writes_to_cond_pred ||
|
|
cs != &cmd->draw_cs);
|
|
|
|
bool scissor_emitted = false;
|
|
|
|
/* Resolve should happen before store in case BLIT_EVENT_STORE_AND_CLEAR is
|
|
* used for a store.
|
|
*
|
|
* Note that we're emitting the resolves into the tile store CS, which is
|
|
* unconditionally executed (unlike draw_cs which depends on geometry having
|
|
* been generated). a7xx has HW conditional resolve support that may skip
|
|
* the resolve if geometry didn't cover it, anyway.
|
|
*/
|
|
if (subpass->resolve_attachments) {
|
|
if (!scissor_emitted) {
|
|
tu6_emit_blit_scissor(cmd, cs, true, false);
|
|
scissor_emitted = true;
|
|
}
|
|
tu6_emit_gmem_resolves<CHIP>(cmd, subpass, resolve_group, cs);
|
|
}
|
|
|
|
for (uint32_t a = 0; a < pass->attachment_count; ++a) {
|
|
const struct tu_render_pass_attachment *att = &pass->attachments[a];
|
|
/* Note: att->cond_store_allowed implies at least one of att->store_* set */
|
|
if (pass->attachments[a].gmem && att->last_subpass_idx == subpass_idx) {
|
|
if (!scissor_emitted) {
|
|
tu6_emit_blit_scissor(cmd, cs, true, false);
|
|
scissor_emitted = true;
|
|
}
|
|
tu_store_gmem_attachment<CHIP>(cmd, cs, resolve_group, a, a,
|
|
fb->layers, att->used_views,
|
|
cond_exec_allowed);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu6_emit_tile_store_cs(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
|
|
{
|
|
const struct tu_render_pass *pass = cmd->state.pass;
|
|
uint32_t subpass_idx = pass->subpass_count - 1;
|
|
const struct tu_subpass *subpass = &pass->subpasses[subpass_idx];
|
|
|
|
if (pass->has_fdm)
|
|
tu_cs_set_writeable(cs, true);
|
|
|
|
/* We believe setting the marker affects what state HW blocks save/restore
|
|
* during preemption. So we only emit it before the stores at the end of the
|
|
* last subpass, not other resolves.
|
|
*/
|
|
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
|
|
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BIN_RESOLVE) |
|
|
A6XX_CP_SET_MARKER_0_USES_GMEM);
|
|
|
|
struct tu_resolve_group resolve_group = {};
|
|
|
|
tu6_emit_gmem_stores<CHIP>(cmd, cs, &resolve_group, subpass);
|
|
|
|
tu_emit_resolve_group<CHIP>(cmd, cs, &resolve_group);
|
|
|
|
if (pass->has_fdm)
|
|
tu_cs_set_writeable(cs, false);
|
|
|
|
}
|
|
|
|
void
|
|
tu_disable_draw_states(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
|
|
{
|
|
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
|
|
tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
|
|
CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
|
|
CP_SET_DRAW_STATE__0_GROUP_ID(0));
|
|
tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
|
|
tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
|
|
|
|
cmd->state.dirty |= TU_CMD_DIRTY_DRAW_STATE;
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu6_init_static_regs(struct tu_device *dev, struct tu_cs *cs)
|
|
{
|
|
const struct tu_physical_device *phys_dev = dev->physical_device;
|
|
|
|
if (CHIP >= A7XX) {
|
|
/* On A7XX, RB_CCU_CNTL was broken into two registers, RB_CCU_CNTL which has
|
|
* static properties that can be set once, this requires a WFI to take effect.
|
|
* While the newly introduced register RB_CCU_CACHE_CNTL has properties that may
|
|
* change per-RP and don't require a WFI to take effect, only CCU inval/flush
|
|
* events are required.
|
|
*/
|
|
|
|
enum a7xx_concurrent_resolve_mode resolve_mode = CONCURRENT_RESOLVE_MODE_2;
|
|
if (TU_DEBUG(NO_CONCURRENT_RESOLVES))
|
|
resolve_mode = CONCURRENT_RESOLVE_MODE_DISABLED;
|
|
|
|
enum a7xx_concurrent_unresolve_mode unresolve_mode = CONCURRENT_UNRESOLVE_MODE_FULL;
|
|
if (TU_DEBUG(NO_CONCURRENT_UNRESOLVES))
|
|
unresolve_mode = CONCURRENT_UNRESOLVE_MODE_DISABLED;
|
|
|
|
tu_cs_emit_regs(cs, RB_CCU_CNTL(A7XX,
|
|
.gmem_fast_clear_disable =
|
|
!dev->physical_device->info->props.has_gmem_fast_clear,
|
|
.concurrent_resolve_mode = resolve_mode,
|
|
.concurrent_unresolve_mode = unresolve_mode,
|
|
));
|
|
}
|
|
|
|
for (size_t i = 0; i < ARRAY_SIZE(phys_dev->info->magic_raw); i++) {
|
|
auto magic_reg = phys_dev->info->magic_raw[i];
|
|
if (!magic_reg.reg)
|
|
break;
|
|
|
|
uint32_t value = magic_reg.value;
|
|
switch(magic_reg.reg) {
|
|
case REG_A6XX_TPL1_DBG_ECO_CNTL:
|
|
value = (value & ~A6XX_TPL1_DBG_ECO_CNTL_LINEAR_MIPMAP_FALLBACK_IN_BLOCKS) |
|
|
(phys_dev->info->props.supports_linear_mipmap_threshold_in_blocks
|
|
? A6XX_TPL1_DBG_ECO_CNTL_LINEAR_MIPMAP_FALLBACK_IN_BLOCKS
|
|
: 0);
|
|
break;
|
|
case REG_A6XX_TPL1_DBG_ECO_CNTL1:
|
|
value = (value & ~A6XX_TPL1_DBG_ECO_CNTL1_TP_UBWC_FLAG_HINT) |
|
|
(phys_dev->info->props.enable_tp_ubwc_flag_hint
|
|
? A6XX_TPL1_DBG_ECO_CNTL1_TP_UBWC_FLAG_HINT
|
|
: 0);
|
|
break;
|
|
}
|
|
|
|
tu_cs_emit_write_reg(cs, magic_reg.reg, value);
|
|
}
|
|
|
|
if (dev->physical_device->info->props.has_attachment_shading_rate) {
|
|
tu_cs_emit_write_reg(cs, REG_A7XX_GRAS_LRZ_QUALITY_LOOKUP_TABLE(0),
|
|
fd_gras_shading_rate_lut(0));
|
|
tu_cs_emit_write_reg(cs, REG_A7XX_GRAS_LRZ_QUALITY_LOOKUP_TABLE(1),
|
|
fd_gras_shading_rate_lut(1));
|
|
}
|
|
|
|
tu_cs_emit_write_reg(cs, REG_A6XX_SP_NC_MODE_CNTL_2, 0);
|
|
tu_cs_emit_write_reg(cs, REG_A6XX_SP_PERFCTR_SHADER_MASK, 0x3f);
|
|
if (CHIP == A6XX && !cs->device->physical_device->info->props.is_a702)
|
|
tu_cs_emit_write_reg(cs, REG_A6XX_TPL1_UNKNOWN_B605, 0x44);
|
|
if (CHIP == A6XX) {
|
|
tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
|
|
tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
|
|
}
|
|
|
|
tu_cs_emit_write_reg(cs, REG_A6XX_SP_GFX_USIZE, 0); // 2 on a740 ???
|
|
tu_cs_emit_write_reg(cs, REG_A6XX_TPL1_PS_ROTATION_CNTL, 0);
|
|
if (CHIP == A6XX)
|
|
tu_cs_emit_regs(cs, A6XX_HLSQ_SHARED_CONSTS(.enable = false));
|
|
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0);
|
|
tu_cs_emit_regs(cs, A6XX_SP_MODE_CNTL(.constant_demotion_enable = true,
|
|
.isammode = ISAMMODE_GL,
|
|
.shared_consts_enable = false));
|
|
|
|
tu_cs_emit_regs(cs, A6XX_VFD_MODE_CNTL(.vertex = true, .instance = true));
|
|
tu_cs_emit_write_reg(cs, REG_A6XX_RB_MODE_CNTL, 0x00000010);
|
|
|
|
tu_cs_emit_regs(cs, GRAS_MODE_CNTL(CHIP, CHIP >= A7XX ? 0x2 : 0));
|
|
|
|
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0);
|
|
|
|
if (CHIP == A6XX) {
|
|
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0);
|
|
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0);
|
|
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0);
|
|
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0);
|
|
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0);
|
|
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0);
|
|
}
|
|
|
|
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0);
|
|
|
|
tu_cs_emit_regs(cs, VPC_REPLACE_MODE_CNTL(CHIP, false));
|
|
tu_cs_emit_regs(cs, VPC_ROTATION_CNTL(CHIP));
|
|
|
|
tu_cs_emit_regs(cs, VPC_SO_OVERRIDE(CHIP, true));
|
|
|
|
tu_cs_emit_write_reg(cs, REG_A6XX_TPL1_PS_SWIZZLE_CNTL, 0);
|
|
|
|
tu_cs_emit_regs(cs, GRAS_SC_SCREEN_SCISSOR_CNTL(CHIP));
|
|
if (CHIP == A6XX) {
|
|
tu_cs_emit_regs(cs, GRAS_SU_CONSERVATIVE_RAS_CNTL(CHIP, 0));
|
|
tu_cs_emit_regs(cs, PC_DGEN_SU_CONSERVATIVE_RAS_CNTL(CHIP));
|
|
|
|
tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0);
|
|
tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0);
|
|
}
|
|
tu_cs_emit_write_reg(cs, REG_A6XX_VPC_LB_MODE_CNTL, 0);
|
|
tu_cs_emit_regs(cs, PC_CONTEXT_SWITCH_GFX_PREEMPTION_MODE(CHIP));
|
|
tu_cs_emit_regs(cs, A6XX_TPL1_MODE_CNTL(.isammode = ISAMMODE_GL,
|
|
.texcoordroundmode = dev->instance->use_tex_coord_round_nearest_even_mode
|
|
? COORD_ROUND_NEAREST_EVEN
|
|
: COORD_TRUNCATE,
|
|
.nearestmipsnap = CLAMP_ROUND_TRUNCATE,
|
|
.destdatatypeoverride = true));
|
|
tu_cs_emit_regs(cs, SP_REG_PROG_ID_3(CHIP, .dword = 0xfc));
|
|
|
|
tu_cs_emit_write_reg(cs, REG_A6XX_VFD_RENDER_MODE, 0x00000000);
|
|
|
|
tu_cs_emit_regs(cs, A6XX_RB_ALPHA_TEST_CNTL()); /* always disable alpha test */
|
|
|
|
tu_cs_emit_regs(cs,
|
|
A6XX_TPL1_GFX_BORDER_COLOR_BASE(.bo = dev->global_bo,
|
|
.bo_offset = gb_offset(bcolor)));
|
|
tu_cs_emit_regs(cs,
|
|
A6XX_TPL1_CS_BORDER_COLOR_BASE(.bo = dev->global_bo,
|
|
.bo_offset = gb_offset(bcolor)));
|
|
|
|
/* BR-only registers */
|
|
if (CHIP >= A7XX)
|
|
tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(THREAD_MODE) |
|
|
CP_COND_REG_EXEC_0_BR);
|
|
tu_cs_emit_write_reg(cs, REG_A6XX_RB_DBG_ECO_CNTL,
|
|
phys_dev->info->magic.RB_DBG_ECO_CNTL);
|
|
tu_cs_emit_write_reg(cs, REG_A6XX_RB_RBP_CNTL,
|
|
phys_dev->info->magic.RB_RBP_CNTL);
|
|
if (CHIP >= A7XX) {
|
|
tu_cs_emit_regs(cs, RB_UNKNOWN_8E09(CHIP, 0x7));
|
|
tu_cond_exec_end(cs);
|
|
}
|
|
|
|
if (CHIP == A7XX) {
|
|
tu_cs_emit_regs(cs, TPL1_BICUBIC_WEIGHTS_TABLE_REG(CHIP, 0, 0),
|
|
TPL1_BICUBIC_WEIGHTS_TABLE_REG(CHIP, 1, 0x3fe05ff4),
|
|
TPL1_BICUBIC_WEIGHTS_TABLE_REG(CHIP, 2, 0x3fa0ebee),
|
|
TPL1_BICUBIC_WEIGHTS_TABLE_REG(CHIP, 3, 0x3f5193ed),
|
|
TPL1_BICUBIC_WEIGHTS_TABLE_REG(CHIP, 4, 0x3f0243f0), );
|
|
}
|
|
|
|
if (CHIP >= A7XX) {
|
|
/* Blob sets these two per draw. */
|
|
tu_cs_emit_regs(cs, PC_HS_BUFFER_SIZE(CHIP, TU_TESS_PARAM_SIZE));
|
|
/* Blob adds a bit more space ({0x10, 0x20, 0x30, 0x40} bytes)
|
|
* but the meaning of this additional space is not known,
|
|
* so we play safe and don't add it.
|
|
*/
|
|
tu_cs_emit_regs(cs, PC_TF_BUFFER_SIZE(CHIP, TU_TESS_FACTOR_SIZE));
|
|
}
|
|
|
|
/* There is an optimization to skip executing draw states for draws with no
|
|
* instances. Instead of simply skipping the draw, internally the firmware
|
|
* sets a bit in PC_DRAW_INITIATOR that seemingly skips the draw. However
|
|
* there is a hardware bug where this bit does not always cause the FS
|
|
* early preamble to be skipped. Because the draw states were skipped,
|
|
* SP_PS_CNTL_0, SP_PS_BASE and so on are never updated and a
|
|
* random FS preamble from the last draw is executed. If the last visible
|
|
* draw is from the same submit, it shouldn't be a problem because we just
|
|
* re-execute the same preamble and preambles don't have side effects, but
|
|
* if it's from another process then we could execute a garbage preamble
|
|
* leading to hangs and faults. To make sure this doesn't happen, we reset
|
|
* SP_PS_CNTL_0 here, making sure that the EARLYPREAMBLE bit isn't set
|
|
* so any leftover early preamble doesn't get executed. Other stages don't
|
|
* seem to be affected.
|
|
*/
|
|
if (phys_dev->info->props.has_early_preamble) {
|
|
tu_cs_emit_regs(cs, A6XX_SP_PS_CNTL_0());
|
|
}
|
|
|
|
/* Workaround for draw state with constlen not being applied for
|
|
* zero-instance draw calls. See IR3_CONST_ALLOC_DRIVER_PARAMS allocation
|
|
* for more info.
|
|
*/
|
|
tu_cs_emit_pkt4(
|
|
cs, CHIP == A6XX ? REG_A6XX_SP_VS_CONST_CONFIG : REG_A7XX_SP_VS_CONST_CONFIG, 1);
|
|
tu_cs_emit(cs, A6XX_SP_VS_CONST_CONFIG_CONSTLEN(8) | A6XX_SP_VS_CONST_CONFIG_ENABLED);
|
|
}
|
|
|
|
/* Set always-identical registers used specifically for GMEM */
|
|
template <chip CHIP>
|
|
static void
|
|
tu7_emit_tile_render_begin_regs(struct tu_cs *cs)
|
|
{
|
|
tu_cs_emit_regs(cs, RB_BUFFER_CNTL(CHIP, 0x0));
|
|
tu_cs_emit_regs(cs, RB_CLEAR_TARGET(CHIP, .clear_mode = CLEAR_MODE_GMEM));
|
|
}
|
|
|
|
/* Emit the bin restore preamble, which runs in between bins when L1
|
|
* preemption with skipsaverestore happens and we switch back to this context.
|
|
* We need to restore static registers normally programmed at cmdbuf start
|
|
* which weren't saved, and we need to program the CCU state which is normally
|
|
* programmed before rendering the bins and isn't saved/restored by the CP
|
|
* because it is always the same for GMEM render passes.
|
|
*/
|
|
template <chip CHIP>
|
|
static void
|
|
tu_emit_bin_preamble(struct tu_device *dev, struct tu_cs *cs, bool bv)
|
|
{
|
|
tu6_init_static_regs<CHIP>(dev, cs);
|
|
|
|
if (!bv)
|
|
emit_rb_ccu_cntl<CHIP>(cs, dev, true);
|
|
emit_vpc_attr_buf<CHIP>(cs, dev, true);
|
|
|
|
if (CHIP == A7XX && !bv) {
|
|
tu7_emit_tile_render_begin_regs<CHIP>(cs);
|
|
}
|
|
|
|
if (CHIP == A6XX) {
|
|
tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
|
|
tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VSC_CHANNEL_VISIBILITY(0)) |
|
|
CP_MEM_TO_REG_0_CNT(32));
|
|
tu_cs_emit_qw(cs, dev->global_bo->iova + gb_offset(vsc_state));
|
|
}
|
|
}
|
|
|
|
VkResult
|
|
tu_init_bin_preamble(struct tu_device *device)
|
|
{
|
|
struct tu_cs preamble_cs;
|
|
VkResult result = tu_cs_begin_sub_stream(&device->sub_cs, 256, &preamble_cs);
|
|
if (result != VK_SUCCESS)
|
|
return vk_startup_errorf(device->instance, result, "bin restore");
|
|
|
|
TU_CALLX(device, tu_emit_bin_preamble)(device, &preamble_cs, false);
|
|
|
|
device->bin_preamble_entry = tu_cs_end_sub_stream(&device->sub_cs, &preamble_cs);
|
|
|
|
if (device->physical_device->info->chip >= 7) {
|
|
result = tu_cs_begin_sub_stream(&device->sub_cs, 256, &preamble_cs);
|
|
if (result != VK_SUCCESS)
|
|
return vk_startup_errorf(device->instance, result, "bin restore");
|
|
|
|
TU_CALLX(device, tu_emit_bin_preamble)(device, &preamble_cs, true);
|
|
|
|
device->bin_preamble_bv_entry = tu_cs_end_sub_stream(&device->sub_cs, &preamble_cs);
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
|
|
{
|
|
struct tu_device *dev = cmd->device;
|
|
const struct tu_physical_device *phys_dev = dev->physical_device;
|
|
|
|
if (CHIP == A6XX) {
|
|
tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
|
|
} else {
|
|
tu7_thread_control(cs, CP_SET_THREAD_BOTH);
|
|
|
|
tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_INVALIDATE_COLOR);
|
|
tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_INVALIDATE_DEPTH);
|
|
tu_emit_event_write<CHIP>(cmd, cs, FD_LRZ_INVALIDATE);
|
|
tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
|
|
tu_cs_emit_wfi(cs);
|
|
}
|
|
|
|
tu_cs_emit_regs(cs, SP_UPDATE_CNTL(CHIP,
|
|
.vs_state = true,
|
|
.hs_state = true,
|
|
.ds_state = true,
|
|
.gs_state = true,
|
|
.fs_state = true,
|
|
.cs_state = true,
|
|
.cs_uav = true,
|
|
.gfx_uav = true,
|
|
.cs_shared_const = true,
|
|
.gfx_shared_const = true,
|
|
.cs_bindless = CHIP == A6XX ? 0x1f : 0xff,
|
|
.gfx_bindless = CHIP == A6XX ? 0x1f : 0xff,));
|
|
|
|
tu_cs_emit_wfi(cs);
|
|
|
|
if (dev->dbg_cmdbuf_stomp_cs) {
|
|
tu_cs_emit_call(cs, dev->dbg_cmdbuf_stomp_cs);
|
|
}
|
|
|
|
cmd->state.cache.pending_flush_bits &=
|
|
~(TU_CMD_FLAG_WAIT_FOR_IDLE | TU_CMD_FLAG_CACHE_INVALIDATE);
|
|
|
|
tu6_init_static_regs<CHIP>(cmd->device, cs);
|
|
|
|
emit_rb_ccu_cntl<CHIP>(cs, cmd->device, false);
|
|
emit_vpc_attr_buf<CHIP>(cs, cmd->device, false);
|
|
cmd->state.ccu_state = TU_CMD_CCU_SYSMEM;
|
|
|
|
tu_disable_draw_states(cmd, cs);
|
|
|
|
if (phys_dev->info->props.cmdbuf_start_a725_quirk) {
|
|
tu_cs_reserve(cs, 3 + 4);
|
|
tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
|
|
tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(THREAD_MODE) |
|
|
CP_COND_REG_EXEC_0_BR | CP_COND_REG_EXEC_0_LPAC);
|
|
tu_cs_emit(cs, RENDER_MODE_CP_COND_REG_EXEC_1_DWORDS(4));
|
|
tu_cs_emit_ib(cs, &dev->cmdbuf_start_a725_quirk_entry);
|
|
}
|
|
|
|
if (CHIP >= A7XX) {
|
|
if (cmd->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT)
|
|
tu_cs_set_writeable(cs, true);
|
|
|
|
/* This sets the amount BV is allowed to be ahead of BR when we do
|
|
* BV_WAIT_FOR_BR. By setting it based on the vis stream count we
|
|
* prevent write-after-read races with the vis stream.
|
|
*/
|
|
tu_cs_emit_pkt7(cs, CP_BV_BR_COUNT_OPS, 2);
|
|
tu_cs_emit(cs, CP_BV_BR_COUNT_OPS_0_OP(PIPE_SET_BR_OFFSET));
|
|
|
|
struct tu_vis_stream_patchpoint *patchpoint =
|
|
&cmd->vis_stream_count_patchpoint;
|
|
patchpoint->data = cs->cur;
|
|
patchpoint->iova = tu_cs_get_cur_iova(cs);
|
|
tu_cs_emit(cs, 1);
|
|
|
|
if (cmd->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT)
|
|
tu_cs_set_writeable(cs, false);
|
|
|
|
tu7_set_thread_br_patchpoint(cmd, cs, false);
|
|
}
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SET_AMBLE, 3);
|
|
tu_cs_emit_qw(cs, cmd->device->bin_preamble_entry.bo->iova +
|
|
cmd->device->bin_preamble_entry.offset);
|
|
tu_cs_emit(cs, CP_SET_AMBLE_2_DWORDS(cmd->device->bin_preamble_entry.size /
|
|
sizeof(uint32_t)) |
|
|
CP_SET_AMBLE_2_TYPE(BIN_PREAMBLE_AMBLE_TYPE));
|
|
|
|
if (CHIP >= A7XX) {
|
|
tu7_thread_control(cs, CP_SET_THREAD_BV);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SET_AMBLE, 3);
|
|
tu_cs_emit_qw(cs, cmd->device->bin_preamble_bv_entry.bo->iova +
|
|
cmd->device->bin_preamble_bv_entry.offset);
|
|
tu_cs_emit(cs, CP_SET_AMBLE_2_DWORDS(cmd->device->bin_preamble_bv_entry.size /
|
|
sizeof(uint32_t)) |
|
|
CP_SET_AMBLE_2_TYPE(BIN_PREAMBLE_AMBLE_TYPE));
|
|
|
|
tu7_thread_control(cs, CP_SET_THREAD_BOTH);
|
|
|
|
tu7_set_pred_mask(cs, (1u << TU_PREDICATE_VTX_STATS_RUNNING) |
|
|
(1u << TU_PREDICATE_VTX_STATS_NOT_RUNNING),
|
|
(1u << TU_PREDICATE_VTX_STATS_NOT_RUNNING));
|
|
}
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SET_AMBLE, 3);
|
|
tu_cs_emit_qw(cs, 0);
|
|
tu_cs_emit(cs, CP_SET_AMBLE_2_TYPE(PREAMBLE_AMBLE_TYPE));
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SET_AMBLE, 3);
|
|
tu_cs_emit_qw(cs, 0);
|
|
tu_cs_emit(cs, CP_SET_AMBLE_2_TYPE(POSTAMBLE_AMBLE_TYPE));
|
|
|
|
if (CHIP >= A7XX) {
|
|
tu7_set_thread_br_patchpoint(cmd, cs, false);
|
|
}
|
|
|
|
tu_cs_sanity_check(cs);
|
|
}
|
|
|
|
bool
|
|
tu_enable_fdm_offset(struct tu_cmd_buffer *cmd)
|
|
{
|
|
if (!cmd->state.pass)
|
|
return false;
|
|
|
|
if (!cmd->state.pass->has_fdm)
|
|
return false;
|
|
|
|
unsigned fdm_a = cmd->state.pass->fragment_density_map.attachment;
|
|
if (fdm_a == VK_ATTACHMENT_UNUSED)
|
|
return TU_DEBUG(FDM_OFFSET);
|
|
|
|
const struct tu_image_view *fdm = cmd->state.attachments[fdm_a];
|
|
return fdm->image->vk.create_flags &
|
|
VK_IMAGE_CREATE_FRAGMENT_DENSITY_MAP_OFFSET_BIT_EXT;
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
update_vsc_pipe(struct tu_cmd_buffer *cmd,
|
|
struct tu_cs *cs,
|
|
uint32_t num_vsc_pipes)
|
|
{
|
|
const struct tu_tiling_config *tiling = cmd->state.tiling;
|
|
const struct tu_vsc_config *vsc = tu_vsc_config(cmd, tiling);
|
|
|
|
tu_cs_emit_regs(cs,
|
|
A6XX_VSC_BIN_SIZE(.width = tiling->tile0.width,
|
|
.height = tiling->tile0.height));
|
|
|
|
tu_cs_emit_regs(cs,
|
|
A6XX_VSC_EXPANDED_BIN_CNTL(.nx = vsc->tile_count.width,
|
|
.ny = vsc->tile_count.height));
|
|
|
|
tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), num_vsc_pipes);
|
|
tu_cs_emit_array(cs, vsc->pipe_config, num_vsc_pipes);
|
|
|
|
tu_cs_emit_regs(cs,
|
|
A6XX_VSC_PIPE_DATA_PRIM_STRIDE(cmd->vsc_prim_strm_pitch),
|
|
A6XX_VSC_PIPE_DATA_PRIM_LENGTH(cmd->vsc_prim_strm_pitch - VSC_PAD));
|
|
|
|
tu_cs_emit_regs(cs,
|
|
A6XX_VSC_PIPE_DATA_DRAW_STRIDE(cmd->vsc_draw_strm_pitch),
|
|
A6XX_VSC_PIPE_DATA_DRAW_LENGTH(cmd->vsc_draw_strm_pitch - VSC_PAD));
|
|
|
|
if (CHIP >= A7XX)
|
|
tu_cs_emit_regs(cs, VSC_UNKNOWN_0D08(CHIP, 0));
|
|
}
|
|
|
|
static void
|
|
emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
|
|
{
|
|
const struct tu_tiling_config *tiling = cmd->state.tiling;
|
|
const struct tu_vsc_config *vsc = tu_vsc_config(cmd, tiling);
|
|
const uint32_t used_pipe_count =
|
|
vsc->pipe_count.width * vsc->pipe_count.height;
|
|
|
|
for (int i = 0; i < used_pipe_count; i++) {
|
|
tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
|
|
tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
|
|
CP_COND_WRITE5_0_WRITE_MEMORY);
|
|
tu_cs_emit(cs, REG_A6XX_VSC_PIPE_DATA_DRAW_SIZE(i));
|
|
tu_cs_emit(cs, 0);
|
|
tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_draw_strm_pitch - VSC_PAD));
|
|
tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
|
|
tu_cs_emit_qw(cs, global_iova(cmd, vsc_draw_overflow));
|
|
tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_draw_strm_pitch));
|
|
|
|
tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
|
|
tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
|
|
CP_COND_WRITE5_0_WRITE_MEMORY);
|
|
tu_cs_emit(cs, REG_A6XX_VSC_PIPE_DATA_PRIM_SIZE(i));
|
|
tu_cs_emit(cs, 0);
|
|
tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_prim_strm_pitch - VSC_PAD));
|
|
tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
|
|
tu_cs_emit_qw(cs, global_iova(cmd, vsc_prim_overflow));
|
|
tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_prim_strm_pitch));
|
|
}
|
|
|
|
tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
|
|
const VkOffset2D *fdm_offsets, bool use_cb)
|
|
{
|
|
struct tu_physical_device *phys_dev = cmd->device->physical_device;
|
|
const struct tu_framebuffer *fb = cmd->state.framebuffer;
|
|
const struct tu_tiling_config *tiling = cmd->state.tiling;
|
|
|
|
/* If this command buffer may be executed multiple times, then
|
|
* viewports/scissor states may have been changed by previous executions
|
|
* and we need to reset them before executing the binning IB. With FDM
|
|
* offset the viewport also needs to be transformed during the binning
|
|
* phase.
|
|
*/
|
|
if ((!(cmd->usage_flags & VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT) ||
|
|
fdm_offsets) && cmd->fdm_bin_patchpoints.size != 0) {
|
|
unsigned num_views = tu_fdm_num_layers(cmd);
|
|
VkExtent2D unscaled_frag_areas[num_views];
|
|
VkRect2D bins[num_views];
|
|
VkOffset2D frag_offsets[num_views];
|
|
for (unsigned i = 0; i < num_views; i++) {
|
|
unscaled_frag_areas[i] = (VkExtent2D) { 1, 1 };
|
|
frag_offsets[i] = (VkOffset2D) { 0, 0 };
|
|
if (fdm_offsets && !cmd->state.rp.shared_viewport) {
|
|
/* We need to shift over the viewport and scissor during the
|
|
* binning pass to match the shift applied when rendering. The way
|
|
* to do this is to make the per-view bin start negative. In the
|
|
* actual rendering pass, the per-view bin start is shifted in a
|
|
* negative direction but the first bin is clipped so that the bin
|
|
* start is never negative, but we need to do this to avoid
|
|
* clipping the user scissor to a non-zero common bin start. We
|
|
* skip patching load/store below in order to avoid patching loads
|
|
* and stores to a crazy negative-offset bin. The parts of the
|
|
* framebuffer left or above the origin correspond to the
|
|
* non-visible parts of the left or top bins that will be
|
|
* discarded. The framebuffer still needs to extend to the
|
|
* original bottom and right, to avoid incorrectly clipping the
|
|
* user scissor, so we need to add to the width and height to
|
|
* compensate.
|
|
*/
|
|
VkOffset2D bin_offset = tu_bin_offset(fdm_offsets[i], tiling);
|
|
bins[i] = {
|
|
{ -bin_offset.x, -bin_offset.y },
|
|
{ fb->width + bin_offset.x, fb->height + bin_offset.y },
|
|
};
|
|
} else {
|
|
bins[i] = { { 0, 0 }, { fb->width, fb->height } };
|
|
}
|
|
}
|
|
util_dynarray_foreach (&cmd->fdm_bin_patchpoints,
|
|
struct tu_fdm_bin_patchpoint, patch) {
|
|
if (patch->flags & TU_FDM_SKIP_BINNING)
|
|
continue;
|
|
tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 2 + patch->size);
|
|
tu_cs_emit_qw(cs, patch->iova);
|
|
patch->apply(cmd, cs, patch->data, (VkOffset2D) {0, 0}, frag_offsets,
|
|
num_views, unscaled_frag_areas, bins);
|
|
}
|
|
|
|
tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
|
|
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
|
|
}
|
|
|
|
uint32_t width = fb->width + (fdm_offsets ? tiling->tile0.width : 0);
|
|
uint32_t height = fb->height + (fdm_offsets ? tiling->tile0.height : 0);
|
|
|
|
tu6_emit_window_scissor<CHIP>(cs, 0, 0, width - 1, height - 1);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
|
|
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BIN_VISIBILITY));
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
|
|
tu_cs_emit(cs, 0x1);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
|
|
tu_cs_emit(cs, 0x1);
|
|
|
|
tu_cs_emit_wfi(cs);
|
|
|
|
tu_cs_emit_regs(cs,
|
|
A6XX_VFD_RENDER_MODE(.render_mode = BINNING_PASS));
|
|
|
|
update_vsc_pipe<CHIP>(cmd, cs, phys_dev->info->num_vsc_pipes);
|
|
|
|
tu_emit_event_write<CHIP>(cmd, cs, FD_VSC_BINNING_START);
|
|
|
|
tu_cs_emit_regs(cs,
|
|
A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0));
|
|
|
|
tu_cs_emit_regs(cs,
|
|
A6XX_TPL1_WINDOW_OFFSET(.x = 0, .y = 0));
|
|
|
|
if (use_cb)
|
|
trace_start_concurrent_binning_ib(&cmd->trace, cs, cmd);
|
|
else
|
|
trace_start_binning_ib(&cmd->trace, cs, cmd);
|
|
|
|
/* emit IB to binning drawcmds: */
|
|
tu_cs_emit_call(cs, &cmd->draw_cs);
|
|
|
|
if (use_cb)
|
|
trace_end_concurrent_binning_ib(&cmd->trace, cs);
|
|
else
|
|
trace_end_binning_ib(&cmd->trace, cs);
|
|
|
|
tu_clone_trace_range(cmd, cs, &cmd->trace, cmd->trace_renderpass_start,
|
|
u_trace_end_iterator(&cmd->rp_trace));
|
|
|
|
/* switching from binning pass to GMEM pass will cause a switch from
|
|
* PROGRAM_BINNING to PROGRAM, which invalidates const state (XS_CONST states)
|
|
* so make sure these states are re-emitted
|
|
* (eventually these states shouldn't exist at all with shader prologue)
|
|
* only VS and GS are invalidated, as FS isn't emitted in binning pass,
|
|
* and we don't use HW binning when tesselation is used
|
|
*/
|
|
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
|
|
tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
|
|
CP_SET_DRAW_STATE__0_DISABLE |
|
|
CP_SET_DRAW_STATE__0_GROUP_ID(TU_DRAW_STATE_CONST));
|
|
tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
|
|
tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
|
|
|
|
tu_emit_event_write<CHIP>(cmd, cs, FD_VSC_BINNING_END);
|
|
|
|
/* This flush is probably required because the VSC, which produces the
|
|
* visibility stream, is a client of UCHE, whereas the CP needs to read the
|
|
* visibility stream (without caching) to do draw skipping. The
|
|
* WFI+WAIT_FOR_ME combination guarantees that the binning commands
|
|
* submitted are finished before reading the VSC regs (in
|
|
* emit_vsc_overflow_test) or the VSC_DATA buffer directly (implicitly as
|
|
* part of draws).
|
|
*/
|
|
tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_CLEAN);
|
|
|
|
tu_cs_emit_wfi(cs);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
|
|
|
|
emit_vsc_overflow_test(cmd, cs);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
|
|
tu_cs_emit(cs, 0x0);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
|
|
tu_cs_emit(cs, 0x0);
|
|
}
|
|
|
|
static struct tu_draw_state
|
|
tu_emit_input_attachments(struct tu_cmd_buffer *cmd,
|
|
const struct tu_subpass *subpass,
|
|
bool gmem)
|
|
{
|
|
const struct tu_tiling_config *tiling = cmd->state.tiling;
|
|
|
|
/* note: we can probably emit input attachments just once for the whole
|
|
* renderpass, this would avoid emitting both sysmem/gmem versions
|
|
*
|
|
* emit two texture descriptors for each input, as a workaround for
|
|
* d24s8/d32s8, which can be sampled as both float (depth) and integer (stencil)
|
|
* tu_shader lowers uint input attachment loads to use the 2nd descriptor
|
|
* in the pair
|
|
* TODO: a smarter workaround
|
|
*/
|
|
|
|
if (!subpass->input_count)
|
|
return (struct tu_draw_state) {};
|
|
|
|
struct tu_cs_memory texture;
|
|
VkResult result = tu_cs_alloc(&cmd->sub_cs, subpass->input_count * 2,
|
|
A6XX_TEX_CONST_DWORDS, &texture);
|
|
if (result != VK_SUCCESS) {
|
|
vk_command_buffer_set_error(&cmd->vk, result);
|
|
return (struct tu_draw_state) {};
|
|
}
|
|
|
|
for (unsigned i = 0; i < subpass->input_count * 2; i++) {
|
|
uint32_t a = subpass->input_attachments[i / 2].attachment;
|
|
if (a == VK_ATTACHMENT_UNUSED)
|
|
continue;
|
|
|
|
const struct tu_image_view *iview = cmd->state.attachments[a];
|
|
const struct tu_render_pass_attachment *att =
|
|
&cmd->state.pass->attachments[a];
|
|
uint32_t dst[A6XX_TEX_CONST_DWORDS];
|
|
uint32_t gmem_offset = tu_attachment_gmem_offset(cmd, att, 0);
|
|
uint32_t cpp = att->cpp;
|
|
|
|
memcpy(dst, iview->view.descriptor, A6XX_TEX_CONST_DWORDS * 4);
|
|
|
|
/* Cube descriptors require a different sampling instruction in shader,
|
|
* however we don't know whether image is a cube or not until the start
|
|
* of a renderpass. We have to patch the descriptor to make it compatible
|
|
* with how it is sampled in shader.
|
|
*/
|
|
enum a6xx_tex_type tex_type =
|
|
(enum a6xx_tex_type) pkt_field_get(A6XX_TEX_CONST_2_TYPE, dst[2]);
|
|
if (tex_type == A6XX_TEX_CUBE) {
|
|
dst[2] = pkt_field_set(A6XX_TEX_CONST_2_TYPE, dst[2], A6XX_TEX_2D);
|
|
|
|
uint32_t depth = pkt_field_get(A6XX_TEX_CONST_5_DEPTH, dst[5]);
|
|
dst[5] = pkt_field_set(A6XX_TEX_CONST_5_DEPTH, dst[5], depth * 6);
|
|
}
|
|
|
|
if (i % 2 == 1 && att->format == VK_FORMAT_D24_UNORM_S8_UINT) {
|
|
/* note this works because spec says fb and input attachments
|
|
* must use identity swizzle
|
|
*
|
|
* Also we clear swap to WZYX. This is because the view might have
|
|
* picked XYZW to work better with border colors.
|
|
*/
|
|
dst[0] &= ~(A6XX_TEX_CONST_0_FMT__MASK |
|
|
A6XX_TEX_CONST_0_SWAP__MASK |
|
|
A6XX_TEX_CONST_0_SWIZ_X__MASK | A6XX_TEX_CONST_0_SWIZ_Y__MASK |
|
|
A6XX_TEX_CONST_0_SWIZ_Z__MASK | A6XX_TEX_CONST_0_SWIZ_W__MASK);
|
|
if (!cmd->device->physical_device->info->props.has_z24uint_s8uint) {
|
|
dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_8_8_8_8_UINT) |
|
|
A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_W) |
|
|
A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
|
|
A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
|
|
A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
|
|
} else {
|
|
dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_Z24_UINT_S8_UINT) |
|
|
A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_Y) |
|
|
A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
|
|
A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
|
|
A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
|
|
}
|
|
}
|
|
|
|
if (i % 2 == 1 && att->format == VK_FORMAT_D32_SFLOAT_S8_UINT) {
|
|
dst[0] = pkt_field_set(A6XX_TEX_CONST_0_FMT, dst[0], FMT6_8_UINT);
|
|
dst[2] = pkt_field_set(A6XX_TEX_CONST_2_PITCHALIGN, dst[2], 0);
|
|
dst[2] = pkt_field_set(A6XX_TEX_CONST_2_PITCH, dst[2],
|
|
iview->stencil_pitch);
|
|
dst[3] = 0;
|
|
dst[4] = iview->stencil_base_addr;
|
|
dst[5] = (dst[5] & 0xffff) | iview->stencil_base_addr >> 32;
|
|
|
|
cpp = att->samples;
|
|
gmem_offset = att->gmem_offset_stencil[cmd->state.gmem_layout];
|
|
}
|
|
|
|
if (!gmem || !subpass->input_attachments[i / 2].patch_input_gmem) {
|
|
memcpy(&texture.map[i * A6XX_TEX_CONST_DWORDS], dst, sizeof(dst));
|
|
continue;
|
|
}
|
|
|
|
/* patched for gmem */
|
|
dst[0] = pkt_field_set(A6XX_TEX_CONST_0_TILE_MODE, dst[0], TILE6_2);
|
|
if (!iview->view.is_mutable)
|
|
dst[0] = pkt_field_set(A6XX_TEX_CONST_0_SWAP, dst[0], WZYX);
|
|
|
|
/* If FDM offset is used, the last row and column extend beyond the
|
|
* framebuffer but are shifted over when storing. Expand the width and
|
|
* height to account for that.
|
|
*/
|
|
if (tu_enable_fdm_offset(cmd)) {
|
|
uint32_t width = pkt_field_get(A6XX_TEX_CONST_1_WIDTH, dst[1]);
|
|
uint32_t height = pkt_field_get(A6XX_TEX_CONST_1_HEIGHT, dst[1]);
|
|
width += cmd->state.tiling->tile0.width;
|
|
height += cmd->state.tiling->tile0.height;
|
|
dst[1] = pkt_field_set(A6XX_TEX_CONST_1_WIDTH, dst[1], width);
|
|
dst[1] = pkt_field_set(A6XX_TEX_CONST_1_HEIGHT, dst[1], height);
|
|
}
|
|
|
|
dst[2] =
|
|
A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) |
|
|
A6XX_TEX_CONST_2_PITCH(tiling->tile0.width * cpp);
|
|
/* Note: it seems the HW implicitly calculates the array pitch with the
|
|
* GMEM tiling, so we don't need to specify the pitch ourselves.
|
|
*/
|
|
dst[3] = 0;
|
|
dst[4] = cmd->device->physical_device->gmem_base + gmem_offset;
|
|
dst[5] &= A6XX_TEX_CONST_5_DEPTH__MASK;
|
|
for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
|
|
dst[i] = 0;
|
|
|
|
memcpy(&texture.map[i * A6XX_TEX_CONST_DWORDS], dst, sizeof(dst));
|
|
}
|
|
|
|
struct tu_cs cs;
|
|
struct tu_draw_state ds = tu_cs_draw_state(&cmd->sub_cs, &cs, 9);
|
|
|
|
tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3);
|
|
tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(0) |
|
|
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
|
|
CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
|
|
CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_TEX) |
|
|
CP_LOAD_STATE6_0_NUM_UNIT(subpass->input_count * 2));
|
|
tu_cs_emit_qw(&cs, texture.iova);
|
|
|
|
tu_cs_emit_regs(&cs, A6XX_SP_PS_TEXMEMOBJ_BASE(.qword = texture.iova));
|
|
|
|
tu_cs_emit_regs(&cs, A6XX_SP_PS_TSIZE(subpass->input_count * 2));
|
|
|
|
assert(cs.cur == cs.end); /* validate draw state size */
|
|
|
|
return ds;
|
|
}
|
|
|
|
static void
|
|
tu_set_input_attachments(struct tu_cmd_buffer *cmd, const struct tu_subpass *subpass)
|
|
{
|
|
struct tu_cs *cs = &cmd->draw_cs;
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 6);
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM,
|
|
tu_emit_input_attachments(cmd, subpass, true));
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM,
|
|
tu_emit_input_attachments(cmd, subpass, false));
|
|
}
|
|
|
|
static void
|
|
tu_trace_start_render_pass(struct tu_cmd_buffer *cmd)
|
|
{
|
|
if (!u_trace_enabled(&cmd->device->trace_context))
|
|
return;
|
|
|
|
uint32_t load_cpp = 0;
|
|
uint32_t store_cpp = 0;
|
|
uint32_t clear_cpp = 0;
|
|
bool has_depth = false;
|
|
char ubwc[MAX_RTS + 3];
|
|
for (uint32_t i = 0; i < cmd->state.pass->attachment_count; i++) {
|
|
const struct tu_render_pass_attachment *attachment =
|
|
&cmd->state.pass->attachments[i];
|
|
if (attachment->load) {
|
|
load_cpp += attachment->cpp;
|
|
}
|
|
|
|
if (attachment->store) {
|
|
store_cpp += attachment->cpp;
|
|
}
|
|
|
|
if (attachment->clear_mask) {
|
|
clear_cpp += attachment->cpp;
|
|
}
|
|
|
|
has_depth |= vk_format_has_depth(attachment->format);
|
|
}
|
|
|
|
uint8_t ubwc_len = 0;
|
|
const struct tu_subpass *subpass = &cmd->state.pass->subpasses[0];
|
|
for (uint32_t i = 0; i < subpass->color_count; i++) {
|
|
uint32_t att = subpass->color_attachments[i].attachment;
|
|
ubwc[ubwc_len++] = att == VK_ATTACHMENT_UNUSED ? '-'
|
|
: cmd->state.attachments[att]->view.ubwc_enabled
|
|
? 'y'
|
|
: 'n';
|
|
}
|
|
if (subpass->depth_used) {
|
|
ubwc[ubwc_len++] = '|';
|
|
ubwc[ubwc_len++] =
|
|
cmd->state.attachments[subpass->depth_stencil_attachment.attachment]
|
|
->view.ubwc_enabled
|
|
? 'y'
|
|
: 'n';
|
|
}
|
|
ubwc[ubwc_len] = '\0';
|
|
|
|
uint32_t max_samples = 0;
|
|
for (uint32_t i = 0; i < cmd->state.pass->subpass_count; i++) {
|
|
max_samples = MAX2(max_samples, cmd->state.pass->subpasses[i].samples);
|
|
}
|
|
|
|
trace_start_render_pass(&cmd->trace, &cmd->cs, cmd, cmd->state.framebuffer,
|
|
cmd->state.tiling, max_samples, clear_cpp,
|
|
load_cpp, store_cpp, has_depth, ubwc,
|
|
cmd->state.rp.cb_disable_reason ? cmd->state.rp.cb_disable_reason : "");
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu_trace_end_render_pass(struct tu_cmd_buffer *cmd, bool gmem)
|
|
{
|
|
if (!u_trace_enabled(&cmd->device->trace_context))
|
|
return;
|
|
|
|
uint32_t avg_per_sample_bandwidth =
|
|
cmd->state.rp.drawcall_bandwidth_per_sample_sum /
|
|
MAX2(cmd->state.rp.drawcall_count, 1);
|
|
|
|
struct u_trace_address addr = {};
|
|
if (cmd->state.lrz.image_view) {
|
|
struct tu_image *image = cmd->state.lrz.image_view->image;
|
|
addr.bo = image->mem->bo;
|
|
addr.offset = (image->iova - image->mem->iova) +
|
|
image->lrz_layout.lrz_fc_offset +
|
|
offsetof(fd_lrzfc_layout<CHIP>, buffer[0].dir_track);
|
|
}
|
|
|
|
int32_t lrz_disabled_at_draw = cmd->state.rp.lrz_disabled_at_draw
|
|
? cmd->state.rp.lrz_disabled_at_draw
|
|
: -1;
|
|
int32_t lrz_write_disabled_at_draw =
|
|
cmd->state.rp.lrz_write_disabled_at_draw
|
|
? cmd->state.rp.lrz_write_disabled_at_draw
|
|
: -1;
|
|
trace_end_render_pass(
|
|
&cmd->trace, &cmd->cs, gmem,
|
|
cmd->state.rp.gmem_disable_reason ? cmd->state.rp.gmem_disable_reason
|
|
: "",
|
|
cmd->state.rp.drawcall_count, avg_per_sample_bandwidth,
|
|
cmd->state.lrz.valid,
|
|
cmd->state.rp.lrz_disable_reason ? cmd->state.rp.lrz_disable_reason
|
|
: "",
|
|
lrz_disabled_at_draw, lrz_write_disabled_at_draw, addr);
|
|
}
|
|
|
|
static void
|
|
tu_emit_renderpass_begin(struct tu_cmd_buffer *cmd)
|
|
{
|
|
/* We need to re-emit any draw states that are patched in order for them to
|
|
* be correctly added to the per-renderpass patchpoint list, even if they
|
|
* are the same as before.
