mesa/src/freedreno/vulkan/tu_cmd_buffer.cc

9721 lines
366 KiB
C++

/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
* SPDX-License-Identifier: MIT
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*/
#include "tu_cmd_buffer.h"
#include "vk_common_entrypoints.h"
#include "vk_log.h"
#include "vk_render_pass.h"
#include "vk_util.h"
#include "tu_buffer.h"
#include "tu_clear_blit.h"
#include "tu_cs.h"
#include "tu_event.h"
#include "tu_image.h"
#include "tu_knl.h"
#include "tu_tracepoints.h"
#include "common/freedreno_gpu_event.h"
#include "common/freedreno_lrz.h"
#include "common/freedreno_vrs.h"
enum tu_cmd_buffer_status {
TU_CMD_BUFFER_STATUS_IDLE = 0,
TU_CMD_BUFFER_STATUS_ACTIVE = 1,
};
static struct tu_bo *
tu_cmd_buffer_setup_status_tracking(struct tu_device *device)
{
struct tu_bo *status_bo;
VkResult result;
result = tu_bo_init_new_explicit_iova(
device, NULL, &status_bo, sizeof(enum tu_cmd_buffer_status), 0,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
TU_BO_ALLOC_INTERNAL_RESOURCE, NULL, "cmd_buffer_status");
if (result != VK_SUCCESS)
return NULL;
result = tu_bo_map(device, status_bo, NULL);
if (result != VK_SUCCESS)
return NULL;
return status_bo;
}
static VkResult
tu_cmd_buffer_status_check_idle(struct tu_cmd_buffer *cmd_buffer)
{
if (cmd_buffer->status_bo == NULL)
return VK_SUCCESS;
const enum tu_cmd_buffer_status status =
*(enum tu_cmd_buffer_status *)cmd_buffer->status_bo->map;
switch (status) {
case TU_CMD_BUFFER_STATUS_IDLE:
return VK_SUCCESS;
case TU_CMD_BUFFER_STATUS_ACTIVE:
mesa_loge("Trying to reset or destroy cmd_buffer %p while in use",
cmd_buffer);
return vk_errorf(cmd_buffer, VK_ERROR_UNKNOWN,
"Trying to reset or destroy while being used");
default:
mesa_loge("Something went wrong with cmd_buffer status tracking");
return vk_error(cmd_buffer, VK_ERROR_UNKNOWN);
}
}
static inline void
tu_cmd_buffer_status_gpu_write(struct tu_cmd_buffer *cmd_buffer,
enum tu_cmd_buffer_status status)
{
struct tu_cs *cs = &cmd_buffer->cs;
if (cmd_buffer->status_bo == NULL)
return;
static_assert(sizeof(uint32_t) == sizeof(status),
"Code below needs adjusting");
tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
tu_cs_emit_qw(cs, cmd_buffer->status_bo->iova);
tu_cs_emit(cs, (uint32_t)status);
}
static void
tu_clone_trace_range(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
struct u_trace *dst,
struct u_trace_iterator begin, struct u_trace_iterator end)
{
if (u_trace_iterator_equal(begin, end))
return;
tu_cs_emit_wfi(cs);
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
u_trace_clone_append(begin, end, &cmd->trace, cs, tu_copy_buffer);
}
static void
tu_clone_trace(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
struct u_trace *dst, struct u_trace *src)
{
tu_clone_trace_range(cmd, cs, dst, u_trace_begin_iterator(src),
u_trace_end_iterator(src));
}
template <chip CHIP>
void
tu_emit_raw_event_write(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
enum vgt_event_type event,
bool needs_seqno)
{
if (CHIP == A6XX) {
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, needs_seqno ? 4 : 1);
tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event));
} else {
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, needs_seqno ? 4 : 1);
tu_cs_emit(cs,
CP_EVENT_WRITE7_0(.event = event,
.write_src = EV_WRITE_USER_32B,
.write_dst = EV_DST_RAM,
.write_enabled = needs_seqno).value);
}
if (needs_seqno) {
tu_cs_emit_qw(cs, global_iova(cmd, seqno_dummy));
tu_cs_emit(cs, 0);
}
}
TU_GENX(tu_emit_raw_event_write);
template <chip CHIP>
void
tu_emit_event_write(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
enum fd_gpu_event event)
{
struct fd_gpu_event_info event_info = fd_gpu_events<CHIP>[event];
tu_emit_raw_event_write<CHIP>(cmd, cs, event_info.raw_event,
event_info.needs_seqno);
}
TU_GENX(tu_emit_event_write);
/* Emits the tessfactor address to the top-level CS if it hasn't been already.
* Updating this register requires a WFI if outstanding drawing is using it, but
* tu6_init_hardware() will have WFIed before we started and no other draws
* could be using the tessfactor address yet since we only emit one per cmdbuf.
*/
template <chip CHIP>
static void
tu6_lazy_emit_tessfactor_addr(struct tu_cmd_buffer *cmd)
{
if (cmd->state.tessfactor_addr_set)
return;
tu_cs_emit_regs(&cmd->cs, PC_TESS_BASE(CHIP, .qword = cmd->device->tess_bo->iova));
/* Updating PC_TESS_BASE could race with the next draw which uses it. */
cmd->state.cache.flush_bits |= TU_CMD_FLAG_WAIT_FOR_IDLE;
cmd->state.tessfactor_addr_set = true;
}
static void
tu6_lazy_init_vsc(struct tu_cmd_buffer *cmd)
{
struct tu_device *dev = cmd->device;
uint32_t num_vsc_pipes = dev->physical_device->info->num_vsc_pipes;
/* VSC buffers:
* use vsc pitches from the largest values used so far with this device
* if there hasn't been overflow, there will already be a scratch bo
* allocated for these sizes
*
* if overflow is detected, the stream size is increased by 2x
*/
mtx_lock(&dev->mutex);
struct tu6_global *global = dev->global_bo_map;
uint32_t vsc_draw_overflow = global->vsc_draw_overflow;
uint32_t vsc_prim_overflow = global->vsc_prim_overflow;
if (vsc_draw_overflow >= dev->vsc_draw_strm_pitch)
dev->vsc_draw_strm_pitch = (dev->vsc_draw_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
if (vsc_prim_overflow >= dev->vsc_prim_strm_pitch)
dev->vsc_prim_strm_pitch = (dev->vsc_prim_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
cmd->vsc_prim_strm_pitch = dev->vsc_prim_strm_pitch;
cmd->vsc_draw_strm_pitch = dev->vsc_draw_strm_pitch;
mtx_unlock(&dev->mutex);
uint32_t prim_strm_size = cmd->vsc_prim_strm_pitch * num_vsc_pipes;
uint32_t draw_strm_size = cmd->vsc_draw_strm_pitch * num_vsc_pipes;
uint32_t draw_strm_size_size = 4 * num_vsc_pipes;
uint32_t state_size = 4 * num_vsc_pipes;
cmd->vsc_size =
prim_strm_size + draw_strm_size + draw_strm_size_size + state_size;
cmd->vsc_prim_strm_offset = 0;
cmd->vsc_draw_strm_offset = prim_strm_size;
cmd->vsc_draw_strm_size_offset = cmd->vsc_draw_strm_offset + draw_strm_size;
cmd->vsc_state_offset = cmd->vsc_draw_strm_size_offset + draw_strm_size_size;
}
static void
tu_emit_vis_stream_patchpoint(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
uint32_t offset)
{
struct tu_vis_stream_patchpoint patchpoint = {
.render_pass_idx = cmd->state.tile_render_pass_count,
.data = cs->cur,
.iova = tu_cs_get_cur_iova(cs),
.offset = offset,
};
util_dynarray_append(&cmd->vis_stream_patchpoints, patchpoint);
tu_cs_emit_qw(cs, offset);
}
template <chip CHIP>