|
|
*/
|
|
if (cmd->state.pass->has_fdm)
|
|
cmd->state.dirty |= TU_CMD_DIRTY_FDM;
|
|
|
|
/* We need to re-emit MSAA at the beginning of every renderpass because it
|
|
* isn't part of a draw state that gets automatically re-emitted.
|
|
*/
|
|
BITSET_SET(cmd->vk.dynamic_graphics_state.dirty,
|
|
MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES);
|
|
/* PC_CNTL isn't a part of a draw state and may be changed
|
|
* by blits.
|
|
*/
|
|
BITSET_SET(cmd->vk.dynamic_graphics_state.dirty,
|
|
MESA_VK_DYNAMIC_IA_PRIMITIVE_RESTART_ENABLE);
|
|
|
|
cmd->state.fdm_enabled = cmd->state.pass->has_fdm;
|
|
}
|
|
|
|
static inline bool
|
|
tu7_cb_disable_reason(bool disable_cb,
|
|
struct tu_cmd_buffer *cmd,
|
|
const char *reason)
|
|
{
|
|
if (disable_cb && !cmd->state.rp.cb_disable_reason) {
|
|
cmd->state.rp.cb_disable_reason = reason;
|
|
}
|
|
return disable_cb;
|
|
}
|
|
|
|
static bool
|
|
tu7_emit_concurrent_binning_start(struct tu_cmd_buffer *cmd,
|
|
struct tu_cs *cs,
|
|
bool disable_cb)
|
|
{
|
|
if (tu7_cb_disable_reason(disable_cb, cmd, "disable_cb") ||
|
|
/* LRZ can only be cleared via fast clear in BV. Disable CB if we can't
|
|
* use it.
|
|
*/
|
|
tu7_cb_disable_reason(
|
|
(!cmd->state.lrz.fast_clear && cmd->state.lrz.image_view), cmd,
|
|
"LRZ fast clear disabled") ||
|
|
tu7_cb_disable_reason(TU_DEBUG(NO_CONCURRENT_BINNING), cmd,
|
|
"TU_DEBUG(NO_CONCURRENT_BINNING)")) {
|
|
tu_cs_emit_pkt7(cs, CP_THREAD_CONTROL, 1);
|
|
tu_cs_emit(cs, CP_THREAD_CONTROL_0_THREAD(CP_SET_THREAD_BR) |
|
|
CP_THREAD_CONTROL_0_CONCURRENT_BIN_DISABLE);
|
|
tu7_set_pred_bit(cs, TU_PREDICATE_CB_ENABLED, false);
|
|
cmd->state.renderpass_cb_disabled = true;
|
|
|
|
tu_add_cb_barrier_info(cmd);
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
tu7_emit_concurrent_binning(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
|
|
{
|
|
assert(!cmd->state.renderpass_cb_disabled);
|
|
|
|
tu7_thread_control(cs, CP_SET_THREAD_BOTH);
|
|
|
|
/* Increment timestamp to make it unique in subsequent commands */
|
|
tu_cs_emit_pkt7(cs, CP_MODIFY_TIMESTAMP, 1);
|
|
tu_cs_emit(cs, CP_MODIFY_TIMESTAMP_0_ADD(1) |
|
|
CP_MODIFY_TIMESTAMP_0_OP(MODIFY_TIMESTAMP_ADD_LOCAL));
|
|
|
|
/* We initialize the "is concurrent binning enabled?" predicate to true and
|
|
* disable it later if necessary.
|
|
*/
|
|
tu7_set_pred_bit(cs, TU_PREDICATE_CB_ENABLED, true);
|
|
|
|
tu7_thread_control(cs, CP_SET_THREAD_BV);
|
|
|
|
/* If there was an overflow in the BR resource table the register will be
|
|
* set to 1 by CP_RESOURCE_LIST. Wait for it to clear here.
|
|
*/
|
|
tu7_wait_onchip_val(cs, TU_ONCHIP_CB_RESLIST_OVERFLOW, 0);
|
|
|
|
tu_lrz_cb_begin(cmd, cs);
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu7_emit_concurrent_binning_sysmem(struct tu_cmd_buffer *cmd,
|
|
struct tu_cs *cs)
|
|
{
|
|
/* Why all the complexity?
|
|
* The logic necessary to support concurrent binning running in parallel to
|
|
* sysmem has enough overhead to reduce performance for a workload with
|
|
* high number of renderpasses, so we have to patch out the CB logic if
|
|
* CB cannot run in parallel to this renderpass.
|
|
* It does everything in IB1 because from testing the CB logic hangs in IB2.
|
|
*/
|
|
|
|
struct tu_cs_patchable_state cb_state = tu_cs_patchable_start(cs, 128);
|
|
|
|
/* It seems that for sysmem render passes we have to use BV to clear LRZ
|
|
* before the renderpass. Otherwise the clear doesn't become visible to
|
|
* subsequent draws when LRZ has been flipped an odd number of times.
|
|
* Presumably this works if concurrent binning is disabled, because the
|
|
* blob relies on this, but that requires synchronizing BR and BV
|
|
* unnecessarily, and we want BV to skip ahead across sysmem renderpasses.
|
|
*
|
|
* In the future, we may also support writing LRZ in BV.
|
|
*/
|
|
{
|
|
tu7_emit_concurrent_binning(cmd, cs);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
|
|
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BIN_VISIBILITY));
|
|
|
|
tu_lrz_sysmem_begin<CHIP>(cmd, cs);
|
|
|
|
tu_lrz_after_bv<CHIP>(cmd, cs);
|
|
|
|
tu7_write_onchip_timestamp(cs, TU_ONCHIP_CB_BV_TIMESTAMP);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
|
|
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM7_BIN_VISIBILITY_END));
|
|
|
|
tu7_thread_control(cs, CP_SET_THREAD_BR);
|
|
|
|
tu7_wait_onchip_timestamp(cs, TU_ONCHIP_CB_BV_TIMESTAMP);
|
|
|
|
tu_lrz_before_sysmem_br<CHIP>(cmd, cs);
|
|
}
|
|
tu_cs_patchable_end(cs, false, &cb_state);
|
|
|
|
struct tu_cs_patchable_state no_cb_state = tu_cs_patchable_start(cs, 64);
|
|
{
|
|
tu_cs_emit_pkt7(cs, CP_THREAD_CONTROL, 1);
|
|
tu_cs_emit(cs, CP_THREAD_CONTROL_0_THREAD(CP_SET_THREAD_BR) |
|
|
CP_THREAD_CONTROL_0_CONCURRENT_BIN_DISABLE);
|
|
tu7_set_pred_bit(cs, TU_PREDICATE_CB_ENABLED, false);
|
|
tu_lrz_sysmem_begin<CHIP>(cmd, cs);
|
|
}
|
|
tu_cs_patchable_end(cs, true, &no_cb_state);
|
|
|
|
struct tu_cb_control_point enable_cb_patch = {
|
|
.type = TU_CB_CONTROL_TYPE_PATCHPOINT,
|
|
.patchpoint = cb_state.nop_header,
|
|
.patch_value = cb_state.enable_patch,
|
|
.original_value = cb_state.disable_patch,
|
|
};
|
|
util_dynarray_append(&cmd->cb_control_points, enable_cb_patch);
|
|
|
|
struct tu_cb_control_point disable_no_cb_patch = {
|
|
.type = TU_CB_CONTROL_TYPE_PATCHPOINT,
|
|
.patchpoint = no_cb_state.nop_header,
|
|
.patch_value = no_cb_state.disable_patch,
|
|
.original_value = no_cb_state.enable_patch,
|
|
};
|
|
util_dynarray_append(&cmd->cb_control_points, disable_no_cb_patch);
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
|
|
struct tu_renderpass_result *autotune_result)
|
|
{
|
|
const struct tu_framebuffer *fb = cmd->state.framebuffer;
|
|
|
|
if (CHIP == A6XX) {
|
|
tu_lrz_sysmem_begin<CHIP>(cmd, cs);
|
|
} else {
|
|
if (tu7_emit_concurrent_binning_start(cmd, cs, false)) {
|
|
tu7_emit_concurrent_binning_sysmem<CHIP>(cmd, cs);
|
|
} else {
|
|
tu_lrz_sysmem_begin<CHIP>(cmd, cs);
|
|
}
|
|
}
|
|
|
|
assert(fb->width > 0 && fb->height > 0);
|
|
tu6_emit_window_scissor<CHIP>(cs, 0, 0, fb->width - 1, fb->height - 1);
|
|
tu6_emit_window_offset<CHIP>(cs, 0, 0);
|
|
|
|
tu6_emit_bin_size<CHIP>(cs, 0, 0, {
|
|
.render_mode = RENDERING_PASS,
|
|
.force_lrz_write_dis =
|
|
!cmd->device->physical_device->info->props.has_lrz_feedback,
|
|
.buffers_location = BUFFERS_IN_SYSMEM,
|
|
.lrz_feedback_zmode_mask =
|
|
cmd->device->physical_device->info->props.has_lrz_feedback
|
|
? LRZ_FEEDBACK_EARLY_Z_OR_EARLY_Z_LATE_Z
|
|
: LRZ_FEEDBACK_NONE,
|
|
});
|
|
|
|
if (CHIP == A7XX) {
|
|
tu_cs_emit_regs(cs, RB_BUFFER_CNTL(CHIP,
|
|
.z_sysmem = true,
|
|
.s_sysmem = true,
|
|
.rt0_sysmem = true,
|
|
.rt1_sysmem = true,
|
|
.rt2_sysmem = true,
|
|
.rt3_sysmem = true,
|
|
.rt4_sysmem = true,
|
|
.rt5_sysmem = true,
|
|
.rt6_sysmem = true,
|
|
.rt7_sysmem = true,
|
|
));
|
|
|
|
tu_cs_emit_regs(cs, RB_CLEAR_TARGET(CHIP, .clear_mode = CLEAR_MODE_SYSMEM));
|
|
}
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
|
|
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_DIRECT_RENDER));
|
|
|
|
/* A7XX TODO: blob doesn't use CP_SKIP_IB2_ENABLE_* */
|
|
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
|
|
tu_cs_emit(cs, 0x0);
|
|
|
|
tu_emit_cache_flush_ccu<CHIP>(cmd, cs, TU_CMD_CCU_SYSMEM);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
|
|
tu_cs_emit(cs, 0x1);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
|
|
tu_cs_emit(cs, 0x0);
|
|
|
|
/* Reset bin scaling. */
|
|
if (cmd->device->physical_device->info->props.has_hw_bin_scaling) {
|
|
tu_cs_emit_regs(cs, GRAS_BIN_FOVEAT(CHIP));
|
|
tu_cs_emit_regs(cs, RB_BIN_FOVEAT(CHIP));
|
|
}
|
|
|
|
tu_autotune_begin_renderpass<CHIP>(cmd, cs, autotune_result);
|
|
|
|
tu_cs_sanity_check(cs);
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
|
|
struct tu_renderpass_result *autotune_result)
|
|
{
|
|
tu_autotune_end_renderpass<CHIP>(cmd, cs, autotune_result);
|
|
|
|
/* Do any resolves of the last subpass. These are handled in the
|
|
* tile_store_cs in the gmem path.
|
|
*/
|
|
tu6_emit_sysmem_resolves<CHIP>(cmd, cs, cmd->state.subpass);
|
|
|
|
tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
|
|
tu_cs_emit(cs, 0x0);
|
|
|
|
tu_lrz_sysmem_end<CHIP>(cmd, cs);
|
|
|
|
/* Clear the resource list for any LRZ resources we emitted at the
|
|
* beginning.
|
|
*/
|
|
if (CHIP >= A7XX) {
|
|
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, 4);
|
|
tu_cs_emit(cs, CP_EVENT_WRITE7_0_EVENT(DUMMY_EVENT) |
|
|
CP_EVENT_WRITE7_0_CLEAR_RENDER_RESOURCE |
|
|
CP_EVENT_WRITE7_0_WRITE_DST(EV_DST_ONCHIP) |
|
|
CP_EVENT_WRITE7_0_WRITE_SRC(EV_WRITE_USER_32B) |
|
|
CP_EVENT_WRITE7_0_WRITE_ENABLED);
|
|
tu_cs_emit_qw(cs, TU_ONCHIP_CB_RESLIST_OVERFLOW);
|
|
tu_cs_emit(cs, 0); /* value */
|
|
}
|
|
|
|
tu_cs_sanity_check(cs);
|
|
}
|
|
|
|
static void
|
|
tu7_write_and_wait_onchip_timestamp(struct tu_cs *cs, enum tu_onchip_addr onchip_addr)
|
|
{
|
|
tu7_write_onchip_timestamp(cs, onchip_addr);
|
|
tu7_wait_onchip_timestamp(cs, onchip_addr);
|
|
}
|
|
|
|
static bool
|
|
tu7_emit_concurrent_binning_gmem(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
|
|
bool use_hw_binning)
|
|
{
|
|
/* xfb queries use data from the binning pass. If they are running outside
|
|
* of a RP then we may have to deal with a mix of GMEM/sysmem renderpasses
|
|
* where the counters increase on different processors. Just disable CB so
|
|
* that everything happens on BR and we don't need difficult merging of BV
|
|
* and BR results. In addition, RBBM primitive counters seem to not work
|
|
* at all with concurrent binning, so disable if they are running before
|
|
* the RP.
|
|
*/
|
|
bool disable_cb =
|
|
cmd->state.xfb_query_running_before_rp ||
|
|
cmd->state.rp.has_prim_generated_query_in_rp ||
|
|
cmd->state.rp.has_vtx_stats_query_in_rp ||
|
|
cmd->state.prim_counters_running > 0;
|
|
|
|
tu7_cb_disable_reason(disable_cb, cmd,
|
|
"xfb/prim-gen/prim-counters/vtx-stats query is running");
|
|
tu7_cb_disable_reason(!use_hw_binning, cmd, "hw binning disabled");
|
|
|
|
if (!tu7_emit_concurrent_binning_start(cmd, cs, disable_cb || !use_hw_binning))
|
|
return false;
|
|
|
|
tu7_emit_concurrent_binning(cmd, cs);
|
|
|
|
struct tu_cb_control_point cb_enabled_info = {
|
|
.type = TU_CB_CONTROL_TYPE_CB_ENABLED,
|
|
};
|
|
util_dynarray_append(&cmd->cb_control_points, cb_enabled_info);
|
|
|
|
/* We want to disable concurrent binning if BV isn't far enough ahead of
|
|
* BR. The core idea is to write a timestamp in BR and BV, and compare the
|
|
* BR and BV timestamps for equality. if BR is fast enough, it will write
|
|
* the timestamp ahead of BV and then when BV compares for equality it will
|
|
* find them equal. BR cannot race too far ahead of BV because it must wait
|
|
* for BV's determination to finish, which we do via another timestamp, so
|
|
* either BV is ahead of BR or the timestamps are equal.
|
|
*
|
|
* We need to communicate the determination from BV to BR so they both
|
|
* agree on whether concurrent binning is enabled or not. The easiest way
|
|
* to do it is via a "when was concurrent binning last disabled" timestamp,
|
|
* because we only have to set it when disabling concurrent binning.
|
|
*/
|
|
|
|
if (!TU_DEBUG(FORCE_CONCURRENT_BINNING)) {
|
|
tu7_write_and_wait_onchip_timestamp(cs, TU_ONCHIP_CB_BV_TIMESTAMP);
|
|
|
|
tu7_thread_control(cs, CP_SET_THREAD_BR);
|
|
tu7_write_and_wait_onchip_timestamp(cs, TU_ONCHIP_CB_BR_TIMESTAMP);
|
|
|
|
tu7_thread_control(cs, CP_SET_THREAD_BV);
|
|
|
|
/* If in a secondary, dynamically disable CB if a vtx stats query is
|
|
* running.
|
|
*/
|
|
if (cmd->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
|
|
tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(PRED_TEST) |
|
|
CP_COND_REG_EXEC_0_PRED_BIT(TU_PREDICATE_VTX_STATS_RUNNING));
|
|
}
|
|
|
|
const uint32_t bv_cond_dwords = 3 + 4 + 4;
|
|
tu_cs_reserve(cs, 4 + bv_cond_dwords);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 3);
|
|
tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(REG_COMPARE) |
|
|
CP_COND_REG_EXEC_0_REG0(TU_ONCHIP_CB_BR_TIMESTAMP) |
|
|
CP_COND_REG_EXEC_0_ONCHIP_MEM);
|
|
tu_cs_emit(cs, REG_COMPARE_CP_COND_REG_EXEC_1_REG1(TU_ONCHIP_CB_BV_TIMESTAMP) |
|
|
REG_COMPARE_CP_COND_REG_EXEC_1_ONCHIP_MEM);
|
|
tu_cs_emit(cs, bv_cond_dwords);
|
|
if (cmd->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY)
|
|
tu_cond_exec_end(cs);
|
|
/* if (BR_TIMESTAMP == BV_TIMESTAMP) */ {
|
|
tu7_write_and_wait_onchip_timestamp(cs, TU_ONCHIP_CB_BV_DISABLED_TIMESTAMP);
|
|
tu7_set_pred_bit(cs, TU_PREDICATE_CB_ENABLED, false);
|
|
}
|
|
tu7_write_onchip_timestamp(cs,
|
|
TU_ONCHIP_CB_BV_DETERMINATION_FINISHED_TIMESTAMP);
|
|
|
|
tu7_thread_control(cs, CP_SET_THREAD_BR);
|
|
|
|
tu7_wait_onchip_timestamp(cs, TU_ONCHIP_CB_BV_DETERMINATION_FINISHED_TIMESTAMP);
|
|
|
|
const uint32_t br_cond_dwords = 4;
|
|
tu_cs_reserve(cs, 4 + br_cond_dwords);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 3);
|
|
tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(REG_COMPARE) |
|
|
CP_COND_REG_EXEC_0_REG0(TU_ONCHIP_CB_BR_TIMESTAMP) |
|
|
CP_COND_REG_EXEC_0_ONCHIP_MEM);
|
|
tu_cs_emit(cs, REG_COMPARE_CP_COND_REG_EXEC_1_REG1(TU_ONCHIP_CB_BV_DISABLED_TIMESTAMP) |
|
|
REG_COMPARE_CP_COND_REG_EXEC_1_ONCHIP_MEM);
|
|
tu_cs_emit(cs, br_cond_dwords);
|
|
/* if (BR_TIMESTAMP == BV_DISABLED_TIMESTAMP) */ {
|
|
tu7_set_pred_bit(cs, TU_PREDICATE_CB_ENABLED, false);
|
|
}
|
|
}
|
|
|
|
/* At this point BV and BR are agreed on whether CB is enabled. If CB is
|
|
* enabled, set the thread to BV for the binning pass, otherwise set BR and
|
|
* disable concurrent binning.
|
|
*/
|
|
tu7_thread_control(cs, CP_SET_THREAD_BOTH);
|
|
|
|
const uint32_t if_dwords = 5;
|
|
const uint32_t else_dwords = 2;
|
|
tu_cs_reserve(cs, 3 + if_dwords + else_dwords);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
|
|
tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(PRED_TEST) |
|
|
CP_COND_REG_EXEC_0_PRED_BIT(TU_PREDICATE_CB_ENABLED) |
|
|
CP_COND_REG_EXEC_0_SKIP_WAIT_FOR_ME);
|
|
tu_cs_emit(cs, if_dwords);
|
|
/* if (CB is enabled) */ {
|
|
tu7_thread_control(cs, CP_SET_THREAD_BV);
|
|
|
|
/* Wait for BR vis stream reads to finish */
|
|
tu_cs_emit_pkt7(cs, CP_BV_BR_COUNT_OPS, 1);
|
|
tu_cs_emit(cs, CP_BV_BR_COUNT_OPS_0_OP(PIPE_BV_WAIT_FOR_BR));
|
|
|
|
/* This is the NOP-as-else trick. If CB is disabled, this CP_NOP is
|
|
* skipped and its body (the else) is executed.
|
|
*/
|
|
tu_cs_emit_pkt7(cs, CP_NOP, else_dwords);
|
|
} /* else */ {
|
|
tu_cs_emit_pkt7(cs, CP_THREAD_CONTROL, 1);
|
|
tu_cs_emit(cs, CP_THREAD_CONTROL_0_THREAD(CP_SET_THREAD_BR) |
|
|
CP_THREAD_CONTROL_0_CONCURRENT_BIN_DISABLE);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
|
|
struct tu_renderpass_result *autotune_result,
|
|
const VkOffset2D *fdm_offsets)
|
|
{
|
|
struct tu_physical_device *phys_dev = cmd->device->physical_device;
|
|
const struct tu_tiling_config *tiling = cmd->state.tiling;
|
|
const struct tu_vsc_config *vsc = tu_vsc_config(cmd, tiling);
|
|
const struct tu_render_pass *pass = cmd->state.pass;
|
|
bool use_binning = use_hw_binning(cmd);
|
|
|
|
/* User flushes should always be executed on BR. */
|
|
tu_emit_cache_flush_ccu<CHIP>(cmd, cs, TU_CMD_CCU_GMEM);
|
|
|
|
bool use_cb = false;
|
|
|
|
if (CHIP >= A7XX) {
|
|
tu7_emit_tile_render_begin_regs<CHIP>(cs);
|
|
use_cb = tu7_emit_concurrent_binning_gmem(cmd, cs, use_binning);
|
|
}
|
|
|
|
if (!use_cb)
|
|
tu_trace_start_render_pass(cmd);
|
|
|
|
tu_lrz_tiling_begin<CHIP>(cmd, cs);
|
|
|
|
/* tu_lrz_tiling_begin() can accumulate additional flushes. If that happens
|
|
* CB should be disabled, so it's safe to just emit them here.
|
|
*/
|
|
tu_emit_cache_flush_ccu<CHIP>(cmd, cs, TU_CMD_CCU_GMEM);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
|
|
tu_cs_emit(cs, 0x0);
|
|
|
|
/* Reset bin scaling. */
|
|
if (phys_dev->info->props.has_hw_bin_scaling) {
|
|
tu_cs_emit_regs(cs, GRAS_BIN_FOVEAT(CHIP));
|
|
tu_cs_emit_regs(cs, RB_BIN_FOVEAT(CHIP));
|
|
}
|
|
|
|
if (use_binning) {
|
|
if (!cmd->vsc_initialized) {
|
|
tu6_lazy_init_vsc(cmd);
|
|
}
|
|
|
|
/* We always emit VSC before each renderpass, because due to
|
|
* skipsaverestore the underlying VSC registers may have become
|
|
* invalid. Normally we'd need to WFI before setting these non-context
|
|
* registers, but we should be safe because we're only setting it to the
|
|
* same value it had before.
|
|
*
|
|
* TODO: On a6xx, we have to emit this per-bin or make the amble include
|
|
* these registers, because CP_SET_BIN_DATA5_OFFSET will use the
|
|
* register instead of the pseudo register and its value won't survive
|
|
* across preemptions. The blob seems to take the second approach and
|
|
* emits the preamble lazily. We chose the per-bin approach but blob's
|
|
* should be a better one.
|
|
*/
|
|
if (cmd->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT)
|
|
tu_cs_set_writeable(cs, true);
|
|
|
|
tu_emit_vsc<CHIP>(cmd, cs);
|
|
|
|
if (cmd->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT)
|
|
tu_cs_set_writeable(cs, false);
|
|
|
|
tu6_emit_bin_size<CHIP>(cs, tiling->tile0.width, tiling->tile0.height,
|
|
{
|
|
.render_mode = BINNING_PASS,
|
|
.buffers_location = BUFFERS_IN_GMEM,
|
|
.lrz_feedback_zmode_mask =
|
|
phys_dev->info->props.has_lrz_feedback
|
|
? LRZ_FEEDBACK_EARLY_Z_LATE_Z
|
|
: LRZ_FEEDBACK_NONE
|
|
});
|
|
|
|
tu6_emit_render_cntl<CHIP>(cmd, cmd->state.subpass, cs, true);
|
|
|
|
tu6_emit_binning_pass<CHIP>(cmd, cs, fdm_offsets, use_cb);
|
|
|
|
/* Enable early return from CP_INDIRECT_BUFFER once the visibility stream
|
|
* is done. We don't enable this if there are stores in a non-final
|
|
* subpass, because it's more important to be able to share gmem space
|
|
* between attachments by storing early, than it is to do IB2 skipping
|
|
* (which has an effect we struggle to even measure).
|
|
*/
|
|
if (pass->allow_ib2_skipping) {
|
|
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
|
|
tu_cs_emit(cs, 0x1);
|
|
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_LOCAL, 1);
|
|
tu_cs_emit(cs, 0x1);
|
|
}
|
|
} else {
|
|
if (vsc->binning_possible) {
|
|
/* Mark all tiles as visible for tu6_emit_cond_for_load_stores(), since
|
|
* the actual binner didn't run.
|
|
*/
|
|
int pipe_count = vsc->pipe_count.width * vsc->pipe_count.height;
|
|
tu_cs_emit_pkt4(cs, REG_A6XX_VSC_CHANNEL_VISIBILITY(0), pipe_count);
|
|
for (int i = 0; i < pipe_count; i++)
|
|
tu_cs_emit(cs, ~0);
|
|
}
|
|
}
|
|
|
|
if (vsc->binning_possible) {
|
|
/* On a7xx we always need VSC allocated because the VSC state has to go
|
|
* together with other stream data. We could allocate just the VSC state
|
|
* if binning is disabled but it doesn't seem worth it.
|
|
*/
|
|
if (CHIP >= A7XX && !cmd->vsc_initialized)
|
|
tu6_lazy_init_vsc(cmd);
|
|
|
|
/* Upload state regs to memory to be restored on skipsaverestore
|
|
* preemption. On a7xx this is considered part of the vis stream that
|
|
* requires a patchpoint.
|
|
*/
|
|
if (CHIP >= A7XX &&
|
|
(cmd->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT))
|
|
tu_cs_set_writeable(cs, true);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
|
|
tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(REG_A6XX_VSC_CHANNEL_VISIBILITY(0)) |
|
|
CP_REG_TO_MEM_0_CNT(32));
|
|
if (CHIP >= A7XX)
|
|
tu_emit_vis_stream_patchpoint(cmd, cs, cmd->vsc_state_offset);
|
|
else
|
|
tu_cs_emit_qw(cs, global_iova(cmd, vsc_state));
|
|
|
|
if (CHIP >= A7XX) {
|
|
uint32_t num_vsc_pipes = phys_dev->info->num_vsc_pipes;
|
|
|
|
tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
|
|
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
|
|
|
|
if (use_binning) {
|
|
tu_cs_emit_pkt7(cs, CP_THREAD_CONTROL, 1);
|
|
tu_cs_emit(cs, CP_THREAD_CONTROL_0_THREAD(CP_SET_THREAD_BV));
|
|
|
|
tu_lrz_after_bv<CHIP>(cmd, cs);
|
|
|
|
/* Signal that BV is done for this render pass. This always has to
|
|
* be executed, even when CB is dynamically disabled, because we
|
|
* need to keep BR and BV counts in sync with which visibility
|
|
* streams are in use.
|
|
*/
|
|
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, 1);
|
|
tu_cs_emit(cs, CP_EVENT_WRITE7_0_EVENT(DUMMY_EVENT) |
|
|
CP_EVENT_WRITE7_0_INC_BV_COUNT);
|
|
|
|
/* This mode seems to be only used by BV and signals that a
|
|
* simpler save/restore procedure can be used in between render
|
|
* passes.
|
|
*/
|
|
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
|
|
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM7_BIN_VISIBILITY_END));
|
|
}
|
|
|
|
tu7_thread_control(cs, CP_SET_THREAD_BR);
|
|
|
|
if (use_binning) {
|
|
/* Wait for the BV to be done for this render pass. */
|
|
tu_cs_emit_pkt7(cs, CP_BV_BR_COUNT_OPS, 1);
|
|
tu_cs_emit(cs, CP_BV_BR_COUNT_OPS_0_OP(PIPE_BR_WAIT_FOR_BV));
|
|
|
|
/* Emit vis stream on BR */
|
|
tu_emit_vsc<CHIP>(cmd, cs);
|
|
}
|
|
|
|
tu_cs_emit_pkt7(cs, CP_MEM_TO_SCRATCH_MEM, 4);
|
|
tu_cs_emit(cs, num_vsc_pipes); /* count */
|
|
tu_cs_emit(cs, 0); /* offset */
|
|
tu_emit_vis_stream_patchpoint(cmd, cs, cmd->vsc_state_offset);
|
|
}
|
|
|
|
if (CHIP >= A7XX &&
|
|
(cmd->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT))
|
|
tu_cs_set_writeable(cs, false);
|
|
} else if (CHIP >= A7XX) {
|
|
/* Earlier we disabled concurrent binning to make LRZ fast-clear work
|
|
* with no HW binning, now re-enable it while staying on BR.
|
|
*/
|
|
tu7_set_thread_br_patchpoint(cmd, cs, false);
|
|
}
|
|
|
|
tu_lrz_before_tiles<CHIP>(cmd, cs, use_cb);
|
|
|
|
if (use_cb)
|
|
tu_trace_start_render_pass(cmd);
|
|
|
|
tu_autotune_begin_renderpass<CHIP>(cmd, cs, autotune_result);
|
|
|
|
tu_cs_sanity_check(cs);
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu6_render_tile(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
|
|
const struct tu_tile_config *tile,
|
|
bool fdm, const VkOffset2D *fdm_offsets)
|
|
{
|
|
tu6_emit_tile_select<CHIP>(cmd, &cmd->cs, tile, fdm, fdm_offsets);
|
|
tu_lrz_before_tile<CHIP>(cmd, &cmd->cs);
|
|
|
|
trace_start_draw_ib_gmem(&cmd->trace, &cmd->cs, cmd);
|
|
|
|
/* Primitives that passed all tests are still counted in in each
|
|
* tile even with HW binning beforehand. Do not permit it.
|
|
*/
|
|
if (cmd->state.prim_generated_query_running_before_rp)
|
|
tu_emit_event_write<CHIP>(cmd, cs, FD_STOP_PRIMITIVE_CTRS);
|
|
|
|
tu_cs_emit_call(cs, &cmd->draw_cs);
|
|
|
|
if (cmd->state.prim_generated_query_running_before_rp)
|
|
tu_emit_event_write<CHIP>(cmd, cs, FD_START_PRIMITIVE_CTRS);
|
|
|
|
if (use_hw_binning(cmd)) {
|
|
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
|
|
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BIN_END_OF_DRAWS) |
|
|
A6XX_CP_SET_MARKER_0_USES_GMEM);
|
|
}
|
|
|
|
/* Predicate is changed in draw_cs so we have to re-emit it */
|
|
if (cmd->state.rp.draw_cs_writes_to_cond_pred &&
|
|
util_is_power_of_two_nonzero(tile->slot_mask)) {
|
|
uint32_t slot = ffs(tile->slot_mask) - 1;
|
|
tu6_emit_cond_for_load_stores<CHIP>(cmd, cs, tile->pipe, slot, false);
|
|
}
|
|
|
|
if (cmd->state.pass->allow_ib2_skipping) {
|
|
/* Disable CP_INDIRECT_BUFFER/CP_DRAW skipping again at the end of the
|
|
* pass -- tile_store_cs is for stores that can't be skipped based on
|
|
* visibility.
|
|
*/
|
|
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
|
|
tu_cs_emit(cs, 0x0);
|
|
}
|
|
|
|
tu_cs_emit_call(cs, &cmd->tile_store_cs);
|
|
|
|
tu_clone_trace_range(cmd, cs, &cmd->trace, cmd->trace_renderpass_start,
|
|
u_trace_end_iterator(&cmd->rp_trace));
|
|
tu_cs_emit_wfi(cs);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
|
|
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BIN_RENDER_END));
|
|
|
|
tu_cs_sanity_check(cs);
|
|
|
|
trace_end_draw_ib_gmem(&cmd->trace, &cmd->cs);
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
|
|
struct tu_renderpass_result *autotune_result)
|
|
{
|
|
tu_autotune_end_renderpass<CHIP>(cmd, cs, autotune_result);
|
|
|
|
tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
|
|
|
|
tu_lrz_tiling_end<CHIP>(cmd, cs);
|
|
|
|
bool hw_binning = use_hw_binning(cmd);
|
|
if (hw_binning) {
|
|
cmd->state.tile_render_pass_count++;
|
|
}
|
|
|
|
/* If we are using HW binning, signal that we are done with reading the vis
|
|
* stream for this render pass by advancing the counter. Also clear render
|
|
* resources, currently only used for LRZ, and reset the overflow onchip
|
|
* register.
|
|
*/
|
|
if (CHIP >= A7XX) {
|
|
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, 4);
|
|
tu_cs_emit(cs, CP_EVENT_WRITE7_0_EVENT(DUMMY_EVENT) |
|
|
COND(hw_binning, CP_EVENT_WRITE7_0_INC_BR_COUNT) |
|
|
CP_EVENT_WRITE7_0_CLEAR_RENDER_RESOURCE |
|
|
CP_EVENT_WRITE7_0_WRITE_DST(EV_DST_ONCHIP) |
|
|
CP_EVENT_WRITE7_0_WRITE_SRC(EV_WRITE_USER_32B) |
|
|
CP_EVENT_WRITE7_0_WRITE_ENABLED);
|
|
tu_cs_emit_qw(cs, TU_ONCHIP_CB_RESLIST_OVERFLOW);
|
|
tu_cs_emit(cs, 0); /* value */
|
|
}
|
|
|
|
tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_CLEAN_BLIT_CACHE);
|
|
|
|
tu_cs_sanity_check(cs);
|
|
}
|
|
|
|
static void
|
|
tu_calc_frag_area(struct tu_cmd_buffer *cmd,
|
|
struct tu_tile_config *tile,
|
|
const struct tu_image_view *fdm,
|
|
const VkOffset2D *fdm_offsets)
|
|
{
|
|
const struct tu_tiling_config *tiling = cmd->state.tiling;
|
|
const uint32_t x1 = tiling->tile0.width * tile->pos.x;
|
|
const uint32_t y1 = tiling->tile0.height * tile->pos.y;
|
|
const uint32_t x2 = MIN2(x1 + tiling->tile0.width, MAX_VIEWPORT_SIZE);
|
|
const uint32_t y2 = MIN2(y1 + tiling->tile0.height, MAX_VIEWPORT_SIZE);
|
|
|
|
unsigned views = tu_fdm_num_layers(cmd);
|
|
const struct tu_framebuffer *fb = cmd->state.framebuffer;
|
|
struct tu_frag_area raw_areas[views];
|
|
if (fdm) {
|
|
for (unsigned i = 0; i < views; i++) {
|
|
VkOffset2D sample_pos = { 0, 0 };
|
|
|
|
/* Offsets less than a tile size are accomplished by sliding the
|
|
* tiles. However once we shift a whole tile size then we reset the
|
|
* tiles back to where they were at the beginning and we need to
|
|
* adjust where each bin is sampling from:
|
|
*
|
|
* x offset = 0:
|
|
*
|
|
* ------------------------------------
|
|
* | * | * | * | (unused) |
|
|
* ------------------------------------
|
|
*
|
|
* x offset = 4:
|
|
*
|
|
* -------------------------
|
|
* | * | * | * | * |
|
|
* -------------------------
|
|
*
|
|
* x offset = 8:
|
|
*
|
|
* ------------------------------------
|
|
* | * | * | * | (unused) |
|
|
* ------------------------------------
|
|
*
|
|
* As the user's offset increases we slide the tiles to the right,
|
|
* until we reach the whole tile size and reset the tile positions.
|
|
* tu_bin_offset() returns an amount to shift to the left, negating
|
|
* the offset.
|
|
*
|
|
* If we were forced to use a shared viewport, then we must not shift
|
|
* over the tiles and instead must only shift when sampling because
|
|
* we cannot shift the tiles differently per view. This disables
|
|
* smooth transitions of the fragment density map and effectively
|
|
* negates the extension.
|
|
*
|
|
* Note that we cannot clamp x2/y2 to the framebuffer size, as we
|
|
* normally would do, because then tiles along the edge would
|
|
* incorrectly nudge the sample_pos towards the center of the
|
|
* framebuffer. If we shift one complete tile over towards the
|
|
* center and reset the tiles as above, the sample_pos would
|
|
* then shift back towards the edge and we could get a "pop" from
|
|
* suddenly changing density due to the slight shift.
|
|
*/
|
|
if (fdm_offsets) {
|
|
VkOffset2D offset = fdm_offsets[i];
|
|
if (!cmd->state.rp.shared_viewport) {
|
|
VkOffset2D bin_offset = tu_bin_offset(fdm_offsets[i], tiling);
|
|
offset.x += bin_offset.x;
|
|
offset.y += bin_offset.y;
|
|
}
|
|
sample_pos.x = (x1 + x2) / 2 - offset.x;
|
|
sample_pos.y = (y1 + y2) / 2 - offset.y;
|
|
} else {
|
|
sample_pos.x = (x1 + MIN2(x2, fb->width)) / 2;
|
|
sample_pos.y = (y1 + MIN2(y2, fb->height)) / 2;
|
|
}
|
|
|
|
tu_fragment_density_map_sample(fdm,
|
|
sample_pos.x,
|
|
sample_pos.y,
|
|
fb->width, fb->height, i,
|
|
&raw_areas[i]);
|
|
}
|
|
} else {
|
|
for (unsigned i = 0; i < views; i++)
|
|
raw_areas[i].width = raw_areas[i].height = 1.0f;
|
|
}
|
|
|
|
for (unsigned i = 0; i < views; i++) {
|
|
float floor_x, floor_y;
|
|
float area = raw_areas[i].width * raw_areas[i].height;
|
|
float frac_x = modff(raw_areas[i].width, &floor_x);
|
|
float frac_y = modff(raw_areas[i].height, &floor_y);
|
|
/* The spec allows rounding up one of the axes as long as the total
|
|
* area is less than or equal to the original area. Take advantage of
|
|
* this to try rounding up the number with the largest fraction.
|
|
*/
|
|
if ((frac_x > frac_y ? (floor_x + 1.f) * floor_y :
|
|
floor_x * (floor_y + 1.f)) <= area) {
|
|
if (frac_x > frac_y)
|
|
floor_x += 1.f;
|
|
else
|
|
floor_y += 1.f;
|
|
}
|
|
uint32_t width = floor_x;
|
|
uint32_t height = floor_y;
|
|
|
|
/* Areas that aren't a power of two, especially large areas, can create
|
|
* in floating-point rounding errors when dividing by the area in the
|
|
* viewport that result in under-rendering. Round down to a power of two
|
|
* to make sure all operations are exact.
|
|
*/
|
|
width = 1u << util_logbase2(width);
|
|
height = 1u << util_logbase2(height);
|
|
|
|
/* When FDM offset is enabled, the fragment area has to divide the
|
|
* offset to make sure that we don't have tiles with partial fragments.
|
|
* It would be bad to have the fragment area change as a function of the
|
|
* offset, because we'd get "popping" as the resolution changes with the
|
|
* offset, so just make sure it divides the offset granularity. This
|
|
* should mean it always divides the offset for any possible offset.
|
|
*/
|
|
if (fdm_offsets) {
|
|
width = MIN2(width, TU_FDM_OFFSET_GRANULARITY);
|
|
height = MIN2(height, TU_FDM_OFFSET_GRANULARITY);
|
|
}
|
|
|
|
/* HW viewport scaling supports a maximum fragment width/height of 4.
|
|
*/
|
|
if (views <= MAX_HW_SCALED_VIEWS) {
|
|
width = MIN2(width, 4);
|
|
height = MIN2(height, 4);
|
|
}
|
|
|
|
/* Make sure that the width/height divides the tile width/height so
|
|
* we don't have to do extra awkward clamping of the edges of each
|
|
* bin when resolving. It also has to divide the fdm offset, if any.
|
|
* Note that because the tile width is rounded to a multiple of 32 any
|
|
* power of two 32 or less will work, and if there is an offset then it
|
|
* must be a multiple of 4 so 2 or 4 will definitely work.
|
|
*
|
|
* TODO: Try to take advantage of the total area allowance here, too.
|
|
*/
|
|
while (tiling->tile0.width % width != 0)
|
|
width /= 2;
|
|
while (tiling->tile0.height % height != 0)
|
|
height /= 2;
|
|
|
|
tile->frag_areas[i].width = width;
|
|
tile->frag_areas[i].height = height;
|
|
}
|
|
|
|
/* If at any point we were forced to use the same scaling for all
|
|
* viewports, we need to make sure that any users *not* using shared
|
|
* scaling, including loads/stores, also consistently share the scaling.
|
|
*/
|
|
if (cmd->state.rp.shared_viewport) {
|
|
VkExtent2D frag_area = { UINT32_MAX, UINT32_MAX };
|
|
for (unsigned i = 0; i < views; i++) {
|
|
frag_area.width = MIN2(frag_area.width, tile->frag_areas[i].width);
|
|
frag_area.height = MIN2(frag_area.height, tile->frag_areas[i].height);
|
|
}
|
|
|
|
for (unsigned i = 0; i < views; i++)
|
|
tile->frag_areas[i] = frag_area;
|
|
}
|
|
}
|
|
|
|
static bool
|
|
try_merge_tiles(struct tu_tile_config *dst, const struct tu_tile_config *src,
|
|
unsigned views, bool has_abs_bin_mask)
|
|
{
|
|
uint32_t slot_mask = dst->slot_mask | src->slot_mask;
|
|
|
|
/* The fragment areas must be the same. */
|
|
for (unsigned i = 0; i < views; i++) {
|
|
if (dst->frag_areas[i].width != src->frag_areas[i].width ||
|
|
dst->frag_areas[i].height != src->frag_areas[i].height)
|
|
return false;
|
|
}
|
|
|
|
/* The tiles must be vertically or horizontally adjacent and have the
|
|
* compatible width/height.
|
|
*/
|
|
if (dst->pos.x == src->pos.x) {
|
|
if (dst->extent.height != src->extent.height)
|
|
return false;
|
|
} else if (dst->pos.y == src->pos.y) {
|
|
if (dst->extent.width != src->extent.width)
|
|
return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
if (!has_abs_bin_mask) {
|
|
/* The mask of the combined tile has to fit in 16 bits */
|
|
uint32_t hw_mask = slot_mask >> (ffs(slot_mask) - 1);
|
|
if ((hw_mask & 0xffff) != hw_mask)
|
|
return false;
|
|
}
|
|
|
|
/* Note, this assumes that dst is below or to the right of src, which is
|
|
* how we call this function below.
|
|
*/
|
|
VkExtent2D extent = {
|
|
dst->extent.width + (dst->pos.x - src->pos.x),
|
|
dst->extent.height + (dst->pos.y - src->pos.y),
|
|
};
|
|
|
|
assert(dst->extent.height > 0);
|
|
|
|
/* The common fragment areas must not be smaller than the combined bin
|
|
* extent, so that the combined bin is not larger than the original
|
|
* unscaled bin.
|
|
*/
|
|
for (unsigned i = 0; i < views; i++) {
|
|
if (dst->frag_areas[i].width < extent.width ||
|
|
dst->frag_areas[i].height < extent.height)
|
|
return false;
|
|
}
|
|
|
|
/* Ok, let's combine them. dst is below or to the right of src, so it takes
|
|
* src's position.
|
|
*/
|
|
dst->extent = extent;
|
|
dst->pos = src->pos;
|
|
dst->slot_mask = slot_mask;
|
|
return true;
|
|
}
|
|
|
|
template <chip CHIP>
|
|
void
|
|
tu_render_pipe_fdm(struct tu_cmd_buffer *cmd, uint32_t pipe,
|
|
uint32_t tx1, uint32_t ty1, uint32_t tx2, uint32_t ty2,
|
|
const struct tu_image_view *fdm,
|
|
const VkOffset2D *fdm_offsets)
|
|
{
|
|
uint32_t width = tx2 - tx1;
|
|
uint32_t height = ty2 - ty1;
|
|
unsigned views = tu_fdm_num_layers(cmd);
|
|
bool has_abs_mask =
|
|
cmd->device->physical_device->info->props.has_abs_bin_mask;
|
|
|
|
struct tu_tile_config tiles[width * height];
|
|
|
|
/* Initialize tiles and sample fragment density map */
|
|
for (uint32_t y = 0; y < height; y++) {
|
|
for (uint32_t x = 0; x < width; x++) {
|
|
struct tu_tile_config *tile = &tiles[width * y + x];
|
|
tile->pos = { x + tx1, y + ty1 };
|
|
tile->extent = { 1, 1 };
|
|
tile->pipe = pipe;
|
|
tile->slot_mask = 1u << (width * y + x);
|
|
tu_calc_frag_area(cmd, tile, fdm, fdm_offsets);
|
|
}
|
|
}
|
|
|
|
uint32_t merged_tiles = 0;
|
|
|
|
/* Merge tiles */
|
|
for (uint32_t y = 0; y < height; y++) {
|
|
for (uint32_t x = 0; x < width; x++) {
|
|
struct tu_tile_config *tile = &tiles[width * y + x];
|
|
if (x > 0) {
|
|
struct tu_tile_config *prev_x_tile = &tiles[width * y + x - 1];
|
|
if (try_merge_tiles(tile, prev_x_tile, views, has_abs_mask)) {
|
|
merged_tiles |= prev_x_tile->slot_mask;
|
|
}
|
|
}
|
|
if (y > 0) {
|
|
unsigned prev_y_idx = width * (y - 1) + x;
|
|
struct tu_tile_config *prev_y_tile = &tiles[prev_y_idx];
|
|
|
|
/* We can't merge prev_y_tile into tile if it's already been
|
|
* merged horizontally into its neighbor in the previous row.
|
|
*/
|
|
if (!(merged_tiles & (1u << prev_y_idx)) &&
|
|
try_merge_tiles(tile, prev_y_tile, views, has_abs_mask)) {
|
|
merged_tiles |= prev_y_tile->slot_mask;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Finally, iterate over tiles and draw them */
|
|
for (uint32_t y = 0; y < height; y++) {
|
|
for (uint32_t x = 0; x < width; x++) {
|
|
uint32_t tx;
|
|
if (y & 1)
|
|
tx = width - 1 - x;
|
|
else
|
|
tx = x;
|
|
|
|
unsigned tile_idx = y * width + tx;
|
|
if (merged_tiles & (1u << tile_idx))
|
|
continue;
|
|
|
|
tu6_render_tile<CHIP>(cmd, &cmd->cs, &tiles[tile_idx],
|
|
true, fdm_offsets);
|
|
}
|
|
}
|
|
}
|
|
|
|
static VkResult
|
|
tu_allocate_transient_attachments(struct tu_cmd_buffer *cmd, bool sysmem)
|
|
{
|
|
const struct tu_framebuffer *fb = cmd->state.framebuffer;
|
|
const struct tu_render_pass *rp = cmd->state.pass;
|
|
|
|
for (unsigned i = 0; i < fb->attachment_count; i++) {
|
|
const struct tu_image_view *iview = cmd->state.attachments[i];
|
|
if (iview && !(iview->image->vk.create_flags &
|
|
VK_IMAGE_CREATE_SPARSE_BINDING_BIT) &&
|
|
!iview->image->mem->bo &&
|
|
(sysmem || rp->attachments[i].load ||
|
|
rp->attachments[i].load_stencil ||
|
|
rp->attachments[i].store ||
|
|
rp->attachments[i].store_stencil)) {
|
|
VkResult result = tu_allocate_lazy_memory(cmd->device,
|
|
iview->image->mem);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
}
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu_cmd_render_tiles(struct tu_cmd_buffer *cmd,
|
|
struct tu_renderpass_result *autotune_result,
|
|
const VkOffset2D *fdm_offsets)
|
|
{
|
|
const struct tu_tiling_config *tiling = cmd->state.tiling;
|
|
const struct tu_vsc_config *vsc = tu_vsc_config(cmd, tiling);
|
|
const struct tu_image_view *fdm = NULL;
|
|
|
|
VkResult result = tu_allocate_transient_attachments(cmd, false);
|
|
if (result != VK_SUCCESS) {
|
|
vk_command_buffer_set_error(&cmd->vk, result);
|
|
return;
|
|
}
|
|
|
|
if (cmd->state.pass->fragment_density_map.attachment != VK_ATTACHMENT_UNUSED) {
|
|
fdm = cmd->state.attachments[cmd->state.pass->fragment_density_map.attachment];
|
|
}
|
|
|
|
bool has_fdm = fdm || (TU_DEBUG(FDM) && cmd->state.pass->has_fdm);
|
|
bool merge_tiles = has_fdm && !TU_DEBUG(NO_BIN_MERGING) &&
|
|
cmd->device->physical_device->info->props.has_bin_mask;
|
|
|
|
/* If not using FDM make sure not to accidentally apply the offsets */
|
|
if (!has_fdm)
|
|
fdm_offsets = NULL;
|
|
|
|
/* Create gmem stores now (at EndRenderPass time)) because they needed to
|
|
* know whether to allow their conditional execution, which was tied to a
|
|
* state that was known only at the end of the renderpass. They will be
|
|
* called from tu6_render_tile().
|
|
*/
|
|
tu_cs_begin(&cmd->tile_store_cs);
|
|
tu6_emit_tile_store_cs<CHIP>(cmd, &cmd->tile_store_cs);
|
|
tu_cs_end(&cmd->tile_store_cs);
|
|
|
|
tu6_tile_render_begin<CHIP>(cmd, &cmd->cs, autotune_result, fdm_offsets);
|
|
|
|
/* Note: we reverse the order of walking the pipes and tiles on every
|
|
* other row, to improve texture cache locality compared to raster order.
|
|
*/
|
|
for (uint32_t py = 0; py < vsc->pipe_count.height; py++) {
|
|
uint32_t pipe_row = py * vsc->pipe_count.width;
|
|
for (uint32_t pipe_row_i = 0; pipe_row_i < vsc->pipe_count.width; pipe_row_i++) {
|
|
uint32_t px;
|
|
if (py & 1)
|
|
px = vsc->pipe_count.width - 1 - pipe_row_i;
|
|
else
|
|
px = pipe_row_i;
|
|
uint32_t pipe = pipe_row + px;
|
|
uint32_t tx1 = px * vsc->pipe0.width;
|
|
uint32_t ty1 = py * vsc->pipe0.height;
|
|
uint32_t tx2 = MIN2(tx1 + vsc->pipe0.width, vsc->tile_count.width);
|
|
uint32_t ty2 = MIN2(ty1 + vsc->pipe0.height, vsc->tile_count.height);
|
|
|
|
if (merge_tiles) {
|
|
tu_render_pipe_fdm<CHIP>(cmd, pipe, tx1, ty1, tx2, ty2, fdm,
|
|
fdm_offsets);
|
|
continue;
|
|
}
|
|
|
|
uint32_t tile_row_stride = tx2 - tx1;
|
|
uint32_t slot_row = 0;
|
|
for (uint32_t ty = ty1; ty < ty2; ty++) {
|
|
for (uint32_t tile_row_i = 0; tile_row_i < tile_row_stride; tile_row_i++) {
|
|
uint32_t tx;
|
|
if (ty & 1)
|
|
tx = tile_row_stride - 1 - tile_row_i;
|
|
else
|
|
tx = tile_row_i;
|
|
|
|
struct tu_tile_config tile = {
|
|
.pos = { tx1 + tx, ty },
|
|
.pipe = pipe,
|
|
.slot_mask = 1u << (slot_row + tx),
|
|
.extent = { 1, 1 },
|
|
};
|
|
if (has_fdm)
|
|
tu_calc_frag_area(cmd, &tile, fdm, fdm_offsets);
|
|
|
|
tu6_render_tile<CHIP>(cmd, &cmd->cs, &tile, has_fdm,
|
|
fdm_offsets);
|
|
}
|
|
slot_row += tile_row_stride;
|
|
}
|
|
}
|
|
}
|
|
|
|
tu6_tile_render_end<CHIP>(cmd, &cmd->cs, autotune_result);
|
|
|
|
tu_trace_end_render_pass<CHIP>(cmd, true);
|
|
|
|
/* We have trashed the dynamically-emitted viewport, scissor, and FS params
|
|
* via the patchpoints, so we need to re-emit them if they are reused for a
|
|
* later render pass.
|
|
*/
|
|
if (cmd->state.pass->has_fdm)
|
|
cmd->state.dirty |= TU_CMD_DIRTY_FDM;
|
|
|
|
/* Reset the gmem store CS entry lists so that the next render pass
|
|
* does its own stores.
|
|
*/
|
|
tu_cs_discard_entries(&cmd->tile_store_cs);
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd,
|
|
struct tu_renderpass_result *autotune_result)
|
|
{
|
|
VkResult result = tu_allocate_transient_attachments(cmd, true);
|
|
|
|
if (result != VK_SUCCESS) {
|
|
vk_command_buffer_set_error(&cmd->vk, result);
|
|
return;
|
|
}
|
|
|
|
tu_trace_start_render_pass(cmd);
|
|
|
|
tu6_sysmem_render_begin<CHIP>(cmd, &cmd->cs, autotune_result);
|
|
|
|
trace_start_draw_ib_sysmem(&cmd->trace, &cmd->cs, cmd);
|
|
|
|
tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
|
|
|
|
trace_end_draw_ib_sysmem(&cmd->trace, &cmd->cs);
|
|
|
|
tu6_sysmem_render_end<CHIP>(cmd, &cmd->cs, autotune_result);
|
|
|
|
tu_clone_trace_range(cmd, &cmd->cs, &cmd->trace,
|
|
cmd->trace_renderpass_start,
|
|
u_trace_end_iterator(&cmd->rp_trace));
|
|
|
|
tu_trace_end_render_pass<CHIP>(cmd, false);
|
|
}
|
|
|
|
template <chip CHIP>
|
|
void
|
|
tu_cmd_render(struct tu_cmd_buffer *cmd_buffer,
|
|
const VkOffset2D *fdm_offsets)
|
|
{
|
|
if (cmd_buffer->state.rp.has_tess)
|
|
tu6_lazy_emit_tessfactor_addr<CHIP>(cmd_buffer);
|
|
|
|
struct tu_renderpass_result *autotune_result = NULL;
|
|
if (use_sysmem_rendering(cmd_buffer, &autotune_result))
|
|
tu_cmd_render_sysmem<CHIP>(cmd_buffer, autotune_result);
|
|
else
|
|
tu_cmd_render_tiles<CHIP>(cmd_buffer, autotune_result, fdm_offsets);
|
|
|
|
/* Outside of renderpasses we assume all draw states are disabled. We do
|
|
* this outside the draw CS for the normal case where 3d gmem stores aren't
|
|
* used.
|
|
*/
|
|
tu_disable_draw_states(cmd_buffer, &cmd_buffer->cs);
|
|
|
|
}
|
|
|
|
static void tu_reset_render_pass(struct tu_cmd_buffer *cmd_buffer)
|
|
{
|
|
/* discard draw_cs and draw_epilogue_cs entries now that the tiles are
|
|
rendered */
|
|
tu_cs_discard_entries(&cmd_buffer->draw_cs);
|
|
tu_cs_begin(&cmd_buffer->draw_cs);
|
|
tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
|
|
tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
|
|
|
|
cmd_buffer->state.pass = NULL;
|
|
cmd_buffer->state.subpass = NULL;
|
|
cmd_buffer->state.framebuffer = NULL;
|
|
cmd_buffer->state.attachments = NULL;
|
|
cmd_buffer->state.clear_values = NULL;
|
|
cmd_buffer->state.gmem_layout = TU_GMEM_LAYOUT_COUNT; /* invalid value to prevent looking up gmem offsets */
|
|
cmd_buffer->state.renderpass_cb_disabled = false;
|
|
memset(&cmd_buffer->state.rp, 0, sizeof(cmd_buffer->state.rp));
|
|
|
|
/* LRZ is not valid next time we use it */
|
|
cmd_buffer->state.lrz.valid = false;
|
|
cmd_buffer->state.dirty |= TU_CMD_DIRTY_LRZ;
|
|
|
|
/* Patchpoints have been executed */
|
|
util_dynarray_clear(&cmd_buffer->fdm_bin_patchpoints);
|
|
ralloc_free(cmd_buffer->patchpoints_ctx);
|
|
cmd_buffer->patchpoints_ctx = NULL;
|
|
|
|
/* Discard RP trace contents */
|
|
u_trace_disable_event_range(cmd_buffer->trace_renderpass_start,
|
|
u_trace_end_iterator(&cmd_buffer->rp_trace));
|
|
cmd_buffer->trace_renderpass_start =
|
|
u_trace_end_iterator(&cmd_buffer->rp_trace);
|
|
}
|
|
|
|
static VkResult
|
|
tu_create_cmd_buffer(struct vk_command_pool *pool,
|
|
VkCommandBufferLevel level,
|
|
struct vk_command_buffer **cmd_buffer_out)
|
|
{
|
|
struct tu_device *device =
|
|
container_of(pool->base.device, struct tu_device, vk);
|
|
struct tu_cmd_buffer *cmd_buffer;
|
|
|
|
cmd_buffer = (struct tu_cmd_buffer *) vk_zalloc2(
|
|
&device->vk.alloc, NULL, sizeof(*cmd_buffer), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
|
|
if (cmd_buffer == NULL)
|
|
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
VkResult result = vk_command_buffer_init(pool, &cmd_buffer->vk,
|
|
&tu_cmd_buffer_ops, level);
|
|
if (result != VK_SUCCESS) {
|
|
vk_free2(&device->vk.alloc, NULL, cmd_buffer);
|
|
return result;
|
|
}
|
|
|
|
cmd_buffer->device = device;
|
|
|
|
u_trace_init(&cmd_buffer->trace, &device->trace_context);
|
|
u_trace_init(&cmd_buffer->rp_trace, &device->trace_context);
|
|
cmd_buffer->trace_renderpass_start =
|
|
u_trace_begin_iterator(&cmd_buffer->rp_trace);
|
|
list_inithead(&cmd_buffer->renderpass_autotune_results);
|
|
|
|
if (TU_DEBUG_START(CHECK_CMD_BUFFER_STATUS)) {
|
|
cmd_buffer->status_bo = tu_cmd_buffer_setup_status_tracking(device);
|
|
if (cmd_buffer->status_bo == NULL) {
|
|
mesa_logw("Failed creating cmd_buffer status_bo. "
|
|
"Won't track status for this cmd_buffer.");
|
|
}
|
|
}
|
|
|
|
tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096, "cmd cs");
|
|
tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096, "draw cs");
|
|
tu_cs_init(&cmd_buffer->tile_store_cs, device, TU_CS_MODE_GROW, 2048, "tile store cs");
|
|
tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096, "draw epilogue cs");
|
|
tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048, "draw sub cs");
|
|
tu_cs_init(&cmd_buffer->pre_chain.draw_cs, device, TU_CS_MODE_GROW, 4096, "prechain draw cs");
|
|
tu_cs_init(&cmd_buffer->pre_chain.draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096, "prechain draw epiligoue cs");
|
|
|
|
for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
|
|
cmd_buffer->descriptors[i].push_set.base.type = VK_OBJECT_TYPE_DESCRIPTOR_SET;
|
|
|
|
*cmd_buffer_out = &cmd_buffer->vk;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
static void
|
|
tu_cmd_buffer_destroy(struct vk_command_buffer *vk_cmd_buffer)
|
|
{
|
|
struct tu_cmd_buffer *cmd_buffer =
|
|
container_of(vk_cmd_buffer, struct tu_cmd_buffer, vk);
|
|
|
|
tu_cs_finish(&cmd_buffer->cs);
|
|
tu_cs_finish(&cmd_buffer->draw_cs);
|
|
tu_cs_finish(&cmd_buffer->tile_store_cs);
|
|
tu_cs_finish(&cmd_buffer->draw_epilogue_cs);
|
|
tu_cs_finish(&cmd_buffer->sub_cs);
|
|
tu_cs_finish(&cmd_buffer->pre_chain.draw_cs);
|
|
tu_cs_finish(&cmd_buffer->pre_chain.draw_epilogue_cs);
|
|
|
|
if (TU_DEBUG_START(CHECK_CMD_BUFFER_STATUS)) {
|
|
tu_cmd_buffer_status_check_idle(cmd_buffer);
|
|
tu_bo_unmap(cmd_buffer->device, cmd_buffer->status_bo, false);
|
|
tu_bo_finish(cmd_buffer->device, cmd_buffer->status_bo);
|
|
}
|
|
|
|
u_trace_fini(&cmd_buffer->trace);
|
|
u_trace_fini(&cmd_buffer->rp_trace);
|
|
|
|
tu_autotune_free_results(cmd_buffer->device, &cmd_buffer->renderpass_autotune_results);
|
|
|
|
for (unsigned i = 0; i < MAX_BIND_POINTS; i++) {
|
|
if (cmd_buffer->descriptors[i].push_set.layout)
|
|
vk_descriptor_set_layout_unref(&cmd_buffer->device->vk,
|
|
&cmd_buffer->descriptors[i].push_set.layout->vk);
|
|
vk_free(&cmd_buffer->device->vk.alloc,
|
|
cmd_buffer->descriptors[i].push_set.mapped_ptr);
|
|
}
|
|
|
|
util_dynarray_foreach (&cmd_buffer->msrtss_color_temporaries,
|
|
struct tu_device_memory *, mem) {
|
|
tu_destroy_memory(cmd_buffer->device, *mem);
|
|
}
|
|
util_dynarray_fini(&cmd_buffer->msrtss_color_temporaries);
|
|
util_dynarray_foreach (&cmd_buffer->msrtss_depth_temporaries,
|
|
struct tu_device_memory *, mem) {
|
|
tu_destroy_memory(cmd_buffer->device, *mem);
|
|
}
|
|
util_dynarray_fini(&cmd_buffer->msrtss_depth_temporaries);
|
|
|
|
ralloc_free(cmd_buffer->patchpoints_ctx);
|
|
ralloc_free(cmd_buffer->pre_chain.patchpoints_ctx);
|
|
util_dynarray_fini(&cmd_buffer->fdm_bin_patchpoints);
|
|
util_dynarray_fini(&cmd_buffer->pre_chain.fdm_bin_patchpoints);
|
|
util_dynarray_fini(&cmd_buffer->vis_stream_patchpoints);
|
|
util_dynarray_fini(&cmd_buffer->cb_control_points);
|
|
|
|
util_dynarray_foreach (&cmd_buffer->vis_stream_bos, struct tu_bo *,
|
|
bo) {
|
|
tu_bo_finish(cmd_buffer->device, *bo);
|
|
}
|
|
|
|
mtx_lock(&cmd_buffer->device->vis_stream_suballocator_mtx);
|
|
util_dynarray_foreach (&cmd_buffer->vis_stream_cs_bos,
|
|
struct tu_vis_stream_patchpoint_cs,
|
|
bo) {
|
|
tu_suballoc_bo_free(&cmd_buffer->device->vis_stream_suballocator,
|
|
&bo->cs_bo);
|
|
tu_suballoc_bo_free(&cmd_buffer->device->vis_stream_suballocator,
|
|
&bo->fence_bo);
|
|
}
|
|
mtx_unlock(&cmd_buffer->device->vis_stream_suballocator_mtx);
|
|
|
|
util_dynarray_fini(&cmd_buffer->vis_stream_bos);
|
|
util_dynarray_fini(&cmd_buffer->vis_stream_cs_bos);
|
|
|
|
vk_command_buffer_finish(&cmd_buffer->vk);
|
|
vk_free2(&cmd_buffer->device->vk.alloc, &cmd_buffer->vk.pool->alloc,
|
|
cmd_buffer);
|
|
}
|
|
|
|
static void
|
|
tu_reset_cmd_buffer(struct vk_command_buffer *vk_cmd_buffer,
|
|
UNUSED VkCommandBufferResetFlags flags)
|
|
{
|
|
struct tu_cmd_buffer *cmd_buffer =
|
|
container_of(vk_cmd_buffer, struct tu_cmd_buffer, vk);
|
|
|
|
VkResult status_check_result = VK_SUCCESS;
|
|
if (TU_DEBUG_START(CHECK_CMD_BUFFER_STATUS))
|
|
status_check_result = tu_cmd_buffer_status_check_idle(cmd_buffer);
|
|
|
|
vk_command_buffer_reset(&cmd_buffer->vk);
|
|
|
|
if (TU_DEBUG_START(CHECK_CMD_BUFFER_STATUS) &&
|
|
status_check_result != VK_SUCCESS) {
|
|
cmd_buffer->vk.record_result = status_check_result;
|
|
}
|
|
|
|
tu_cs_reset(&cmd_buffer->cs);
|
|
tu_cs_reset(&cmd_buffer->draw_cs);
|
|
tu_cs_reset(&cmd_buffer->tile_store_cs);
|
|
tu_cs_reset(&cmd_buffer->draw_epilogue_cs);
|
|
tu_cs_reset(&cmd_buffer->sub_cs);
|
|
tu_cs_reset(&cmd_buffer->pre_chain.draw_cs);
|
|
tu_cs_reset(&cmd_buffer->pre_chain.draw_epilogue_cs);
|
|
|
|
tu_autotune_free_results(cmd_buffer->device, &cmd_buffer->renderpass_autotune_results);
|
|
|
|
for (unsigned i = 0; i < MAX_BIND_POINTS; i++) {
|
|
memset(&cmd_buffer->descriptors[i].sets, 0, sizeof(cmd_buffer->descriptors[i].sets));
|
|
if (cmd_buffer->descriptors[i].push_set.layout) {
|
|
vk_descriptor_set_layout_unref(&cmd_buffer->device->vk,
|
|
&cmd_buffer->descriptors[i].push_set.layout->vk);
|
|
}
|
|
vk_free(&cmd_buffer->device->vk.alloc, cmd_buffer->descriptors[i].push_set.mapped_ptr);
|
|
memset(&cmd_buffer->descriptors[i].push_set, 0, sizeof(cmd_buffer->descriptors[i].push_set));
|
|
cmd_buffer->descriptors[i].push_set.base.type = VK_OBJECT_TYPE_DESCRIPTOR_SET;
|
|
cmd_buffer->descriptors[i].max_sets_bound = 0;
|
|
cmd_buffer->descriptors[i].max_dynamic_offset_size = 0;
|
|
}
|
|
|
|
util_dynarray_foreach (&cmd_buffer->msrtss_color_temporaries,
|
|
struct tu_device_memory *, mem) {
|
|
tu_destroy_memory(cmd_buffer->device, *mem);
|
|
}
|
|
util_dynarray_clear(&cmd_buffer->msrtss_color_temporaries);
|
|
util_dynarray_foreach (&cmd_buffer->msrtss_depth_temporaries,
|
|
struct tu_device_memory *, mem) {
|
|
tu_destroy_memory(cmd_buffer->device, *mem);
|
|
}
|
|
util_dynarray_clear(&cmd_buffer->msrtss_depth_temporaries);
|
|
|
|
u_trace_fini(&cmd_buffer->trace);
|
|
u_trace_init(&cmd_buffer->trace, &cmd_buffer->device->trace_context);
|
|
u_trace_fini(&cmd_buffer->rp_trace);
|
|
u_trace_init(&cmd_buffer->rp_trace, &cmd_buffer->device->trace_context);
|
|
cmd_buffer->trace_renderpass_start =
|
|
u_trace_begin_iterator(&cmd_buffer->rp_trace);
|
|
|
|
cmd_buffer->state.max_vbs_bound = 0;
|
|
|
|
cmd_buffer->vsc_initialized = false;
|
|
cmd_buffer->prev_fsr_is_null = false;
|
|
|
|
ralloc_free(cmd_buffer->patchpoints_ctx);
|
|
ralloc_free(cmd_buffer->pre_chain.patchpoints_ctx);
|
|
cmd_buffer->patchpoints_ctx = NULL;
|
|
cmd_buffer->pre_chain.patchpoints_ctx = NULL;
|
|
util_dynarray_clear(&cmd_buffer->fdm_bin_patchpoints);
|
|
util_dynarray_clear(&cmd_buffer->pre_chain.fdm_bin_patchpoints);
|
|
util_dynarray_clear(&cmd_buffer->vis_stream_patchpoints);
|
|
util_dynarray_clear(&cmd_buffer->cb_control_points);
|
|
|
|
util_dynarray_foreach (&cmd_buffer->vis_stream_bos, struct tu_bo *,
|
|
bo) {
|
|
tu_bo_finish(cmd_buffer->device, *bo);
|
|
}
|
|
|
|
mtx_lock(&cmd_buffer->device->vis_stream_suballocator_mtx);
|
|
util_dynarray_foreach (&cmd_buffer->vis_stream_cs_bos,
|
|
struct tu_vis_stream_patchpoint_cs,
|
|
bo) {
|
|
tu_suballoc_bo_free(&cmd_buffer->device->vis_stream_suballocator,
|
|
&bo->cs_bo);
|
|
tu_suballoc_bo_free(&cmd_buffer->device->vis_stream_suballocator,
|
|
&bo->fence_bo);
|
|
}
|
|
mtx_unlock(&cmd_buffer->device->vis_stream_suballocator_mtx);
|
|
|
|
util_dynarray_clear(&cmd_buffer->vis_stream_bos);
|
|
util_dynarray_clear(&cmd_buffer->vis_stream_cs_bos);
|
|
}
|
|
|
|
const struct vk_command_buffer_ops tu_cmd_buffer_ops = {
|
|
.create = tu_create_cmd_buffer,
|
|
.reset = tu_reset_cmd_buffer,
|
|
.destroy = tu_cmd_buffer_destroy,
|
|
};
|
|
|
|
/* Initialize the cache, assuming all necessary flushes have happened but *not*
|
|
* invalidations.
|
|
*/
|
|
static void
|
|
tu_cache_init(struct tu_cache_state *cache)
|
|
{
|
|
cache->flush_bits = 0;
|
|
cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE;
|
|
}
|
|
|
|
/* Unlike the public entrypoint, this doesn't handle cache tracking, and
|
|
* tracking the CCU state. It's used for the driver to insert its own command
|
|
* buffer in the middle of a submit.
|
|
*/
|
|
VkResult
|
|
tu_cmd_buffer_begin(struct tu_cmd_buffer *cmd_buffer,
|
|
const VkCommandBufferBeginInfo *pBeginInfo)
|
|
{
|
|
vk_command_buffer_begin(&cmd_buffer->vk, pBeginInfo);
|
|
|
|
memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
|
|
vk_dynamic_graphics_state_init(&cmd_buffer->vk.dynamic_graphics_state);
|
|
cmd_buffer->vk.dynamic_graphics_state.vi = &cmd_buffer->state.vi;
|
|
cmd_buffer->vk.dynamic_graphics_state.ms.sample_locations = &cmd_buffer->state.sl;
|
|
cmd_buffer->state.index_size = 0xff; /* dirty restart index */
|
|
cmd_buffer->state.gmem_layout = TU_GMEM_LAYOUT_COUNT; /* dirty value */
|
|
|
|
tu_cache_init(&cmd_buffer->state.cache);
|
|
tu_cache_init(&cmd_buffer->state.renderpass_cache);
|
|
cmd_buffer->usage_flags = pBeginInfo->flags;
|
|
|
|
tu_cs_begin(&cmd_buffer->cs);
|
|
tu_cs_begin(&cmd_buffer->draw_cs);
|
|
tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
|
|
|
|
if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
|
|
if (u_trace_enabled(&cmd_buffer->device->trace_context)) {
|
|
trace_start_cmd_buffer(&cmd_buffer->trace, &cmd_buffer->cs,
|
|
cmd_buffer, tu_env_debug_as_string(),
|
|
ir3_shader_debug_as_string());
|
|
}
|
|
}
|
|
|
|
tu_cmd_buffer_status_gpu_write(cmd_buffer, TU_CMD_BUFFER_STATUS_ACTIVE);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VKAPI_ATTR VkResult VKAPI_CALL
|
|
tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
|
|
const VkCommandBufferBeginInfo *pBeginInfo)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
|
|
VkResult result = tu_cmd_buffer_begin(cmd_buffer, pBeginInfo);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
|
|
/* setup initial configuration into command buffer */
|
|
if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
|
|
switch (cmd_buffer->queue_family_index) {
|
|
case TU_QUEUE_GENERAL:
|
|
TU_CALLX(cmd_buffer->device, tu6_init_hw)(cmd_buffer, &cmd_buffer->cs);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
} else if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
|
|
const bool pass_continue =
|
|
pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT;
|
|
|
|
if (u_trace_enabled(&cmd_buffer->device->trace_context)) {
|
|
trace_start_secondary_cmd_buffer(
|
|
pass_continue ? &cmd_buffer->rp_trace : &cmd_buffer->trace,
|
|
pass_continue ? &cmd_buffer->draw_cs : &cmd_buffer->cs,
|
|
cmd_buffer);
|
|
}
|
|
|
|
assert(pBeginInfo->pInheritanceInfo);
|
|
|
|
cmd_buffer->inherited_pipeline_statistics =
|
|
pBeginInfo->pInheritanceInfo->pipelineStatistics;
|
|
|
|
cmd_buffer->state.occlusion_query_may_be_running =
|
|
pBeginInfo->pInheritanceInfo->occlusionQueryEnable;
|
|
|
|
vk_foreach_struct_const(ext, pBeginInfo->pInheritanceInfo) {
|
|
switch (ext->sType) {
|
|
case VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT: {
|
|
const VkCommandBufferInheritanceConditionalRenderingInfoEXT *cond_rend =
|
|
(VkCommandBufferInheritanceConditionalRenderingInfoEXT *) ext;
|
|
cmd_buffer->state.predication_active = cond_rend->conditionalRenderingEnable;
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (pass_continue) {
|
|
const VkCommandBufferInheritanceRenderingInfo *rendering_info =
|
|
vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext,
|
|
COMMAND_BUFFER_INHERITANCE_RENDERING_INFO);
|
|
|
|
if (TU_DEBUG(DYNAMIC)) {
|
|
rendering_info =
|
|
vk_get_command_buffer_inheritance_rendering_info(cmd_buffer->vk.level,
|
|
pBeginInfo);
|
|
}
|
|
|
|
if (rendering_info) {
|
|
tu_setup_dynamic_inheritance(cmd_buffer, rendering_info);
|
|
cmd_buffer->state.pass = &cmd_buffer->dynamic_pass;
|
|
cmd_buffer->state.subpass = &cmd_buffer->dynamic_subpass;
|
|
|
|
const VkRenderingAttachmentLocationInfoKHR *location_info =
|
|
vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext,
|
|
RENDERING_ATTACHMENT_LOCATION_INFO_KHR);
|
|
if (location_info) {
|
|
vk_common_CmdSetRenderingAttachmentLocationsKHR(commandBuffer,
|
|
location_info);
|
|
}
|
|
/* Unfortunately with dynamic renderpasses we get no indication
|
|
* whether FDM is used in secondaries, so we have to assume it
|
|
* always might be enabled.
|
|
*/
|
|
cmd_buffer->state.fdm_enabled =
|
|
cmd_buffer->device->vk.enabled_features.fragmentDensityMap ||
|
|
TU_DEBUG(FDM);
|
|
} else {
|
|
cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
|
|
cmd_buffer->state.subpass =
|
|
&cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
|
|
cmd_buffer->state.fdm_enabled = cmd_buffer->state.pass->has_fdm;
|
|
}
|
|
tu_fill_render_pass_state(&cmd_buffer->state.vk_rp,
|
|
cmd_buffer->state.pass,
|
|
cmd_buffer->state.subpass);
|
|
vk_cmd_set_cb_attachment_count(&cmd_buffer->vk,
|
|
cmd_buffer->state.subpass->color_count);
|
|
cmd_buffer->state.dirty |= TU_CMD_DIRTY_SUBPASS;
|
|
|
|
cmd_buffer->patchpoints_ctx = ralloc_context(NULL);
|
|
|
|
/* We can't set the gmem layout here, because the state.pass only has
|
|
* to be compatible (same formats/sample counts) with the primary's
|
|
* renderpass, rather than exactly equal.
|
|
*/
|
|
|
|
tu_lrz_begin_secondary_cmdbuf(cmd_buffer);
|
|
} else {
|
|
/* When executing in the middle of another command buffer, the CCU
|
|
* state is unknown.
|
|
*/
|
|
cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
static struct tu_cs
|
|
tu_cmd_dynamic_state(struct tu_cmd_buffer *cmd, uint32_t id, uint32_t size)
|
|
{
|
|
struct tu_cs cs;
|
|
|
|
assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
|
|
cmd->state.dynamic_state[id] = tu_cs_draw_state(&cmd->sub_cs, &cs, size);
|
|
|
|
/* note: this also avoids emitting draw states before renderpass clears,
|
|
* which may use the 3D clear path (for MSAA cases)
|
|
*/
|
|
if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)
|
|
return cs;
|
|
|
|
tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
|
|
tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
|
|
|
|
return cs;
|
|
}
|
|
|
|
static void
|
|
tu_cmd_end_dynamic_state(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
|
|
uint32_t id)
|
|
{
|
|
assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
|
|
cmd->state.dynamic_state[id] = tu_cs_end_draw_state(&cmd->sub_cs, cs);
|
|
|
|
/* note: this also avoids emitting draw states before renderpass clears,
|
|
* which may use the 3D clear path (for MSAA cases)
|
|
*/
|
|
if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)
|
|
return;
|
|
|
|
tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
|
|
tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
|
|
}
|
|
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdBindVertexBuffers2(VkCommandBuffer commandBuffer,
|
|
uint32_t firstBinding,
|
|
uint32_t bindingCount,
|
|
const VkBuffer *pBuffers,
|
|
const VkDeviceSize *pOffsets,
|
|
const VkDeviceSize *pSizes,
|
|
const VkDeviceSize *pStrides)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
struct tu_cs cs;
|
|
|
|
cmd->state.max_vbs_bound = MAX2(
|
|
cmd->state.max_vbs_bound, firstBinding + bindingCount);
|
|
|
|
if (pStrides) {
|
|
vk_cmd_set_vertex_binding_strides(&cmd->vk, firstBinding, bindingCount,
|
|
pStrides);
|
|
}
|
|
|
|
cmd->state.vertex_buffers.iova =
|
|
tu_cs_draw_state(&cmd->sub_cs, &cs, 4 * cmd->state.max_vbs_bound).iova;
|
|
|
|
for (uint32_t i = 0; i < bindingCount; i++) {
|
|
if (pBuffers[i] == VK_NULL_HANDLE) {
|
|
cmd->state.vb[firstBinding + i].base = 0;
|
|
cmd->state.vb[firstBinding + i].size = 0;
|
|
} else {
|
|
struct tu_buffer *buf = tu_buffer_from_handle(pBuffers[i]);
|
|
cmd->state.vb[firstBinding + i].base = vk_buffer_address(&buf->vk, pOffsets[i]);
|
|
cmd->state.vb[firstBinding + i].size =
|
|
vk_buffer_range(&buf->vk, pOffsets[i], pSizes ? pSizes[i] : VK_WHOLE_SIZE);
|
|
}
|
|
}
|
|
|
|
for (uint32_t i = 0; i < cmd->state.max_vbs_bound; i++) {
|
|
tu_cs_emit_regs(&cs,
|
|
A6XX_VFD_VERTEX_BUFFER_BASE(i, .qword = cmd->state.vb[i].base),
|
|
A6XX_VFD_VERTEX_BUFFER_SIZE(i, cmd->state.vb[i].size));
|
|
}
|
|
|
|
cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
|
|
}
|
|
|
|
template <chip CHIP>
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdBindIndexBuffer2KHR(VkCommandBuffer commandBuffer,
|
|
VkBuffer buffer,
|
|
VkDeviceSize offset,
|
|
VkDeviceSize size,
|
|
VkIndexType indexType)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
VK_FROM_HANDLE(tu_buffer, buf, buffer);
|
|
|
|
size = buf ? vk_buffer_range(&buf->vk, offset, size) : 0;
|
|
|
|
uint32_t index_size, index_shift;
|
|
uint32_t restart_index = vk_index_to_restart(indexType);
|
|
|
|
switch (indexType) {
|
|
case VK_INDEX_TYPE_UINT16:
|
|
index_size = INDEX4_SIZE_16_BIT;
|
|
index_shift = 1;
|
|
break;
|
|
case VK_INDEX_TYPE_UINT32:
|
|
index_size = INDEX4_SIZE_32_BIT;
|
|
index_shift = 2;
|
|
break;
|
|
case VK_INDEX_TYPE_UINT8_KHR:
|
|
index_size = INDEX4_SIZE_8_BIT;
|
|
index_shift = 0;
|
|
break;
|
|
default:
|
|
UNREACHABLE("invalid VkIndexType");
|
|
}
|
|
|
|
if (buf) {
|
|
/* initialize/update the restart index */
|
|
if (cmd->state.index_size != index_size)
|
|
tu_cs_emit_regs(&cmd->draw_cs, PC_RESTART_INDEX(CHIP, restart_index));
|
|
|
|
cmd->state.index_va = vk_buffer_address(&buf->vk, offset);
|
|
cmd->state.max_index_count = size >> index_shift;
|
|
cmd->state.index_size = index_size;
|
|
} else {
|
|
cmd->state.index_va = 0;
|
|
cmd->state.max_index_count = 0;
|
|
cmd->state.index_size = 0;
|
|
}
|
|
}
|
|
TU_GENX(tu_CmdBindIndexBuffer2KHR);
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu6_emit_descriptor_sets(struct tu_cmd_buffer *cmd,
|
|
VkPipelineBindPoint bind_point)
|
|
{
|
|
struct tu_descriptor_state *descriptors_state =
|
|
tu_get_descriptors_state(cmd, bind_point);
|
|
uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg;
|
|
struct tu_cs *cs, state_cs;
|
|
|
|
if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
|
|
sp_bindless_base_reg = __SP_GFX_BINDLESS_BASE_DESCRIPTOR<CHIP>(0, {}).reg;
|
|
hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0);
|
|
|
|
if (CHIP == A6XX) {
|
|
cmd->state.desc_sets =
|
|
tu_cs_draw_state(&cmd->sub_cs, &state_cs,
|
|
4 + 4 * descriptors_state->max_sets_bound +
|
|
(descriptors_state->max_dynamic_offset_size ? 6 : 0));
|
|
} else {
|
|
cmd->state.desc_sets =
|
|
tu_cs_draw_state(&cmd->sub_cs, &state_cs,
|
|
3 + 2 * descriptors_state->max_sets_bound +
|
|
(descriptors_state->max_dynamic_offset_size ? 3 : 0));
|
|
}
|
|
cs = &state_cs;
|
|
} else {
|
|
assert(bind_point == VK_PIPELINE_BIND_POINT_COMPUTE);
|
|
|
|
sp_bindless_base_reg = __SP_CS_BINDLESS_BASE_DESCRIPTOR<CHIP>(0, {}).reg;
|
|
hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0);
|
|
|
|
cs = &cmd->cs;
|
|
}
|
|
|
|
tu_cs_emit_pkt4(cs, sp_bindless_base_reg, 2 * descriptors_state->max_sets_bound);
|
|
tu_cs_emit_array(cs, (const uint32_t*)descriptors_state->set_iova, 2 * descriptors_state->max_sets_bound);
|
|
if (CHIP == A6XX) {
|
|
tu_cs_emit_pkt4(cs, hlsq_bindless_base_reg, 2 * descriptors_state->max_sets_bound);
|
|
tu_cs_emit_array(cs, (const uint32_t*)descriptors_state->set_iova, 2 * descriptors_state->max_sets_bound);
|
|
}
|
|
|
|
/* Dynamic descriptors get the reserved descriptor set. */
|
|
if (descriptors_state->max_dynamic_offset_size) {
|
|
int reserved_set_idx = cmd->device->physical_device->reserved_set_idx;
|
|
assert(reserved_set_idx >= 0); /* reserved set must be bound */
|
|
|
|
tu_cs_emit_pkt4(cs, sp_bindless_base_reg + reserved_set_idx * 2, 2);
|
|
tu_cs_emit_qw(cs, descriptors_state->set_iova[reserved_set_idx]);
|
|
if (CHIP == A6XX) {
|
|
tu_cs_emit_pkt4(cs, hlsq_bindless_base_reg + reserved_set_idx * 2, 2);
|
|
tu_cs_emit_qw(cs, descriptors_state->set_iova[reserved_set_idx]);
|
|
}
|
|
}
|
|
|
|
tu_cs_emit_regs(cs, SP_UPDATE_CNTL(CHIP,
|
|
.cs_bindless = bind_point == VK_PIPELINE_BIND_POINT_COMPUTE ? CHIP == A6XX ? 0x1f : 0xff : 0,
|
|
.gfx_bindless = bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS ? CHIP == A6XX ? 0x1f : 0xff : 0,
|
|
));
|
|
|
|
if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
|
|
assert(cs->cur == cs->end); /* validate draw state size */
|
|
/* note: this also avoids emitting draw states before renderpass clears,
|
|
* which may use the 3D clear path (for MSAA cases)
|
|
*/
|
|
if (!(cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
|
|
tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
|
|
tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* We lazily emit the draw state for desciptor sets at draw time, so that we can
|
|
* batch together multiple tu_CmdBindDescriptorSets() calls. ANGLE and zink
|
|
* will often emit multiple bind calls in a draw.
|
|
*/
|
|
static void
|
|
tu_dirty_desc_sets(struct tu_cmd_buffer *cmd,
|
|
VkPipelineBindPoint pipelineBindPoint)
|
|
{
|
|
if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
|
|
cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESC_SETS;
|
|
} else {
|
|
assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
|
|
cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS;
|
|
}
|
|
}
|
|
|
|
static void
|
|
tu_bind_descriptor_sets(struct tu_cmd_buffer *cmd,
|
|
const VkBindDescriptorSetsInfoKHR *info,
|
|
VkPipelineBindPoint bind_point)
|
|
{
|
|
VK_FROM_HANDLE(tu_pipeline_layout, layout, info->layout);
|
|
unsigned dyn_idx = 0;
|
|
|
|
struct tu_descriptor_state *descriptors_state =
|
|
tu_get_descriptors_state(cmd, bind_point);
|
|
|
|
descriptors_state->max_sets_bound =
|
|
MAX2(descriptors_state->max_sets_bound,
|
|
info->firstSet + info->descriptorSetCount);
|
|
|
|
unsigned dynamic_offset_offset = 0;
|
|
for (unsigned i = 0; i < info->firstSet; i++) {
|
|
if (layout->set[i].layout)
|
|
dynamic_offset_offset += layout->set[i].layout->dynamic_offset_size;
|
|
}
|
|
|
|
for (unsigned i = 0; i < info->descriptorSetCount; ++i) {
|
|
unsigned idx = i + info->firstSet;
|
|
VK_FROM_HANDLE(tu_descriptor_set, set, info->pDescriptorSets[i]);
|
|
|
|
descriptors_state->sets[idx] = set;
|
|
descriptors_state->set_iova[idx] = set ?
|
|
(set->va | BINDLESS_DESCRIPTOR_64B) : 0;
|
|
|
|
if (!set)
|
|
continue;
|
|
|
|
if (set->layout->has_inline_uniforms)
|
|
cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
|
|
|
|
if (!set->layout->dynamic_offset_size)
|
|
continue;
|
|
|
|
uint32_t *src = set->dynamic_descriptors;
|
|
uint32_t *dst = descriptors_state->dynamic_descriptors +
|
|
dynamic_offset_offset / 4;
|
|
for (unsigned j = 0; j < set->layout->binding_count; j++) {
|
|
struct tu_descriptor_set_binding_layout *binding =
|
|
&set->layout->binding[j];
|
|
if (vk_descriptor_type_is_dynamic(binding->type)) {
|
|
for (unsigned k = 0; k < binding->array_size; k++, dyn_idx++) {
|
|
assert(dyn_idx < info->dynamicOffsetCount);
|
|
uint32_t offset = info->pDynamicOffsets[dyn_idx];
|
|
memcpy(dst, src, binding->size);
|
|
|
|
if (binding->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC) {
|
|
/* Note: we can assume here that the addition won't roll
|
|
* over and change the SIZE field.
|
|
*/
|
|
uint64_t va = src[0] | ((uint64_t)src[1] << 32);
|
|
va += offset;
|
|
dst[0] = va;
|
|
dst[1] = va >> 32;
|
|
} else {
|
|
uint32_t *dst_desc = dst;
|
|
for (unsigned i = 0;
|
|
i < binding->size / (4 * A6XX_TEX_CONST_DWORDS);
|
|
i++, dst_desc += A6XX_TEX_CONST_DWORDS) {
|
|
/* Note: A6XX_TEX_CONST_5_DEPTH is always 0 */
|
|
uint64_t va = dst_desc[4] | ((uint64_t)dst_desc[5] << 32);
|
|
uint32_t desc_offset = pkt_field_get(
|
|
A6XX_TEX_CONST_2_STARTOFFSETTEXELS, dst_desc[2]);
|
|
|
|
/* Use descriptor's format to determine the shift amount
|
|
* that's to be used on the offset value.