static void
tu_emit_vsc(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
if (CHIP == A6XX) {
tu_cs_emit_pkt4(cs, REG_A6XX_VSC_SIZE_BASE, 2);
tu_emit_vis_stream_patchpoint(cmd, cs, cmd->vsc_draw_strm_size_offset);
tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_DATA_PRIM_BASE, 2);
tu_emit_vis_stream_patchpoint(cmd, cs, cmd->vsc_prim_strm_offset);
tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_DATA_DRAW_BASE, 2);
tu_emit_vis_stream_patchpoint(cmd, cs, cmd->vsc_draw_strm_offset);
} else {
tu_cs_emit_pkt7(cs, CP_SET_PSEUDO_REG, 3 * 3);
tu_cs_emit(cs, A6XX_CP_SET_PSEUDO_REG__0_PSEUDO_REG(VSC_PIPE_DATA_DRAW_BASE));
tu_emit_vis_stream_patchpoint(cmd, cs, cmd->vsc_draw_strm_offset);
tu_cs_emit(cs, A6XX_CP_SET_PSEUDO_REG__0_PSEUDO_REG(VSC_SIZE_BASE));
tu_emit_vis_stream_patchpoint(cmd, cs, cmd->vsc_draw_strm_size_offset);
tu_cs_emit(cs, A6XX_CP_SET_PSEUDO_REG__0_PSEUDO_REG(VSC_PIPE_DATA_PRIM_BASE));
tu_emit_vis_stream_patchpoint(cmd, cs, cmd->vsc_prim_strm_offset);
}
cmd->vsc_initialized = true;
}
/* This workaround, copied from the blob, seems to ensure that the BVH node
* cache is invalidated so that we don't read stale values when multiple BVHs
* share the same address.
*/
template <chip CHIP>
static void
tu_emit_rt_workaround(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_RT_WA_START);
tu_cs_emit_regs(cs, SP_CS_UNKNOWN_A9BE(CHIP, .dword = 0x10000));
tu_cs_emit_regs(cs, SP_PS_UNKNOWN_A9AB(CHIP, .dword = 0x10000));
tu_emit_event_write<A7XX>(cmd, cs, FD_DUMMY_EVENT);
tu_cs_emit_regs(cs, SP_CS_UNKNOWN_A9BE(CHIP, .dword = 0));
tu_cs_emit_regs(cs, SP_PS_UNKNOWN_A9AB(CHIP, .dword = 0));
tu_emit_event_write<A7XX>(cmd, cs, FD_DUMMY_EVENT);
tu_emit_event_write<A7XX>(cmd, cs, FD_DUMMY_EVENT);
tu_emit_event_write<A7XX>(cmd, cs, FD_DUMMY_EVENT);
tu_emit_event_write<A7XX>(cmd, cs, FD_DUMMY_EVENT);
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_RT_WA_END);
}
template <chip CHIP>
static void
tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer,
struct tu_cs *cs,
struct tu_cache_state *cache)
{
BITMASK_ENUM(tu_cmd_flush_bits) flushes = cache->flush_bits;
cache->flush_bits = 0;
if (TU_DEBUG(FLUSHALL))
flushes |= TU_CMD_FLAG_ALL_CLEAN | TU_CMD_FLAG_ALL_INVALIDATE;
if (TU_DEBUG(SYNCDRAW))
flushes |= TU_CMD_FLAG_WAIT_MEM_WRITES |
TU_CMD_FLAG_WAIT_FOR_IDLE |
TU_CMD_FLAG_WAIT_FOR_ME;
/* Experiments show that invalidating CCU while it still has data in it
* doesn't work, so make sure to always flush before invalidating in case
* any data remains that hasn't yet been made available through a barrier.
* However it does seem to work for UCHE.