|
|
*/
|
|
uint32_t format =
|
|
pkt_field_get(A6XX_TEX_CONST_0_FMT, dst_desc[0]);
|
|
unsigned offset_shift;
|
|
switch (format) {
|
|
case FMT6_16_UINT:
|
|
offset_shift = 1;
|
|
break;
|
|
case FMT6_32_UINT:
|
|
offset_shift = 2;
|
|
break;
|
|
case FMT6_8_UINT:
|
|
default:
|
|
offset_shift = 0;
|
|
break;
|
|
}
|
|
|
|
va += desc_offset << offset_shift;
|
|
va += offset;
|
|
unsigned new_offset = (va & 0x3f) >> offset_shift;
|
|
va &= ~0x3full;
|
|
dst_desc[4] = va;
|
|
dst_desc[5] = va >> 32;
|
|
dst_desc[2] =
|
|
pkt_field_set(A6XX_TEX_CONST_2_STARTOFFSETTEXELS,
|
|
dst_desc[2], new_offset);
|
|
}
|
|
}
|
|
|
|
dst += binding->size / 4;
|
|
src += binding->size / 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (layout->set[idx].layout)
|
|
dynamic_offset_offset += layout->set[idx].layout->dynamic_offset_size;
|
|
}
|
|
assert(dyn_idx == info->dynamicOffsetCount);
|
|
|
|
if (dynamic_offset_offset) {
|
|
descriptors_state->max_dynamic_offset_size =
|
|
MAX2(descriptors_state->max_dynamic_offset_size, dynamic_offset_offset);
|
|
|
|
/* allocate and fill out dynamic descriptor set */
|
|
struct tu_cs_memory dynamic_desc_set;
|
|
int reserved_set_idx = cmd->device->physical_device->reserved_set_idx;
|
|
VkResult result =
|
|
tu_cs_alloc(&cmd->sub_cs,
|
|
descriptors_state->max_dynamic_offset_size /
|
|
(4 * A6XX_TEX_CONST_DWORDS),
|
|
A6XX_TEX_CONST_DWORDS, &dynamic_desc_set);
|
|
if (result != VK_SUCCESS) {
|
|
vk_command_buffer_set_error(&cmd->vk, result);
|
|
return;
|
|
}
|
|
|
|
memcpy(dynamic_desc_set.map, descriptors_state->dynamic_descriptors,
|
|
descriptors_state->max_dynamic_offset_size);
|
|
assert(reserved_set_idx >= 0); /* reserved set must be bound */
|
|
descriptors_state->set_iova[reserved_set_idx] = dynamic_desc_set.iova | BINDLESS_DESCRIPTOR_64B;
|
|
}
|
|
|
|
tu_dirty_desc_sets(cmd, bind_point);
|
|
}
|
|
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdBindDescriptorSets2KHR(
|
|
VkCommandBuffer commandBuffer,
|
|
const VkBindDescriptorSetsInfoKHR *pBindDescriptorSetsInfo)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
|
|
if (pBindDescriptorSetsInfo->stageFlags & VK_SHADER_STAGE_COMPUTE_BIT) {
|
|
tu_bind_descriptor_sets(cmd, pBindDescriptorSetsInfo,
|
|
VK_PIPELINE_BIND_POINT_COMPUTE);
|
|
}
|
|
|
|
if (pBindDescriptorSetsInfo->stageFlags & VK_SHADER_STAGE_ALL_GRAPHICS) {
|
|
tu_bind_descriptor_sets(cmd, pBindDescriptorSetsInfo,
|
|
VK_PIPELINE_BIND_POINT_GRAPHICS);
|
|
}
|
|
}
|
|
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdBindDescriptorBuffersEXT(
|
|
VkCommandBuffer commandBuffer,
|
|
uint32_t bufferCount,
|
|
const VkDescriptorBufferBindingInfoEXT *pBindingInfos)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
|
|
for (unsigned i = 0; i < bufferCount; i++)
|
|
cmd->state.descriptor_buffer_iova[i] = pBindingInfos[i].address;
|
|
}
|
|
|
|
static void
|
|
tu_set_descriptor_buffer_offsets(
|
|
struct tu_cmd_buffer *cmd,
|
|
const VkSetDescriptorBufferOffsetsInfoEXT *info,
|
|
VkPipelineBindPoint bind_point)
|
|
{
|
|
VK_FROM_HANDLE(tu_pipeline_layout, layout, info->layout);
|
|
|
|
struct tu_descriptor_state *descriptors_state =
|
|
tu_get_descriptors_state(cmd, bind_point);
|
|
|
|
descriptors_state->max_sets_bound = MAX2(descriptors_state->max_sets_bound,
|
|
info->firstSet + info->setCount);
|
|
|
|
for (unsigned i = 0; i < info->setCount; ++i) {
|
|
unsigned idx = i + info->firstSet;
|
|
struct tu_descriptor_set_layout *set_layout = layout->set[idx].layout;
|
|
|
|
descriptors_state->set_iova[idx] =
|
|
(cmd->state.descriptor_buffer_iova[info->pBufferIndices[i]] +
|
|
info->pOffsets[i]) |
|
|
BINDLESS_DESCRIPTOR_64B;
|
|
|
|
if (set_layout->has_inline_uniforms)
|
|
cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
|
|
}
|
|
|
|
tu_dirty_desc_sets(cmd, bind_point);
|
|
}
|
|
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdSetDescriptorBufferOffsets2EXT(
|
|
VkCommandBuffer commandBuffer,
|
|
const VkSetDescriptorBufferOffsetsInfoEXT *pSetDescriptorBufferOffsetsInfo)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
|
|
if (pSetDescriptorBufferOffsetsInfo->stageFlags &
|
|
VK_SHADER_STAGE_COMPUTE_BIT) {
|
|
tu_set_descriptor_buffer_offsets(cmd, pSetDescriptorBufferOffsetsInfo,
|
|
VK_PIPELINE_BIND_POINT_COMPUTE);
|
|
}
|
|
|
|
if (pSetDescriptorBufferOffsetsInfo->stageFlags &
|
|
VK_SHADER_STAGE_ALL_GRAPHICS) {
|
|
tu_set_descriptor_buffer_offsets(cmd, pSetDescriptorBufferOffsetsInfo,
|
|
VK_PIPELINE_BIND_POINT_GRAPHICS);
|
|
}
|
|
}
|
|
|
|
static void
|
|
tu_bind_descriptor_buffer_embedded_samplers(
|
|
struct tu_cmd_buffer *cmd,
|
|
const VkBindDescriptorBufferEmbeddedSamplersInfoEXT *info,
|
|
VkPipelineBindPoint bind_point)
|
|
{
|
|
VK_FROM_HANDLE(tu_pipeline_layout, layout, info->layout);
|
|
|
|
struct tu_descriptor_set_layout *set_layout =
|
|
layout->set[info->set].layout;
|
|
|
|
struct tu_descriptor_state *descriptors_state =
|
|
tu_get_descriptors_state(cmd, bind_point);
|
|
|
|
descriptors_state->max_sets_bound =
|
|
MAX2(descriptors_state->max_sets_bound, info->set + 1);
|
|
|
|
descriptors_state->set_iova[info->set] =
|
|
set_layout->embedded_samplers->iova | BINDLESS_DESCRIPTOR_64B;
|
|
|
|
tu_dirty_desc_sets(cmd, bind_point);
|
|
}
|
|
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdBindDescriptorBufferEmbeddedSamplers2EXT(
|
|
VkCommandBuffer commandBuffer,
|
|
const VkBindDescriptorBufferEmbeddedSamplersInfoEXT
|
|
*pBindDescriptorBufferEmbeddedSamplersInfo)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
|
|
if (pBindDescriptorBufferEmbeddedSamplersInfo->stageFlags &
|
|
VK_SHADER_STAGE_COMPUTE_BIT) {
|
|
tu_bind_descriptor_buffer_embedded_samplers(
|
|
cmd, pBindDescriptorBufferEmbeddedSamplersInfo,
|
|
VK_PIPELINE_BIND_POINT_COMPUTE);
|
|
}
|
|
|
|
if (pBindDescriptorBufferEmbeddedSamplersInfo->stageFlags &
|
|
VK_SHADER_STAGE_ALL_GRAPHICS) {
|
|
tu_bind_descriptor_buffer_embedded_samplers(
|
|
cmd, pBindDescriptorBufferEmbeddedSamplersInfo,
|
|
VK_PIPELINE_BIND_POINT_GRAPHICS);
|
|
}
|
|
}
|
|
|
|
static VkResult
|
|
tu_push_descriptor_set_update_layout(struct tu_device *device,
|
|
struct tu_descriptor_set *set,
|
|
struct tu_descriptor_set_layout *layout)
|
|
{
|
|
if (set->layout == layout)
|
|
return VK_SUCCESS;
|
|
|
|
if (set->layout)
|
|
vk_descriptor_set_layout_unref(&device->vk, &set->layout->vk);
|
|
vk_descriptor_set_layout_ref(&layout->vk);
|
|
set->layout = layout;
|
|
|
|
if (set->host_size < layout->size) {
|
|
void *new_buf =
|
|
vk_realloc(&device->vk.alloc, set->mapped_ptr, layout->size, 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if (!new_buf)
|
|
return VK_ERROR_OUT_OF_HOST_MEMORY;
|
|
set->mapped_ptr = (uint32_t *) new_buf;
|
|
set->host_size = layout->size;
|
|
}
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
static void
|
|
tu_push_descriptor_set(struct tu_cmd_buffer *cmd,
|
|
const VkPushDescriptorSetInfoKHR *info,
|
|
VkPipelineBindPoint bind_point)
|
|
{
|
|
VK_FROM_HANDLE(tu_pipeline_layout, pipe_layout, info->layout);
|
|
struct tu_descriptor_set_layout *layout =
|
|
pipe_layout->set[info->set].layout;
|
|
struct tu_descriptor_set *set =
|
|
&tu_get_descriptors_state(cmd, bind_point)->push_set;
|
|
|
|
struct tu_cs_memory set_mem;
|
|
VkResult result = tu_cs_alloc(&cmd->sub_cs,
|
|
DIV_ROUND_UP(layout->size, A6XX_TEX_CONST_DWORDS * 4),
|
|
A6XX_TEX_CONST_DWORDS, &set_mem);
|
|
if (result != VK_SUCCESS) {
|
|
vk_command_buffer_set_error(&cmd->vk, result);
|
|
return;
|
|
}
|
|
|
|
result = tu_push_descriptor_set_update_layout(cmd->device, set, layout);
|
|
if (result != VK_SUCCESS) {
|
|
vk_command_buffer_set_error(&cmd->vk, result);
|
|
return;
|
|
}
|
|
|
|
tu_update_descriptor_sets(cmd->device, tu_descriptor_set_to_handle(set),
|
|
info->descriptorWriteCount,
|
|
info->pDescriptorWrites, 0, NULL);
|
|
|
|
memcpy(set_mem.map, set->mapped_ptr, layout->size);
|
|
set->va = set_mem.iova;
|
|
|
|
const VkDescriptorSet desc_set[] = { tu_descriptor_set_to_handle(set) };
|
|
vk_common_CmdBindDescriptorSets(tu_cmd_buffer_to_handle(cmd), bind_point,
|
|
info->layout, info->set, 1, desc_set, 0,
|
|
NULL);
|
|
}
|
|
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdPushDescriptorSet2KHR(
|
|
VkCommandBuffer commandBuffer,
|
|
const VkPushDescriptorSetInfoKHR *pPushDescriptorSetInfo)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
|
|
if (pPushDescriptorSetInfo->stageFlags & VK_SHADER_STAGE_COMPUTE_BIT) {
|
|
tu_push_descriptor_set(cmd, pPushDescriptorSetInfo,
|
|
VK_PIPELINE_BIND_POINT_COMPUTE);
|
|
}
|
|
|
|
if (pPushDescriptorSetInfo->stageFlags & VK_SHADER_STAGE_ALL_GRAPHICS) {
|
|
tu_push_descriptor_set(cmd, pPushDescriptorSetInfo,
|
|
VK_PIPELINE_BIND_POINT_GRAPHICS);
|
|
}
|
|
}
|
|
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdPushDescriptorSetWithTemplate2KHR(
|
|
VkCommandBuffer commandBuffer,
|
|
const VkPushDescriptorSetWithTemplateInfoKHR
|
|
*pPushDescriptorSetWithTemplateInfo)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
VK_FROM_HANDLE(tu_pipeline_layout, pipe_layout,
|
|
pPushDescriptorSetWithTemplateInfo->layout);
|
|
VK_FROM_HANDLE(
|
|
tu_descriptor_update_template, templ,
|
|
pPushDescriptorSetWithTemplateInfo->descriptorUpdateTemplate);
|
|
struct tu_descriptor_set_layout *layout =
|
|
pipe_layout->set[pPushDescriptorSetWithTemplateInfo->set].layout;
|
|
struct tu_descriptor_set *set =
|
|
&tu_get_descriptors_state(cmd, templ->bind_point)->push_set;
|
|
|
|
struct tu_cs_memory set_mem;
|
|
VkResult result = tu_cs_alloc(&cmd->sub_cs,
|
|
DIV_ROUND_UP(layout->size, A6XX_TEX_CONST_DWORDS * 4),
|
|
A6XX_TEX_CONST_DWORDS, &set_mem);
|
|
if (result != VK_SUCCESS) {
|
|
vk_command_buffer_set_error(&cmd->vk, result);
|
|
return;
|
|
}
|
|
|
|
result = tu_push_descriptor_set_update_layout(cmd->device, set, layout);
|
|
if (result != VK_SUCCESS) {
|
|
vk_command_buffer_set_error(&cmd->vk, result);
|
|
return;
|
|
}
|
|
|
|
tu_update_descriptor_set_with_template(
|
|
cmd->device, set,
|
|
pPushDescriptorSetWithTemplateInfo->descriptorUpdateTemplate,
|
|
pPushDescriptorSetWithTemplateInfo->pData);
|
|
|
|
memcpy(set_mem.map, set->mapped_ptr, layout->size);
|
|
set->va = set_mem.iova;
|
|
|
|
const VkDescriptorSet desc_set[] = { tu_descriptor_set_to_handle(set) };
|
|
vk_common_CmdBindDescriptorSets(
|
|
tu_cmd_buffer_to_handle(cmd), templ->bind_point,
|
|
pPushDescriptorSetWithTemplateInfo->layout,
|
|
pPushDescriptorSetWithTemplateInfo->set, 1, desc_set, 0, NULL);
|
|
}
|
|
|
|
template <chip CHIP>
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,
|
|
uint32_t firstBinding,
|
|
uint32_t bindingCount,
|
|
const VkBuffer *pBuffers,
|
|
const VkDeviceSize *pOffsets,
|
|
const VkDeviceSize *pSizes)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
struct tu_cs *cs = &cmd->draw_cs;
|
|
|
|
/* using COND_REG_EXEC for xfb commands matches the blob behavior
|
|
* presumably there isn't any benefit using a draw state when the
|
|
* condition is (SYSMEM | BINNING)
|
|
*/
|
|
tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
|
|
CP_COND_REG_EXEC_0_SYSMEM |
|
|
CP_COND_REG_EXEC_0_BINNING);
|
|
|
|
for (uint32_t i = 0; i < bindingCount; i++) {
|
|
VK_FROM_HANDLE(tu_buffer, buf, pBuffers[i]);
|
|
uint64_t iova = vk_buffer_address(&buf->vk, pOffsets[i]);
|
|
uint32_t size = vk_buffer_range(&buf->vk, pOffsets[i],
|
|
pSizes ? pSizes[i] : VK_WHOLE_SIZE);
|
|
uint32_t idx = i + firstBinding;
|
|
|
|
/* BUFFER_BASE is 32-byte aligned, add remaining offset to BUFFER_OFFSET */
|
|
uint32_t offset = iova & 0x1f;
|
|
iova &= ~(uint64_t) 0x1f;
|
|
|
|
tu_cs_emit_regs(cs, VPC_SO_BUFFER_BASE(CHIP, idx, .qword = iova),
|
|
VPC_SO_BUFFER_SIZE(CHIP, idx, size + offset));
|
|
|
|
cmd->state.streamout_offset[idx] = offset;
|
|
}
|
|
|
|
tu_cond_exec_end(cs);
|
|
}
|
|
TU_GENX(tu_CmdBindTransformFeedbackBuffersEXT);
|
|
|
|
template <chip CHIP>
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,
|
|
uint32_t firstCounterBuffer,
|
|
uint32_t counterBufferCount,
|
|
const VkBuffer *pCounterBuffers,
|
|
const VkDeviceSize *pCounterBufferOffsets)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
struct tu_cs *cs = &cmd->draw_cs;
|
|
|
|
tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
|
|
CP_COND_REG_EXEC_0_SYSMEM |
|
|
CP_COND_REG_EXEC_0_BINNING);
|
|
|
|
tu_cs_emit_regs(cs, VPC_SO_OVERRIDE(CHIP, false));
|
|
|
|
/* TODO: only update offset for active buffers */
|
|
for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++)
|
|
tu_cs_emit_regs(cs, VPC_SO_BUFFER_OFFSET(CHIP, i, cmd->state.streamout_offset[i]));
|
|
|
|
for (uint32_t i = 0; i < (pCounterBuffers ? counterBufferCount : 0); i++) {
|
|
uint32_t idx = firstCounterBuffer + i;
|
|
uint32_t offset = cmd->state.streamout_offset[idx];
|
|
uint64_t counter_buffer_offset = pCounterBufferOffsets ? pCounterBufferOffsets[i] : 0u;
|
|
|
|
if (!pCounterBuffers[i])
|
|
continue;
|
|
|
|
VK_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
|
|
tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(VPC_SO_BUFFER_OFFSET(CHIP, idx).reg) |
|
|
CP_MEM_TO_REG_0_UNK31 |
|
|
CP_MEM_TO_REG_0_CNT(1));
|
|
tu_cs_emit_qw(cs, vk_buffer_address(&buf->vk, counter_buffer_offset));
|
|
|
|
if (offset) {
|
|
tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
|
|
tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(VPC_SO_BUFFER_OFFSET(CHIP, idx).reg) |
|
|
CP_REG_RMW_0_SRC1_ADD);
|
|
tu_cs_emit(cs, 0xffffffff);
|
|
tu_cs_emit(cs, offset);
|
|
}
|
|
}
|
|
|
|
tu_cond_exec_end(cs);
|
|
}
|
|
TU_GENX(tu_CmdBeginTransformFeedbackEXT);
|
|
|
|
template <chip CHIP>
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,
|
|
uint32_t firstCounterBuffer,
|
|
uint32_t counterBufferCount,
|
|
const VkBuffer *pCounterBuffers,
|
|
const VkDeviceSize *pCounterBufferOffsets)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
struct tu_cs *cs = &cmd->draw_cs;
|
|
|
|
tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
|
|
CP_COND_REG_EXEC_0_SYSMEM |
|
|
CP_COND_REG_EXEC_0_BINNING);
|
|
|
|
tu_cs_emit_regs(cs, VPC_SO_OVERRIDE(CHIP, true));
|
|
|
|
/* TODO: only flush buffers that need to be flushed */
|
|
for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
|
|
/* note: FLUSH_BASE is always the same, so it could go in init_hw()? */
|
|
tu_cs_emit_regs(cs, VPC_SO_FLUSH_BASE(CHIP, i, .qword = global_iova_arr(cmd, flush_base, i)));
|
|
tu_emit_event_write<CHIP>(cmd, cs, (enum fd_gpu_event) (FD_FLUSH_SO_0 + i));
|
|
}
|
|
|
|
for (uint32_t i = 0; i < (pCounterBuffers ? counterBufferCount : 0); i++) {
|
|
uint32_t idx = firstCounterBuffer + i;
|
|
uint32_t offset = cmd->state.streamout_offset[idx];
|
|
uint64_t counter_buffer_offset = pCounterBufferOffsets ? pCounterBufferOffsets[i] : 0u;
|
|
|
|
if (!pCounterBuffers[i])
|
|
continue;
|
|
|
|
VK_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
|
|
|
|
/* VPC_SO_FLUSH_BASE has dwords counter, but counter should be in bytes */
|
|
tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
|
|
tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_CP_SCRATCH(0)) |
|
|
COND(CHIP == A6XX, CP_MEM_TO_REG_0_SHIFT_BY_2) |
|
|
0x40000 | /* ??? */
|
|
CP_MEM_TO_REG_0_UNK31 |
|
|
CP_MEM_TO_REG_0_CNT(1));
|
|
tu_cs_emit_qw(cs, global_iova_arr(cmd, flush_base, idx));
|
|
|
|
if (offset) {
|
|
tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
|
|
tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_CP_SCRATCH(0)) |
|
|
CP_REG_RMW_0_SRC1_ADD);
|
|
tu_cs_emit(cs, 0xffffffff);
|
|
tu_cs_emit(cs, -offset);
|
|
}
|
|
|
|
tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
|
|
tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(REG_A6XX_CP_SCRATCH(0)) |
|
|
CP_REG_TO_MEM_0_CNT(1));
|
|
tu_cs_emit_qw(cs, vk_buffer_address(&buf->vk, counter_buffer_offset));
|
|
}
|
|
|
|
tu_cond_exec_end(cs);
|
|
|
|
cmd->state.rp.xfb_used = true;
|
|
}
|
|
TU_GENX(tu_CmdEndTransformFeedbackEXT);
|
|
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdPushConstants2KHR(VkCommandBuffer commandBuffer,
|
|
const VkPushConstantsInfoKHR *pPushConstantsInfo)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
memcpy((char *) cmd->push_constants + pPushConstantsInfo->offset,
|
|
pPushConstantsInfo->pValues, pPushConstantsInfo->size);
|
|
cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
|
|
}
|
|
|
|
/* Clean everything which has been made available but we haven't actually
|
|
* cleaned yet.
|
|
*/
|
|
static void
|
|
tu_clean_all_pending(struct tu_cache_state *cache)
|
|
{
|
|
cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_CLEAN;
|
|
cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_CLEAN;
|
|
}
|
|
|
|
template <chip CHIP>
|
|
VKAPI_ATTR VkResult VKAPI_CALL
|
|
tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
|
|
|
|
/* We currently flush CCU at the end of the command buffer, like
|
|
* what the blob does. There's implicit synchronization around every
|
|
* vkQueueSubmit, but the kernel only flushes the UCHE, and we don't
|
|
* know yet if this command buffer will be the last in the submit so we
|
|
* have to defensively flush everything else.
|
|
*
|
|
* TODO: We could definitely do better than this, since these flushes
|
|
* aren't required by Vulkan, but we'd need kernel support to do that.
|
|
* Ideally, we'd like the kernel to flush everything afterwards, so that we
|
|
* wouldn't have to do any flushes here, and when submitting multiple
|
|
* command buffers there wouldn't be any unnecessary flushes in between.
|
|
*/
|
|
if (cmd_buffer->state.pass) {
|
|
tu_clean_all_pending(&cmd_buffer->state.renderpass_cache);
|
|
tu_emit_cache_flush_renderpass<CHIP>(cmd_buffer);
|
|
} else {
|
|
tu_clean_all_pending(&cmd_buffer->state.cache);
|
|
cmd_buffer->state.cache.flush_bits |=
|
|
TU_CMD_FLAG_CCU_CLEAN_COLOR |
|
|
TU_CMD_FLAG_CCU_CLEAN_DEPTH;
|
|
tu_emit_cache_flush<CHIP>(cmd_buffer);
|
|
}
|
|
|
|
if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
|
|
trace_end_cmd_buffer(&cmd_buffer->trace, &cmd_buffer->cs, cmd_buffer);
|
|
} else {
|
|
trace_end_secondary_cmd_buffer(
|
|
cmd_buffer->state.pass ? &cmd_buffer->rp_trace : &cmd_buffer->trace,
|
|
cmd_buffer->state.pass ? &cmd_buffer->draw_cs : &cmd_buffer->cs);
|
|
}
|
|
|
|
if (TU_DEBUG_START(CHECK_CMD_BUFFER_STATUS))
|
|
tu_cmd_buffer_status_gpu_write(cmd_buffer, TU_CMD_BUFFER_STATUS_IDLE);
|
|
|
|
tu_cs_end(&cmd_buffer->cs);
|
|
tu_cs_end(&cmd_buffer->draw_cs);
|
|
tu_cs_end(&cmd_buffer->draw_epilogue_cs);
|
|
|
|
return vk_command_buffer_end(&cmd_buffer->vk);
|
|
}
|
|
TU_GENX(tu_EndCommandBuffer);
|
|
|
|
static void
|
|
tu_bind_vs(struct tu_cmd_buffer *cmd, struct tu_shader *vs)
|
|
{
|
|
cmd->state.shaders[MESA_SHADER_VERTEX] = vs;
|
|
}
|
|
|
|
static void
|
|
tu_bind_tcs(struct tu_cmd_buffer *cmd, struct tu_shader *tcs)
|
|
{
|
|
cmd->state.shaders[MESA_SHADER_TESS_CTRL] = tcs;
|
|
}
|
|
|
|
static void
|
|
tu_bind_tes(struct tu_cmd_buffer *cmd, struct tu_shader *tes)
|
|
{
|
|
if (cmd->state.shaders[MESA_SHADER_TESS_EVAL] != tes) {
|
|
cmd->state.shaders[MESA_SHADER_TESS_EVAL] = tes;
|
|
cmd->state.dirty |= TU_CMD_DIRTY_TES;
|
|
|
|
if (!cmd->state.tess_params.valid ||
|
|
cmd->state.tess_params.output_upper_left !=
|
|
tes->tes.tess_output_upper_left ||
|
|
cmd->state.tess_params.output_lower_left !=
|
|
tes->tes.tess_output_lower_left ||
|
|
cmd->state.tess_params.spacing != tes->tes.tess_spacing) {
|
|
cmd->state.tess_params.output_upper_left =
|
|
tes->tes.tess_output_upper_left;
|
|
cmd->state.tess_params.output_lower_left =
|
|
tes->tes.tess_output_lower_left;
|
|
cmd->state.tess_params.spacing = tes->tes.tess_spacing;
|
|
cmd->state.tess_params.valid = true;
|
|
cmd->state.dirty |= TU_CMD_DIRTY_TESS_PARAMS;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
tu_bind_gs(struct tu_cmd_buffer *cmd, struct tu_shader *gs)
|
|
{
|
|
cmd->state.shaders[MESA_SHADER_GEOMETRY] = gs;
|
|
}
|
|
|
|
static void
|
|
tu_bind_fs(struct tu_cmd_buffer *cmd, struct tu_shader *fs)
|
|
{
|
|
if (cmd->state.shaders[MESA_SHADER_FRAGMENT] != fs) {
|
|
cmd->state.shaders[MESA_SHADER_FRAGMENT] = fs;
|
|
cmd->state.dirty |= TU_CMD_DIRTY_LRZ | TU_CMD_DIRTY_FS;
|
|
}
|
|
}
|
|
|
|
/* We cannot do this only at pipeline bind time since pipeline
|
|
* could have been bound at any time before current renderpass,
|
|
* e.g. in the previous renderpass.
|
|
*/
|
|
static void
|
|
tu_pipeline_update_rp_state(struct tu_cmd_state *cmd_state)
|
|
{
|
|
if (cmd_state->pipeline_disable_gmem &&
|
|
!cmd_state->rp.disable_gmem) {
|
|
/* VK_EXT_attachment_feedback_loop_layout allows feedback loop to involve
|
|
* not only input attachments but also sampled images or image resources.
|
|
* But we cannot just patch gmem for image in the descriptors.
|
|
*
|
|
* At the moment, in context of DXVK, it is expected that only a few
|
|
* drawcalls in a frame would use feedback loop and they would be wrapped
|
|
* in their own renderpasses, so it should be ok to force sysmem.
|
|
*
|
|
* However, there are two further possible optimizations if need would
|
|
* arise for other translation layer:
|
|
* - Tiling could be enabled if we ensure that there is no barrier in
|
|
* the renderpass;
|
|
* - Check that both pipeline and attachments agree that feedback loop
|
|
* is needed.
|
|
*/
|
|
perf_debug(
|
|
cmd->device,
|
|
"Disabling gmem due to VK_EXT_attachment_feedback_loop_layout");
|
|
cmd_state->rp.disable_gmem = true;
|
|
cmd_state->rp.gmem_disable_reason =
|
|
"VK_EXT_attachment_feedback_loop_layout may involve textures";
|
|
}
|
|
|
|
if (cmd_state->pipeline_sysmem_single_prim_mode &&
|
|
!cmd_state->rp.sysmem_single_prim_mode) {
|
|
perf_debug(cmd->device, "single_prim_mode due to pipeline settings");
|
|
cmd_state->rp.sysmem_single_prim_mode = true;
|
|
}
|
|
|
|
if (cmd_state->pipeline_has_tess) {
|
|
cmd_state->rp.has_tess = true;
|
|
}
|
|
}
|
|
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdBindPipeline(VkCommandBuffer commandBuffer,
|
|
VkPipelineBindPoint pipelineBindPoint,
|
|
VkPipeline _pipeline)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
VK_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
|
|
|
|
if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
|
|
cmd->state.shaders[MESA_SHADER_COMPUTE] =
|
|
pipeline->shaders[MESA_SHADER_COMPUTE];
|
|
tu_cs_emit_state_ib(&cmd->cs,
|
|
pipeline->shaders[MESA_SHADER_COMPUTE]->state);
|
|
cmd->state.compute_load_state = pipeline->load_state;
|
|
return;
|
|
}
|
|
|
|
assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
|
|
|
|
struct tu_graphics_pipeline *gfx_pipeline = tu_pipeline_to_graphics(pipeline);
|
|
cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS | TU_CMD_DIRTY_SHADER_CONSTS |
|
|
TU_CMD_DIRTY_VS_PARAMS | TU_CMD_DIRTY_PROGRAM;
|
|
|
|
tu_bind_vs(cmd, pipeline->shaders[MESA_SHADER_VERTEX]);
|
|
tu_bind_tcs(cmd, pipeline->shaders[MESA_SHADER_TESS_CTRL]);
|
|
tu_bind_tes(cmd, pipeline->shaders[MESA_SHADER_TESS_EVAL]);
|
|
tu_bind_gs(cmd, pipeline->shaders[MESA_SHADER_GEOMETRY]);
|
|
tu_bind_fs(cmd, pipeline->shaders[MESA_SHADER_FRAGMENT]);
|
|
|
|
/* We precompile static state and count it as dynamic, so we have to
|
|
* manually clear bitset that tells which dynamic state is set, in order to
|
|
* make sure that future dynamic state will be emitted. The issue is that
|
|
* framework remembers only a past REAL dynamic state and compares a new
|
|
* dynamic state against it, and not against our static state masquaraded
|
|
* as dynamic.
|
|
*/
|
|
BITSET_ANDNOT(cmd->vk.dynamic_graphics_state.set,
|
|
cmd->vk.dynamic_graphics_state.set,
|
|
pipeline->static_state_mask);
|
|
|
|
vk_cmd_set_dynamic_graphics_state(&cmd->vk,
|
|
&gfx_pipeline->dynamic_state);
|
|
cmd->state.program = pipeline->program;
|
|
|
|
cmd->state.load_state = pipeline->load_state;
|
|
cmd->state.prim_order_gmem = pipeline->prim_order.state_gmem;
|
|
cmd->state.pipeline_sysmem_single_prim_mode = pipeline->prim_order.sysmem_single_prim_mode;
|
|
cmd->state.pipeline_has_tess = pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
|
|
cmd->state.pipeline_disable_gmem = gfx_pipeline->feedback_loop_may_involve_textures;
|
|
|
|
tu_pipeline_update_rp_state(&cmd->state);
|
|
|
|
if (pipeline->lrz_blend.valid) {
|
|
if (cmd->state.lrz_blend_status !=
|
|
pipeline->lrz_blend.lrz_blend_status) {
|
|
cmd->state.lrz_blend_status = pipeline->lrz_blend.lrz_blend_status;
|
|
cmd->state.dirty |= TU_CMD_DIRTY_LRZ;
|
|
}
|
|
}
|
|
cmd->state.pipeline_blend_lrz = pipeline->lrz_blend.valid;
|
|
|
|
if (pipeline->disable_fs.valid) {
|
|
if (cmd->state.disable_fs != pipeline->disable_fs.disable_fs) {
|
|
cmd->state.disable_fs = pipeline->disable_fs.disable_fs;
|
|
cmd->state.dirty |= TU_CMD_DIRTY_DISABLE_FS;
|
|
}
|
|
}
|
|
cmd->state.pipeline_disable_fs = pipeline->disable_fs.valid;
|
|
|
|
if (pipeline->bandwidth.valid)
|
|
cmd->state.bandwidth = pipeline->bandwidth;
|
|
cmd->state.pipeline_bandwidth = pipeline->bandwidth.valid;
|
|
|
|
struct tu_cs *cs = &cmd->draw_cs;
|
|
|
|
/* note: this also avoids emitting draw states before renderpass clears,
|
|
* which may use the 3D clear path (for MSAA cases)
|
|
*/
|
|
if (!(cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
|
|
uint32_t mask = pipeline->set_state_mask;
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (10 + util_bitcount(mask)));
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_CONFIG, pipeline->program.config_state);
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS, pipeline->program.vs_state);
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_BINNING, pipeline->program.vs_binning_state);
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS, pipeline->program.hs_state);
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, pipeline->program.ds_state);
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS, pipeline->program.gs_state);
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_BINNING, pipeline->program.gs_binning_state);
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS, pipeline->program.fs_state);
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VPC, pipeline->program.vpc_state);
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PRIM_MODE_GMEM, pipeline->prim_order.state_gmem);
|
|
|
|
u_foreach_bit(i, mask)
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, pipeline->dynamic_state[i]);
|
|
}
|
|
|
|
cmd->state.pipeline_draw_states = pipeline->set_state_mask;
|
|
u_foreach_bit(i, pipeline->set_state_mask)
|
|
cmd->state.dynamic_state[i] = pipeline->dynamic_state[i];
|
|
|
|
if (pipeline->shaders[MESA_SHADER_FRAGMENT]->fs.has_fdm !=
|
|
cmd->state.has_fdm) {
|
|
cmd->state.dirty |= TU_CMD_DIRTY_FDM;
|
|
cmd->state.has_fdm =
|
|
pipeline->shaders[MESA_SHADER_FRAGMENT]->fs.has_fdm;
|
|
}
|
|
|
|
if (pipeline->program.per_layer_viewport != cmd->state.per_layer_viewport ||
|
|
pipeline->shaders[MESA_SHADER_FRAGMENT]->fs.max_fdm_layers !=
|
|
cmd->state.max_fdm_layers) {
|
|
cmd->state.per_layer_viewport = pipeline->program.per_layer_viewport;
|
|
cmd->state.max_fdm_layers =
|
|
pipeline->shaders[MESA_SHADER_FRAGMENT]->fs.max_fdm_layers;
|
|
cmd->state.dirty |= TU_CMD_DIRTY_FDM;
|
|
}
|
|
|
|
if (pipeline->program.per_view_viewport != cmd->state.per_view_viewport ||
|
|
pipeline->program.fake_single_viewport != cmd->state.fake_single_viewport) {
|
|
cmd->state.per_view_viewport = pipeline->program.per_view_viewport;
|
|
cmd->state.fake_single_viewport =
|
|
pipeline->program.fake_single_viewport;
|
|
cmd->state.dirty |= TU_CMD_DIRTY_PER_VIEW_VIEWPORT;
|
|
}
|
|
|
|
if (gfx_pipeline->feedback_loops != cmd->state.pipeline_feedback_loops) {
|
|
cmd->state.pipeline_feedback_loops = gfx_pipeline->feedback_loops;
|
|
cmd->state.dirty |= TU_CMD_DIRTY_FEEDBACK_LOOPS | TU_CMD_DIRTY_LRZ;
|
|
}
|
|
|
|
if (pipeline->program.writes_shading_rate !=
|
|
cmd->state.pipeline_writes_shading_rate ||
|
|
pipeline->program.reads_shading_rate !=
|
|
cmd->state.pipeline_reads_shading_rate) {
|
|
cmd->state.pipeline_writes_shading_rate =
|
|
pipeline->program.writes_shading_rate;
|
|
cmd->state.pipeline_reads_shading_rate =
|
|
pipeline->program.reads_shading_rate;
|
|
cmd->state.dirty |= TU_CMD_DIRTY_SHADING_RATE;
|
|
}
|
|
|
|
bool raster_order_attachment_access =
|
|
pipeline->output.raster_order_attachment_access ||
|
|
pipeline->ds.raster_order_attachment_access;
|
|
if (!cmd->state.raster_order_attachment_access_valid ||
|
|
raster_order_attachment_access !=
|
|
cmd->state.raster_order_attachment_access) {
|
|
cmd->state.raster_order_attachment_access =
|
|
raster_order_attachment_access;
|
|
cmd->state.dirty |= TU_CMD_DIRTY_RAST_ORDER;
|
|
cmd->state.raster_order_attachment_access_valid = true;
|
|
}
|
|
}
|
|
|
|
void
|
|
tu_flush_for_access(struct tu_cache_state *cache,
|
|
enum tu_cmd_access_mask src_mask,
|
|
enum tu_cmd_access_mask dst_mask)
|
|
{
|
|
BITMASK_ENUM(tu_cmd_flush_bits) flush_bits = 0;
|
|
|
|
if (src_mask & TU_ACCESS_SYSMEM_WRITE) {
|
|
cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE;
|
|
}
|
|
|
|
if (src_mask & TU_ACCESS_CP_WRITE) {
|
|
/* Flush the CP write queue.
|
|
*/
|
|
cache->pending_flush_bits |=
|
|
TU_CMD_FLAG_WAIT_MEM_WRITES |
|
|
TU_CMD_FLAG_ALL_INVALIDATE;
|
|
}
|
|
|
|
#define SRC_FLUSH(domain, clean, invalidate) \
|
|
if (src_mask & TU_ACCESS_##domain##_WRITE) { \
|
|
cache->pending_flush_bits |= TU_CMD_FLAG_##clean | \
|
|
(TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
|
|
}
|
|
|
|
SRC_FLUSH(UCHE, CACHE_CLEAN, CACHE_INVALIDATE)
|
|
SRC_FLUSH(CCU_COLOR, CCU_CLEAN_COLOR, CCU_INVALIDATE_COLOR)
|
|
SRC_FLUSH(CCU_DEPTH, CCU_CLEAN_DEPTH, CCU_INVALIDATE_DEPTH)
|
|
|
|
#undef SRC_FLUSH
|
|
|
|
#define SRC_INCOHERENT_FLUSH(domain, clean, invalidate) \
|
|
if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) { \
|
|
flush_bits |= TU_CMD_FLAG_##clean; \
|
|
cache->pending_flush_bits |= \
|
|
(TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
|
|
}
|
|
|
|
SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_CLEAN_COLOR, CCU_INVALIDATE_COLOR)
|
|
SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_CLEAN_DEPTH, CCU_INVALIDATE_DEPTH)
|
|
SRC_INCOHERENT_FLUSH(UCHE, CACHE_CLEAN, CACHE_INVALIDATE)
|
|
|
|
#undef SRC_INCOHERENT_FLUSH
|
|
|
|
/* Treat host & sysmem write accesses the same, since the kernel implicitly
|
|
* drains the queue before signalling completion to the host.
|
|
*/
|
|
if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE)) {
|
|
flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_CLEAN;
|
|
}
|
|
|
|
#define DST_FLUSH(domain, clean, invalidate) \
|
|
if (dst_mask & (TU_ACCESS_##domain##_READ | \
|
|
TU_ACCESS_##domain##_WRITE)) { \
|
|
flush_bits |= cache->pending_flush_bits & \
|
|
(TU_CMD_FLAG_##invalidate | \
|
|
(TU_CMD_FLAG_ALL_CLEAN & ~TU_CMD_FLAG_##clean)); \
|
|
}
|
|
|
|
DST_FLUSH(UCHE, CACHE_CLEAN, CACHE_INVALIDATE)
|
|
DST_FLUSH(CCU_COLOR, CCU_CLEAN_COLOR, CCU_INVALIDATE_COLOR)
|
|
DST_FLUSH(CCU_DEPTH, CCU_CLEAN_DEPTH, CCU_INVALIDATE_DEPTH)
|
|
|
|
#undef DST_FLUSH
|
|
|
|
#define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \
|
|
if (dst_mask & (TU_ACCESS_##domain##_INCOHERENT_READ | \
|
|
TU_ACCESS_##domain##_INCOHERENT_WRITE)) { \
|
|
flush_bits |= TU_CMD_FLAG_##invalidate | \
|
|
(cache->pending_flush_bits & \
|
|
(TU_CMD_FLAG_ALL_CLEAN & ~TU_CMD_FLAG_##flush)); \
|
|
}
|
|
|
|
DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_CLEAN_COLOR, CCU_INVALIDATE_COLOR)
|
|
DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_CLEAN_DEPTH, CCU_INVALIDATE_DEPTH)
|
|
DST_INCOHERENT_FLUSH(UCHE, CACHE_CLEAN, CACHE_INVALIDATE)
|
|
|
|
if (dst_mask & TU_ACCESS_BINDLESS_DESCRIPTOR_READ) {
|
|
flush_bits |= TU_CMD_FLAG_BINDLESS_DESCRIPTOR_INVALIDATE;
|
|
}
|
|
|
|
/* There are multiple incoherent copies of CCHE, so any read through it may
|
|
* require invalidating it and we cannot optimize away invalidates.
|
|
*/
|
|
if (dst_mask & TU_ACCESS_CCHE_READ) {
|
|
flush_bits |= TU_CMD_FLAG_CCHE_INVALIDATE;
|
|
}
|
|
|
|
/* The blit cache is a special case dependency between CP_EVENT_WRITE::BLIT
|
|
* (from GMEM loads/clears) to any GMEM attachment reads done via the UCHE
|
|
* (Eg: Input attachments/CP_BLIT) which needs an explicit BLIT_CACHE_CLEAN
|
|
* for the event blit writes to land, it has the following properties:
|
|
* - Set on reads rather than on writes, like flushes.
|
|
* - Not executed automatically if pending, like invalidates.
|
|
* - Pending bits passed through to secondary command buffers, if they're
|
|
* continuing the render pass.
|
|
*/
|
|
if (src_mask & TU_ACCESS_BLIT_WRITE_GMEM) {
|
|
cache->pending_flush_bits |= TU_CMD_FLAG_BLIT_CACHE_CLEAN;
|
|
}
|
|
|
|
if ((dst_mask & TU_ACCESS_UCHE_READ_GMEM) &&
|
|
(cache->pending_flush_bits & TU_CMD_FLAG_BLIT_CACHE_CLEAN)) {
|
|
flush_bits |= TU_CMD_FLAG_BLIT_CACHE_CLEAN;
|
|
}
|
|
|
|
/* Nothing writes through the RTU cache so there's no point trying to
|
|
* optimize this. Just always invalidate.
|
|
*/
|
|
if (dst_mask & TU_ACCESS_RTU_READ)
|
|
flush_bits |= TU_CMD_FLAG_RTU_INVALIDATE;
|
|
|
|
#undef DST_INCOHERENT_FLUSH
|
|
|
|
cache->flush_bits |= flush_bits;
|
|
cache->pending_flush_bits &= ~flush_bits;
|
|
}
|
|
|
|
/* When translating Vulkan access flags to which cache is accessed
|
|
* (CCU/UCHE/sysmem), we should take into account both the access flags and
|
|
* the stage so that accesses with MEMORY_READ_BIT/MEMORY_WRITE_BIT + a
|
|
* specific stage return something sensible. The specification for
|
|
* VK_KHR_synchronization2 says that we should do this:
|
|
*
|
|
* Additionally, scoping the pipeline stages into the barrier structs
|
|
* allows the use of the MEMORY_READ and MEMORY_WRITE flags without
|
|
* sacrificing precision. The per-stage access flags should be used to
|
|
* disambiguate specific accesses in a given stage or set of stages - for
|
|
* instance, between uniform reads and sampling operations.
|
|
*
|
|
* Note that while in all known cases the stage is actually enough, we should
|
|
* still narrow things down based on the access flags to handle "old-style"
|
|
* barriers that may specify a wider range of stages but more precise access
|
|
* flags. These helpers allow us to do both.
|
|
*/
|
|
|
|
static bool
|
|
filter_read_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages,
|
|
VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages)
|
|
{
|
|
return (flags & (tu_flags | VK_ACCESS_2_MEMORY_READ_BIT)) &&
|
|
(stages & (tu_stages | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT));
|
|
}
|
|
|
|
static bool
|
|
filter_write_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages,
|
|
VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages)
|
|
{
|
|
return (flags & (tu_flags | VK_ACCESS_2_MEMORY_WRITE_BIT)) &&
|
|
(stages & (tu_stages | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT));
|
|
}
|
|
|
|
static bool
|
|
gfx_read_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages,
|
|
VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages)
|
|
{
|
|
return filter_read_access(flags, stages, tu_flags,
|
|
tu_stages | VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT);
|
|
}
|
|
|
|
static bool
|
|
gfx_write_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages,
|
|
VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages)
|
|
{
|
|
return filter_write_access(flags, stages, tu_flags,
|
|
tu_stages | VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT);
|
|
}
|
|
|
|
static enum tu_cmd_access_mask
|
|
vk2tu_access(VkAccessFlags2 flags, VkAccessFlags3KHR flags2,
|
|
VkPipelineStageFlags2 stages, bool image_only, bool gmem,
|
|
bool sparse_aliasing)
|
|
{
|
|
BITMASK_ENUM(tu_cmd_access_mask) mask = 0;
|
|
|
|
if (gfx_read_access(flags, stages,
|
|
VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT |
|
|
VK_ACCESS_2_CONDITIONAL_RENDERING_READ_BIT_EXT |
|
|
VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT |
|
|
VK_ACCESS_2_HOST_READ_BIT,
|
|
VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT |
|
|
VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT |
|
|
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT |
|
|
VK_PIPELINE_STAGE_2_HOST_BIT))
|
|
mask |= TU_ACCESS_SYSMEM_READ;
|
|
|
|
if (gfx_write_access(flags, stages,
|
|
VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT,
|
|
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT))
|
|
mask |= TU_ACCESS_CP_WRITE;
|
|
|
|
if (gfx_write_access(flags, stages,
|
|
VK_ACCESS_2_HOST_WRITE_BIT,
|
|
VK_PIPELINE_STAGE_2_HOST_BIT))
|
|
mask |= TU_ACCESS_SYSMEM_WRITE;
|
|
|
|
#define SHADER_STAGES \
|
|
(VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT | \
|
|
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT | \
|
|
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT | \
|
|
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT | \
|
|
VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT | \
|
|
VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT | \
|
|
VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT)
|
|
|
|
|
|
if (gfx_read_access(flags, stages,
|
|
VK_ACCESS_2_INDEX_READ_BIT |
|
|
VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT |
|
|
VK_ACCESS_2_UNIFORM_READ_BIT |
|
|
VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT |
|
|
VK_ACCESS_2_SHADER_READ_BIT |
|
|
VK_ACCESS_2_SHADER_SAMPLED_READ_BIT |
|
|
VK_ACCESS_2_SHADER_STORAGE_READ_BIT |
|
|
VK_ACCESS_2_SHADER_BINDING_TABLE_READ_BIT_KHR |
|
|
VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR,
|
|
VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT |
|
|
VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT |
|
|
VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT |
|
|
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR |
|
|
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR |
|
|
SHADER_STAGES)) {
|
|
if (sparse_aliasing)
|
|
mask |= TU_ACCESS_UCHE_INCOHERENT_READ;
|
|
else
|
|
mask |= TU_ACCESS_UCHE_READ;
|
|
mask |= TU_ACCESS_CCHE_READ;
|
|
}
|
|
|
|
if (gfx_read_access(flags, stages,
|
|
VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR,
|
|
SHADER_STAGES))
|
|
mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_CCHE_READ | TU_ACCESS_RTU_READ;
|
|
|
|
/* Reading the AS for copying involves doing CmdDispatchIndirect with the
|
|
* copy size as a parameter, so it's read by the CP as well as a shader.
|
|
*/
|
|
if (gfx_read_access(flags, stages,
|
|
VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR,
|
|
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR |
|
|
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR))
|
|
mask |= TU_ACCESS_SYSMEM_READ | TU_ACCESS_UCHE_READ |
|
|
TU_ACCESS_CCHE_READ;
|
|
|
|
|
|
if (gfx_read_access(flags, stages,
|
|
VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT,
|
|
SHADER_STAGES)) {
|
|
mask |= TU_ACCESS_UCHE_READ_GMEM;
|
|
if (sparse_aliasing)
|
|
mask |= TU_ACCESS_UCHE_INCOHERENT_READ;
|
|
}
|
|
|
|
if (gfx_read_access(flags, stages,
|
|
VK_ACCESS_2_DESCRIPTOR_BUFFER_READ_BIT_EXT,
|
|
SHADER_STAGES)) {
|
|
if (sparse_aliasing)
|
|
mask |= TU_ACCESS_UCHE_INCOHERENT_READ;
|
|
else
|
|
mask |= TU_ACCESS_UCHE_READ;
|
|
mask |= TU_ACCESS_BINDLESS_DESCRIPTOR_READ |
|
|
TU_ACCESS_CCHE_READ;
|
|
}
|
|
|
|
if (gfx_write_access(flags, stages,
|
|
VK_ACCESS_2_SHADER_WRITE_BIT |
|
|
VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT |
|
|
VK_ACCESS_2_TRANSFORM_FEEDBACK_WRITE_BIT_EXT,
|
|
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT |
|
|
SHADER_STAGES)) {
|
|
if (sparse_aliasing)
|
|
mask |= TU_ACCESS_UCHE_INCOHERENT_WRITE;
|
|
else
|
|
mask |= TU_ACCESS_UCHE_WRITE;
|
|
}
|
|
|
|
if (gfx_write_access(flags, stages,
|
|
VK_ACCESS_2_ACCELERATION_STRUCTURE_WRITE_BIT_KHR,
|
|
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR))
|
|
mask |= TU_ACCESS_UCHE_WRITE | TU_ACCESS_CP_WRITE;
|
|
|
|
/* When using GMEM, the CCU is always flushed automatically to GMEM, and
|
|
* then GMEM is flushed to sysmem. Furthermore, we already had to flush any
|
|
* previous writes in sysmem mode when transitioning to GMEM. Therefore we
|
|
* can ignore CCU and pretend that color attachments and transfers use
|
|
* sysmem directly.
|
|
*/
|
|
|
|
if (gfx_read_access(flags, stages,
|
|
VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT |
|
|
VK_ACCESS_2_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT,
|
|
VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT)) {
|
|
if (gmem)
|
|
mask |= TU_ACCESS_SYSMEM_READ;
|
|
else
|
|
mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ;
|
|
}
|
|
|
|
if (gfx_read_access(flags, stages,
|
|
VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT,
|
|
VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT |
|
|
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT)) {
|
|
if (gmem)
|
|
mask |= TU_ACCESS_SYSMEM_READ;
|
|
else
|
|
mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ;
|
|
}
|
|
|
|
if (gfx_write_access(flags, stages,
|
|
VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT,
|
|
VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT)) {
|
|
if (gmem) {
|
|
mask |= TU_ACCESS_SYSMEM_WRITE;
|
|
} else {
|
|
mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
|
|
}
|
|
}
|
|
|
|
if (gfx_write_access(flags, stages,
|
|
VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
|
|
VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT |
|
|
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT)) {
|
|
if (gmem) {
|
|
mask |= TU_ACCESS_SYSMEM_WRITE;
|
|
} else {
|
|
mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
|
|
}
|
|
}
|
|
|
|
if (filter_write_access(flags, stages,
|
|
VK_ACCESS_2_TRANSFER_WRITE_BIT,
|
|
VK_PIPELINE_STAGE_2_COPY_BIT |
|
|
VK_PIPELINE_STAGE_2_BLIT_BIT |
|
|
VK_PIPELINE_STAGE_2_CLEAR_BIT |
|
|
VK_PIPELINE_STAGE_2_RESOLVE_BIT |
|
|
VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT)) {
|
|
if (gmem) {
|
|
mask |= TU_ACCESS_SYSMEM_WRITE;
|
|
} else if (image_only && !sparse_aliasing) {
|
|
/* Because we always split up blits/copies of images involving
|
|
* multiple layers, we always access each layer in the same way, with
|
|
* the same base address, same format, etc. This means we can avoid
|
|
* flushing between multiple writes to the same image. This elides
|
|
* flushes between e.g. multiple blits to the same image.
|
|
*/
|
|
mask |= TU_ACCESS_CCU_COLOR_WRITE;
|
|
} else {
|
|
mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
|
|
}
|
|
}
|
|
|
|
if (filter_read_access(flags, stages,
|
|
VK_ACCESS_2_TRANSFER_READ_BIT,
|
|
VK_PIPELINE_STAGE_2_COPY_BIT |
|
|
VK_PIPELINE_STAGE_2_BLIT_BIT |
|
|
VK_PIPELINE_STAGE_2_RESOLVE_BIT |
|
|
VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT)) {
|
|
if (sparse_aliasing)
|
|
mask |= TU_ACCESS_UCHE_INCOHERENT_READ;
|
|
else
|
|
mask |= TU_ACCESS_UCHE_READ;
|
|
mask |= TU_ACCESS_CCHE_READ;
|
|
}
|
|
|
|
return mask;
|
|
}
|
|
|
|
/* These helpers deal with legacy BOTTOM_OF_PIPE/TOP_OF_PIPE stages.
|
|
*/
|
|
|
|
static VkPipelineStageFlags2
|
|
sanitize_src_stage(VkPipelineStageFlags2 stage_mask)
|
|
{
|
|
/* From the Vulkan spec:
|
|
*
|
|
* VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT is ... equivalent to
|
|
* VK_PIPELINE_STAGE_2_NONE in the first scope.
|
|
*
|
|
* VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT is equivalent to
|
|
* VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT with VkAccessFlags2 set to 0
|
|
* when specified in the first synchronization scope, ...
|
|
*/
|
|
if (stage_mask & VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT)
|
|
return VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT;
|
|
|
|
return stage_mask & ~VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT;
|
|
}
|
|
|
|
static VkPipelineStageFlags2
|
|
sanitize_dst_stage(VkPipelineStageFlags2 stage_mask)
|
|
{
|
|
/* From the Vulkan spec:
|
|
*
|
|
* VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT is equivalent to
|
|
* VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT with VkAccessFlags2 set to 0
|
|
* when specified in the second synchronization scope, ...
|
|
*
|
|
* VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT is ... equivalent to
|
|
* VK_PIPELINE_STAGE_2_NONE in the second scope.
|
|
*
|
|
*/
|
|
if (stage_mask & VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT)
|
|
return VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT;
|
|
|
|
return stage_mask & ~VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT;
|
|
}
|
|
|
|
static enum tu_stage
|
|
vk2tu_single_stage(struct tu_device *dev,
|
|
VkPipelineStageFlags2 vk_stage, bool dst)
|
|
{
|
|
/* If the destination stage is executed on the CP, then the CP also has to
|
|
* wait for any WFI's to finish. This is already done for draw calls,
|
|
* including before indirect param reads, for the most part, so we just
|
|
* need to WFI and can use TU_STAGE_GPU.
|
|
*
|
|
* However, some indirect draw opcodes, depending on firmware, don't have
|
|
* implicit CP_WAIT_FOR_ME so we have to handle it manually.
|
|
*
|
|
* Transform feedback counters are read via CP_MEM_TO_REG, which implicitly
|
|
* does CP_WAIT_FOR_ME, so we don't include them here.
|
|
*
|
|
* Currently we read the draw predicate using CP_MEM_TO_MEM, which
|
|
* also implicitly does CP_WAIT_FOR_ME. However CP_DRAW_PRED_SET does *not*
|
|
* implicitly do CP_WAIT_FOR_ME, it seems to only wait for counters to
|
|
* complete since it's written for DX11 where you can only predicate on the
|
|
* result of a query object. So if we implement 64-bit comparisons in the
|
|
* future, or if CP_DRAW_PRED_SET grows the capability to do 32-bit
|
|
* comparisons, then this will have to be dealt with.
|
|
*/
|
|
if (vk_stage == VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT ||
|
|
vk_stage == VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT ||
|
|
vk_stage == VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT)
|
|
return TU_STAGE_BV_CP;
|
|
|
|
if (vk_stage == VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT ||
|
|
vk_stage == VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT)
|
|
return dst ? TU_STAGE_BV_CP : TU_STAGE_BR;
|
|
|
|
if (vk_stage == VK_PIPELINE_STAGE_2_HOST_BIT)
|
|
return dst ? TU_STAGE_BOTTOM : TU_STAGE_BV_CP;
|
|
|
|
if (dev->physical_device->info->chip >= 7) {
|
|
if (vk_stage == VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT ||
|
|
vk_stage == VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT ||
|
|
vk_stage == VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT ||
|
|
vk_stage == VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT ||
|
|
vk_stage == VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT ||
|
|
vk_stage == VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT ||
|
|
vk_stage == VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT ||
|
|
vk_stage == VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT ||
|
|
vk_stage == VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT ||
|
|
vk_stage == VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT) {
|
|
return dst ? TU_STAGE_BV : TU_STAGE_BR;
|
|
}
|
|
}
|
|
|
|
return TU_STAGE_BR;
|
|
}
|
|
|
|
static enum tu_stage
|
|
vk2tu_src_stage(struct tu_device *dev,
|
|
VkPipelineStageFlags2 vk_stages)
|
|
{
|
|
enum tu_stage stage = TU_STAGE_BV_CP;
|
|
u_foreach_bit64 (bit, vk_stages) {
|
|
enum tu_stage new_stage = vk2tu_single_stage(dev, 1ull << bit, false);
|
|
stage = MAX2(stage, new_stage);
|
|
}
|
|
|
|
return stage;
|
|
}
|
|
|
|
static enum tu_stage
|
|
vk2tu_dst_stage(struct tu_device *dev,
|
|
VkPipelineStageFlags2 vk_stages)
|
|
{
|
|
enum tu_stage stage = TU_STAGE_BOTTOM;
|
|
u_foreach_bit64 (bit, vk_stages) {
|
|
enum tu_stage new_stage = vk2tu_single_stage(dev, 1ull << bit, true);
|
|
stage = MIN2(stage, new_stage);
|
|
}
|
|
|
|
return stage;
|
|
}
|
|
|
|
static void
|
|
tu_flush_for_stage(struct tu_cache_state *cache,
|
|
enum tu_stage src_stage, enum tu_stage dst_stage)
|
|
{
|
|
/* Even if the source is the host or CP, the destination access could
|
|
* generate invalidates that we have to wait to complete.
|
|
*/
|
|
if (src_stage < TU_STAGE_BR &&
|
|
(cache->flush_bits & TU_CMD_FLAG_ALL_INVALIDATE))
|
|
src_stage = TU_STAGE_BR;
|
|
|
|
if (src_stage >= dst_stage) {
|
|
cache->flush_bits |= TU_CMD_FLAG_WAIT_FOR_IDLE;
|
|
if (dst_stage <= TU_STAGE_BV) {
|
|
cache->flush_bits |= TU_CMD_FLAG_WAIT_FOR_BR;
|
|
if (dst_stage == TU_STAGE_BV_CP)
|
|
cache->pending_flush_bits |= TU_CMD_FLAG_WAIT_FOR_ME;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
tu_render_pass_state_merge(struct tu_render_pass_state *dst,
|
|
const struct tu_render_pass_state *src)
|
|
{
|
|
dst->xfb_used |= src->xfb_used;
|
|
dst->has_tess |= src->has_tess;
|
|
dst->has_prim_generated_query_in_rp |= src->has_prim_generated_query_in_rp;
|
|
dst->has_vtx_stats_query_in_rp |= src->has_vtx_stats_query_in_rp;
|
|
dst->has_zpass_done_sample_count_write_in_rp |= src->has_zpass_done_sample_count_write_in_rp;
|
|
dst->disable_gmem |= src->disable_gmem;
|
|
dst->sysmem_single_prim_mode |= src->sysmem_single_prim_mode;
|
|
dst->draw_cs_writes_to_cond_pred |= src->draw_cs_writes_to_cond_pred;
|
|
dst->shared_viewport |= src->shared_viewport;
|
|
|
|
dst->drawcall_count += src->drawcall_count;
|
|
dst->drawcall_bandwidth_per_sample_sum +=
|
|
src->drawcall_bandwidth_per_sample_sum;
|
|
if (!dst->lrz_disable_reason && src->lrz_disable_reason) {
|
|
dst->lrz_disable_reason = src->lrz_disable_reason;
|
|
dst->lrz_disabled_at_draw =
|
|
dst->drawcall_count + src->lrz_disabled_at_draw;
|
|
}
|
|
if (!dst->lrz_write_disabled_at_draw &&
|
|
src->lrz_write_disabled_at_draw) {
|
|
dst->lrz_write_disabled_at_draw =
|
|
dst->drawcall_count + src->lrz_write_disabled_at_draw;
|
|
}
|
|
if (!dst->gmem_disable_reason && src->gmem_disable_reason) {
|
|
dst->gmem_disable_reason = src->gmem_disable_reason;
|
|
}
|
|
}
|
|
|
|
void
|
|
tu_restore_suspended_pass(struct tu_cmd_buffer *cmd,
|
|
struct tu_cmd_buffer *suspended)
|
|
{
|
|
cmd->state.pass = suspended->state.suspended_pass.pass;
|
|
cmd->state.subpass = suspended->state.suspended_pass.subpass;
|
|
cmd->state.framebuffer = suspended->state.suspended_pass.framebuffer;
|
|
cmd->state.attachments = suspended->state.suspended_pass.attachments;
|
|
cmd->state.clear_values = suspended->state.suspended_pass.clear_values;
|
|
cmd->state.render_area = suspended->state.suspended_pass.render_area;
|
|
cmd->state.gmem_layout = suspended->state.suspended_pass.gmem_layout;
|
|
cmd->state.tiling = &cmd->state.framebuffer->tiling[cmd->state.gmem_layout];
|
|
cmd->state.lrz = suspended->state.suspended_pass.lrz;
|
|
}
|
|
|
|
/* Take the saved pre-chain in "secondary" and copy its commands to "cmd",
|
|
* appending it after any saved-up commands in "cmd".
|
|
*/
|
|
void
|
|
tu_append_pre_chain(struct tu_cmd_buffer *cmd,
|
|
struct tu_cmd_buffer *secondary)
|
|
{
|
|
tu_cs_add_entries(&cmd->draw_cs, &secondary->pre_chain.draw_cs);
|
|
tu_cs_add_entries(&cmd->draw_epilogue_cs,
|
|
&secondary->pre_chain.draw_epilogue_cs);
|
|
|
|
tu_render_pass_state_merge(&cmd->state.rp,
|
|
&secondary->pre_chain.state);
|
|
tu_clone_trace(cmd, &cmd->draw_cs,
|
|
&cmd->rp_trace, &secondary->pre_chain.rp_trace);
|
|
util_dynarray_append_dynarray(&cmd->fdm_bin_patchpoints,
|
|
&secondary->pre_chain.fdm_bin_patchpoints);
|
|
|
|
cmd->pre_chain.fdm_offset = secondary->pre_chain.fdm_offset;
|
|
if (secondary->pre_chain.fdm_offset) {
|
|
memcpy(cmd->pre_chain.fdm_offsets,
|
|
secondary->pre_chain.fdm_offsets,
|
|
sizeof(cmd->pre_chain.fdm_offsets));
|
|
}
|
|
}
|
|
|
|
/* Take the saved post-chain in "secondary" and copy it to "cmd".
|
|
*/
|
|
void
|
|
tu_append_post_chain(struct tu_cmd_buffer *cmd,
|
|
struct tu_cmd_buffer *secondary)
|
|
{
|
|
tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
|
|
tu_cs_add_entries(&cmd->draw_epilogue_cs, &secondary->draw_epilogue_cs);
|
|
|
|
tu_clone_trace(cmd, &cmd->draw_cs, &cmd->rp_trace, &secondary->rp_trace);
|
|
cmd->state.rp = secondary->state.rp;
|
|
util_dynarray_append_dynarray(&cmd->fdm_bin_patchpoints,
|
|
&secondary->fdm_bin_patchpoints);
|
|
}
|
|
|
|
/* Assuming "secondary" is just a sequence of suspended and resuming passes,
|
|
* copy its state to "cmd". This also works instead of tu_append_post_chain(),
|
|
* but it's a bit slower because we don't assume that the chain begins in
|
|
* "secondary" and therefore have to care about the command buffer's
|
|
* renderpass state.
|
|
*/
|
|
void
|
|
tu_append_pre_post_chain(struct tu_cmd_buffer *cmd,
|
|
struct tu_cmd_buffer *secondary)
|
|
{
|
|
tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
|
|
tu_cs_add_entries(&cmd->draw_epilogue_cs, &secondary->draw_epilogue_cs);
|
|
|
|
tu_clone_trace(cmd, &cmd->draw_cs, &cmd->rp_trace, &secondary->rp_trace);
|
|
tu_render_pass_state_merge(&cmd->state.rp,
|
|
&secondary->state.rp);
|
|
util_dynarray_append_dynarray(&cmd->fdm_bin_patchpoints,
|
|
&secondary->fdm_bin_patchpoints);
|
|
}
|
|
|
|
/* Take the current render pass state and save it to "pre_chain" to be
|
|
* combined later.
|
|
*/
|
|
static void
|
|
tu_save_pre_chain(struct tu_cmd_buffer *cmd)
|
|
{
|
|
tu_cs_add_entries(&cmd->pre_chain.draw_cs,
|
|
&cmd->draw_cs);
|
|
tu_cs_add_entries(&cmd->pre_chain.draw_epilogue_cs,
|
|
&cmd->draw_epilogue_cs);
|
|
u_trace_move(&cmd->pre_chain.rp_trace, &cmd->rp_trace);
|
|
cmd->pre_chain.state = cmd->state.rp;
|
|
util_dynarray_append_dynarray(&cmd->pre_chain.fdm_bin_patchpoints,
|
|
&cmd->fdm_bin_patchpoints);
|
|
cmd->pre_chain.patchpoints_ctx = cmd->patchpoints_ctx;
|
|
cmd->patchpoints_ctx = NULL;
|
|
}
|
|
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
|
|
uint32_t commandBufferCount,
|
|
const VkCommandBuffer *pCmdBuffers)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
VkResult result;
|
|
|
|
assert(commandBufferCount > 0);
|
|
|
|
/* Emit any pending flushes. */
|
|
if (cmd->state.pass) {
|
|
tu_clean_all_pending(&cmd->state.renderpass_cache);
|
|
TU_CALLX(cmd->device, tu_emit_cache_flush_renderpass)(cmd);
|
|
} else {
|
|
tu_clean_all_pending(&cmd->state.cache);
|
|
TU_CALLX(cmd->device, tu_emit_cache_flush)(cmd);
|
|
}
|
|
|
|
for (uint32_t i = 0; i < commandBufferCount; i++) {
|
|
VK_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
|
|
|
|
if (secondary->usage_flags &
|
|
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
|
|
assert(tu_cs_is_empty(&secondary->cs));
|
|
|
|
TU_CALLX(cmd->device, tu_lrz_flush_valid_during_renderpass)
|
|
(cmd, &cmd->draw_cs);
|
|
|
|
result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
|
|
if (result != VK_SUCCESS) {
|
|
vk_command_buffer_set_error(&cmd->vk, result);
|
|
break;
|
|
}
|
|
|
|
result = tu_cs_add_entries(&cmd->draw_epilogue_cs,
|
|
&secondary->draw_epilogue_cs);
|
|
if (result != VK_SUCCESS) {
|
|
vk_command_buffer_set_error(&cmd->vk, result);
|
|
break;
|
|
}
|
|
|
|
/* If LRZ was made invalid in secondary - we should disable
|
|
* LRZ retroactively for the whole renderpass.
|
|
*/
|
|
if (!secondary->state.lrz.valid)
|
|
cmd->state.lrz.valid = false;
|
|
if (secondary->state.lrz.gpu_dir_set)
|
|
cmd->state.lrz.gpu_dir_set = true;
|
|
if (cmd->state.lrz.prev_direction == TU_LRZ_UNKNOWN &&
|
|
secondary->state.lrz.prev_direction != TU_LRZ_UNKNOWN)
|
|
cmd->state.lrz.prev_direction =
|
|
secondary->state.lrz.prev_direction;
|
|
|
|
tu_clone_trace(cmd, &cmd->draw_cs, &cmd->rp_trace, &secondary->rp_trace);
|
|
tu_render_pass_state_merge(&cmd->state.rp, &secondary->state.rp);
|
|
util_dynarray_append_dynarray(&cmd->fdm_bin_patchpoints,
|
|
&secondary->fdm_bin_patchpoints);
|
|
} else {
|
|
struct tu_cs *cs = &cmd->cs;
|
|
|
|
/* If the secondary can be used multiple times, we have to set its
|
|
* patchpoints on the GPU. Set them here, and create a new
|
|
* patchpoint pointing to the CP_MEM_WRITE packet. Otherwise just
|
|
* copy them over adjusting the index.
|
|
*/
|
|
bool simultaneous_use = secondary->usage_flags &
|
|
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT;
|
|
|
|
/* If this cmdbuf itself can be used multiple times in a submit then
|
|
* its patchpoint will also be updated on the GPU.
|
|
*/
|
|
if (cmd->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT)
|
|
tu_cs_set_writeable(cs, true);
|
|
|
|
util_dynarray_foreach (&secondary->vis_stream_patchpoints,
|
|
struct tu_vis_stream_patchpoint,
|
|
secondary_patchpoint) {
|
|
struct tu_vis_stream_patchpoint patchpoint =
|
|
*secondary_patchpoint;
|
|
patchpoint.render_pass_idx += cmd->state.tile_render_pass_count;
|
|
|
|
if (simultaneous_use) {
|
|
tu_cs_reserve_space(cs, 5);
|
|
tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 4);
|
|
tu_cs_emit_qw(cs, patchpoint.iova);
|
|
patchpoint.iova = tu_cs_get_cur_iova(cs);
|
|
patchpoint.data = cs->cur;
|
|
tu_cs_emit_qw(cs, 0);
|
|
}
|
|
|
|
util_dynarray_append(&cmd->vis_stream_patchpoints,
|
|
patchpoint);
|
|
}
|
|
|
|
if (cmd->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT)
|
|
tu_cs_set_writeable(cs, false);
|
|
|
|
if (simultaneous_use) {
|
|
tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
|
|
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
|
|
|
|
/* Make BV wait for updates on BR to land */
|
|
if (cmd->device->physical_device->info->chip >= 7) {
|
|
tu_cs_emit_pkt7(cs, CP_THREAD_CONTROL, 1);
|
|
tu_cs_emit(cs, CP_THREAD_CONTROL_0_THREAD(CP_SET_THREAD_BR) |
|
|
CP_THREAD_CONTROL_0_SYNC_THREADS);
|
|
}
|
|
}
|
|
|
|
cmd->state.tile_render_pass_count +=
|
|
secondary->state.tile_render_pass_count;
|
|
cmd->vsc_size = MAX2(cmd->vsc_size, secondary->vsc_size);
|
|
|
|
switch (secondary->state.suspend_resume) {
|
|
case SR_NONE:
|
|
assert(tu_cs_is_empty(&secondary->draw_cs));
|
|
assert(tu_cs_is_empty(&secondary->draw_epilogue_cs));
|
|
tu_cs_add_entries(&cmd->cs, &secondary->cs);
|
|
tu_clone_trace(cmd, &cmd->cs, &cmd->trace, &secondary->trace);
|
|
break;
|
|
|
|
case SR_IN_PRE_CHAIN:
|
|
/* cmd may be empty, which means that the chain begins before cmd
|
|
* in which case we have to update its state.
|
|
*/
|
|
if (cmd->state.suspend_resume == SR_NONE) {
|
|
cmd->state.suspend_resume = SR_IN_PRE_CHAIN;
|
|
}
|
|
|
|
/* The secondary is just a continuous suspend/resume chain so we
|
|
* just have to append it to the the command buffer.
|
|
*/
|
|
assert(tu_cs_is_empty(&secondary->cs));
|
|
tu_append_pre_post_chain(cmd, secondary);
|
|
break;
|
|
|
|
case SR_AFTER_PRE_CHAIN:
|
|
case SR_IN_CHAIN:
|
|
case SR_IN_CHAIN_AFTER_PRE_CHAIN:
|
|
if (secondary->state.suspend_resume == SR_AFTER_PRE_CHAIN ||
|
|
secondary->state.suspend_resume == SR_IN_CHAIN_AFTER_PRE_CHAIN) {
|
|
tu_append_pre_chain(cmd, secondary);
|
|
|
|
/* We're about to render, so we need to end the command stream
|
|
* in case there were any extra commands generated by copying
|
|
* the trace.
|
|
*/
|
|
tu_cs_end(&cmd->draw_cs);
|
|
tu_cs_end(&cmd->draw_epilogue_cs);
|
|
|
|
switch (cmd->state.suspend_resume) {
|
|
case SR_NONE:
|
|
case SR_IN_PRE_CHAIN:
|
|
/* The renderpass chain ends in the secondary but isn't
|
|
* started in the primary, so we have to move the state to
|
|
* `pre_chain`.
|
|
*/
|
|
tu_save_pre_chain(cmd);
|
|
cmd->state.suspend_resume = SR_AFTER_PRE_CHAIN;
|
|
break;
|
|
case SR_IN_CHAIN:
|
|
case SR_IN_CHAIN_AFTER_PRE_CHAIN: {
|
|
/* The renderpass ends in the secondary and starts somewhere
|
|
* earlier in this primary. Since the last render pass in
|
|
* the chain is in the secondary, we are technically outside
|
|
* of a render pass. Fix that here by reusing the dynamic
|
|
* render pass that was setup for the last suspended render
|
|
* pass before the secondary.
|
|
*/
|
|
tu_restore_suspended_pass(cmd, cmd);
|
|
|
|
const struct VkOffset2D *fdm_offsets =
|
|
cmd->pre_chain.fdm_offset ?
|
|
cmd->pre_chain.fdm_offsets : NULL;
|
|
TU_CALLX(cmd->device, tu_cmd_render)(cmd, fdm_offsets);
|
|
if (cmd->state.suspend_resume == SR_IN_CHAIN)
|
|
cmd->state.suspend_resume = SR_NONE;
|
|
else
|
|
cmd->state.suspend_resume = SR_AFTER_PRE_CHAIN;
|
|
break;
|
|
}
|
|
case SR_AFTER_PRE_CHAIN:
|
|
UNREACHABLE("resuming render pass is not preceded by suspending one");
|
|
}
|
|
|
|
tu_reset_render_pass(cmd);
|
|
}
|
|
|
|
tu_cs_add_entries(&cmd->cs, &secondary->cs);
|
|
|
|
if (secondary->state.suspend_resume == SR_IN_CHAIN_AFTER_PRE_CHAIN ||
|
|
secondary->state.suspend_resume == SR_IN_CHAIN) {
|
|
/* The secondary ends in a "post-chain" (the opposite of a
|
|
* pre-chain) that we need to copy into the current command
|
|
* buffer.
|
|
*/
|
|
tu_append_post_chain(cmd, secondary);
|
|
cmd->state.suspended_pass = secondary->state.suspended_pass;
|
|
|
|
switch (cmd->state.suspend_resume) {
|
|
case SR_NONE:
|
|
cmd->state.suspend_resume = SR_IN_CHAIN;
|
|
break;
|
|
case SR_AFTER_PRE_CHAIN:
|
|
cmd->state.suspend_resume = SR_IN_CHAIN_AFTER_PRE_CHAIN;
|
|
break;
|
|
default:
|
|
UNREACHABLE("suspending render pass is followed by a not resuming one");
|
|
}
|
|
}
|
|
}
|
|
|
|
cmd->state.total_renderpasses += secondary->state.total_renderpasses;
|
|
cmd->state.total_dispatches += secondary->state.total_dispatches;
|
|
}
|
|
|
|
cmd->state.index_size = secondary->state.index_size; /* for restart index update */
|
|
}
|
|
cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
|
|
|
|
if (!cmd->state.lrz.gpu_dir_tracking && cmd->state.pass) {
|
|
/* After a secondary command buffer is executed, LRZ is not valid
|
|
* until it is cleared again.
|
|
*/
|
|
cmd->state.lrz.valid = false;
|
|
}
|
|
|
|
/* After executing secondary command buffers, there may have been arbitrary
|
|
* flushes executed, so when we encounter a pipeline barrier with a
|
|
* srcMask, we have to assume that we need to invalidate. Therefore we need
|
|
* to re-initialize the cache with all pending invalidate bits set.
|
|
*/
|
|
if (cmd->state.pass) {
|
|
struct tu_cache_state *cache = &cmd->state.renderpass_cache;
|
|
BITMASK_ENUM(tu_cmd_flush_bits) retained_pending_flush_bits =
|
|
cache->pending_flush_bits & TU_CMD_FLAG_BLIT_CACHE_CLEAN;
|
|
tu_cache_init(cache);
|
|
cache->pending_flush_bits |= retained_pending_flush_bits;
|
|
} else {
|
|
tu_cache_init(&cmd->state.cache);
|
|
}
|
|
}
|
|
|
|
static void
|
|
tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
|
|
const struct tu_subpass_barrier *barrier,
|
|
bool external)
|
|
{
|
|
/* Note: we don't know until the end of the subpass whether we'll use
|
|
* sysmem, so assume sysmem here to be safe.
|
|
*/
|
|
struct tu_cache_state *cache =
|
|
external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache;
|
|
VkPipelineStageFlags2 src_stage_vk =
|
|
sanitize_src_stage(barrier->src_stage_mask);
|
|
VkPipelineStageFlags2 dst_stage_vk =
|
|
sanitize_dst_stage(barrier->dst_stage_mask);
|
|
BITMASK_ENUM(tu_cmd_access_mask) src_flags =
|
|
vk2tu_access(barrier->src_access_mask, barrier->src_access_mask2,
|
|
src_stage_vk, false, false,
|
|
cmd_buffer->device->vk.enabled_features.sparseResidencyAliased);
|
|
BITMASK_ENUM(tu_cmd_access_mask) dst_flags =
|
|
vk2tu_access(barrier->dst_access_mask, barrier->dst_access_mask2,
|
|
dst_stage_vk, false, false,
|
|
cmd_buffer->device->vk.enabled_features.sparseResidencyAliased);
|
|
|
|
if (barrier->incoherent_ccu_color)
|
|
src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
|
|
if (barrier->incoherent_ccu_depth)
|
|
src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
|
|
|
|
tu_flush_for_access(cache, src_flags, dst_flags);
|
|
|
|
enum tu_stage src_stage = vk2tu_src_stage(cmd_buffer->device, src_stage_vk);
|
|
enum tu_stage dst_stage = vk2tu_dst_stage(cmd_buffer->device, dst_stage_vk);
|
|
tu_flush_for_stage(cache, src_stage, dst_stage);
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu_emit_subpass_begin_gmem(struct tu_cmd_buffer *cmd, struct tu_resolve_group *resolve_group)
|
|
{
|
|
struct tu_cs *cs = &cmd->draw_cs;
|
|
uint32_t subpass_idx = cmd->state.subpass - cmd->state.pass->subpasses;
|
|
const struct tu_vsc_config *vsc = tu_vsc_config(cmd, cmd->state.tiling);
|
|
|
|
/* If we might choose to bin, then put the loads under a check for geometry
|
|
* having been binned to this tile. If we don't choose to bin in the end,
|
|
* then we will have manually set those registers to say geometry is present.
|
|
*
|
|
* However, if the draw CS has a write to the condition for some other reason
|
|
* (perf queries), then we can't do this optimization since the
|
|
* start-of-the-CS geometry condition will have been overwritten.
|
|
*/
|
|
bool cond_load_allowed = vsc->binning &&
|
|
cmd->state.pass->has_cond_load_store &&
|
|
!cmd->state.rp.draw_cs_writes_to_cond_pred;
|
|
|
|
if (cmd->state.pass->has_fdm)
|
|
tu_cs_set_writeable(cs, true);
|
|
|
|
tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
|
|
|
|
/* This appears to be necessary when stores are followed by loads to the
|
|
* same memory in GMEM, to prevent the loads from starting before the
|
|
* stores have completed. See
|
|
* dEQP-VK.pipeline.monolithic.multisample.multisampled_render_to_single_sampled.input_attachments.initialize.r8g8b8a8_unorm_r16g16b16a16_sfloat_r16g16b16a16_sint_d16_unorm.2x.ds_resolve_sample_zero.whole_framebuffer
|
|
* for a testcase.
|
|
*
|
|
* TODO: why is this not necessary between the end of one tile and the
|
|
* start of another?
|
|
*/
|
|
if (subpass_idx != 0) {
|
|
tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_CLEAN_BLIT_CACHE);
|
|
}
|
|
|
|
/* Emit gmem loads that are first used in this subpass. */
|
|
bool emitted_scissor = false;
|
|
for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i) {
|
|
struct tu_render_pass_attachment *att = &cmd->state.pass->attachments[i];
|
|
if ((att->load || att->load_stencil) && att->first_subpass_idx == subpass_idx) {
|
|
if (!emitted_scissor) {
|
|
tu6_emit_blit_scissor(cmd, cs, true, false);
|
|
emitted_scissor = true;
|
|
}
|
|
tu_load_gmem_attachment<CHIP>(cmd, cs, resolve_group, i, i,
|
|
cond_load_allowed, false);
|
|
}
|
|
}
|
|
|
|
|
|
/* Emit unresolves that replicate single-sampled attachments into
|
|
* multisampled GMEM attachments.
|
|
*/
|
|
for (uint32_t i = 0; i < cmd->state.subpass->unresolve_count; ++i) {
|
|
uint32_t a = cmd->state.subpass->unresolve_attachments[i].attachment;
|
|
if (a == VK_ATTACHMENT_UNUSED)
|
|
continue;
|
|
|
|
uint32_t gmem_a =
|
|
tu_subpass_get_attachment_to_unresolve(cmd->state.subpass, i);
|
|
|
|
tu_load_gmem_attachment<CHIP>(cmd, cs, resolve_group, a, gmem_a,
|
|
cond_load_allowed, true);
|
|
}
|
|
|
|
if (!cmd->device->physical_device->info->props.has_generic_clear) {
|
|
/* Emit gmem clears that are first used in this subpass. */
|
|
emitted_scissor = false;
|
|
for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i) {
|
|
struct tu_render_pass_attachment *att =
|
|
&cmd->state.pass->attachments[i];
|
|
if (att->clear_mask && att->first_subpass_idx == subpass_idx) {
|
|
if (!emitted_scissor) {
|
|
tu6_emit_blit_scissor(cmd, cs, false, false);
|
|
emitted_scissor = true;
|
|
}
|
|
tu_clear_gmem_attachment<CHIP>(cmd, cs, resolve_group, i);
|
|
}
|
|
}
|
|
}
|
|
|
|
tu_cond_exec_end(cs); /* CP_COND_EXEC_0_RENDER_MODE_GMEM */
|
|
|
|
if (cmd->state.pass->has_fdm)
|
|
tu_cs_set_writeable(cs, false);
|
|
|
|
}
|
|
|
|
/* Emits sysmem clears that are first used in this subpass. */
|
|
template <chip CHIP>
|
|
static void
|
|
tu_emit_subpass_begin_sysmem(struct tu_cmd_buffer *cmd)
|
|
{
|
|
if (cmd->device->physical_device->info->props.has_generic_clear &&
|
|
!cmd->state.subpass->unresolve_count)
|
|
return;
|
|
|
|
struct tu_cs *cs = &cmd->draw_cs;
|
|
uint32_t subpass_idx = cmd->state.subpass - cmd->state.pass->subpasses;
|
|
|
|
tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
|
|
|
|
tu6_emit_sysmem_unresolves<CHIP>(cmd, cs, cmd->state.subpass);
|
|
|
|
for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i) {
|
|
struct tu_render_pass_attachment *att = &cmd->state.pass->attachments[i];
|
|
if (att->clear_mask && att->first_subpass_idx == subpass_idx)
|
|
tu_clear_sysmem_attachment<CHIP>(cmd, cs, i);
|
|
}
|
|
|
|
tu_cond_exec_end(cs); /* sysmem */
|
|
}
|
|
|
|
static void
|
|
tu7_emit_subpass_clear(struct tu_cmd_buffer *cmd, struct tu_resolve_group *resolve_group)
|
|
{
|
|
if (cmd->state.render_area.extent.width == 0 ||
|
|
cmd->state.render_area.extent.height == 0)
|
|
return;
|
|
|
|
struct tu_cs *cs = &cmd->draw_cs;
|
|
uint32_t subpass_idx = cmd->state.subpass - cmd->state.pass->subpasses;
|
|
|
|
tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
|
|
CP_COND_REG_EXEC_0_GMEM |
|
|
CP_COND_REG_EXEC_0_SYSMEM);
|
|
|
|
bool emitted_scissor = false;
|
|
for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i) {
|
|
struct tu_render_pass_attachment *att =
|
|
&cmd->state.pass->attachments[i];
|
|
if (att->clear_mask && att->first_subpass_idx == subpass_idx) {
|
|
if (!emitted_scissor) {
|
|
tu6_emit_blit_scissor(cmd, cs, false, true);
|
|
emitted_scissor = true;
|
|
}
|
|
tu7_generic_clear_attachment(cmd, cs, resolve_group, i);
|
|
}
|
|
}
|
|
|
|
tu_cond_exec_end(cs);
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu7_emit_subpass_shading_rate(struct tu_cmd_buffer *cmd,
|
|
const struct tu_subpass *subpass,
|
|
struct tu_cs *cs)
|
|
{
|
|
if (subpass->fsr_attachment == VK_ATTACHMENT_UNUSED) {
|
|
tu_cs_emit_regs(cs, GRAS_QUALITY_BUFFER_INFO(CHIP),
|
|
GRAS_QUALITY_BUFFER_DIMENSION(CHIP));
|
|
tu_cs_emit_regs(cs, GRAS_QUALITY_BUFFER_PITCH(CHIP));
|
|
tu_cs_emit_regs(cs, GRAS_QUALITY_BUFFER_BASE(CHIP));
|
|
/* We need to invalidate cache when changing to NULL FSR attachment, but
|
|
* only once.
|
|
*/
|
|
if (!cmd->prev_fsr_is_null) {
|
|
tu_emit_raw_event_write<A7XX>(cmd, cs, LRZ_Q_CACHE_INVALIDATE,
|
|
false);
|
|
cmd->prev_fsr_is_null = true;
|
|
}
|
|
return;
|
|
}
|
|
|
|
const struct tu_image_view *iview =
|
|
cmd->state.attachments[subpass->fsr_attachment];
|
|
assert(iview->vk.format == VK_FORMAT_R8_UINT);
|
|
|
|
tu_cs_emit_regs(
|
|
cs,
|
|
GRAS_QUALITY_BUFFER_INFO(
|
|
CHIP, .layered = true,
|
|
.tile_mode = (a6xx_tile_mode) iview->image->layout[0].tile_mode, ),
|
|
GRAS_QUALITY_BUFFER_DIMENSION(CHIP, .width = iview->view.width,
|
|
.height = iview->view.height));
|
|
tu_cs_emit_regs(
|
|
cs, GRAS_QUALITY_BUFFER_PITCH(CHIP, .pitch = iview->view.pitch,
|
|
.array_pitch = iview->view.layer_size));
|
|
tu_cs_emit_regs(
|
|
cs, GRAS_QUALITY_BUFFER_BASE(CHIP, .qword = iview->view.base_addr));
|
|
|
|
tu_emit_raw_event_write<A7XX>(cmd, cs, LRZ_Q_CACHE_INVALIDATE, false);
|
|
cmd->prev_fsr_is_null = false;
|
|
}
|
|
|
|
/* emit loads, clears, and mrt/zs/msaa/ubwc state for the subpass that is
|
|
* starting (either at vkCmdBeginRenderPass2() or vkCmdNextSubpass2())
|
|
*
|
|
* Clears and loads have to happen at this point, because with
|
|
* VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT the loads may depend on the output of
|
|
* a previous aliased attachment's store.
|
|
*/
|
|
template <chip CHIP>
|
|
static void
|
|
tu_emit_subpass_begin(struct tu_cmd_buffer *cmd)
|
|
{
|
|
tu_fill_render_pass_state(&cmd->state.vk_rp, cmd->state.pass, cmd->state.subpass);
|
|
|
|
struct tu_resolve_group resolve_group = {};
|
|
|
|
tu_emit_subpass_begin_gmem<CHIP>(cmd, &resolve_group);
|
|
tu_emit_subpass_begin_sysmem<CHIP>(cmd);
|
|
if (cmd->device->physical_device->info->props.has_generic_clear) {
|
|
tu7_emit_subpass_clear(cmd, &resolve_group);
|
|
}
|
|
|
|
tu_emit_resolve_group<CHIP>(cmd, &cmd->draw_cs, &resolve_group);
|
|
|
|
tu6_emit_zs<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs);
|
|
tu6_emit_mrt<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs);
|
|
tu6_emit_render_cntl<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs, false);
|
|
|
|
if (CHIP >= A7XX) {
|
|
tu7_emit_subpass_shading_rate<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs);
|
|
}
|
|
|
|
tu_set_input_attachments(cmd, cmd->state.subpass);
|
|
|
|
vk_cmd_set_cb_attachment_count(&cmd->vk, cmd->state.subpass->color_count);
|
|
|
|
cmd->state.dirty |= TU_CMD_DIRTY_SUBPASS;
|
|
}
|
|
|
|
template <chip CHIP>
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
|
|
const VkRenderPassBeginInfo *pRenderPassBegin,
|
|
const VkSubpassBeginInfo *pSubpassBeginInfo)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
|
|
if (TU_DEBUG(DYNAMIC)) {
|
|
vk_common_CmdBeginRenderPass2(commandBuffer, pRenderPassBegin,
|
|
pSubpassBeginInfo);
|
|
return;
|
|
}
|
|
|
|
VK_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass);
|
|
VK_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer);
|
|
|
|
const struct VkRenderPassAttachmentBeginInfo *pAttachmentInfo =
|
|
vk_find_struct_const(pRenderPassBegin->pNext,
|
|
RENDER_PASS_ATTACHMENT_BEGIN_INFO);
|
|
|
|
cmd->state.pass = pass;
|
|
cmd->state.subpass = pass->subpasses;
|
|
cmd->state.framebuffer = fb;
|
|
cmd->state.render_area = pRenderPassBegin->renderArea;
|
|
cmd->state.fdm_per_layer = pass->has_layered_fdm;
|
|
|
|
if (pass->attachment_count > 0) {
|
|
VK_MULTIALLOC(ma);
|
|
vk_multialloc_add(&ma, &cmd->state.attachments,
|
|
const struct tu_image_view *, pass->attachment_count);
|
|
vk_multialloc_add(&ma, &cmd->state.clear_values, VkClearValue,
|
|
pass->attachment_count);
|
|
if (!vk_multialloc_alloc(&ma, &cmd->vk.pool->alloc,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT)) {
|
|
vk_command_buffer_set_error(&cmd->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (cmd->device->dbg_renderpass_stomp_cs) {
|
|
tu_cs_emit_call(&cmd->cs, cmd->device->dbg_renderpass_stomp_cs);
|
|
}
|
|
|
|
for (unsigned i = 0; i < pass->user_attachment_count; i++) {
|
|
cmd->state.attachments[i] = pAttachmentInfo ?
|
|
tu_image_view_from_handle(pAttachmentInfo->pAttachments[i]) :
|
|
cmd->state.framebuffer->attachments[i];
|
|
}
|
|
|
|
for (unsigned i = 0; i < pass->attachment_count - pass->user_attachment_count; i++) {
|
|
/* With imageless attachments, the only attachments in the framebuffer
|
|
* are MSRTSS attachments. Without imageless attachments, they are after
|
|
* the user's attachments.
|
|
*/
|
|
unsigned fb_idx = i + (pAttachmentInfo ? 0 : pass->user_attachment_count);
|
|
cmd->state.attachments[i + pass->user_attachment_count] =
|
|
cmd->state.framebuffer->attachments[fb_idx];
|
|
}
|
|
|
|
if (pass->attachment_count) {
|
|
for (unsigned i = 0; i < MIN2(pRenderPassBegin->clearValueCount,
|
|
pass->user_attachment_count); i++) {
|
|
struct tu_render_pass_attachment *att = &pass->attachments[i];
|
|
uint32_t idx = i;
|
|
/* Clear values have to be remapped for MSRTSS, because they may be
|
|
* moved to the multisample attachment.
|
|
*/
|
|
if (att->remapped_clear_att != VK_ATTACHMENT_UNUSED)
|
|
idx = att->remapped_clear_att;
|
|
cmd->state.clear_values[idx] = pRenderPassBegin->pClearValues[i];
|
|
}
|
|
}
|
|
|
|
tu_choose_gmem_layout(cmd);
|
|
|
|
/* Note: because this is external, any flushes will happen before draw_cs
|
|
* gets called. However deferred flushes could have to happen later as part
|
|
* of the subpass.
|
|
*/
|
|
tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true);
|
|
cmd->state.renderpass_cache.pending_flush_bits =
|
|
cmd->state.cache.pending_flush_bits;
|
|
cmd->state.renderpass_cache.flush_bits = 0;
|
|
|
|
if (pass->subpasses[0].feedback_invalidate) {
|
|
cmd->state.renderpass_cache.flush_bits |=
|
|
TU_CMD_FLAG_CACHE_INVALIDATE | TU_CMD_FLAG_BLIT_CACHE_CLEAN |
|
|
TU_CMD_FLAG_WAIT_FOR_IDLE;
|
|
}
|
|
|
|
tu_lrz_begin_renderpass<CHIP>(cmd);
|
|
|
|
tu_emit_renderpass_begin(cmd);
|
|
tu_emit_subpass_begin<CHIP>(cmd);
|
|
|
|
cmd->patchpoints_ctx = ralloc_context(NULL);
|
|
}
|
|
TU_GENX(tu_CmdBeginRenderPass2);
|
|
|
|
template <chip CHIP>
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdBeginRendering(VkCommandBuffer commandBuffer,
|
|
const VkRenderingInfo *pRenderingInfo)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
|
|
tu_setup_dynamic_render_pass(cmd, pRenderingInfo);
|
|
tu_setup_dynamic_framebuffer(cmd, pRenderingInfo);
|
|
|
|
cmd->state.pass = &cmd->dynamic_pass;
|
|
cmd->state.subpass = &cmd->dynamic_subpass;
|
|
cmd->state.framebuffer = &cmd->dynamic_framebuffer;
|
|
cmd->state.render_area = pRenderingInfo->renderArea;
|
|
cmd->state.fdm_per_layer =
|
|
pRenderingInfo->flags & VK_RENDERING_PER_LAYER_FRAGMENT_DENSITY_BIT_VALVE;
|
|
cmd->state.blit_cache_cleaned = false;
|
|
|
|
cmd->state.attachments = cmd->dynamic_attachments;
|
|
cmd->state.clear_values = cmd->dynamic_clear_values;
|
|
|
|
for (unsigned i = 0; i < pRenderingInfo->colorAttachmentCount; i++) {
|
|
if (!pRenderingInfo->pColorAttachments[i].imageView)
|
|
continue;
|
|
uint32_t a = cmd->dynamic_subpass.color_attachments[i].attachment;
|
|
|
|
cmd->state.clear_values[a] =
|
|
pRenderingInfo->pColorAttachments[i].clearValue;
|
|
|
|
/* With MSRTSS, the user's attachment corresponds to the
|
|
* resolve/unresolve attachment, not the color attachment. The color
|
|
* attachment is the transient multisample attachment. However the clear
|
|
* happens on the multisample attachment, so we don't remap the
|
|
* clear_values assignment above.