*/
if (flushes & (TU_CMD_FLAG_CCU_CLEAN_COLOR |
TU_CMD_FLAG_CCU_INVALIDATE_COLOR))
tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_CLEAN_COLOR);
if (flushes & (TU_CMD_FLAG_CCU_CLEAN_DEPTH |
TU_CMD_FLAG_CCU_INVALIDATE_DEPTH))
tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_CLEAN_DEPTH);
if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR)
tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_INVALIDATE_COLOR);
if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)
tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_INVALIDATE_DEPTH);
if (flushes & TU_CMD_FLAG_CACHE_CLEAN)
tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CACHE_CLEAN);
if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE)
tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CACHE_INVALIDATE);
if (flushes & TU_CMD_FLAG_BINDLESS_DESCRIPTOR_INVALIDATE) {
tu_cs_emit_regs(cs, SP_UPDATE_CNTL(CHIP,
.cs_bindless = CHIP == A6XX ? 0x1f : 0xff,
.gfx_bindless = CHIP == A6XX ? 0x1f : 0xff,
));
}
if (CHIP >= A7XX && flushes & TU_CMD_FLAG_BLIT_CACHE_CLEAN)
/* On A7XX, blit cache flushes are required to ensure blit writes are visible
* via UCHE. This isn't necessary on A6XX, all writes should be visible implictly.
*/
tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_CLEAN_BLIT_CACHE);
if (CHIP >= A7XX && (flushes & TU_CMD_FLAG_CCHE_INVALIDATE) &&
/* Invalidating UCHE seems to also invalidate CCHE */
!(flushes & TU_CMD_FLAG_CACHE_INVALIDATE))
tu_cs_emit_pkt7(cs, CP_CCHE_INVALIDATE, 0);
if (CHIP >= A7XX && (flushes & TU_CMD_FLAG_RTU_INVALIDATE) &&
cmd_buffer->device->physical_device->info->props.has_rt_workaround)
tu_emit_rt_workaround<CHIP>(cmd_buffer, cs);
if (flushes & TU_CMD_FLAG_WAIT_MEM_WRITES)
tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
if (flushes & TU_CMD_FLAG_WAIT_FOR_IDLE)
tu_cs_emit_wfi(cs);
if (flushes & TU_CMD_FLAG_WAIT_FOR_ME)
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
}
static void
tu7_write_onchip_val(struct tu_cs *cs, enum tu_onchip_addr addr,
uint32_t val)
{
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, 4);
tu_cs_emit(cs, CP_EVENT_WRITE7_0_WRITE_DST(EV_DST_ONCHIP) |
CP_EVENT_WRITE7_0_WRITE_SRC(EV_WRITE_USER_32B) |
CP_EVENT_WRITE7_0_EVENT(DUMMY_EVENT) |
CP_EVENT_WRITE7_0_WRITE_ENABLED);
tu_cs_emit_qw(cs, addr);
tu_cs_emit(cs, val);
}
static void
tu_add_cb_barrier_info(struct tu_cmd_buffer *cmd_buffer)
{
/* Future concurrent binning cannot happen earlier than the barrier,
* so we won't need to patch previous patchpoints. Pop them now.
*/
uint32_t size = util_dynarray_num_elements(&cmd_buffer->cb_control_points,
struct tu_cb_control_point);
for (int32_t idx = size - 1; idx >= 0; idx--) {
struct tu_cb_control_point *info = util_dynarray_element(
&cmd_buffer->cb_control_points, struct tu_cb_control_point, idx);
if (info->type == TU_CB_CONTROL_TYPE_CB_ENABLED) {
break;
}
(void) util_dynarray_pop(&cmd_buffer->cb_control_points,
struct tu_cb_control_point);
}
struct tu_cb_control_point barrier_info = {
.type = TU_CB_CONTROL_TYPE_BARRIER,
};
util_dynarray_append(&cmd_buffer->cb_control_points, barrier_info);
}
void
tu7_set_thread_br_patchpoint(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
bool force_disable_cb)
{
tu_cs_emit_pkt7(cs, CP_THREAD_CONTROL, 1);
if (!force_disable_cb) {
struct tu_cb_control_point info = {
.type = TU_CB_CONTROL_TYPE_PATCHPOINT,
.patchpoint = cs->cur,
.patch_value = CP_THREAD_CONTROL_0_THREAD(CP_SET_THREAD_BR),
.original_value = CP_THREAD_CONTROL_0_THREAD(CP_SET_THREAD_BR) |
CP_THREAD_CONTROL_0_CONCURRENT_BIN_DISABLE,
};
util_dynarray_append(&cmd->cb_control_points, info);
}
tu_cs_emit(cs, CP_THREAD_CONTROL_0_THREAD(CP_SET_THREAD_BR) |
CP_THREAD_CONTROL_0_CONCURRENT_BIN_DISABLE);
}
/* "Normal" cache flushes outside the renderpass, that don't require any special handling */
template <chip CHIP>
void
tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer)
{
struct tu_cs *cs = &cmd_buffer->cs;
struct tu_cache_state *cache = &cmd_buffer->state.cache;
BITMASK_ENUM(tu_cmd_flush_bits) flushes = cache->flush_bits;
tu6_emit_flushes<CHIP>(cmd_buffer, cs, cache);
if ((flushes & TU_CMD_FLAG_WAIT_FOR_BR) && CHIP >= A7XX &&
!(cmd_buffer->state.pass && cmd_buffer->state.renderpass_cb_disabled) &&
!TU_DEBUG(NO_CONCURRENT_BINNING)) {
trace_start_concurrent_binning_barrier(&cmd_buffer->trace, cs, cmd_buffer);
/* Wait-for-BR when repeated a lot of times per frame can add up
* and tank performance.
*/
struct tu_cs_patchable_state cb_state = tu_cs_patchable_start(cs, 64);
tu_cs_emit_pkt7(cs, CP_THREAD_CONTROL, 1);
tu_cs_emit(cs, CP_THREAD_CONTROL_0_THREAD(CP_SET_THREAD_BOTH));
tu_cs_emit_pkt7(cs, CP_MODIFY_TIMESTAMP, 1);
tu_cs_emit(cs, CP_MODIFY_TIMESTAMP_0_ADD(1) |
CP_MODIFY_TIMESTAMP_0_OP(MODIFY_TIMESTAMP_ADD_LOCAL));
tu7_thread_control(cs, CP_SET_THREAD_BV);
tu7_write_onchip_timestamp(cs, TU_ONCHIP_CB_BV_TIMESTAMP);
tu7_thread_control(cs, CP_SET_THREAD_BR);
/* Wait for the previous WAIT_FOR_BR to execute on BV and reset the wait
* value.
*/
tu7_wait_onchip_timestamp(cs, TU_ONCHIP_CB_BV_TIMESTAMP);
/* Signal the wait value. */
tu7_write_onchip_val(cs, TU_ONCHIP_BARRIER, 1);
tu7_thread_control(cs, CP_SET_THREAD_BV);
/* Wait for the value. Note that we must use CP_WAIT_REG_MEM due to a
* firmware bug which makes CP_WAIT_TIMESTAMP on BV deadlock with
* preemption when BV waits for BR. Without this bug the whole thing
* would be much, much simpler.
*/
tu7_wait_onchip_val(cs, TU_ONCHIP_BARRIER, 1);
/* Reset the wait value. */
tu7_write_onchip_val(cs, TU_ONCHIP_BARRIER, 0);
/* Resetting the wait value happens asynchronously (since it's an
* EVENT_WRITE), but waiting for it happens synchronously. We need to
* prevent BV from racing ahead to the next wait before it's reset.