|
|
*/
|
|
bool msrtss = false;
|
|
if (a >= cmd->dynamic_pass.user_attachment_count) {
|
|
a = cmd->dynamic_pass.attachments[a].user_att;
|
|
msrtss = true;
|
|
}
|
|
VK_FROM_HANDLE(tu_image_view, view,
|
|
pRenderingInfo->pColorAttachments[i].imageView);
|
|
cmd->state.attachments[a] = view;
|
|
|
|
a = cmd->dynamic_subpass.resolve_attachments[i].attachment;
|
|
if (!msrtss && a != VK_ATTACHMENT_UNUSED) {
|
|
VK_FROM_HANDLE(tu_image_view, resolve_view,
|
|
pRenderingInfo->pColorAttachments[i].resolveImageView);
|
|
cmd->state.attachments[a] = resolve_view;
|
|
}
|
|
}
|
|
|
|
uint32_t a = cmd->dynamic_subpass.depth_stencil_attachment.attachment;
|
|
if (pRenderingInfo->pDepthAttachment || pRenderingInfo->pStencilAttachment) {
|
|
const struct VkRenderingAttachmentInfo *common_info =
|
|
(pRenderingInfo->pDepthAttachment &&
|
|
pRenderingInfo->pDepthAttachment->imageView != VK_NULL_HANDLE) ?
|
|
pRenderingInfo->pDepthAttachment :
|
|
pRenderingInfo->pStencilAttachment;
|
|
if (common_info && common_info->imageView != VK_NULL_HANDLE) {
|
|
VK_FROM_HANDLE(tu_image_view, view, common_info->imageView);
|
|
if (pRenderingInfo->pDepthAttachment) {
|
|
cmd->state.clear_values[a].depthStencil.depth =
|
|
pRenderingInfo->pDepthAttachment->clearValue.depthStencil.depth;
|
|
}
|
|
|
|
if (pRenderingInfo->pStencilAttachment) {
|
|
cmd->state.clear_values[a].depthStencil.stencil =
|
|
pRenderingInfo->pStencilAttachment->clearValue.depthStencil.stencil;
|
|
}
|
|
|
|
bool msrtss = false;
|
|
if (a >= cmd->dynamic_pass.user_attachment_count) {
|
|
a = cmd->dynamic_pass.attachments[a].user_att;
|
|
msrtss = true;
|
|
}
|
|
|
|
cmd->state.attachments[a] = view;
|
|
|
|
if (!msrtss && cmd->dynamic_subpass.resolve_count >
|
|
cmd->dynamic_subpass.color_count) {
|
|
VK_FROM_HANDLE(tu_image_view, resolve_view,
|
|
common_info->resolveImageView);
|
|
a = cmd->dynamic_subpass.resolve_attachments[cmd->dynamic_subpass.color_count].attachment;
|
|
cmd->state.attachments[a] = resolve_view;
|
|
}
|
|
}
|
|
}
|
|
|
|
a = cmd->dynamic_pass.fragment_density_map.attachment;
|
|
if (a != VK_ATTACHMENT_UNUSED) {
|
|
const VkRenderingFragmentDensityMapAttachmentInfoEXT *fdm_info =
|
|
vk_find_struct_const(pRenderingInfo->pNext,
|
|
RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_INFO_EXT);
|
|
VK_FROM_HANDLE(tu_image_view, view, fdm_info->imageView);
|
|
cmd->state.attachments[a] = view;
|
|
}
|
|
|
|
const VkRenderingAttachmentLocationInfoKHR ral_info = {
|
|
.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_LOCATION_INFO_KHR,
|
|
.colorAttachmentCount = pRenderingInfo->colorAttachmentCount,
|
|
};
|
|
vk_cmd_set_rendering_attachment_locations(&cmd->vk, &ral_info);
|
|
|
|
cmd->patchpoints_ctx = ralloc_context(NULL);
|
|
|
|
a = cmd->dynamic_subpass.fsr_attachment;
|
|
if (a != VK_ATTACHMENT_UNUSED) {
|
|
const VkRenderingFragmentShadingRateAttachmentInfoKHR *fsr_info =
|
|
vk_find_struct_const(pRenderingInfo->pNext,
|
|
RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_INFO_KHR);
|
|
VK_FROM_HANDLE(tu_image_view, view, fsr_info->imageView);
|
|
cmd->state.attachments[a] = view;
|
|
}
|
|
|
|
VkResult result = tu_setup_dynamic_msrtss(cmd);
|
|
if (result != VK_SUCCESS) {
|
|
vk_command_buffer_set_error(&cmd->vk, result);
|
|
return;
|
|
}
|
|
|
|
tu_choose_gmem_layout(cmd);
|
|
|
|
cmd->state.renderpass_cache.pending_flush_bits =
|
|
cmd->state.cache.pending_flush_bits;
|
|
cmd->state.renderpass_cache.flush_bits = 0;
|
|
|
|
bool resuming = pRenderingInfo->flags & VK_RENDERING_RESUMING_BIT;
|
|
bool suspending = pRenderingInfo->flags & VK_RENDERING_SUSPENDING_BIT;
|
|
cmd->state.suspending = suspending;
|
|
cmd->state.resuming = resuming;
|
|
|
|
if (!resuming && cmd->device->dbg_renderpass_stomp_cs) {
|
|
tu_cs_emit_call(&cmd->cs, cmd->device->dbg_renderpass_stomp_cs);
|
|
}
|
|
|
|
/* We can't track LRZ across command buffer boundaries, so we have to
|
|
* disable LRZ when resuming/suspending unless we can track on the GPU.
|
|
*/
|
|
if ((resuming || suspending) &&
|
|
!cmd->device->physical_device->info->props.has_lrz_dir_tracking) {
|
|
cmd->state.lrz.valid = false;
|
|
} else {
|
|
if (resuming)
|
|
tu_lrz_begin_resumed_renderpass<CHIP>(cmd);
|
|
else
|
|
tu_lrz_begin_renderpass<CHIP>(cmd);
|
|
}
|
|
|
|
|
|
if (suspending) {
|
|
cmd->state.suspended_pass.pass = cmd->state.pass;
|
|
cmd->state.suspended_pass.subpass = cmd->state.subpass;
|
|
cmd->state.suspended_pass.framebuffer = cmd->state.framebuffer;
|
|
cmd->state.suspended_pass.render_area = cmd->state.render_area;
|
|
cmd->state.suspended_pass.attachments = cmd->state.attachments;
|
|
cmd->state.suspended_pass.clear_values = cmd->state.clear_values;
|
|
cmd->state.suspended_pass.gmem_layout = cmd->state.gmem_layout;
|
|
}
|
|
|
|
if (!resuming) {
|
|
tu_emit_renderpass_begin(cmd);
|
|
tu_emit_subpass_begin<CHIP>(cmd);
|
|
}
|
|
|
|
if (suspending && !resuming) {
|
|
/* entering a chain */
|
|
switch (cmd->state.suspend_resume) {
|
|
case SR_NONE:
|
|
cmd->state.suspend_resume = SR_IN_CHAIN;
|
|
break;
|
|
case SR_AFTER_PRE_CHAIN:
|
|
cmd->state.suspend_resume = SR_IN_CHAIN_AFTER_PRE_CHAIN;
|
|
break;
|
|
case SR_IN_PRE_CHAIN:
|
|
case SR_IN_CHAIN:
|
|
case SR_IN_CHAIN_AFTER_PRE_CHAIN:
|
|
UNREACHABLE("suspending render pass not followed by resuming pass");
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (resuming && cmd->state.suspend_resume == SR_NONE)
|
|
cmd->state.suspend_resume = SR_IN_PRE_CHAIN;
|
|
}
|
|
TU_GENX(tu_CmdBeginRendering);
|
|
|
|
template <chip CHIP>
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdSetRenderingAttachmentLocationsKHR(
|
|
VkCommandBuffer commandBuffer,
|
|
const VkRenderingAttachmentLocationInfoKHR *pLocationInfo)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
|
|
vk_common_CmdSetRenderingAttachmentLocationsKHR(commandBuffer, pLocationInfo);
|
|
|
|
tu6_emit_mrt<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs);
|
|
tu6_emit_render_cntl<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs, false);
|
|
|
|
/* Same case as a drawcall not writing to some color attachments, but not
|
|
* trying to make LRZ work in cases where we can prove that LRZ can work.
|
|
*/
|
|
if (cmd->state.lrz.valid)
|
|
tu_lrz_disable_write_for_rp(cmd, "CmdSetRenderingAttachmentLocations");
|
|
|
|
/* Because this is just a remapping and not a different "reference", there
|
|
* doesn't need to be a barrier between accesses to the same attachment
|
|
* with a different index. This is different from "classic" renderpasses.
|
|
* Before a7xx the CCU includes the render target ID in the cache location
|
|
* calculation, so we need to manually flush/invalidate color CCU here
|
|
* since the same render target/attachment may be in a different location.
|
|
*/
|
|
if (cmd->device->physical_device->info->chip == 6) {
|
|
struct tu_cache_state *cache = &cmd->state.renderpass_cache;
|
|
tu_flush_for_access(cache, TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE,
|
|
TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE);
|
|
cache->flush_bits |= TU_CMD_FLAG_WAIT_FOR_IDLE;
|
|
}
|
|
}
|
|
TU_GENX(tu_CmdSetRenderingAttachmentLocationsKHR);
|
|
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdSetRenderingInputAttachmentIndicesKHR(
|
|
VkCommandBuffer commandBuffer,
|
|
const VkRenderingInputAttachmentIndexInfoKHR *pLocationInfo)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
|
|
vk_common_CmdSetRenderingInputAttachmentIndicesKHR(commandBuffer, pLocationInfo);
|
|
|
|
const struct vk_input_attachment_location_state *ial =
|
|
&cmd->vk.dynamic_graphics_state.ial;
|
|
|
|
struct tu_subpass *subpass = &cmd->dynamic_subpass;
|
|
|
|
for (unsigned i = 0; i < ARRAY_SIZE(cmd->dynamic_input_attachments); i++) {
|
|
subpass->input_attachments[i].attachment = VK_ATTACHMENT_UNUSED;
|
|
}
|
|
|
|
unsigned input_count = 0;
|
|
for (unsigned i = 0; i < subpass->color_count; i++) {
|
|
if (ial->color_map[i] == MESA_VK_ATTACHMENT_UNUSED)
|
|
continue;
|
|
subpass->input_attachments[ial->color_map[i] + TU_DYN_INPUT_ATT_OFFSET].attachment =
|
|
subpass->color_attachments[i].attachment;
|
|
input_count = MAX2(input_count, ial->color_map[i] + TU_DYN_INPUT_ATT_OFFSET + 1);
|
|
}
|
|
|
|
if (ial->depth_att != MESA_VK_ATTACHMENT_UNUSED) {
|
|
if (ial->depth_att == MESA_VK_ATTACHMENT_NO_INDEX) {
|
|
subpass->input_attachments[0].attachment =
|
|
subpass->depth_stencil_attachment.attachment;
|
|
input_count = MAX2(input_count, 1);
|
|
} else {
|
|
subpass->input_attachments[ial->depth_att + TU_DYN_INPUT_ATT_OFFSET].attachment =
|
|
subpass->depth_stencil_attachment.attachment;
|
|
input_count = MAX2(input_count, ial->depth_att + TU_DYN_INPUT_ATT_OFFSET + 1);
|
|
}
|
|
}
|
|
|
|
if (ial->stencil_att != MESA_VK_ATTACHMENT_UNUSED) {
|
|
if (ial->stencil_att == MESA_VK_ATTACHMENT_NO_INDEX) {
|
|
subpass->input_attachments[0].attachment =
|
|
subpass->depth_stencil_attachment.attachment;
|
|
input_count = MAX2(input_count, 1);
|
|
} else {
|
|
subpass->input_attachments[ial->stencil_att + TU_DYN_INPUT_ATT_OFFSET].attachment =
|
|
subpass->depth_stencil_attachment.attachment;
|
|
input_count = MAX2(input_count, ial->stencil_att + TU_DYN_INPUT_ATT_OFFSET + 1);
|
|
}
|
|
}
|
|
|
|
subpass->input_count = input_count;
|
|
|
|
tu_set_input_attachments(cmd, cmd->state.subpass);
|
|
}
|
|
|
|
template <chip CHIP>
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,
|
|
const VkSubpassBeginInfo *pSubpassBeginInfo,
|
|
const VkSubpassEndInfo *pSubpassEndInfo)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
|
|
if (TU_DEBUG(DYNAMIC)) {
|
|
vk_common_CmdNextSubpass2(commandBuffer, pSubpassBeginInfo,
|
|
pSubpassEndInfo);
|
|
return;
|
|
}
|
|
|
|
struct tu_cs *cs = &cmd->draw_cs;
|
|
|
|
const struct tu_subpass *subpass = cmd->state.subpass++;
|
|
const struct tu_subpass *new_subpass = cmd->state.subpass;
|
|
|
|
/* Track LRZ valid state
|
|
*
|
|
* TODO: Improve this tracking for keeping the state of the past depth/stencil images,
|
|
* so if they become active again, we reuse its old state.
|
|
*/
|
|
if (new_subpass->depth_stencil_attachment.attachment != subpass->depth_stencil_attachment.attachment) {
|
|
cmd->state.lrz.valid = false;
|
|
cmd->state.dirty |= TU_CMD_DIRTY_LRZ;
|
|
}
|
|
|
|
if (cmd->state.tiling->possible) {
|
|
if (cmd->state.pass->has_fdm)
|
|
tu_cs_set_writeable(cs, true);
|
|
|
|
tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
|
|
|
|
struct tu_resolve_group resolve_group = {};
|
|
|
|
tu6_emit_gmem_stores<CHIP>(cmd, &cmd->draw_cs, &resolve_group, subpass);
|
|
|
|
tu_emit_resolve_group<CHIP>(cmd, cs, &resolve_group);
|
|
|
|
tu_cond_exec_end(cs);
|
|
|
|
if (cmd->state.pass->has_fdm)
|
|
tu_cs_set_writeable(cs, false);
|
|
|
|
tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
|
|
}
|
|
|
|
tu6_emit_sysmem_resolves<CHIP>(cmd, cs, subpass);
|
|
|
|
if (cmd->state.tiling->possible)
|
|
tu_cond_exec_end(cs);
|
|
|
|
/* Handle dependencies for the next subpass */
|
|
tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false);
|
|
|
|
if (cmd->state.subpass->feedback_invalidate) {
|
|
cmd->state.renderpass_cache.flush_bits |=
|
|
TU_CMD_FLAG_CACHE_INVALIDATE | TU_CMD_FLAG_BLIT_CACHE_CLEAN |
|
|
TU_CMD_FLAG_WAIT_FOR_IDLE;
|
|
}
|
|
|
|
tu_emit_subpass_begin<CHIP>(cmd);
|
|
}
|
|
TU_GENX(tu_CmdNextSubpass2);
|
|
|
|
static uint32_t
|
|
tu6_user_consts_size(const struct tu_const_state *const_state,
|
|
bool ldgk,
|
|
mesa_shader_stage type)
|
|
{
|
|
uint32_t dwords = 0;
|
|
|
|
if (const_state->push_consts.type == IR3_PUSH_CONSTS_PER_STAGE) {
|
|
unsigned num_units = const_state->push_consts.dwords;
|
|
dwords += 4 + num_units;
|
|
assert(num_units > 0);
|
|
}
|
|
|
|
if (ldgk) {
|
|
dwords += 6 + (2 * const_state->num_inline_ubos + 4);
|
|
} else {
|
|
dwords += 8 * const_state->num_inline_ubos;
|
|
}
|
|
|
|
return dwords;
|
|
}
|
|
|
|
static void
|
|
tu6_emit_per_stage_push_consts(struct tu_cs *cs,
|
|
const struct tu_const_state *const_state,
|
|
const struct ir3_const_state *ir_const_state,
|
|
mesa_shader_stage type,
|
|
uint32_t *push_constants)
|
|
{
|
|
if (const_state->push_consts.type == IR3_PUSH_CONSTS_PER_STAGE) {
|
|
unsigned num_units = const_state->push_consts.dwords;
|
|
unsigned offset_vec4 =
|
|
ir_const_state->allocs.consts[IR3_CONST_ALLOC_PUSH_CONSTS]
|
|
.offset_vec4;
|
|
assert(num_units > 0);
|
|
|
|
/* DST_OFF and NUM_UNIT requires vec4 units */
|
|
tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units);
|
|
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset_vec4) |
|
|
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
|
|
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
|
|
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
|
|
CP_LOAD_STATE6_0_NUM_UNIT(num_units / 4));
|
|
tu_cs_emit(cs, 0);
|
|
tu_cs_emit(cs, 0);
|
|
|
|
unsigned lo = const_state->push_consts.lo_dwords;
|
|
for (unsigned i = 0; i < num_units; i++)
|
|
tu_cs_emit(cs, push_constants[i + lo]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
tu6_emit_inline_ubo(struct tu_cs *cs,
|
|
const struct tu_const_state *const_state,
|
|
unsigned constlen,
|
|
mesa_shader_stage type,
|
|
struct tu_descriptor_state *descriptors)
|
|
{
|
|
assert(const_state->num_inline_ubos == 0 || !cs->device->physical_device->info->props.load_shader_consts_via_preamble);
|
|
|
|
/* Emit loads of inline uniforms. These load directly from the uniform's
|
|
* storage space inside the descriptor set.
|
|
*/
|
|
for (unsigned i = 0; i < const_state->num_inline_ubos; i++) {
|
|
const struct tu_inline_ubo *ubo = &const_state->ubos[i];
|
|
|
|
if (constlen <= ubo->const_offset_vec4)
|
|
continue;
|
|
|
|
uint64_t va = descriptors->set_iova[ubo->base] & ~0x3f;
|
|
|
|
tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), ubo->push_address ? 7 : 3);
|
|
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(ubo->const_offset_vec4) |
|
|
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
|
|
CP_LOAD_STATE6_0_STATE_SRC(ubo->push_address ? SS6_DIRECT : SS6_INDIRECT) |
|
|
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
|
|
CP_LOAD_STATE6_0_NUM_UNIT(MIN2(ubo->size_vec4, constlen - ubo->const_offset_vec4)));
|
|
if (ubo->push_address) {
|
|
tu_cs_emit(cs, 0);
|
|
tu_cs_emit(cs, 0);
|
|
tu_cs_emit_qw(cs, va + ubo->offset);
|
|
tu_cs_emit(cs, 0);
|
|
tu_cs_emit(cs, 0);
|
|
} else {
|
|
tu_cs_emit_qw(cs, va + ubo->offset);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
tu7_emit_inline_ubo(struct tu_cs *cs,
|
|
const struct tu_const_state *const_state,
|
|
const struct ir3_const_state *ir_const_state,
|
|
unsigned constlen,
|
|
mesa_shader_stage type,
|
|
struct tu_descriptor_state *descriptors)
|
|
{
|
|
uint64_t addresses[7] = {0};
|
|
unsigned offset = const_state->inline_uniforms_ubo.idx;
|
|
|
|
if (offset == -1)
|
|
return;
|
|
|
|
for (unsigned i = 0; i < const_state->num_inline_ubos; i++) {
|
|
const struct tu_inline_ubo *ubo = &const_state->ubos[i];
|
|
|
|
uint64_t va = descriptors->set_iova[ubo->base] & ~0x3f;
|
|
addresses[i] = va + ubo->offset;
|
|
}
|
|
|
|
/* A7XX TODO: Emit data via sub_cs instead of NOP */
|
|
uint64_t iova = tu_cs_emit_data_nop(cs, (uint32_t *)addresses, const_state->num_inline_ubos * 2, 4);
|
|
|
|
tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 5);
|
|
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
|
|
CP_LOAD_STATE6_0_STATE_TYPE(ST6_UBO) |
|
|
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
|
|
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
|
|
CP_LOAD_STATE6_0_NUM_UNIT(1));
|
|
tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
|
|
tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
|
|
int size_vec4s = DIV_ROUND_UP(const_state->num_inline_ubos * 2, 4);
|
|
tu_cs_emit_qw(cs, iova | ((uint64_t)A6XX_UBO_1_SIZE(size_vec4s) << 32));
|
|
}
|
|
|
|
static void
|
|
tu_emit_inline_ubo(struct tu_cs *cs,
|
|
const struct tu_const_state *const_state,
|
|
const struct ir3_const_state *ir_const_state,
|
|
unsigned constlen,
|
|
mesa_shader_stage type,
|
|
struct tu_descriptor_state *descriptors)
|
|
{
|
|
if (!const_state->num_inline_ubos)
|
|
return;
|
|
|
|
if (cs->device->physical_device->info->props.load_inline_uniforms_via_preamble_ldgk) {
|
|
tu7_emit_inline_ubo(cs, const_state, ir_const_state, constlen, type, descriptors);
|
|
} else {
|
|
tu6_emit_inline_ubo(cs, const_state, constlen, type, descriptors);
|
|
}
|
|
}
|
|
|
|
static void
|
|
tu6_emit_shared_consts(struct tu_cs *cs,
|
|
const struct tu_push_constant_range *shared_consts,
|
|
uint32_t *push_constants,
|
|
bool compute)
|
|
{
|
|
if (shared_consts->dwords > 0) {
|
|
/* Offset and num_units for shared consts are in units of dwords. */
|
|
unsigned num_units = shared_consts->dwords;
|
|
unsigned offset = shared_consts->lo_dwords;
|
|
|
|
enum a6xx_state_type st = compute ? ST6_UBO : ST6_CONSTANTS;
|
|
uint32_t cp_load_state = compute ? CP_LOAD_STATE6_FRAG : CP_LOAD_STATE6;
|
|
|
|
tu_cs_emit_pkt7(cs, cp_load_state, 3 + num_units);
|
|
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
|
|
CP_LOAD_STATE6_0_STATE_TYPE(st) |
|
|
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
|
|
CP_LOAD_STATE6_0_STATE_BLOCK(SB6_UAV) |
|
|
CP_LOAD_STATE6_0_NUM_UNIT(num_units));
|
|
tu_cs_emit(cs, 0);
|
|
tu_cs_emit(cs, 0);
|
|
|
|
for (unsigned i = 0; i < num_units; i++)
|
|
tu_cs_emit(cs, push_constants[i + offset]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
tu7_emit_shared_preamble_consts(
|
|
struct tu_cs *cs,
|
|
const struct tu_push_constant_range *shared_consts,
|
|
uint32_t *push_constants)
|
|
{
|
|
tu_cs_emit_pkt4(cs, REG_A7XX_SP_SHARED_CONSTANT_GFX(shared_consts->lo_dwords),
|
|
shared_consts->dwords);
|
|
tu_cs_emit_array(cs, push_constants + shared_consts->lo_dwords,
|
|
shared_consts->dwords);
|
|
}
|
|
|
|
static uint32_t
|
|
tu6_const_size(struct tu_cmd_buffer *cmd,
|
|
const struct tu_push_constant_range *shared_consts,
|
|
bool compute)
|
|
{
|
|
uint32_t dwords = 0;
|
|
|
|
if (shared_consts->type == IR3_PUSH_CONSTS_SHARED) {
|
|
dwords += shared_consts->dwords + 4;
|
|
} else if (shared_consts->type == IR3_PUSH_CONSTS_SHARED_PREAMBLE) {
|
|
dwords += shared_consts->dwords + 1;
|
|
}
|
|
|
|
bool ldgk = cmd->device->physical_device->info->props.load_inline_uniforms_via_preamble_ldgk;
|
|
if (compute) {
|
|
dwords +=
|
|
tu6_user_consts_size(&cmd->state.shaders[MESA_SHADER_COMPUTE]->const_state, ldgk, MESA_SHADER_COMPUTE);
|
|
} else {
|
|
for (uint32_t type = MESA_SHADER_VERTEX; type <= MESA_SHADER_FRAGMENT; type++)
|
|
dwords += tu6_user_consts_size(&cmd->state.shaders[type]->const_state, ldgk, (mesa_shader_stage) type);
|
|
}
|
|
|
|
return dwords;
|
|
}
|
|
|
|
static struct tu_draw_state
|
|
tu_emit_consts(struct tu_cmd_buffer *cmd, bool compute)
|
|
{
|
|
uint32_t dwords = 0;
|
|
const struct tu_push_constant_range *shared_consts =
|
|
compute ? &cmd->state.shaders[MESA_SHADER_COMPUTE]->const_state.push_consts :
|
|
&cmd->state.program.shared_consts;
|
|
|
|
dwords = tu6_const_size(cmd, shared_consts, compute);
|
|
|
|
if (dwords == 0)
|
|
return (struct tu_draw_state) {};
|
|
|
|
struct tu_cs cs;
|
|
tu_cs_begin_sub_stream(&cmd->sub_cs, dwords, &cs);
|
|
|
|
if (shared_consts->type == IR3_PUSH_CONSTS_SHARED) {
|
|
tu6_emit_shared_consts(&cs, shared_consts, cmd->push_constants, compute);
|
|
} else if (shared_consts->type == IR3_PUSH_CONSTS_SHARED_PREAMBLE) {
|
|
tu7_emit_shared_preamble_consts(&cs, shared_consts, cmd->push_constants);
|
|
}
|
|
|
|
if (compute) {
|
|
tu6_emit_per_stage_push_consts(
|
|
&cs, &cmd->state.shaders[MESA_SHADER_COMPUTE]->const_state,
|
|
cmd->state.shaders[MESA_SHADER_COMPUTE]->variant->const_state,
|
|
MESA_SHADER_COMPUTE, cmd->push_constants);
|
|
tu_emit_inline_ubo(
|
|
&cs, &cmd->state.shaders[MESA_SHADER_COMPUTE]->const_state,
|
|
cmd->state.shaders[MESA_SHADER_COMPUTE]->variant->const_state,
|
|
cmd->state.shaders[MESA_SHADER_COMPUTE]->variant->constlen,
|
|
MESA_SHADER_COMPUTE,
|
|
tu_get_descriptors_state(cmd, VK_PIPELINE_BIND_POINT_COMPUTE));
|
|
} else {
|
|
struct tu_descriptor_state *descriptors =
|
|
tu_get_descriptors_state(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS);
|
|
for (uint32_t type = MESA_SHADER_VERTEX; type <= MESA_SHADER_FRAGMENT; type++) {
|
|
const struct tu_program_descriptor_linkage *link =
|
|
&cmd->state.program.link[type];
|
|
tu6_emit_per_stage_push_consts(&cs, &link->tu_const_state,
|
|
&link->const_state,
|
|
(mesa_shader_stage) type,
|
|
cmd->push_constants);
|
|
tu_emit_inline_ubo(&cs, &link->tu_const_state,
|
|
&link->const_state, link->constlen,
|
|
(mesa_shader_stage) type, descriptors);
|
|
}
|
|
}
|
|
|
|
return tu_cs_end_draw_state(&cmd->sub_cs, &cs);
|
|
}
|
|
|
|
/* Returns true if stencil may be written when depth test fails.
|
|
* This could be either from stencil written on depth test fail itself,
|
|
* or stencil written on the stencil test failure where subsequent depth
|
|
* test may also fail.
|
|
*/
|
|
static bool
|
|
tu6_stencil_written_on_depth_fail(
|
|
const struct vk_stencil_test_face_state *face)
|
|
{
|
|
switch (face->op.compare) {
|
|
case VK_COMPARE_OP_ALWAYS:
|
|
/* The stencil op always passes, no need to worry about failOp. */
|
|
return face->op.depth_fail != VK_STENCIL_OP_KEEP;
|
|
case VK_COMPARE_OP_NEVER:
|
|
/* The stencil op always fails, so failOp will always be used. */
|
|
return face->op.fail != VK_STENCIL_OP_KEEP;
|
|
default:
|
|
/* If the stencil test fails, depth may fail as well, so we can write
|
|
* stencil when the depth fails if failOp is not VK_STENCIL_OP_KEEP.
|
|
*/
|
|
return face->op.fail != VK_STENCIL_OP_KEEP ||
|
|
face->op.depth_fail != VK_STENCIL_OP_KEEP;
|
|
}
|
|
}
|
|
|
|
/* Returns true if the stencil write result may change based on the result of a
|
|
* depth test.
|
|
*/
|
|
static bool
|
|
tu6_stencil_written_based_on_depth_test(
|
|
const struct vk_stencil_test_face_state *face)
|
|
{
|
|
switch (face->op.compare) {
|
|
case VK_COMPARE_OP_ALWAYS:
|
|
/* The stencil op always passes, no need to worry about failOp. */
|
|
return face->op.depth_fail != VK_STENCIL_OP_KEEP ||
|
|
face->op.pass != VK_STENCIL_OP_KEEP;
|
|
case VK_COMPARE_OP_NEVER:
|
|
/* The stencil op always fails, so failOp will always be used. */
|
|
return face->op.fail != VK_STENCIL_OP_KEEP;
|
|
default:
|
|
/* If the stencil test fails, depth may fail as well, so we can write
|
|
* stencil when the depth fails if failOp is not VK_STENCIL_OP_KEEP.
|
|
*/
|
|
return face->op.fail != VK_STENCIL_OP_KEEP ||
|
|
face->op.pass != VK_STENCIL_OP_KEEP ||
|
|
face->op.depth_fail != VK_STENCIL_OP_KEEP;
|
|
}
|
|
}
|
|
|
|
/* Various frontends (ANGLE, zink at least) will enable stencil testing with
|
|
* what works out to be no-op writes. Simplify what they give us into flags
|
|
* that LRZ can use.
|
|
*/
|
|
static void
|
|
tu6_update_simplified_stencil_state(struct tu_cmd_buffer *cmd)
|
|
{
|
|
const struct vk_depth_stencil_state *ds =
|
|
&cmd->vk.dynamic_graphics_state.ds;
|
|
bool stencil_test_enable = ds->stencil.test_enable;
|
|
|
|
if (!stencil_test_enable) {
|
|
cmd->state.stencil_front_write = false;
|
|
cmd->state.stencil_back_write = false;
|
|
cmd->state.stencil_written_on_depth_fail = false;
|
|
cmd->state.stencil_written_based_on_depth_test = false;
|
|
return;
|
|
}
|
|
|
|
bool stencil_front_writemask = ds->stencil.front.write_mask;
|
|
bool stencil_back_writemask = ds->stencil.back.write_mask;
|
|
|
|
VkStencilOp front_fail_op = (VkStencilOp)ds->stencil.front.op.fail;
|
|
VkStencilOp front_pass_op = (VkStencilOp)ds->stencil.front.op.pass;
|
|
VkStencilOp front_depth_fail_op = (VkStencilOp)ds->stencil.front.op.depth_fail;
|
|
VkStencilOp back_fail_op = (VkStencilOp)ds->stencil.back.op.fail;
|
|
VkStencilOp back_pass_op = (VkStencilOp)ds->stencil.back.op.pass;
|
|
VkStencilOp back_depth_fail_op = (VkStencilOp)ds->stencil.back.op.depth_fail;
|
|
|
|
bool stencil_front_op_writes =
|
|
front_pass_op != VK_STENCIL_OP_KEEP ||
|
|
front_fail_op != VK_STENCIL_OP_KEEP ||
|
|
front_depth_fail_op != VK_STENCIL_OP_KEEP;
|
|
|
|
bool stencil_back_op_writes =
|
|
back_pass_op != VK_STENCIL_OP_KEEP ||
|
|
back_fail_op != VK_STENCIL_OP_KEEP ||
|
|
back_depth_fail_op != VK_STENCIL_OP_KEEP;
|
|
|
|
cmd->state.stencil_front_write =
|
|
stencil_front_op_writes && stencil_front_writemask;
|
|
cmd->state.stencil_back_write =
|
|
stencil_back_op_writes && stencil_back_writemask;
|
|
cmd->state.stencil_written_on_depth_fail =
|
|
(cmd->state.stencil_front_write &&
|
|
tu6_stencil_written_on_depth_fail(&ds->stencil.front)) ||
|
|
(cmd->state.stencil_back_write &&
|
|
tu6_stencil_written_on_depth_fail(&ds->stencil.back));
|
|
cmd->state.stencil_written_based_on_depth_test =
|
|
(cmd->state.stencil_front_write &&
|
|
tu6_stencil_written_based_on_depth_test(&ds->stencil.front)) ||
|
|
(cmd->state.stencil_back_write &&
|
|
tu6_stencil_written_based_on_depth_test(&ds->stencil.back));
|
|
}
|
|
|
|
static bool
|
|
tu6_writes_depth(struct tu_cmd_buffer *cmd, bool depth_test_enable)
|
|
{
|
|
bool depth_write_enable =
|
|
cmd->vk.dynamic_graphics_state.ds.depth.write_enable;
|
|
|
|
VkCompareOp depth_compare_op = (VkCompareOp)
|
|
cmd->vk.dynamic_graphics_state.ds.depth.compare_op;
|
|
|
|
bool depth_compare_op_writes = depth_compare_op != VK_COMPARE_OP_NEVER;
|
|
|
|
return depth_test_enable && depth_write_enable && depth_compare_op_writes;
|
|
}
|
|
|
|
static bool
|
|
tu6_writes_stencil(struct tu_cmd_buffer *cmd)
|
|
{
|
|
return cmd->state.stencil_front_write || cmd->state.stencil_back_write;
|
|
}
|
|
|
|
static bool
|
|
tu_fs_reads_dynamic_ds_input_attachment(struct tu_cmd_buffer *cmd,
|
|
const struct tu_shader *fs)
|
|
{
|
|
uint8_t depth_att = cmd->vk.dynamic_graphics_state.ial.depth_att;
|
|
if (depth_att == MESA_VK_ATTACHMENT_UNUSED)
|
|
return false;
|
|
unsigned depth_idx =
|
|
(depth_att == MESA_VK_ATTACHMENT_NO_INDEX) ? 0 : depth_att + 1;
|
|
return fs->fs.dynamic_input_attachments_used & (1u << depth_idx);
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu6_build_depth_plane_z_mode(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
|
|
{
|
|
enum a6xx_ztest_mode zmode = A6XX_EARLY_Z;
|
|
bool depth_test_enable = cmd->vk.dynamic_graphics_state.ds.depth.test_enable;
|
|
bool stencil_test_enable = cmd->vk.dynamic_graphics_state.ds.stencil.test_enable;
|
|
bool ds_test_enable = depth_test_enable || stencil_test_enable;
|
|
bool depth_write = tu6_writes_depth(cmd, depth_test_enable);
|
|
bool stencil_write = tu6_writes_stencil(cmd);
|
|
const struct tu_shader *fs = cmd->state.shaders[MESA_SHADER_FRAGMENT];
|
|
const struct tu_render_pass *pass = cmd->state.pass;
|
|
const struct tu_subpass *subpass = cmd->state.subpass;
|
|
|
|
VkFormat depth_format = VK_FORMAT_UNDEFINED;
|
|
if (subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED)
|
|
depth_format = pass->attachments[subpass->depth_stencil_attachment.attachment].format;
|
|
|
|
bool fs_kill_fragments =
|
|
fs->variant->has_kill ||
|
|
/* EARLY_Z causes D/S to be written before FS but gl_SampleMask can
|
|
* kill fragments, we cannot have EARLY_Z + gl_SampleMask + D/S writes.
|
|
*/
|
|
fs->variant->writes_smask ||
|
|
/* Alpha-to-coverage behaves like a discard. */
|
|
cmd->vk.dynamic_graphics_state.ms.alpha_to_coverage_enable;
|
|
|
|
if ((fs_kill_fragments ||
|
|
(cmd->state.pipeline_feedback_loops & VK_IMAGE_ASPECT_DEPTH_BIT) ||
|
|
(cmd->vk.dynamic_graphics_state.feedback_loops &
|
|
VK_IMAGE_ASPECT_DEPTH_BIT) ||
|
|
tu_fs_reads_dynamic_ds_input_attachment(cmd, fs)) &&
|
|
(depth_write || stencil_write)) {
|
|
zmode = A6XX_EARLY_Z_LATE_Z;
|
|
}
|
|
|
|
/* If there is explicit depth direction in FS writing gl_FragDepth
|
|
* may be compatible with LRZ test.
|
|
*/
|
|
if (cmd->state.lrz.enabled && fs->variant->writes_pos &&
|
|
zmode == A6XX_EARLY_Z) {
|
|
zmode = A6XX_EARLY_Z_LATE_Z;
|
|
}
|
|
|
|
/* "EARLY_Z + discard" would yield incorrect occlusion query result,
|
|
* since Vulkan expects occlusion query to happen after fragment shader.
|
|
*/
|
|
if (zmode == A6XX_EARLY_Z && fs_kill_fragments &&
|
|
cmd->state.occlusion_query_may_be_running)
|
|
zmode = A6XX_EARLY_Z_LATE_Z;
|
|
|
|
VkCompareOp compare_op =
|
|
cmd->vk.dynamic_graphics_state.ds.depth.compare_op;
|
|
/* This state combination wedges something in GPU causing hang.
|
|
* Forcing A6XX_LATE_Z prevents it. Prop driver does the same.
|
|
*/
|
|
if (zmode == A6XX_EARLY_Z_LATE_Z && !depth_write &&
|
|
cmd->state.occlusion_query_may_be_running &&
|
|
(compare_op == VK_COMPARE_OP_ALWAYS ||
|
|
compare_op == VK_COMPARE_OP_NEVER)) {
|
|
zmode = A6XX_LATE_Z;
|
|
}
|
|
|
|
if (zmode == A6XX_EARLY_Z_LATE_Z &&
|
|
(cmd->state.stencil_written_on_depth_fail || fs->fs.sample_shading ||
|
|
!vk_format_has_depth(depth_format) || !ds_test_enable)) {
|
|
zmode = A6XX_LATE_Z;
|
|
}
|
|
|
|
if ((stencil_test_enable && depth_format == VK_FORMAT_S8_UINT) ||
|
|
(ds_test_enable &&
|
|
(fs->fs.lrz.force_late_z || cmd->state.lrz.force_late_z)))
|
|
zmode = A6XX_LATE_Z;
|
|
|
|
/* User defined early tests take precedence above all else */
|
|
if (fs->variant->fs.early_fragment_tests)
|
|
zmode = A6XX_EARLY_Z;
|
|
|
|
/* FS bypass requires early Z */
|
|
if (cmd->state.disable_fs)
|
|
zmode = A6XX_EARLY_Z;
|
|
|
|
tu_cs_emit_regs(cs, GRAS_SU_DEPTH_PLANE_CNTL(CHIP, .z_mode = zmode));
|
|
tu_cs_emit_regs(cs, A6XX_RB_DEPTH_PLANE_CNTL(.z_mode = zmode));
|
|
}
|
|
|
|
static uint32_t
|
|
fs_params_offset(struct tu_cmd_buffer *cmd)
|
|
{
|
|
const struct tu_program_descriptor_linkage *link =
|
|
&cmd->state.program.link[MESA_SHADER_FRAGMENT];
|
|
const struct ir3_const_state *const_state = &link->const_state;
|
|
|
|
if (const_state->num_driver_params <= IR3_DP_FS_DYNAMIC)
|
|
return 0;
|
|
|
|
uint32_t param_offset =
|
|
const_state->allocs.consts[IR3_CONST_ALLOC_DRIVER_PARAMS].offset_vec4;
|
|
|
|
if (param_offset + IR3_DP_FS_DYNAMIC / 4 >= link->constlen)
|
|
return 0;
|
|
|
|
return param_offset + IR3_DP_FS_DYNAMIC / 4;
|
|
}
|
|
|
|
static uint32_t
|
|
fs_params_size(struct tu_cmd_buffer *cmd)
|
|
{
|
|
const struct tu_program_descriptor_linkage *link =
|
|
&cmd->state.program.link[MESA_SHADER_FRAGMENT];
|
|
const struct ir3_const_state *const_state = &link->const_state;
|
|
|
|
return DIV_ROUND_UP(const_state->num_driver_params - IR3_DP_FS_DYNAMIC, 4);
|
|
}
|
|
|
|
struct apply_fs_params_state {
|
|
unsigned num_consts;
|
|
};
|
|
|
|
static void
|
|
fdm_apply_fs_params(struct tu_cmd_buffer *cmd,
|
|
struct tu_cs *cs,
|
|
void *data,
|
|
VkOffset2D common_bin_offset,
|
|
const VkOffset2D *hw_viewport_offsets,
|
|
unsigned views,
|
|
const VkExtent2D *frag_areas,
|
|
const VkRect2D *bins)
|
|
{
|
|
const struct apply_fs_params_state *state =
|
|
(const struct apply_fs_params_state *)data;
|
|
unsigned num_consts = state->num_consts;
|
|
|
|
for (unsigned i = 0; i < num_consts; i++) {
|
|
/* FDM per layer may be enabled in the shader but not in the renderpass,
|
|
* in which case views will be 1 and we have to replicate the one view
|
|
* to all of the layers.
|
|
*/
|
|
VkExtent2D area = frag_areas[MIN2(i, views - 1)];
|
|
VkRect2D bin = bins[MIN2(i, views - 1)];
|
|
VkOffset2D hw_viewport_offset = hw_viewport_offsets[MIN2(i, views - 1)];
|
|
VkOffset2D offset = tu_fdm_per_bin_offset(area, bin, common_bin_offset);
|
|
offset.x -= hw_viewport_offset.x;
|
|
offset.y -= hw_viewport_offset.y;
|
|
|
|
tu_cs_emit(cs, area.width);
|
|
tu_cs_emit(cs, area.height);
|
|
tu_cs_emit(cs, fui(offset.x));
|
|
tu_cs_emit(cs, fui(offset.y));
|
|
}
|
|
}
|
|
|
|
static void
|
|
tu_emit_fdm_params(struct tu_cmd_buffer *cmd,
|
|
struct tu_cs *cs, struct tu_shader *fs,
|
|
unsigned num_units)
|
|
{
|
|
STATIC_ASSERT(IR3_DP_FS(frag_invocation_count) == IR3_DP_FS_DYNAMIC);
|
|
tu_cs_emit(cs, fs->fs.sample_shading ?