*/
tu7_wait_onchip_val(cs, TU_ONCHIP_BARRIER, 0);
tu7_thread_control(cs, CP_SET_THREAD_BR);
tu_cs_patchable_end(cs, false, &cb_state);
tu_add_cb_barrier_info(cmd_buffer);
struct tu_cb_control_point cb_patch = {
.type = TU_CB_CONTROL_TYPE_PATCHPOINT,
.patchpoint = cb_state.nop_header,
.patch_value = cb_state.enable_patch,
.original_value = cb_state.disable_patch,
};
util_dynarray_append(&cmd_buffer->cb_control_points, cb_patch);
trace_end_concurrent_binning_barrier(&cmd_buffer->trace, cs);
}
}
TU_GENX(tu_emit_cache_flush);
/* Renderpass cache flushes inside the draw_cs */
template <chip CHIP>
void
tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer)
{
if (!cmd_buffer->state.renderpass_cache.flush_bits &&
likely(!tu_env.debug))
return;
struct tu_cs *cs = &cmd_buffer->draw_cs;
struct tu_cache_state *cache = &cmd_buffer->state.renderpass_cache;
tu6_emit_flushes<CHIP>(cmd_buffer, cs, cache);
if (cmd_buffer->state.renderpass_cache.flush_bits &
TU_CMD_FLAG_BLIT_CACHE_CLEAN) {
cmd_buffer->state.blit_cache_cleaned = true;
}
}
TU_GENX(tu_emit_cache_flush_renderpass);
template <chip CHIP>
static void
emit_vpc_attr_buf(struct tu_cs *cs, struct tu_device *dev, bool gmem)
{
if (!dev->physical_device->info->props.has_gmem_vpc_attr_buf)
return;
tu_cs_emit_regs(cs,
VPC_ATTR_BUF_GMEM_SIZE(CHIP,
gmem ? dev->physical_device->vpc_attr_buf_size_gmem
: dev->physical_device->vpc_attr_buf_size_bypass),
VPC_ATTR_BUF_GMEM_BASE(CHIP,
gmem ? dev->physical_device->vpc_attr_buf_offset_gmem
: dev->physical_device->vpc_attr_buf_offset_bypass), );
tu_cs_emit_regs(cs,
PC_ATTR_BUF_GMEM_SIZE(CHIP,
gmem ? dev->physical_device->vpc_attr_buf_size_gmem
: dev->physical_device->vpc_attr_buf_size_bypass), );
}
template <chip CHIP>
static void
emit_rb_ccu_cntl(struct tu_cs *cs, struct tu_device *dev, bool gmem)
{
/* The CCUs are a cache that allocates memory from GMEM while facilitating
* framebuffer caching for sysmem rendering. The CCU is split into two parts,
* one for color and one for depth. The size and offset of these in GMEM can
* be configured separately.
*
* The most common configuration for the CCU is to occupy as much as possible
* of GMEM (CACHE_SIZE_FULL) during sysmem rendering as GMEM is unused. On
* the other hand, when rendering to GMEM, the CCUs can be left enabled at
* any configuration as they don't interfere with GMEM rendering and only
* overwrite GMEM when sysmem operations are performed.
*
* The vast majority of GMEM rendering doesn't need any sysmem operations
* but there are some cases where it is required. For example, when the
* framebuffer isn't aligned to the tile size or with certain MSAA resolves.
*
* To correctly handle these cases, we need to be able to switch between
* sysmem and GMEM rendering. We do this by allocating a carveout at the
* end of GMEM for the color CCU (as none of these operations are depth)
* which the color CCU offset is set to and the GMEM size available to the
* GMEM layout calculations is adjusted accordingly.
*/
uint32_t color_offset = gmem ? dev->physical_device->ccu_offset_gmem
: dev->physical_device->ccu_offset_bypass;
uint32_t color_offset_hi = color_offset >> 21;
color_offset &= 0x1fffff;
uint32_t depth_offset = gmem ? 0
: dev->physical_device->ccu_depth_offset_bypass;
uint32_t depth_offset_hi = depth_offset >> 21;
depth_offset &= 0x1fffff;
enum a6xx_ccu_cache_size color_cache_size = !gmem ? CCU_CACHE_SIZE_FULL : !gmem ? CCU_CACHE_SIZE_FULL :
(a6xx_ccu_cache_size)(dev->physical_device->info->props.gmem_ccu_color_cache_fraction);
if (CHIP == A7XX) {
tu_cs_emit_regs(cs, RB_CCU_CACHE_CNTL(CHIP,
.depth_offset_hi = depth_offset_hi,
.color_offset_hi = color_offset_hi,
.depth_cache_size = CCU_CACHE_SIZE_FULL,
.depth_offset = depth_offset,
.color_cache_size = color_cache_size,
.color_offset = color_offset
));
} else {
tu_cs_emit_regs(cs, RB_CCU_CNTL(CHIP,
.gmem_fast_clear_disable =
!dev->physical_device->info->props.has_gmem_fast_clear,
.concurrent_resolve =
dev->physical_device->info->props.concurrent_resolve,
.depth_offset_hi = 0,
.color_offset_hi = color_offset_hi,
.depth_cache_size = CCU_CACHE_SIZE_FULL,
.depth_offset = 0,
.color_cache_size = color_cache_size,
.color_offset = color_offset
));
}
}
/* Cache flushes for things that use the color/depth read/write path (i.e.