|
|
cmd->vk.dynamic_graphics_state.ms.rasterization_samples : 1);
|
|
tu_cs_emit(cs, 0);
|
|
tu_cs_emit(cs, 0);
|
|
tu_cs_emit(cs, 0);
|
|
|
|
STATIC_ASSERT(IR3_DP_FS(frag_size) == IR3_DP_FS_DYNAMIC + 4);
|
|
STATIC_ASSERT(IR3_DP_FS(frag_offset) == IR3_DP_FS_DYNAMIC + 6);
|
|
if (num_units > 1) {
|
|
if (fs->fs.has_fdm) {
|
|
struct apply_fs_params_state state = {
|
|
.num_consts = num_units - 1,
|
|
};
|
|
tu_create_fdm_bin_patchpoint(cmd, cs, 4 * (num_units - 1),
|
|
TU_FDM_SKIP_BINNING,
|
|
fdm_apply_fs_params, state);
|
|
} else {
|
|
for (unsigned i = 1; i < num_units; i++) {
|
|
tu_cs_emit(cs, 1);
|
|
tu_cs_emit(cs, 1);
|
|
tu_cs_emit(cs, fui(0.0f));
|
|
tu_cs_emit(cs, fui(0.0f));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
tu6_emit_fs_params(struct tu_cmd_buffer *cmd)
|
|
{
|
|
uint32_t offset = fs_params_offset(cmd);
|
|
|
|
if (offset == 0) {
|
|
cmd->state.fs_params = (struct tu_draw_state) {};
|
|
return;
|
|
}
|
|
|
|
struct tu_shader *fs = cmd->state.shaders[MESA_SHADER_FRAGMENT];
|
|
|
|
unsigned num_units = fs_params_size(cmd);
|
|
|
|
if (fs->fs.has_fdm)
|
|
tu_cs_set_writeable(&cmd->sub_cs, true);
|
|
|
|
struct tu_cs cs;
|
|
VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 4 + 4 * num_units, &cs);
|
|
if (result != VK_SUCCESS) {
|
|
tu_cs_set_writeable(&cmd->sub_cs, false);
|
|
vk_command_buffer_set_error(&cmd->vk, result);
|
|
return;
|
|
}
|
|
|
|
tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3 + 4 * num_units);
|
|
tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
|
|
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
|
|
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
|
|
CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_SHADER) |
|
|
CP_LOAD_STATE6_0_NUM_UNIT(num_units));
|
|
tu_cs_emit(&cs, 0);
|
|
tu_cs_emit(&cs, 0);
|
|
|
|
tu_emit_fdm_params(cmd, &cs, fs, num_units);
|
|
|
|
cmd->state.fs_params = tu_cs_end_draw_state(&cmd->sub_cs, &cs);
|
|
|
|
if (fs->fs.has_fdm)
|
|
tu_cs_set_writeable(&cmd->sub_cs, false);
|
|
}
|
|
|
|
static void
|
|
tu7_emit_fs_params(struct tu_cmd_buffer *cmd)
|
|
{
|
|
struct tu_shader *fs = cmd->state.shaders[MESA_SHADER_FRAGMENT];
|
|
|
|
int ubo_offset = fs->const_state.fdm_ubo.idx;
|
|
if (ubo_offset < 0) {
|
|
cmd->state.fs_params = (struct tu_draw_state) {};
|
|
return;
|
|
}
|
|
|
|
unsigned num_units = DIV_ROUND_UP(fs->const_state.fdm_ubo.size, 4);
|
|
|
|
if (fs->fs.has_fdm)
|
|
tu_cs_set_writeable(&cmd->sub_cs, true);
|
|
|
|
struct tu_cs cs;
|
|
VkResult result =
|
|
tu_cs_begin_sub_stream_aligned(&cmd->sub_cs, num_units, 4, &cs);
|
|
if (result != VK_SUCCESS) {
|
|
tu_cs_set_writeable(&cmd->sub_cs, false);
|
|
vk_command_buffer_set_error(&cmd->vk, result);
|
|
return;
|
|
}
|
|
|
|
tu_emit_fdm_params(cmd, &cs, fs, num_units);
|
|
|
|
struct tu_draw_state fdm_ubo = tu_cs_end_draw_state(&cmd->sub_cs, &cs);
|
|
|
|
if (fs->fs.has_fdm)
|
|
tu_cs_set_writeable(&cmd->sub_cs, false);
|
|
|
|
result = tu_cs_begin_sub_stream(&cmd->sub_cs, 6, &cs);
|
|
if (result != VK_SUCCESS) {
|
|
vk_command_buffer_set_error(&cmd->vk, result);
|
|
return;
|
|
}
|
|
|
|
tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 5);
|
|
tu_cs_emit(&cs,
|
|
CP_LOAD_STATE6_0_DST_OFF(ubo_offset) |
|
|
CP_LOAD_STATE6_0_STATE_TYPE(ST6_UBO)|
|
|
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
|
|
CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_SHADER) |
|
|
CP_LOAD_STATE6_0_NUM_UNIT(1));
|
|
tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
|
|
tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
|
|
tu_cs_emit_qw(&cs,
|
|
fdm_ubo.iova |
|
|
(uint64_t)A6XX_UBO_1_SIZE(num_units) << 32);
|
|
|
|
cmd->state.fs_params = tu_cs_end_draw_state(&cmd->sub_cs, &cs);
|
|
}
|
|
|
|
static void
|
|
tu_emit_fs_params(struct tu_cmd_buffer *cmd)
|
|
{
|
|
if (cmd->device->compiler->load_shader_consts_via_preamble)
|
|
tu7_emit_fs_params(cmd);
|
|
else
|
|
tu6_emit_fs_params(cmd);
|
|
}
|
|
|
|
static void
|
|
tu_flush_dynamic_input_attachments(struct tu_cmd_buffer *cmd)
|
|
{
|
|
struct tu_shader *fs = cmd->state.shaders[MESA_SHADER_FRAGMENT];
|
|
|
|
if (!fs->fs.dynamic_input_attachments_used)
|
|
return;
|
|
|
|
/* Input attachments may read data from a load op, so we have to invalidate
|
|
* UCHE and force pending blits to complete unless we know it's already
|
|
* been invalidated. This is the same as tu_subpass::feedback_invalidate
|
|
* but for dynamic renderpasses.
|
|
*/
|
|
if (!cmd->state.blit_cache_cleaned) {
|
|
cmd->state.renderpass_cache.flush_bits |=
|
|
TU_CMD_FLAG_CACHE_INVALIDATE | TU_CMD_FLAG_BLIT_CACHE_CLEAN |
|
|
TU_CMD_FLAG_WAIT_FOR_IDLE;
|
|
}
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static VkResult
|
|
tu6_draw_common(struct tu_cmd_buffer *cmd,
|
|
struct tu_cs *cs,
|
|
bool indexed,
|
|
/* note: draw_count is 0 for indirect */
|
|
uint32_t draw_count)
|
|
{
|
|
const struct tu_program_state *program = &cmd->state.program;
|
|
struct tu_render_pass_state *rp = &cmd->state.rp;
|
|
|
|
trace_start_draw(
|
|
&cmd->rp_trace, &cmd->draw_cs, cmd, draw_count,
|
|
cmd->state.program.stage_sha1[MESA_SHADER_VERTEX],
|
|
cmd->state.program.stage_sha1[MESA_SHADER_TESS_CTRL],
|
|
cmd->state.program.stage_sha1[MESA_SHADER_TESS_EVAL],
|
|
cmd->state.program.stage_sha1[MESA_SHADER_GEOMETRY],
|
|
cmd->state.program.stage_sha1[MESA_SHADER_FRAGMENT]);
|
|
|
|
/* Emit state first, because it's needed for bandwidth calculations */
|
|
uint32_t dynamic_draw_state_dirty = 0;
|
|
if (!BITSET_IS_EMPTY(cmd->vk.dynamic_graphics_state.dirty) ||
|
|
(cmd->state.dirty & ~TU_CMD_DIRTY_COMPUTE_DESC_SETS)) {
|
|
dynamic_draw_state_dirty = tu_emit_draw_state<CHIP>(cmd);
|
|
}
|
|
|
|
/* Primitive restart value works in non-indexed draws, we have to disable
|
|
* prim restart for such draws since we may read stale restart index.
|
|
*/
|
|
if (cmd->state.last_draw_indexed != indexed) {
|
|
cmd->state.last_draw_indexed = indexed;
|
|
BITSET_SET(cmd->vk.dynamic_graphics_state.dirty,
|
|
MESA_VK_DYNAMIC_IA_PRIMITIVE_RESTART_ENABLE);
|
|
}
|
|
|
|
/* Fill draw stats for autotuner */
|
|
rp->drawcall_count++;
|
|
|
|
rp->drawcall_bandwidth_per_sample_sum +=
|
|
cmd->state.bandwidth.color_bandwidth_per_sample;
|
|
|
|
/* add depth memory bandwidth cost */
|
|
const uint32_t depth_bandwidth = cmd->state.bandwidth.depth_cpp_per_sample;
|
|
if (cmd->vk.dynamic_graphics_state.ds.depth.write_enable)
|
|
rp->drawcall_bandwidth_per_sample_sum += depth_bandwidth;
|
|
if (cmd->vk.dynamic_graphics_state.ds.depth.test_enable)
|
|
rp->drawcall_bandwidth_per_sample_sum += depth_bandwidth;
|
|
|
|
/* add stencil memory bandwidth cost */
|
|
const uint32_t stencil_bandwidth =
|
|
cmd->state.bandwidth.stencil_cpp_per_sample;
|
|
if (cmd->vk.dynamic_graphics_state.ds.stencil.test_enable)
|
|
rp->drawcall_bandwidth_per_sample_sum += stencil_bandwidth * 2;
|
|
|
|
if (cmd->state.dirty & TU_CMD_DIRTY_FS)
|
|
tu_flush_dynamic_input_attachments(cmd);
|
|
|
|
tu_emit_cache_flush_renderpass<CHIP>(cmd);
|
|
|
|
if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
|
|
MESA_VK_DYNAMIC_IA_PRIMITIVE_RESTART_ENABLE) ||
|
|
BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
|
|
MESA_VK_DYNAMIC_RS_PROVOKING_VERTEX) ||
|
|
(cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
|
|
bool primitive_restart_enabled =
|
|
cmd->vk.dynamic_graphics_state.ia.primitive_restart_enable;
|
|
|
|
bool primitive_restart = primitive_restart_enabled && indexed;
|
|
bool provoking_vtx_last =
|
|
cmd->vk.dynamic_graphics_state.rs.provoking_vertex ==
|
|
VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT;
|
|
|
|
uint32_t primitive_cntl_0 =
|
|
PC_CNTL(CHIP, .primitive_restart = primitive_restart,
|
|
.provoking_vtx_last = provoking_vtx_last)
|
|
.value;
|
|
tu_cs_emit_regs(cs, PC_CNTL(CHIP, .dword = primitive_cntl_0));
|
|
if (CHIP == A7XX) {
|
|
tu_cs_emit_regs(cs, VPC_PC_CNTL(CHIP, .dword = primitive_cntl_0));
|
|
}
|
|
}
|
|
|
|
struct tu_tess_params *tess_params = &cmd->state.tess_params;
|
|
if ((cmd->state.dirty & TU_CMD_DIRTY_TESS_PARAMS) ||
|
|
BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
|
|
MESA_VK_DYNAMIC_TS_DOMAIN_ORIGIN) ||
|
|
(cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
|
|
bool tess_upper_left_domain_origin =
|
|
(VkTessellationDomainOrigin)cmd->vk.dynamic_graphics_state.ts.domain_origin ==
|
|
VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT;
|
|
tu_cs_emit_regs(cs, PC_DS_PARAM(CHIP,
|
|
.spacing = tess_params->spacing,
|
|
.output = tess_upper_left_domain_origin ?
|
|
tess_params->output_upper_left :
|
|
tess_params->output_lower_left));
|
|
}
|
|
|
|
if (cmd->device->physical_device->info->props.has_rt_workaround &&
|
|
cmd->state.program.uses_ray_intersection) {
|
|
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
|
|
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_SHADER_USES_RT);
|
|
}
|
|
|
|
/* Early exit if there is nothing to emit, saves CPU cycles */
|
|
uint32_t dirty = cmd->state.dirty;
|
|
if (!dynamic_draw_state_dirty && !(dirty & ~TU_CMD_DIRTY_COMPUTE_DESC_SETS))
|
|
return VK_SUCCESS;
|
|
|
|
bool dirty_lrz =
|
|
(dirty & TU_CMD_DIRTY_LRZ) ||
|
|
BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
|
|
MESA_VK_DYNAMIC_DS_DEPTH_TEST_ENABLE) ||
|
|
BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
|
|
MESA_VK_DYNAMIC_DS_DEPTH_WRITE_ENABLE) ||
|
|
BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
|
|
MESA_VK_DYNAMIC_DS_DEPTH_BOUNDS_TEST_ENABLE) ||
|
|
BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
|
|
MESA_VK_DYNAMIC_DS_DEPTH_COMPARE_OP) ||
|
|
BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
|
|
MESA_VK_DYNAMIC_DS_STENCIL_TEST_ENABLE) ||
|
|
BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
|
|
MESA_VK_DYNAMIC_DS_STENCIL_OP) ||
|
|
BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
|
|
MESA_VK_DYNAMIC_DS_STENCIL_WRITE_MASK) ||
|
|
BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
|
|
MESA_VK_DYNAMIC_MS_ALPHA_TO_COVERAGE_ENABLE) ||
|
|
BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
|
|
MESA_VK_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE);
|
|
|
|
if (dirty_lrz) {
|
|
struct tu_cs cs;
|
|
uint32_t size = 8 +
|
|
(cmd->device->physical_device->info->props.lrz_track_quirk ? 2 : 0) +
|
|
(CHIP >= A7XX ? 2 : 0); // A7XX has extra packets from LRZ_CNTL2.
|
|
|
|
cmd->state.lrz_and_depth_plane_state =
|
|
tu_cs_draw_state(&cmd->sub_cs, &cs, size);
|
|
tu6_update_simplified_stencil_state(cmd);
|
|
tu6_emit_lrz<CHIP>(cmd, &cs);
|
|
tu6_build_depth_plane_z_mode<CHIP>(cmd, &cs);
|
|
}
|
|
|
|
if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
|
|
MESA_VK_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE)) {
|
|
if (cmd->vk.dynamic_graphics_state.feedback_loops &&
|
|
!cmd->state.rp.disable_gmem) {
|
|
perf_debug(
|
|
cmd->device,
|
|
"Disabling gmem due to VK_EXT_attachment_feedback_loop_layout");
|
|
cmd->state.rp.disable_gmem = true;
|
|
cmd->state.rp.gmem_disable_reason =
|
|
"MESA_VK_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE";
|
|
}
|
|
}
|
|
|
|
if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
|
|
MESA_VK_DYNAMIC_VI_BINDINGS_VALID)) {
|
|
cmd->state.vertex_buffers.size =
|
|
util_last_bit(cmd->vk.dynamic_graphics_state.vi_bindings_valid) * 4;
|
|
dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
|
|
}
|
|
|
|
if (dirty & TU_CMD_DIRTY_SHADER_CONSTS)
|
|
cmd->state.shader_const = tu_emit_consts(cmd, false);
|
|
|
|
if (dirty & TU_CMD_DIRTY_DESC_SETS)
|
|
tu6_emit_descriptor_sets<CHIP>(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS);
|
|
|
|
if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
|
|
MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) ||
|
|
BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
|
|
MESA_VK_DYNAMIC_IA_PRIMITIVE_TOPOLOGY) ||
|
|
BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
|
|
MESA_VK_DYNAMIC_RS_LINE_MODE) ||
|
|
(cmd->state.dirty & TU_CMD_DIRTY_TES) ||
|
|
(cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
|
|
tu6_update_msaa_disable<CHIP>(cmd);
|
|
}
|
|
|
|
if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
|
|
MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) ||
|
|
(cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
|
|
tu6_update_msaa<CHIP>(cmd);
|
|
}
|
|
|
|
bool dirty_fs_params = false;
|
|
if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
|
|
MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) ||
|
|
(cmd->state.dirty & (TU_CMD_DIRTY_PROGRAM | TU_CMD_DIRTY_FDM))) {
|
|
tu_emit_fs_params(cmd);
|
|
dirty_fs_params = true;
|
|
}
|
|
|
|
/* for the first draw in a renderpass, re-emit all the draw states
|
|
*
|
|
* and if a draw-state disabling path (CmdClearAttachments 3D fallback) was
|
|
* used, then draw states must be re-emitted. note however this only happens
|
|
* in the sysmem path, so this can be skipped this for the gmem path (TODO)
|
|
*
|
|
* the two input attachment states are excluded because secondary command
|
|
* buffer doesn't have a state ib to restore it, and not re-emitting them
|
|
* is OK since CmdClearAttachments won't disable/overwrite them
|
|
*/
|
|
if (dirty & TU_CMD_DIRTY_DRAW_STATE) {
|
|
tu_pipeline_update_rp_state(&cmd->state);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (TU_DRAW_STATE_COUNT - 2));
|
|
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_CONFIG, program->config_state);
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS, program->vs_state);
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_BINNING, program->vs_binning_state);
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS, program->hs_state);
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, program->ds_state);
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS, program->gs_state);
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_BINNING, program->gs_binning_state);
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS, program->fs_state);
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VPC, program->vpc_state);
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PRIM_MODE_GMEM, cmd->state.prim_order_gmem);
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_CONST, cmd->state.shader_const);
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.load_state);
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_PARAMS, cmd->state.fs_params);
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_LRZ_AND_DEPTH_PLANE, cmd->state.lrz_and_depth_plane_state);
|
|
|
|
for (uint32_t i = 0; i < ARRAY_SIZE(cmd->state.dynamic_state); i++) {
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
|
|
cmd->state.dynamic_state[i]);
|
|
}
|
|
} else {
|
|
/* emit draw states that were just updated */
|
|
uint32_t draw_state_count =
|
|
util_bitcount(dynamic_draw_state_dirty) +
|
|
((dirty & TU_CMD_DIRTY_SHADER_CONSTS) ? 1 : 0) +
|
|
((dirty & TU_CMD_DIRTY_DESC_SETS) ? 1 : 0) +
|
|
((dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) ? 1 : 0) +
|
|
((dirty & TU_CMD_DIRTY_VS_PARAMS) ? 1 : 0) +
|
|
(dirty_fs_params ? 1 : 0) +
|
|
(dirty_lrz ? 1 : 0);
|
|
|
|
if (draw_state_count > 0)
|
|
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_count);
|
|
|
|
if (dirty & TU_CMD_DIRTY_SHADER_CONSTS)
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_CONST, cmd->state.shader_const);
|
|
if (dirty & TU_CMD_DIRTY_DESC_SETS) {
|
|
/* tu6_emit_descriptor_sets emitted the cmd->state.desc_sets draw state. */
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.load_state);
|
|
}
|
|
if (dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
|
|
u_foreach_bit (i, dynamic_draw_state_dirty) {
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
|
|
cmd->state.dynamic_state[i]);
|
|
}
|
|
if (dirty & TU_CMD_DIRTY_VS_PARAMS)
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
|
|
if (dirty_fs_params)
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_PARAMS, cmd->state.fs_params);
|
|
if (dirty_lrz) {
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_LRZ_AND_DEPTH_PLANE, cmd->state.lrz_and_depth_plane_state);
|
|
}
|
|
}
|
|
|
|
tu_cs_sanity_check(cs);
|
|
|
|
/* There are too many graphics dirty bits to list here, so just list the
|
|
* bits to preserve instead. The only things not emitted here are
|
|
* compute-related state.
|
|
*/
|
|
cmd->state.dirty &= TU_CMD_DIRTY_COMPUTE_DESC_SETS;
|
|
BITSET_ZERO(cmd->vk.dynamic_graphics_state.dirty);
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
static uint32_t
|
|
tu_draw_initiator(struct tu_cmd_buffer *cmd, enum pc_di_src_sel src_sel)
|
|
{
|
|
enum pc_di_primtype primtype =
|
|
tu6_primtype((VkPrimitiveTopology)cmd->vk.dynamic_graphics_state.ia.primitive_topology);
|
|
|
|
if (primtype == DI_PT_PATCHES0)
|
|
primtype = (enum pc_di_primtype) (primtype +
|
|
cmd->vk.dynamic_graphics_state.ts.patch_control_points);
|
|
|
|
uint32_t initiator =
|
|
CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(primtype) |
|
|
CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(src_sel) |
|
|
CP_DRAW_INDX_OFFSET_0_INDEX_SIZE((enum a4xx_index_size) cmd->state.index_size) |
|
|
CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY);
|
|
|
|
if (cmd->state.shaders[MESA_SHADER_GEOMETRY]->variant)
|
|
initiator |= CP_DRAW_INDX_OFFSET_0_GS_ENABLE;
|
|
|
|
const struct tu_shader *tes = cmd->state.shaders[MESA_SHADER_TESS_EVAL];
|
|
if (tes->variant) {
|
|
switch (tes->variant->key.tessellation) {
|
|
case IR3_TESS_TRIANGLES:
|
|
initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_TRIANGLES) |
|
|
CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
|
|
break;
|
|
case IR3_TESS_ISOLINES:
|
|
initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_ISOLINES) |
|
|
CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
|
|
break;
|
|
case IR3_TESS_QUADS:
|
|
initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS) |
|
|
CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
|
|
break;
|
|
}
|
|
}
|
|
return initiator;
|
|
}
|
|
|
|
|
|
static uint32_t
|
|
vs_params_offset(struct tu_cmd_buffer *cmd)
|
|
{
|
|
const struct tu_program_descriptor_linkage *link =
|
|
&cmd->state.program.link[MESA_SHADER_VERTEX];
|
|
const struct ir3_const_state *const_state = &link->const_state;
|
|
|
|
uint32_t param_offset =
|
|
const_state->allocs.consts[IR3_CONST_ALLOC_DRIVER_PARAMS].offset_vec4;
|
|
|
|
if (!ir3_const_can_upload(&const_state->allocs,
|
|
IR3_CONST_ALLOC_DRIVER_PARAMS, link->constlen))
|
|
return 0;
|
|
|
|
/* this layout is required by CP_DRAW_INDIRECT_MULTI */
|
|
STATIC_ASSERT(IR3_DP_VS(draw_id) == 0);
|
|
STATIC_ASSERT(IR3_DP_VS(vtxid_base) == 1);
|
|
STATIC_ASSERT(IR3_DP_VS(instid_base) == 2);
|
|
|
|
/* 0 means disabled for CP_DRAW_INDIRECT_MULTI */
|
|
assert(param_offset != 0);
|
|
|
|
return param_offset;
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu6_emit_empty_vs_params(struct tu_cmd_buffer *cmd)
|
|
{
|
|
if (cmd->state.last_vs_params.empty)
|
|
return;
|
|
|
|
if (cmd->device->physical_device->info->props.load_shader_consts_via_preamble) {
|
|
struct tu_cs cs;
|
|
cmd->state.vs_params = tu_cs_draw_state(&cmd->sub_cs, &cs, 2);
|
|
|
|
/* CP_LOAD_STATE6_GEOM from previous draws can override consts loaded for
|
|
* indirect draws, causing problems like incorrect vertex index computation.
|
|
* VS state invalidation avoids that.
|
|
*/
|
|
tu_cs_emit_regs(&cs, SP_UPDATE_CNTL(CHIP,
|
|
.vs_state = true));
|
|
assert(cs.cur == cs.end);
|
|
} else {
|
|
cmd->state.vs_params = (struct tu_draw_state) {};
|
|
}
|
|
cmd->state.dirty |= TU_CMD_DIRTY_VS_PARAMS;
|
|
|
|
cmd->state.last_vs_params.empty = true;
|
|
}
|
|
|
|
static void
|
|
tu6_emit_vs_params(struct tu_cmd_buffer *cmd,
|
|
uint32_t draw_id,
|
|
uint32_t vertex_offset,
|
|
uint32_t first_instance)
|
|
{
|
|
uint32_t offset = vs_params_offset(cmd);
|
|
|
|
/* Beside re-emitting params when they are changed, we should re-emit
|
|
* them after constants are invalidated via SP_UPDATE_CNTL or after we
|
|
* emit an empty vs params.
|
|
*/
|
|
if (!(cmd->state.dirty & (TU_CMD_DIRTY_DRAW_STATE | TU_CMD_DIRTY_VS_PARAMS |
|
|
TU_CMD_DIRTY_PROGRAM)) &&
|
|
!cmd->state.last_vs_params.empty &&
|
|
(offset == 0 || draw_id == cmd->state.last_vs_params.draw_id) &&
|
|
vertex_offset == cmd->state.last_vs_params.vertex_offset &&
|
|
first_instance == cmd->state.last_vs_params.first_instance) {
|
|
return;
|
|
}
|
|
|
|
uint64_t consts_iova = 0;
|
|
if (offset) {
|
|
struct tu_cs_memory consts;
|
|
VkResult result = tu_cs_alloc(&cmd->sub_cs, 1, 4, &consts);
|
|
if (result != VK_SUCCESS) {
|
|
vk_command_buffer_set_error(&cmd->vk, result);
|
|
return;
|
|
}
|
|
consts.map[0] = draw_id;
|
|
consts.map[1] = vertex_offset;
|
|
consts.map[2] = first_instance;
|
|
consts.map[3] = 0;
|
|
|
|
consts_iova = consts.iova;
|
|
}
|
|
|
|
struct tu_cs cs;
|
|
VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 3 + (offset ? 4 : 0), &cs);
|
|
if (result != VK_SUCCESS) {
|
|
vk_command_buffer_set_error(&cmd->vk, result);
|
|
return;
|
|
}
|
|
|
|
tu_cs_emit_regs(&cs,
|
|
A6XX_VFD_INDEX_OFFSET(vertex_offset),
|
|
A6XX_VFD_INSTANCE_START_OFFSET(first_instance));
|
|
|
|
/* It is implemented as INDIRECT load even on a750+ because with UBO
|
|
* lowering it would be tricky to get const offset for to use in multidraw,
|
|
* also we would need to ensure the offset is not 0.
|
|
* TODO/A7XX: Rework vs params to use UBO lowering.
|
|
*/
|
|
if (offset) {
|
|
tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3);
|
|
tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
|
|
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
|
|
CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
|
|
CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) |
|
|
CP_LOAD_STATE6_0_NUM_UNIT(1));
|
|
tu_cs_emit_qw(&cs, consts_iova);
|
|
}
|
|
|
|
cmd->state.last_vs_params.vertex_offset = vertex_offset;
|
|
cmd->state.last_vs_params.first_instance = first_instance;
|
|
cmd->state.last_vs_params.draw_id = draw_id;
|
|
cmd->state.last_vs_params.empty = false;
|
|
|
|
struct tu_cs_entry entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
|
|
cmd->state.vs_params = (struct tu_draw_state) {entry.bo->iova + entry.offset, entry.size / 4};
|
|
|
|
cmd->state.dirty |= TU_CMD_DIRTY_VS_PARAMS;
|
|
}
|
|
|
|
template <chip CHIP>
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdDraw(VkCommandBuffer commandBuffer,
|
|
uint32_t vertexCount,
|
|
uint32_t instanceCount,
|
|
uint32_t firstVertex,
|
|
uint32_t firstInstance)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
struct tu_cs *cs = &cmd->draw_cs;
|
|
|
|
tu6_emit_vs_params(cmd, 0, firstVertex, firstInstance);
|
|
|
|
tu6_draw_common<CHIP>(cmd, cs, false, vertexCount);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
|
|
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
|
|
tu_cs_emit(cs, instanceCount);
|
|
tu_cs_emit(cs, vertexCount);
|
|
|
|
trace_end_draw(&cmd->rp_trace, cs);
|
|
}
|
|
TU_GENX(tu_CmdDraw);
|
|
|
|
template <chip CHIP>
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdDrawMultiEXT(VkCommandBuffer commandBuffer,
|
|
uint32_t drawCount,
|
|
const VkMultiDrawInfoEXT *pVertexInfo,
|
|
uint32_t instanceCount,
|
|
uint32_t firstInstance,
|
|
uint32_t stride)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
struct tu_cs *cs = &cmd->draw_cs;
|
|
|
|
if (!drawCount)
|
|
return;
|
|
|
|
bool has_tess = cmd->state.shaders[MESA_SHADER_TESS_CTRL]->variant;
|
|
|
|
uint32_t max_vertex_count = 0;
|
|
if (has_tess) {
|
|
uint32_t i = 0;
|
|
vk_foreach_multi_draw(draw, i, pVertexInfo, drawCount, stride) {
|
|
max_vertex_count = MAX2(max_vertex_count, draw->vertexCount);
|
|
}
|
|
}
|
|
|
|
uint32_t i = 0;
|
|
vk_foreach_multi_draw(draw, i, pVertexInfo, drawCount, stride) {
|
|
tu6_emit_vs_params(cmd, i, draw->firstVertex, firstInstance);
|
|
|
|
if (i == 0)
|
|
tu6_draw_common<CHIP>(cmd, cs, false, max_vertex_count);
|
|
|
|
if (cmd->state.dirty & TU_CMD_DIRTY_VS_PARAMS) {
|
|
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
|
|
cmd->state.dirty &= ~TU_CMD_DIRTY_VS_PARAMS;
|
|
}
|
|
|
|
tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
|
|
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
|
|
tu_cs_emit(cs, instanceCount);
|
|
tu_cs_emit(cs, draw->vertexCount);
|
|
}
|
|
|
|
if (i != 0)
|
|
trace_end_draw(&cmd->rp_trace, cs);
|
|
}
|
|
TU_GENX(tu_CmdDrawMultiEXT);
|
|
|
|
template <chip CHIP>
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,
|
|
uint32_t indexCount,
|
|
uint32_t instanceCount,
|
|
uint32_t firstIndex,
|
|
int32_t vertexOffset,
|
|
uint32_t firstInstance)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
struct tu_cs *cs = &cmd->draw_cs;
|
|
|
|
tu6_emit_vs_params(cmd, 0, vertexOffset, firstInstance);
|
|
|
|
tu6_draw_common<CHIP>(cmd, cs, true, indexCount);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
|
|
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
|
|
tu_cs_emit(cs, instanceCount);
|
|
tu_cs_emit(cs, indexCount);
|
|
tu_cs_emit(cs, firstIndex);
|
|
tu_cs_emit_qw(cs, cmd->state.index_va);
|
|
tu_cs_emit(cs, cmd->state.max_index_count);
|
|
|
|
trace_end_draw(&cmd->rp_trace, cs);
|
|
}
|
|
TU_GENX(tu_CmdDrawIndexed);
|
|
|
|
template <chip CHIP>
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdDrawMultiIndexedEXT(VkCommandBuffer commandBuffer,
|
|
uint32_t drawCount,
|
|
const VkMultiDrawIndexedInfoEXT *pIndexInfo,
|
|
uint32_t instanceCount,
|
|
uint32_t firstInstance,
|
|
uint32_t stride,
|
|
const int32_t *pVertexOffset)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
struct tu_cs *cs = &cmd->draw_cs;
|
|
|
|
if (!drawCount)
|
|
return;
|
|
|
|
bool has_tess = cmd->state.shaders[MESA_SHADER_TESS_CTRL]->variant;
|
|
|
|
uint32_t max_index_count = 0;
|
|
if (has_tess) {
|
|
uint32_t i = 0;
|
|
vk_foreach_multi_draw_indexed(draw, i, pIndexInfo, drawCount, stride) {
|
|
max_index_count = MAX2(max_index_count, draw->indexCount);
|
|
}
|
|
}
|
|
|
|
uint32_t i = 0;
|
|
vk_foreach_multi_draw_indexed(draw, i, pIndexInfo, drawCount, stride) {
|
|
int32_t vertexOffset = pVertexOffset ? *pVertexOffset : draw->vertexOffset;
|
|
tu6_emit_vs_params(cmd, i, vertexOffset, firstInstance);
|
|
|
|
if (i == 0)
|
|
tu6_draw_common<CHIP>(cmd, cs, true, max_index_count);
|
|
|
|
if (cmd->state.dirty & TU_CMD_DIRTY_VS_PARAMS) {
|
|
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
|
|
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
|
|
cmd->state.dirty &= ~TU_CMD_DIRTY_VS_PARAMS;
|
|
}
|
|
|
|
tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
|
|
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
|
|
tu_cs_emit(cs, instanceCount);
|
|
tu_cs_emit(cs, draw->indexCount);
|
|
tu_cs_emit(cs, draw->firstIndex);
|
|
tu_cs_emit_qw(cs, cmd->state.index_va);
|
|
tu_cs_emit(cs, cmd->state.max_index_count);
|
|
}
|
|
|
|
if (i != 0)
|
|
trace_end_draw(&cmd->rp_trace, cs);
|
|
}
|
|
TU_GENX(tu_CmdDrawMultiIndexedEXT);
|
|
|
|
/* Various firmware bugs/inconsistencies mean that some indirect draw opcodes
|
|
* do not wait for WFI's to complete before executing. Add a WAIT_FOR_ME if
|
|
* pending for these opcodes. This may result in a few extra WAIT_FOR_ME's
|
|
* with these opcodes, but the alternative would add unnecessary WAIT_FOR_ME's
|
|
* before draw opcodes that don't need it.
|
|
*/
|
|
static void
|
|
draw_wfm(struct tu_cmd_buffer *cmd)
|
|
{
|
|
cmd->state.renderpass_cache.flush_bits |=
|
|
cmd->state.renderpass_cache.pending_flush_bits & TU_CMD_FLAG_WAIT_FOR_ME;
|
|
cmd->state.renderpass_cache.pending_flush_bits &= ~TU_CMD_FLAG_WAIT_FOR_ME;
|
|
}
|
|
|
|
template <chip CHIP>
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,
|
|
VkBuffer _buffer,
|
|
VkDeviceSize offset,
|
|
uint32_t drawCount,
|
|
uint32_t stride)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
VK_FROM_HANDLE(tu_buffer, buf, _buffer);
|
|
struct tu_cs *cs = &cmd->draw_cs;
|
|
|
|
tu6_emit_empty_vs_params<CHIP>(cmd);
|
|
|
|
if (cmd->device->physical_device->info->props.indirect_draw_wfm_quirk)
|
|
draw_wfm(cmd);
|
|
|
|
tu6_draw_common<CHIP>(cmd, cs, false, 0);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 6);
|
|
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
|
|
tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_NORMAL) |
|
|
A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
|
|
tu_cs_emit(cs, drawCount);
|
|
tu_cs_emit_qw(cs, vk_buffer_address(&buf->vk, offset));
|
|
tu_cs_emit(cs, stride);
|
|
|
|
trace_end_draw(&cmd->rp_trace, cs);
|
|
}
|
|
TU_GENX(tu_CmdDrawIndirect);
|
|
|
|
template <chip CHIP>
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
|
|
VkBuffer _buffer,
|
|
VkDeviceSize offset,
|
|
uint32_t drawCount,
|
|
uint32_t stride)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
VK_FROM_HANDLE(tu_buffer, buf, _buffer);
|
|
struct tu_cs *cs = &cmd->draw_cs;
|
|
|
|
tu6_emit_empty_vs_params<CHIP>(cmd);
|
|
|
|
if (cmd->device->physical_device->info->props.indirect_draw_wfm_quirk)
|
|
draw_wfm(cmd);
|
|
|
|
tu6_draw_common<CHIP>(cmd, cs, true, 0);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 9);
|
|
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
|
|
tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDEXED) |
|
|
A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
|
|
tu_cs_emit(cs, drawCount);
|
|
tu_cs_emit_qw(cs, cmd->state.index_va);
|
|
tu_cs_emit(cs, cmd->state.max_index_count);
|
|
tu_cs_emit_qw(cs, vk_buffer_address(&buf->vk, offset));
|
|
tu_cs_emit(cs, stride);
|
|
|
|
trace_end_draw(&cmd->rp_trace, cs);
|
|
}
|
|
TU_GENX(tu_CmdDrawIndexedIndirect);
|
|
|
|
template <chip CHIP>
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdDrawIndirectCount(VkCommandBuffer commandBuffer,
|
|
VkBuffer _buffer,
|
|
VkDeviceSize offset,
|
|
VkBuffer countBuffer,
|
|
VkDeviceSize countBufferOffset,
|
|
uint32_t drawCount,
|
|
uint32_t stride)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
VK_FROM_HANDLE(tu_buffer, buf, _buffer);
|
|
VK_FROM_HANDLE(tu_buffer, count_buf, countBuffer);
|
|
struct tu_cs *cs = &cmd->draw_cs;
|
|
|
|
tu6_emit_empty_vs_params<CHIP>(cmd);
|
|
|
|
/* It turns out that the firmware we have for a650 only partially fixed the
|
|
* problem with CP_DRAW_INDIRECT_MULTI not waiting for WFI's to complete
|
|
* before reading indirect parameters. It waits for WFI's before reading
|
|
* the draw parameters, but after reading the indirect count :(.
|
|
*/
|
|
draw_wfm(cmd);
|
|
|
|
tu6_draw_common<CHIP>(cmd, cs, false, 0);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 8);
|
|
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
|
|
tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDIRECT_COUNT) |
|
|
A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
|
|
tu_cs_emit(cs, drawCount);
|
|
tu_cs_emit_qw(cs, vk_buffer_address(&buf->vk, offset));
|
|
tu_cs_emit_qw(cs, vk_buffer_address(&count_buf->vk, countBufferOffset));
|
|
tu_cs_emit(cs, stride);
|
|
|
|
trace_end_draw(&cmd->rp_trace, cs);
|
|
}
|
|
TU_GENX(tu_CmdDrawIndirectCount);
|
|
|
|
template <chip CHIP>
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer,
|
|
VkBuffer _buffer,
|
|
VkDeviceSize offset,
|
|
VkBuffer countBuffer,
|
|
VkDeviceSize countBufferOffset,
|
|
uint32_t drawCount,
|
|
uint32_t stride)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
VK_FROM_HANDLE(tu_buffer, buf, _buffer);
|
|
VK_FROM_HANDLE(tu_buffer, count_buf, countBuffer);
|
|
struct tu_cs *cs = &cmd->draw_cs;
|
|
|
|
tu6_emit_empty_vs_params<CHIP>(cmd);
|
|
|
|
draw_wfm(cmd);
|
|
|
|
tu6_draw_common<CHIP>(cmd, cs, true, 0);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 11);
|
|
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
|
|
tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDIRECT_COUNT_INDEXED) |
|
|
A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
|
|
tu_cs_emit(cs, drawCount);
|
|
tu_cs_emit_qw(cs, cmd->state.index_va);
|
|
tu_cs_emit(cs, cmd->state.max_index_count);
|
|
tu_cs_emit_qw(cs, vk_buffer_address(&buf->vk, offset));
|
|
tu_cs_emit_qw(cs, vk_buffer_address(&count_buf->vk, countBufferOffset));
|
|
tu_cs_emit(cs, stride);
|
|
|
|
trace_end_draw(&cmd->rp_trace, cs);
|
|
}
|
|
TU_GENX(tu_CmdDrawIndexedIndirectCount);
|
|
|
|
template <chip CHIP>
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,
|
|
uint32_t instanceCount,
|
|
uint32_t firstInstance,
|
|
VkBuffer _counterBuffer,
|
|
VkDeviceSize counterBufferOffset,
|
|
uint32_t counterOffset,
|
|
uint32_t vertexStride)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
VK_FROM_HANDLE(tu_buffer, buf, _counterBuffer);
|
|
struct tu_cs *cs = &cmd->draw_cs;
|
|
|
|
/* All known firmware versions do not wait for WFI's with CP_DRAW_AUTO.
|
|
* Plus, for the common case where the counter buffer is written by
|
|
* vkCmdEndTransformFeedback, we need to wait for the CP_WAIT_MEM_WRITES to
|
|
* complete which means we need a WAIT_FOR_ME anyway.
|
|
*/
|
|
draw_wfm(cmd);
|
|
|
|
tu6_emit_vs_params(cmd, 0, 0, firstInstance);
|
|
|
|
tu6_draw_common<CHIP>(cmd, cs, false, 0);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_DRAW_AUTO, 6);
|
|
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_XFB));
|
|
if (CHIP >= A7XX) {
|
|
/* On a7xx the counter value and offset are shifted right by 2, so
|
|
* the vertexStride should also be in units of dwords.
|
|
*/
|
|
vertexStride = vertexStride >> 2;
|
|
}
|
|
tu_cs_emit(cs, instanceCount);
|
|
tu_cs_emit_qw(cs, vk_buffer_address(&buf->vk, counterBufferOffset));
|
|
tu_cs_emit(cs, counterOffset);
|
|
tu_cs_emit(cs, vertexStride);
|
|
|
|
trace_end_draw(&cmd->rp_trace, cs);
|
|
}
|
|
TU_GENX(tu_CmdDrawIndirectByteCountEXT);
|
|
|
|
struct tu_dispatch_info
|
|
{
|
|
/**
|
|
* Determine the layout of the grid (in block units) to be used.
|
|
*/
|
|
uint32_t blocks[3];
|
|
|
|
/**
|
|
* A starting offset for the grid. If unaligned is set, the offset
|
|
* must still be aligned.
|
|
*/
|
|
uint32_t offsets[3];
|
|
/**
|
|
* Whether it's an unaligned compute dispatch.
|
|
*/
|
|
bool unaligned;
|
|
|
|
/**
|
|
* Indirect compute parameters resource.
|
|
*/
|
|
VkDeviceAddress indirect;
|
|
};
|
|
|
|
static inline struct ir3_driver_params_cs
|
|
build_driver_params_cs(const struct ir3_shader_variant *variant,
|
|
const struct tu_dispatch_info *info)
|
|
{
|
|
unsigned subgroup_size = variant->info.subgroup_size;
|
|
unsigned subgroup_shift = util_logbase2(subgroup_size);
|
|
|
|
return (struct ir3_driver_params_cs) {
|
|
.num_work_groups_x = info->blocks[0],
|
|
.num_work_groups_y = info->blocks[1],
|
|
.num_work_groups_z = info->blocks[2],
|
|
.work_dim = 0,
|
|
.base_group_x = info->offsets[0],
|
|
.base_group_y = info->offsets[1],
|
|
.base_group_z = info->offsets[2],
|
|
.subgroup_size = subgroup_size,
|
|
.local_group_size_x = 0,
|
|
.local_group_size_y = 0,
|
|
.local_group_size_z = 0,
|
|
.subgroup_id_shift = subgroup_shift,
|
|
};
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu_emit_compute_driver_params(struct tu_cmd_buffer *cmd,
|
|
struct tu_cs *cs,
|
|
const struct tu_dispatch_info *info)
|
|
{
|
|
mesa_shader_stage type = MESA_SHADER_COMPUTE;
|
|
const struct tu_shader *shader = cmd->state.shaders[MESA_SHADER_COMPUTE];
|
|
const struct ir3_shader_variant *variant = shader->variant;
|
|
const struct ir3_const_state *const_state = variant->const_state;
|
|
unsigned subgroup_size = variant->info.subgroup_size;
|
|
unsigned subgroup_shift = util_logbase2(subgroup_size);
|
|
|
|
if (cmd->device->physical_device->info->props.load_shader_consts_via_preamble) {
|
|
uint32_t num_consts = const_state->driver_params_ubo.size;
|
|
if (num_consts == 0)
|
|
return;
|
|
|
|
bool direct_indirect_load =
|
|
!(info->indirect & 0xf) &&
|
|
!(info->indirect && num_consts > IR3_DP_CS(base_group_x));
|
|
|
|
uint64_t iova = 0;
|
|
|
|
if (!info->indirect) {
|
|
struct ir3_driver_params_cs driver_params =
|
|
build_driver_params_cs(variant, info);
|
|
|
|
assert(num_consts <= dword_sizeof(driver_params));
|
|
|
|
struct tu_cs_memory consts;
|
|
uint32_t consts_vec4 = DIV_ROUND_UP(num_consts, 4);
|
|
VkResult result = tu_cs_alloc(&cmd->sub_cs, consts_vec4, 4, &consts);
|
|
if (result != VK_SUCCESS) {
|
|
vk_command_buffer_set_error(&cmd->vk, result);
|
|
return;
|
|
}
|
|
memcpy(consts.map, &driver_params, num_consts * sizeof(uint32_t));
|
|
iova = consts.iova;
|
|
} else if (direct_indirect_load) {
|
|
iova = info->indirect;
|
|
} else {
|
|
/* Vulkan guarantees only 4 byte alignment for indirect_offset.
|
|
* However, CP_LOAD_STATE.EXT_SRC_ADDR needs 16 byte alignment.
|
|
*/
|
|
|
|
uint64_t indirect_iova = info->indirect;
|
|
|
|
/* Wait for any previous uses to finish. */
|
|
tu_cs_emit_wfi(cs);
|
|
|
|
for (uint32_t i = 0; i < 3; i++) {
|
|
tu_cs_emit_pkt7(cs, CP_MEM_TO_MEM, 5);
|
|
tu_cs_emit(cs, 0);
|
|
tu_cs_emit_qw(cs, global_iova_arr(cmd, cs_indirect_xyz, i));
|
|
tu_cs_emit_qw(cs, indirect_iova + i * sizeof(uint32_t));
|
|
}
|
|
|
|
/* Fill out IR3_DP_CS_SUBGROUP_SIZE and IR3_DP_SUBGROUP_ID_SHIFT for
|
|
* indirect dispatch.
|
|
*/
|
|
if (info->indirect && num_consts > IR3_DP_CS(base_group_x)) {
|
|
uint32_t indirect_driver_params[8] = {
|
|
0, 0, 0, subgroup_size,
|
|
0, 0, 0, subgroup_shift,
|
|
};
|
|
bool emit_local = num_consts > IR3_DP_CS(local_group_size_x);
|
|
uint32_t emit_size = emit_local ? 8 : 4;
|
|
|
|
tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 2 + emit_size);
|
|
tu_cs_emit_qw(cs, global_iova_arr(cmd, cs_indirect_xyz, 0) + 4 * sizeof(uint32_t));
|
|
for (uint32_t i = 0; i < emit_size; i++) {
|
|
tu_cs_emit(cs, indirect_driver_params[i]);
|
|
}
|
|
}
|
|
|
|
tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
|
|
tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
|
|
tu_cs_emit_wfi(cs);
|
|
|
|
iova = global_iova(cmd, cs_indirect_xyz[0]);
|
|
}
|
|
|
|
tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 5);
|
|
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(const_state->driver_params_ubo.idx) |
|
|
CP_LOAD_STATE6_0_STATE_TYPE(ST6_UBO) |
|
|
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
|
|
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
|
|
CP_LOAD_STATE6_0_NUM_UNIT(1));
|
|
tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
|
|
tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
|
|
int size_vec4s = DIV_ROUND_UP(num_consts, 4);
|
|
tu_cs_emit_qw(cs, iova | ((uint64_t)A6XX_UBO_1_SIZE(size_vec4s) << 32));
|
|
|
|
} else {
|
|
uint32_t offset =
|
|
const_state->allocs.consts[IR3_CONST_ALLOC_DRIVER_PARAMS].offset_vec4;
|
|
if (!ir3_const_can_upload(&const_state->allocs,
|
|
IR3_CONST_ALLOC_DRIVER_PARAMS,
|
|
variant->constlen))
|
|
return;
|
|
|
|
uint32_t num_consts = MIN2(const_state->num_driver_params,
|
|
(variant->constlen - offset) * 4);
|
|
|
|
if (!info->indirect) {
|
|
struct ir3_driver_params_cs driver_params =
|
|
build_driver_params_cs(variant, info);
|
|
|
|
assert(num_consts <= dword_sizeof(driver_params));
|
|
|
|
/* push constants */
|
|
tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts);
|
|
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
|
|
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
|
|
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
|
|
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
|
|
CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4));
|
|
tu_cs_emit(cs, 0);
|
|
tu_cs_emit(cs, 0);
|
|
tu_cs_emit_array(cs, (uint32_t *)&driver_params, num_consts);
|
|
} else if (!(info->indirect & 0xf)) {
|
|
tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
|
|
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
|
|
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
|
|
CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
|
|
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
|
|
CP_LOAD_STATE6_0_NUM_UNIT(1));
|
|
tu_cs_emit_qw(cs, info->indirect);
|
|
} else {
|
|
/* Vulkan guarantees only 4 byte alignment for indirect_offset.
|
|
* However, CP_LOAD_STATE.EXT_SRC_ADDR needs 16 byte alignment.
|
|
*/
|
|
|
|
/* Wait for any previous uses to finish. */
|
|
tu_cs_emit_wfi(cs);
|
|
|
|
for (uint32_t i = 0; i < 3; i++) {
|
|
tu_cs_emit_pkt7(cs, CP_MEM_TO_MEM, 5);
|
|
tu_cs_emit(cs, 0);
|
|
tu_cs_emit_qw(cs, global_iova_arr(cmd, cs_indirect_xyz, i));
|
|
tu_cs_emit_qw(cs, info->indirect + i * 4);
|
|
}
|
|
|
|
tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
|
|
tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
|
|
tu_cs_emit_wfi(cs);
|
|
|
|
tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
|
|
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
|
|
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
|
|
CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
|
|
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
|
|
CP_LOAD_STATE6_0_NUM_UNIT(1));
|
|
tu_cs_emit_qw(cs, global_iova(cmd, cs_indirect_xyz[0]));
|
|
}
|
|
|
|
/* Fill out IR3_DP_CS_SUBGROUP_SIZE and IR3_DP_SUBGROUP_ID_SHIFT for
|
|
* indirect dispatch.
|
|
*/
|
|
if (info->indirect && num_consts > IR3_DP_CS(base_group_x)) {
|
|
bool emit_local = num_consts > IR3_DP_CS(local_group_size_x);
|
|
tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 7 + (emit_local ? 4 : 0));
|
|
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset + (IR3_DP_CS(base_group_x) / 4)) |
|
|
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
|
|
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
|
|
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
|
|
CP_LOAD_STATE6_0_NUM_UNIT((num_consts - IR3_DP_CS(base_group_x)) / 4));
|
|
tu_cs_emit_qw(cs, 0);
|
|
tu_cs_emit(cs, 0); /* BASE_GROUP_X */
|
|
tu_cs_emit(cs, 0); /* BASE_GROUP_Y */
|
|
tu_cs_emit(cs, 0); /* BASE_GROUP_Z */
|
|
tu_cs_emit(cs, subgroup_size);
|
|
if (emit_local) {
|
|
assert(num_consts == align(IR3_DP_CS(subgroup_id_shift), 4));
|
|
tu_cs_emit(cs, 0); /* LOCAL_GROUP_SIZE_X */
|
|
tu_cs_emit(cs, 0); /* LOCAL_GROUP_SIZE_Y */
|
|
tu_cs_emit(cs, 0); /* LOCAL_GROUP_SIZE_Z */
|
|
tu_cs_emit(cs, subgroup_shift);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <chip CHIP>
|
|
static void
|
|
tu_dispatch(struct tu_cmd_buffer *cmd,
|
|
const struct tu_dispatch_info *info)
|
|
{
|
|
if (!info->indirect &&
|
|
(info->blocks[0] == 0 || info->blocks[1] == 0 || info->blocks[2] == 0))
|
|
return;
|
|
|
|
struct tu_cs *cs = &cmd->cs;
|
|
struct tu_shader *shader = cmd->state.shaders[MESA_SHADER_COMPUTE];
|
|
|
|
bool emit_instrlen_workaround =
|
|
shader->variant->instrlen >
|
|
cmd->device->physical_device->info->props.instr_cache_size;
|
|
|
|
/* We don't use draw states for dispatches, so the bound pipeline
|
|
* could be overwritten by reg stomping in a renderpass or blit.
|
|
*/
|
|
if (cmd->device->dbg_renderpass_stomp_cs) {
|
|
tu_cs_emit_state_ib(&cmd->cs, shader->state);
|
|
}
|
|
|
|
/* There appears to be a HW bug where in some rare circumstances it appears
|
|
* to accidentally use the FS instrlen instead of the CS instrlen, which
|
|
* affects all known gens. Based on various experiments it appears that the
|
|
* issue is that when prefetching a branch destination and there is a cache
|
|
* miss, when fetching from memory the HW bounds-checks the fetch against
|
|
* SP_CS_INSTR_SIZE, except when one of the two register contexts is active
|
|
* it accidentally fetches SP_PS_INSTR_SIZE from the other (inactive)
|
|
* context. To workaround it we set the FS instrlen here and do a dummy
|
|
* event to roll the context (because it fetches SP_PS_INSTR_SIZE from the
|
|
* "wrong" context). Because the bug seems to involve cache misses, we
|
|
* don't emit this if the entire CS program fits in cache, which will
|
|
* hopefully be the majority of cases.
|
|
*
|
|
* See https://gitlab.freedesktop.org/mesa/mesa/-/issues/5892
|
|
*/
|
|
if (emit_instrlen_workaround) {
|
|
tu_cs_emit_regs(cs, A6XX_SP_PS_INSTR_SIZE(shader->variant->instrlen));
|
|
tu_emit_event_write<CHIP>(cmd, cs, FD_LABEL);
|
|
}
|
|
|
|
/* TODO: We could probably flush less if we add a compute_flush_bits
|
|
* bitfield.
|
|
*/
|
|
tu_emit_cache_flush<CHIP>(cmd);
|
|
|
|
/* note: no reason to have this in a separate IB */
|
|
tu_cs_emit_state_ib(cs, tu_emit_consts(cmd, true));
|
|
|
|
tu_emit_compute_driver_params<CHIP>(cmd, cs, info);
|
|
|
|
if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESC_SETS) {
|
|
tu6_emit_descriptor_sets<CHIP>(cmd, VK_PIPELINE_BIND_POINT_COMPUTE);
|
|
tu_cs_emit_state_ib(cs, cmd->state.compute_load_state);
|
|
}
|
|
|
|
cmd->state.dirty &= ~TU_CMD_DIRTY_COMPUTE_DESC_SETS;
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
|
|
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
|
|
|
|
const uint16_t *local_size = shader->variant->local_size;
|
|
const uint32_t *num_groups = info->blocks;
|
|
|
|
if (info->unaligned) {
|
|
assert(CHIP >= A7XX);
|
|
|
|
if (info->indirect) {
|
|
/* This path is tailored for BVH building and currently only supports
|
|
* 1-dimensional dispatches with a power-of-two local size. We use
|
|
* CP_RUN_OPENCL instead of CP_EXEC_CS in order to dynamically set
|
|
* SP_CS_KERNEL_GROUP_X, which is usually set implicitly by the
|
|
* packet, to the number of workgroups. The registers for Y and Z
|
|
* dimensions should be unused because we set the kernel dimension to
|
|
* 1.
|
|
*/
|
|
assert(local_size[1] == 1 && local_size[2] == 1);
|
|
assert(util_is_power_of_two_nonzero(local_size[0]));
|
|
|
|
tu_cs_emit_regs(cs,
|
|
SP_CS_NDRANGE_0(CHIP, .kerneldim = 1,
|
|
.localsizex = local_size[0] - 1));
|
|
|
|
tu_cs_emit_regs(cs, SP_CS_NDRANGE_2(CHIP, .globaloff_x = 0));
|
|
|
|
/* This does:
|
|
* - waits for pending cache flushes to finish
|
|
* - CP_WAIT_FOR_ME
|
|
*
|
|
* In a sequence of indirect dispatches this shouldn't wait for the
|
|
* previous dispatches to finish.
|
|
*/
|
|
tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
|
|
tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A7XX_SP_CS_NDRANGE_1));
|
|
tu_cs_emit_qw(cs, info->indirect);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SCRATCH_WRITE, 2);
|
|
tu_cs_emit(cs, CP_SCRATCH_WRITE_0_SCRATCH(0));
|
|
tu_cs_emit(cs, ~0u);
|
|
|
|
/* CP_REG_RMW and CP_REG_TO_SCRATCH implicitly do a CP_WAIT_FOR_IDLE
|
|
* *and* CP_WAIT_FOR_ME, which is a full pipeline stall that we don't
|
|
* want, so manually wait for the CP_MEM_TO_REG write to land and
|
|
* then skip waiting below with SKIP_WAIT_FOR_ME.
|
|
*/
|
|
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
|
|
|
|
/* scratch0 = ((scratch0 & CS_NDRANGE_1) + -1
|
|
* = ((~0 & CS_NDRANGE_1) + -1
|
|
* = CS_NDRANGE_1 - 1
|
|
*/
|
|
tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
|
|
tu_cs_emit(cs,
|
|
CP_REG_RMW_0_DST_REG(0) |
|
|
CP_REG_RMW_0_DST_SCRATCH |
|
|
CP_REG_RMW_0_SKIP_WAIT_FOR_ME |
|
|
CP_REG_RMW_0_SRC0_IS_REG |
|
|
CP_REG_RMW_0_SRC1_ADD);
|
|
tu_cs_emit(cs, REG_A7XX_SP_CS_NDRANGE_1); /* SRC0 */
|
|
tu_cs_emit(cs, -1); /* SRC1 */
|
|
|
|
/* scratch0 = ((scratch0 & (local_size - 1)) rot 2
|
|
* = ((scratch0 & (local_size - 1)) << 2
|
|
*/
|
|
tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
|
|
tu_cs_emit(cs,
|
|
CP_REG_RMW_0_DST_REG(0) |
|
|
CP_REG_RMW_0_DST_SCRATCH |
|
|
CP_REG_RMW_0_SKIP_WAIT_FOR_ME |
|
|
CP_REG_RMW_0_ROTATE(A7XX_SP_CS_NDRANGE_7_LOCALSIZEX__SHIFT));
|
|
tu_cs_emit(cs, local_size[0] - 1); /* SRC0 */
|
|
tu_cs_emit(cs, 0); /* SRC1 */
|
|
|
|
/* write scratch0 to SP_CS_NDRANGE_7 */
|
|
tu_cs_emit_pkt7(cs, CP_SCRATCH_TO_REG, 1);
|
|
tu_cs_emit(cs,
|
|
CP_SCRATCH_TO_REG_0_REG(REG_A7XX_SP_CS_NDRANGE_7) |
|
|
CP_SCRATCH_TO_REG_0_SCRATCH(0));
|
|
|
|
tu_cs_emit_pkt7(cs, CP_SCRATCH_WRITE, 2);
|
|
tu_cs_emit(cs, CP_SCRATCH_WRITE_0_SCRATCH(0));
|
|
tu_cs_emit(cs, ~0u);
|
|
|
|
/* scratch0 = (scratch0 & CS_NDRANGE_1) + local_size - 1
|
|
* = (~0u & CS_NDRANGE_1) + local_size - 1
|
|
* = CS_NDRANGE_1 + local_size - 1
|
|
*/
|
|
tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
|
|
tu_cs_emit(cs,
|
|
CP_REG_RMW_0_DST_REG(0) |
|
|
CP_REG_RMW_0_DST_SCRATCH |
|
|
CP_REG_RMW_0_SKIP_WAIT_FOR_ME |
|
|
CP_REG_RMW_0_SRC0_IS_REG |
|
|
CP_REG_RMW_0_SRC1_ADD);
|
|
tu_cs_emit(cs, REG_A7XX_SP_CS_NDRANGE_1); /* SRC0 */
|
|
tu_cs_emit(cs, local_size[0] - 1); /* SRC1 */
|
|
|
|
unsigned local_size_log2 = util_logbase2(local_size[0]);
|
|
|
|
/* scratch0 = (scratch0 & (~(local_size - 1)) rot (32 - log2(local_size))
|
|
* = scratch0 >> log2(local_size)
|
|
* = scratch0 / local_size
|
|
* = (CS_NDRANGE_1 + local_size - 1) / local_size
|
|
*/
|
|
tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
|
|
tu_cs_emit(cs,
|
|
CP_REG_RMW_0_DST_REG(0) |
|
|
CP_REG_RMW_0_DST_SCRATCH |
|
|
CP_REG_RMW_0_SKIP_WAIT_FOR_ME |
|
|
CP_REG_RMW_0_ROTATE(32 - local_size_log2));
|
|
tu_cs_emit(cs, ~(local_size[0] - 1)); /* SRC0 */
|
|
tu_cs_emit(cs, 0); /* SRC1 */
|
|
|
|
/* write scratch0 to SP_CS_KERNEL_GROUP_X */
|
|
tu_cs_emit_pkt7(cs, CP_SCRATCH_TO_REG, 1);
|
|
tu_cs_emit(cs,
|
|
CP_SCRATCH_TO_REG_0_REG(REG_A7XX_SP_CS_KERNEL_GROUP_X) |
|
|
CP_SCRATCH_TO_REG_0_SCRATCH(0));
|
|
} else {
|
|
tu_cs_emit_regs(cs,
|
|
SP_CS_NDRANGE_0(CHIP, .kerneldim = 3,
|
|
.localsizex = local_size[0] - 1,
|
|
.localsizey = local_size[1] - 1,
|
|
.localsizez = local_size[2] - 1),
|
|
SP_CS_NDRANGE_1(CHIP, .globalsize_x = num_groups[0]),
|
|
SP_CS_NDRANGE_2(CHIP, .globaloff_x = 0),
|
|
SP_CS_NDRANGE_3(CHIP, .globalsize_y = num_groups[1]),
|
|
SP_CS_NDRANGE_4(CHIP, .globaloff_y = 0),
|
|
SP_CS_NDRANGE_5(CHIP, .globalsize_z = num_groups[2]),
|
|
SP_CS_NDRANGE_6(CHIP, .globaloff_z = 0));
|
|
uint32_t last_local_size[3];
|
|
for (unsigned i = 0; i < 3; i++)
|
|
last_local_size[i] = ((num_groups[i] - 1) % local_size[i]) + 1;
|
|
tu_cs_emit_regs(cs,
|
|
SP_CS_NDRANGE_7(CHIP, .localsizex = last_local_size[0] - 1,
|
|
.localsizey = last_local_size[1] - 1,
|
|
.localsizez = last_local_size[2] - 1));
|
|
}
|
|
} else {
|
|
tu_cs_emit_regs(cs,
|
|
SP_CS_NDRANGE_0(CHIP, .kerneldim = 3,
|
|
.localsizex = local_size[0] - 1,
|
|
.localsizey = local_size[1] - 1,
|
|
.localsizez = local_size[2] - 1),
|
|
SP_CS_NDRANGE_1(CHIP, .globalsize_x = local_size[0] * num_groups[0]),
|
|
SP_CS_NDRANGE_2(CHIP, .globaloff_x = 0),
|
|
SP_CS_NDRANGE_3(CHIP, .globalsize_y = local_size[1] * num_groups[1]),
|
|
SP_CS_NDRANGE_4(CHIP, .globaloff_y = 0),
|
|
SP_CS_NDRANGE_5(CHIP, .globalsize_z = local_size[2] * num_groups[2]),
|
|
SP_CS_NDRANGE_6(CHIP, .globaloff_z = 0));
|
|
if (CHIP >= A7XX) {
|
|
tu_cs_emit_regs(cs,
|
|
SP_CS_NDRANGE_7(CHIP, .localsizex = local_size[0] - 1,
|
|
.localsizey = local_size[1] - 1,
|
|
.localsizez = local_size[2] - 1));
|
|
}
|
|
}
|
|
|
|
if (cmd->device->physical_device->info->props.has_rt_workaround &&
|
|
shader->variant->info.uses_ray_intersection) {
|
|
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
|
|
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_SHADER_USES_RT);
|
|
}
|
|
|
|
if (info->indirect) {
|
|
trace_start_compute_indirect(&cmd->trace, cs, cmd, info->unaligned,
|
|
(char *)shader->variant->sha1_str);
|
|
|
|
if (info->unaligned) {
|
|
tu_cs_emit_pkt7(cs, CP_RUN_OPENCL, 1);
|
|
tu_cs_emit(cs, 0x00000000);
|
|
} else {
|
|
tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4);
|
|
tu_cs_emit(cs, 0x00000000);
|
|
tu_cs_emit_qw(cs, info->indirect);
|
|
tu_cs_emit(cs,
|
|
A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) |
|
|
A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) |
|
|
A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1));
|
|
|
|
}
|
|
|
|
trace_end_compute_indirect(&cmd->trace, cs,
|
|
(struct u_trace_address) {
|
|
.bo = NULL,
|
|
.offset = info->indirect,
|
|
});
|
|
} else {
|
|
trace_start_compute(&cmd->trace, cs, cmd, info->indirect != 0,
|
|
info->unaligned, local_size[0], local_size[1],
|
|
local_size[2], info->blocks[0], info->blocks[1],
|
|
info->blocks[2], (char *)shader->variant->sha1_str);
|
|
|
|
if (info->unaligned) {
|
|
tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
|
|
tu_cs_emit(cs, 0x00000000);
|
|
tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(DIV_ROUND_UP(info->blocks[0],
|
|
local_size[0])));
|
|
tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(DIV_ROUND_UP(info->blocks[1],
|
|
local_size[1])));
|
|
tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(DIV_ROUND_UP(info->blocks[2],
|
|
local_size[2])));
|
|
} else {
|
|
tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
|
|
tu_cs_emit(cs, 0x00000000);
|
|
tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0]));
|
|
tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1]));
|
|
tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2]));
|
|
}
|
|
|
|
trace_end_compute(&cmd->trace, cs);
|
|
}
|
|
|
|
/* For the workaround above, because it's using the "wrong" context for
|
|
* SP_PS_INSTR_SIZE we should emit another dummy event write to avoid a
|
|
* potential race between writing the register and the CP_EXEC_CS we just
|
|
* did. We don't need to reset the register because it will be re-emitted
|
|
* anyway when the next renderpass starts.
|
|
*/
|
|
if (emit_instrlen_workaround) {
|
|
tu_emit_event_write<CHIP>(cmd, cs, FD_LABEL);
|
|
}
|
|
|
|
cmd->state.total_dispatches++;
|
|
}
|
|
|
|
template <chip CHIP>
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdDispatchBase(VkCommandBuffer commandBuffer,
|
|
uint32_t base_x,
|
|
uint32_t base_y,
|
|
uint32_t base_z,
|
|
uint32_t x,
|
|
uint32_t y,
|
|
uint32_t z)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
|
|
struct tu_dispatch_info info = {};
|
|
|
|
info.blocks[0] = x;
|
|
info.blocks[1] = y;
|
|
info.blocks[2] = z;
|
|
|
|
info.offsets[0] = base_x;
|
|
info.offsets[1] = base_y;
|
|
info.offsets[2] = base_z;
|
|
tu_dispatch<CHIP>(cmd_buffer, &info);
|
|
}
|
|
TU_GENX(tu_CmdDispatchBase);
|
|
|
|
template <chip CHIP>
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
|
|
VkBuffer _buffer,
|
|
VkDeviceSize offset)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
|
|
VK_FROM_HANDLE(tu_buffer, buffer, _buffer);
|
|
struct tu_dispatch_info info = {};
|
|
|
|
info.indirect = vk_buffer_address(&buffer->vk, offset);
|
|
|
|
tu_dispatch<CHIP>(cmd_buffer, &info);
|
|
}
|
|
TU_GENX(tu_CmdDispatchIndirect);
|
|
|
|
void
|
|
tu_dispatch_unaligned(VkCommandBuffer commandBuffer,
|
|
uint32_t x, uint32_t y, uint32_t z)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
|
|
struct tu_dispatch_info info = {};
|
|
|
|
info.unaligned = true;
|
|
info.blocks[0] = x;
|
|
info.blocks[1] = y;
|
|
info.blocks[2] = z;
|
|
TU_CALLX(cmd_buffer->device, tu_dispatch)(cmd_buffer, &info);
|
|
}
|
|
|
|
void
|
|
tu_dispatch_unaligned_indirect(VkCommandBuffer commandBuffer,
|
|
VkDeviceAddress size_addr)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
|
|
struct tu_dispatch_info info = {};
|
|
|
|
info.unaligned = true;
|
|
info.indirect = size_addr;
|
|
|
|
TU_CALLX(cmd_buffer->device, tu_dispatch)(cmd_buffer, &info);
|
|
}
|
|
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
|
|
const VkSubpassEndInfo *pSubpassEndInfo)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
|
|
|
|
if (TU_DEBUG(DYNAMIC)) {
|
|
vk_common_CmdEndRenderPass2(commandBuffer, pSubpassEndInfo);
|
|
return;
|
|
}
|
|
|
|
const VkRenderPassFragmentDensityMapOffsetEndInfoEXT *fdm_offset_info =
|
|
vk_find_struct_const(pSubpassEndInfo->pNext,
|
|
RENDER_PASS_FRAGMENT_DENSITY_MAP_OFFSET_END_INFO_EXT);
|
|
const VkOffset2D *fdm_offsets =
|
|
(fdm_offset_info && fdm_offset_info->fragmentDensityOffsetCount > 0) ?
|
|
fdm_offset_info->pFragmentDensityOffsets : NULL;
|
|
|
|
VkOffset2D test_offsets[MAX_VIEWS];
|
|
if (TU_DEBUG(FDM) && TU_DEBUG(FDM_OFFSET)) {
|
|
for (unsigned i = 0; i < tu_fdm_num_layers(cmd_buffer); i++) {
|
|
test_offsets[i] = { 64, 64 };
|
|
}
|
|
fdm_offsets = test_offsets;
|
|
}
|
|
|
|
tu_cs_end(&cmd_buffer->draw_cs);
|
|
tu_cs_end(&cmd_buffer->draw_epilogue_cs);
|
|
TU_CALLX(cmd_buffer->device, tu_cmd_render)(cmd_buffer, fdm_offsets);
|
|
|
|
cmd_buffer->state.cache.pending_flush_bits |=
|
|
cmd_buffer->state.renderpass_cache.pending_flush_bits;
|
|
tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true);
|
|
|
|
vk_free(&cmd_buffer->vk.pool->alloc, cmd_buffer->state.attachments);
|
|
|
|
tu_reset_render_pass(cmd_buffer);
|
|
|
|
cmd_buffer->state.total_renderpasses++;
|
|
}
|
|
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdEndRendering2EXT(VkCommandBuffer commandBuffer,
|
|
const VkRenderingEndInfoEXT *pRenderingEndInfo)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
|
|
|
|
if (cmd_buffer->state.suspending) {
|
|
cmd_buffer->state.suspended_pass.lrz = cmd_buffer->state.lrz;
|
|
/* We cannot pass LRZ state to next resuming renderpass, so we have to
|
|
* force disable it here.
|
|
*/
|
|
TU_CALLX(cmd_buffer->device, tu_lrz_flush_valid_during_renderpass)
|
|
(cmd_buffer, &cmd_buffer->draw_cs);
|
|
}
|
|
|
|
const VkRenderPassFragmentDensityMapOffsetEndInfoEXT *fdm_offset_info =
|
|
vk_find_struct_const(pRenderingEndInfo,
|
|
RENDER_PASS_FRAGMENT_DENSITY_MAP_OFFSET_END_INFO_EXT);
|
|
const VkOffset2D *fdm_offsets =
|
|
(fdm_offset_info && fdm_offset_info->fragmentDensityOffsetCount > 0) ?
|
|
fdm_offset_info->pFragmentDensityOffsets : NULL;
|
|
|
|
VkOffset2D test_offsets[MAX_VIEWS];
|
|
if (TU_DEBUG(FDM) && TU_DEBUG(FDM_OFFSET)) {
|
|
for (unsigned i = 0; i < tu_fdm_num_layers(cmd_buffer); i++) {
|
|
test_offsets[i] = { 64, 64 };
|
|
}
|
|
fdm_offsets = test_offsets;
|
|
}
|
|
|
|
if (!cmd_buffer->state.suspending) {
|
|
tu_cs_end(&cmd_buffer->draw_cs);
|
|
tu_cs_end(&cmd_buffer->draw_epilogue_cs);
|
|
|
|
if (cmd_buffer->state.suspend_resume == SR_IN_PRE_CHAIN) {
|
|
tu_save_pre_chain(cmd_buffer);
|
|
cmd_buffer->pre_chain.fdm_offset = !!fdm_offsets;
|
|
if (fdm_offsets) {
|
|
memcpy(cmd_buffer->pre_chain.fdm_offsets,
|
|
fdm_offsets, sizeof(VkOffset2D) *
|
|
tu_fdm_num_layers(cmd_buffer));
|
|
}
|
|
|
|
/* Even we don't call tu_cmd_render here, renderpass is finished
|
|
* and draw states should be disabled.
|
|
*/
|
|
tu_disable_draw_states(cmd_buffer, &cmd_buffer->cs);
|
|
} else {
|
|
TU_CALLX(cmd_buffer->device, tu_cmd_render)(cmd_buffer, fdm_offsets);
|
|
}
|
|
|
|
tu_reset_render_pass(cmd_buffer);
|
|
}
|
|
|
|
if (cmd_buffer->state.resuming && !cmd_buffer->state.suspending) {
|
|
/* exiting suspend/resume chain */
|
|
switch (cmd_buffer->state.suspend_resume) {
|
|
case SR_IN_CHAIN:
|
|
cmd_buffer->state.suspend_resume = SR_NONE;
|
|
break;
|
|
case SR_IN_PRE_CHAIN:
|
|
case SR_IN_CHAIN_AFTER_PRE_CHAIN:
|
|
cmd_buffer->state.suspend_resume = SR_AFTER_PRE_CHAIN;
|
|
break;
|
|
default:
|
|
UNREACHABLE("suspending render pass not followed by resuming pass");
|
|
}
|
|
}
|
|
|
|
if (!cmd_buffer->state.suspending) {
|
|
cmd_buffer->state.total_renderpasses++;
|
|
}
|
|
}
|
|
|
|
void
|
|
tu_barrier(struct tu_cmd_buffer *cmd,
|
|
uint32_t dep_count,
|
|
const VkDependencyInfo *dep_infos)
|
|
{
|
|
VkPipelineStageFlags2 srcStage = 0;
|
|
VkPipelineStageFlags2 dstStage = 0;
|
|
BITMASK_ENUM(tu_cmd_access_mask) src_flags = 0;
|
|
BITMASK_ENUM(tu_cmd_access_mask) dst_flags = 0;
|
|
|
|
/* Inside a renderpass, we don't know yet whether we'll be using sysmem
|
|
* so we have to use the sysmem flushes.
|
|
*/
|
|
bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM &&
|
|
!cmd->state.pass;
|
|
|
|
for (uint32_t dep_idx = 0; dep_idx < dep_count; dep_idx++) {
|
|
const VkDependencyInfo *dep_info = &dep_infos[dep_idx];
|
|
|
|
for (uint32_t i = 0; i < dep_info->memoryBarrierCount; i++) {
|
|
const VkMemoryBarrier2 *barrier = &dep_info->pMemoryBarriers[i];
|
|
VkPipelineStageFlags2 sanitized_src_stage =
|
|
sanitize_src_stage(barrier->srcStageMask);
|
|
VkPipelineStageFlags2 sanitized_dst_stage =
|
|
sanitize_dst_stage(barrier->dstStageMask);
|
|
|
|
VkAccessFlags3KHR src_access_mask2 = 0, dst_access_mask2 = 0;
|
|
const VkMemoryBarrierAccessFlags3KHR *access3 =
|
|
vk_find_struct_const(barrier->pNext, MEMORY_BARRIER_ACCESS_FLAGS_3_KHR);
|
|
if (access3) {
|
|
src_access_mask2 = access3->srcAccessMask3;
|
|
dst_access_mask2 = access3->dstAccessMask3;
|
|
}
|
|
|
|
src_flags |= vk2tu_access(barrier->srcAccessMask, src_access_mask2,
|
|
sanitized_src_stage, false, gmem,
|
|
cmd->device->vk.enabled_features.sparseResidencyAliased);
|
|
dst_flags |= vk2tu_access(barrier->dstAccessMask, dst_access_mask2,
|
|
sanitized_dst_stage, false, gmem,
|
|
cmd->device->vk.enabled_features.sparseResidencyAliased);
|
|
srcStage |= sanitized_src_stage;
|
|
dstStage |= sanitized_dst_stage;
|
|
}
|
|
|
|
for (uint32_t i = 0; i < dep_info->bufferMemoryBarrierCount; i++) {
|
|
const VkBufferMemoryBarrier2 *barrier =
|
|
&dep_info->pBufferMemoryBarriers[i];
|
|
VK_FROM_HANDLE(tu_buffer, buffer, barrier->buffer);
|
|
bool sparse_aliasing =
|
|
buffer->vk.create_flags & VK_BUFFER_CREATE_SPARSE_ALIASED_BIT;
|
|
VkPipelineStageFlags2 sanitized_src_stage =
|
|
sanitize_src_stage(barrier->srcStageMask);
|
|
VkPipelineStageFlags2 sanitized_dst_stage =
|
|
sanitize_dst_stage(barrier->dstStageMask);
|
|
|
|
VkAccessFlags3KHR src_access_mask2 = 0, dst_access_mask2 = 0;
|
|
const VkMemoryBarrierAccessFlags3KHR *access3 =
|
|
vk_find_struct_const(barrier->pNext, MEMORY_BARRIER_ACCESS_FLAGS_3_KHR);
|
|
if (access3) {
|
|
src_access_mask2 = access3->srcAccessMask3;
|
|
dst_access_mask2 = access3->dstAccessMask3;
|
|
}
|
|
|
|
src_flags |= vk2tu_access(barrier->srcAccessMask, src_access_mask2,
|
|
sanitized_src_stage, false, gmem,
|
|
sparse_aliasing);
|
|
dst_flags |= vk2tu_access(barrier->dstAccessMask, dst_access_mask2,
|
|
sanitized_dst_stage, false, gmem,
|
|
sparse_aliasing);
|
|
srcStage |= sanitized_src_stage;
|
|
dstStage |= sanitized_dst_stage;
|
|
}
|
|
|
|
for (uint32_t i = 0; i < dep_info->imageMemoryBarrierCount; i++) {
|
|
const VkImageMemoryBarrier2 *barrier =
|
|
&dep_info->pImageMemoryBarriers[i];
|
|
VK_FROM_HANDLE(tu_image, image, barrier->image);
|
|
|
|
VkImageLayout old_layout = barrier->oldLayout;
|
|
|
|
bool sparse_aliasing =
|
|
image->vk.create_flags & VK_BUFFER_CREATE_SPARSE_ALIASED_BIT;
|
|
if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
|
|
old_layout == VK_IMAGE_LAYOUT_ZERO_INITIALIZED_EXT) {
|
|
/* The underlying memory for this image may have been used earlier
|
|
* within the same queue submission for a different image, which
|
|
* means that there may be old, stale cache entries which are in the
|
|
* "wrong" location, which could cause problems later after writing
|
|
* to the image. We don't want these entries being flushed later and
|
|
* overwriting the actual image, so we need to flush the CCU.
|
|
*/
|
|
if (vk_format_is_depth_or_stencil(image->vk.format)) {
|
|
src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
|
|
} else {
|
|
src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
|
|
}
|
|
}
|
|
VkPipelineStageFlags2 sanitized_src_stage =
|
|
sanitize_src_stage(barrier->srcStageMask);
|
|
VkPipelineStageFlags2 sanitized_dst_stage =
|
|
sanitize_dst_stage(barrier->dstStageMask);
|
|
|
|
VkAccessFlags3KHR src_access_mask2 = 0, dst_access_mask2 = 0;
|
|
const VkMemoryBarrierAccessFlags3KHR *access3 =
|
|
vk_find_struct_const(barrier->pNext, MEMORY_BARRIER_ACCESS_FLAGS_3_KHR);
|
|
if (access3) {
|
|
src_access_mask2 = access3->srcAccessMask3;
|
|
dst_access_mask2 = access3->dstAccessMask3;
|
|
}
|
|
|
|
src_flags |= vk2tu_access(barrier->srcAccessMask, src_access_mask2,
|
|
sanitized_src_stage, true, gmem,
|
|
sparse_aliasing);
|
|
dst_flags |= vk2tu_access(barrier->dstAccessMask, dst_access_mask2,
|
|
sanitized_dst_stage, true, gmem,
|
|
sparse_aliasing);
|
|
srcStage |= sanitized_src_stage;
|
|
dstStage |= sanitized_dst_stage;
|
|
}
|
|
}
|
|
|
|
if (cmd->state.pass) {
|
|
const VkPipelineStageFlags framebuffer_space_stages =
|
|
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT |
|
|
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT |
|
|
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT |
|
|
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
|
|
|
|
/* We cannot have non-by-region "fb-space to fb-space" barriers.
|
|
*
|
|
* From the Vulkan 1.2.185 spec, section 7.6.1 "Subpass Self-dependency":
|
|
*
|
|
* If the source and destination stage masks both include
|
|
* framebuffer-space stages, then dependencyFlags must include
|
|
* VK_DEPENDENCY_BY_REGION_BIT.
|
|
* [...]
|
|
* Each of the synchronization scopes and access scopes of a
|
|
* vkCmdPipelineBarrier2 or vkCmdPipelineBarrier command inside
|
|
* a render pass instance must be a subset of the scopes of one of
|
|
* the self-dependencies for the current subpass.
|
|
*
|
|
* If the self-dependency has VK_DEPENDENCY_BY_REGION_BIT or
|
|
* VK_DEPENDENCY_VIEW_LOCAL_BIT set, then so must the pipeline barrier.
|
|
*
|
|
* By-region barriers are ok for gmem. All other barriers would involve
|
|
* vtx stages which are NOT ok for gmem rendering.
|
|
* See dep_invalid_for_gmem().
|
|
*/
|
|
if ((srcStage & ~framebuffer_space_stages) ||
|
|
(dstStage & ~framebuffer_space_stages)) {
|
|
cmd->state.rp.disable_gmem = true;
|
|
cmd->state.rp.gmem_disable_reason = "Non-framebuffer-space barrier";
|
|
}
|
|
}
|
|
|
|
struct tu_cache_state *cache =
|
|
cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
|
|
|
|
/* a750 has a HW bug where writing a UBWC compressed image with a compute
|
|
* shader followed by reading it as a texture (or readonly image) requires
|
|
* a CACHE_CLEAN event. Some notes about this bug:
|
|
* - It only happens after a blit happens.
|
|
* - It's fast-clear related, it happens when the image is fast cleared
|
|
* before the write and the value read is (incorrectly) the fast clear
|
|
* color.
|
|
* - CACHE_FLUSH is supposed to be the same as CACHE_CLEAN +
|
|
* CACHE_INVALIDATE, but it doesn't work whereas CACHE_CLEAN +
|
|
* CACHE_INVALIDATE does.
|
|
*
|
|
* The srcAccess can be replaced by a OpMemoryBarrier(MakeAvailable), so
|
|
* we can't use that to insert the flush. Instead we use the shader source
|
|
* stage.
|
|
*/
|
|
if (cmd->device->physical_device->info->props.ubwc_coherency_quirk &&
|
|
(srcStage &
|
|
(VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT |
|
|
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT |
|
|
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT |
|
|
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT |
|
|
VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT |
|
|
VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT |
|
|
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT |
|
|
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT))) {
|
|
cache->flush_bits |= TU_CMD_FLAG_CACHE_CLEAN;
|
|
cache->pending_flush_bits &= ~TU_CMD_FLAG_CACHE_CLEAN;
|
|
}
|
|
|
|
tu_flush_for_access(cache, src_flags, dst_flags);
|
|
|
|
enum tu_stage src_stage = vk2tu_src_stage(cmd->device, srcStage);
|
|
enum tu_stage dst_stage = vk2tu_dst_stage(cmd->device, dstStage);
|
|
tu_flush_for_stage(cache, src_stage, dst_stage);
|
|
}
|
|
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdPipelineBarrier2(VkCommandBuffer commandBuffer,
|
|
const VkDependencyInfo *pDependencyInfo)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
|
|
|
|
tu_barrier(cmd_buffer, 1, pDependencyInfo);
|
|
}
|
|
|
|
template <chip CHIP>
|
|
void
|
|
tu_write_event(struct tu_cmd_buffer *cmd, struct tu_event *event,
|
|
VkPipelineStageFlags2 stageMask, unsigned value)
|
|
{
|
|
struct tu_cs *cs = &cmd->cs;
|
|
|
|
/* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */
|
|
assert(!cmd->state.pass);
|
|
|
|
tu_emit_cache_flush<CHIP>(cmd);
|
|
|
|
/* Flags that only require a top-of-pipe event. DrawIndirect parameters are
|
|
* read by the CP, so the draw indirect stage counts as top-of-pipe too.
|
|
*/
|
|
VkPipelineStageFlags2 top_of_pipe_flags =
|
|
VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT |
|
|
VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT;
|
|
|
|
if (!(stageMask & ~top_of_pipe_flags)) {
|
|
tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
|
|
tu_cs_emit_qw(cs, event->bo.iova); /* ADDR_LO/HI */
|
|
tu_cs_emit(cs, value);
|
|
} else {
|
|
/* Use a RB_DONE_TS event to wait for everything to complete. */
|
|
if (CHIP == A6XX) {
|
|
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
|
|
tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
|
|
} else {
|
|
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, 4);
|
|
tu_cs_emit(cs, CP_EVENT_WRITE7_0(.event = RB_DONE_TS,
|
|
.write_src = EV_WRITE_USER_32B,
|
|
.write_dst = EV_DST_RAM,
|
|
.write_enabled = true).value);
|
|
}
|
|
|
|
tu_cs_emit_qw(cs, event->bo.iova);
|
|
tu_cs_emit(cs, value);
|
|
}
|
|
}
|
|
TU_GENX(tu_write_event);
|
|
|
|
template <chip CHIP>
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdBeginConditionalRenderingEXT(VkCommandBuffer commandBuffer,
|
|
const VkConditionalRenderingBeginInfoEXT *pConditionalRenderingBegin)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
|
|
cmd->state.predication_active = true;
|
|
|
|
struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
|
|
|
|
/* Wait for any writes to the predicate to land */
|
|
if (cmd->state.pass)
|
|
tu_emit_cache_flush_renderpass<CHIP>(cmd);
|
|
else
|
|
tu_emit_cache_flush<CHIP>(cmd);
|
|
|
|
VK_FROM_HANDLE(tu_buffer, buf, pConditionalRenderingBegin->buffer);
|
|
uint64_t iova = vk_buffer_address(&buf->vk, pConditionalRenderingBegin->offset);
|
|
|
|
/* qcom doesn't support 32-bit reference values, only 64-bit, but Vulkan
|
|
* mandates 32-bit comparisons. Our workaround is to copy the the reference
|
|
* value to the low 32-bits of a location where the high 32 bits are known
|
|
* to be 0 and then compare that.
|
|
*
|
|
* BR and BV use separate predicate values so that setting the predicate
|
|
* doesn't have to be synchronized between them.
|
|
*/
|
|
if (CHIP >= A7XX) {
|
|
if (!cmd->state.pass) {
|
|
tu_cs_emit_pkt7(cs, CP_THREAD_CONTROL, 1);
|
|
tu_cs_emit(cs, CP_THREAD_CONTROL_0_THREAD(CP_SET_THREAD_BOTH));
|
|
}
|
|
tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(THREAD_MODE) |
|
|
CP_COND_REG_EXEC_0_BR);
|
|
}
|
|
|
|
tu_cs_emit_pkt7(cs, CP_MEM_TO_MEM, 5);
|
|
tu_cs_emit(cs, 0);
|
|
tu_cs_emit_qw(cs, global_iova(cmd, predicate));
|
|
tu_cs_emit_qw(cs, iova);
|
|
|
|
if (CHIP >= A7XX) {
|
|
tu_cond_exec_end(cs);
|
|
tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(THREAD_MODE) |
|
|
CP_COND_REG_EXEC_0_BV);
|
|
tu_cs_emit_pkt7(cs, CP_MEM_TO_MEM, 5);
|
|
tu_cs_emit(cs, 0);
|
|
tu_cs_emit_qw(cs, global_iova(cmd, bv_predicate));
|
|
tu_cs_emit_qw(cs, iova);
|
|
tu_cond_exec_end(cs);
|
|
}
|
|
|
|
tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
|
|
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
|
|
|
|
tu_cs_emit_pkt7(cs, CP_DRAW_PRED_ENABLE_GLOBAL, 1);
|
|
tu_cs_emit(cs, 1);
|
|
|
|
bool inv = pConditionalRenderingBegin->flags & VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT;
|
|
|
|
if (CHIP >= A7XX) {
|
|
tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(THREAD_MODE) |
|
|
CP_COND_REG_EXEC_0_BR);
|
|
}
|
|
tu_cs_emit_pkt7(cs, CP_DRAW_PRED_SET, 3);
|
|
tu_cs_emit(cs, CP_DRAW_PRED_SET_0_SRC(PRED_SRC_MEM) |
|
|
CP_DRAW_PRED_SET_0_TEST(inv ? EQ_0_PASS : NE_0_PASS));
|
|
tu_cs_emit_qw(cs, global_iova(cmd, predicate));
|
|
|
|
if (CHIP >= A7XX) {
|
|
tu_cond_exec_end(cs);
|
|
tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(THREAD_MODE) |
|
|
CP_COND_REG_EXEC_0_BV);
|
|
tu_cs_emit_pkt7(cs, CP_DRAW_PRED_SET, 3);
|
|
tu_cs_emit(cs, CP_DRAW_PRED_SET_0_SRC(PRED_SRC_MEM) |
|
|
CP_DRAW_PRED_SET_0_TEST(inv ? EQ_0_PASS : NE_0_PASS));
|
|
tu_cs_emit_qw(cs, global_iova(cmd, bv_predicate));
|
|
tu_cond_exec_end(cs);
|
|
}
|
|
|
|
/* Restore original BR thread after setting BOTH */
|
|
if (CHIP >= A7XX && !cmd->state.pass) {
|
|
tu7_set_thread_br_patchpoint(cmd, cs, false);
|
|
}
|
|
}
|
|
TU_GENX(tu_CmdBeginConditionalRenderingEXT);
|
|
|
|
template <chip CHIP>
|
|
VKAPI_ATTR void VKAPI_CALL
|
|
tu_CmdEndConditionalRenderingEXT(VkCommandBuffer commandBuffer)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
|
|
cmd->state.predication_active = false;
|
|
|
|
struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
|
|
|
|
if (CHIP >= A7XX && !cmd->state.pass) {
|
|
tu_cs_emit_pkt7(cs, CP_THREAD_CONTROL, 1);
|
|
tu_cs_emit(cs, CP_THREAD_CONTROL_0_THREAD(CP_SET_THREAD_BOTH));
|
|
}
|
|
|
|
tu_cs_emit_pkt7(cs, CP_DRAW_PRED_ENABLE_GLOBAL, 1);
|
|
tu_cs_emit(cs, 0);
|
|
|
|
if (CHIP >= A7XX && !cmd->state.pass) {
|
|
tu7_set_thread_br_patchpoint(cmd, cs, false);
|
|
}
|
|
}
|
|
TU_GENX(tu_CmdEndConditionalRenderingEXT);
|
|
|
|
template <chip CHIP>
|
|
void
|
|
tu_CmdWriteBufferMarker2AMD(VkCommandBuffer commandBuffer,
|
|
VkPipelineStageFlagBits2 pipelineStage,
|
|
VkBuffer dstBuffer,
|
|
VkDeviceSize dstOffset,
|
|
uint32_t marker)
|
|
{
|
|
/* Almost the same as tu_write_event, but also allowed in renderpass */
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
VK_FROM_HANDLE(tu_buffer, buffer, dstBuffer);
|
|
|
|
uint64_t va = vk_buffer_address(&buffer->vk, dstOffset);
|
|
|
|
struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
|
|
struct tu_cache_state *cache =
|
|
cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
|
|
|
|
/* From the Vulkan 1.2.203 spec:
|
|
*
|
|
* The access scope for buffer marker writes falls under
|
|
* the VK_ACCESS_TRANSFER_WRITE_BIT, and the pipeline stages for
|
|
* identifying the synchronization scope must include both pipelineStage
|
|
* and VK_PIPELINE_STAGE_TRANSFER_BIT.
|
|
*
|
|
* Transfer operations use CCU however here we write via CP.
|
|
* Flush CCU in order to make the results of previous transfer
|
|
* operation visible to CP.
|
|
*/
|
|
tu_flush_for_access(cache, TU_ACCESS_NONE, TU_ACCESS_SYSMEM_WRITE);
|
|
|
|
/* Flags that only require a top-of-pipe event. DrawIndirect parameters are
|
|
* read by the CP, so the draw indirect stage counts as top-of-pipe too.
|
|
*/
|
|
VkPipelineStageFlags2 top_of_pipe_flags =
|
|
VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT |
|
|
VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT;
|
|
|
|
bool is_top_of_pipe = !(pipelineStage & ~top_of_pipe_flags);
|
|
|
|
/* We have to WFI only if we flushed CCU here and are using CP_MEM_WRITE.
|
|
* Otherwise:
|
|
* - We do CP_EVENT_WRITE(RB_DONE_TS) which should wait for flushes;
|
|
* - There was a barrier to synchronize other writes with WriteBufferMarkerAMD
|
|
* and they had to include our pipelineStage which forces the WFI.
|
|
*/
|
|
if (cache->flush_bits && is_top_of_pipe) {
|
|
cache->flush_bits |= TU_CMD_FLAG_WAIT_FOR_IDLE;
|
|
}
|
|
|
|
if (cmd->state.pass) {
|
|
tu_emit_cache_flush_renderpass<CHIP>(cmd);
|
|
} else {
|
|
tu_emit_cache_flush<CHIP>(cmd);
|
|
}
|
|
|
|
if (is_top_of_pipe) {
|
|
tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
|
|
tu_cs_emit_qw(cs, va); /* ADDR_LO/HI */
|
|
tu_cs_emit(cs, marker);
|
|
} else {
|
|
/* Use a RB_DONE_TS event to wait for everything to complete. */
|
|
if (CHIP == A6XX) {
|
|
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
|
|
tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
|
|
} else {
|
|
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, 4);
|
|
tu_cs_emit(cs, CP_EVENT_WRITE7_0(.event = RB_DONE_TS,
|
|
.write_src = EV_WRITE_USER_32B,
|
|
.write_dst = EV_DST_RAM,
|
|
.write_enabled = true).value);
|
|
}
|
|
tu_cs_emit_qw(cs, va);
|
|
tu_cs_emit(cs, marker);
|
|
}
|
|
|
|
/* Make sure the result of this write is visible to others. */
|
|
tu_flush_for_access(cache, TU_ACCESS_CP_WRITE, TU_ACCESS_NONE);
|
|
}
|
|
TU_GENX(tu_CmdWriteBufferMarker2AMD);
|
|
|
|
void
|
|
tu_write_buffer_cp(VkCommandBuffer commandBuffer,
|
|
VkDeviceAddress addr,
|
|
void *data, uint32_t size)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
|
|
TU_CALLX(cmd->device, tu_emit_cache_flush)(cmd);
|
|
|
|
struct tu_cs *cs = &cmd->cs;
|
|
|
|
tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 2 + size / 4);
|
|
tu_cs_emit_qw(cs, addr);
|
|
tu_cs_emit_array(cs, (uint32_t *)data, size / 4);
|
|
}
|
|
|
|
void
|
|
tu_flush_buffer_write_cp(VkCommandBuffer commandBuffer)
|
|
{
|
|
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
|
|
|
|
struct tu_cache_state *cache = &cmd->state.cache;
|
|
tu_flush_for_access(cache, TU_ACCESS_CP_WRITE, (enum tu_cmd_access_mask)0);
|
|
}
|