* blits and draws). This deals with changing CCU state as well as the usual
* cache flushing.
*/
template <chip CHIP>
void
tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
struct tu_cs *cs,
enum tu_cmd_ccu_state ccu_state)
{
assert(ccu_state != TU_CMD_CCU_UNKNOWN);
/* It's unsafe to flush inside condition because we clear flush_bits */
assert(!cs->cond_stack_depth);
/* Changing CCU state must involve invalidating the CCU. In sysmem mode,
* the CCU may also contain data that we haven't flushed out yet, so we
* also need to flush. Also, in order to program RB_CCU_CNTL, we need to
* emit a WFI as it isn't pipelined.
*
* Note: On A7XX, with the introduction of RB_CCU_CACHE_CNTL, we no longer need
* to emit a WFI when changing a subset of CCU state.
*/
if (ccu_state != cmd_buffer->state.ccu_state) {
if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) {
cmd_buffer->state.cache.flush_bits |=
TU_CMD_FLAG_CCU_CLEAN_COLOR |
TU_CMD_FLAG_CCU_CLEAN_DEPTH;
cmd_buffer->state.cache.pending_flush_bits &= ~(
TU_CMD_FLAG_CCU_CLEAN_COLOR |
TU_CMD_FLAG_CCU_CLEAN_DEPTH);
}
cmd_buffer->state.cache.flush_bits |=
TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
(CHIP == A6XX ? TU_CMD_FLAG_WAIT_FOR_IDLE : 0);
cmd_buffer->state.cache.pending_flush_bits &= ~(
TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
(CHIP == A6XX ? TU_CMD_FLAG_WAIT_FOR_IDLE : 0));
}
tu_emit_cache_flush<CHIP>(cmd_buffer);
if (ccu_state != cmd_buffer->state.ccu_state) {
emit_rb_ccu_cntl<CHIP>(cs, cmd_buffer->device,
ccu_state == TU_CMD_CCU_GMEM);
if (cmd_buffer->device->physical_device->info->props.has_gmem_vpc_attr_buf) {
tu7_thread_control(cs, CP_SET_THREAD_BOTH);
emit_vpc_attr_buf<CHIP>(cs, cmd_buffer->device,
ccu_state == TU_CMD_CCU_GMEM);
tu7_set_thread_br_patchpoint(cmd_buffer, cs, false);
}
cmd_buffer->state.ccu_state = ccu_state;
}
}
TU_GENX(tu_emit_cache_flush_ccu);
template <chip CHIP>
static void
tu6_emit_zs(struct tu_cmd_buffer *cmd,
const struct tu_subpass *subpass,
struct tu_cs *cs)
{
const uint32_t a = subpass->depth_stencil_attachment.attachment;
if (a == VK_ATTACHMENT_UNUSED) {
tu_cs_emit_regs(cs,
RB_DEPTH_BUFFER_INFO(CHIP, .depth_format = DEPTH6_NONE),
A6XX_RB_DEPTH_BUFFER_PITCH(0),
A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0),
A6XX_RB_DEPTH_BUFFER_BASE(0),
A6XX_RB_DEPTH_GMEM_BASE(0));
tu_cs_emit_regs(cs,
GRAS_SU_DEPTH_BUFFER_INFO(CHIP, .depth_format = DEPTH6_NONE));
tu_cs_emit_regs(cs, RB_STENCIL_BUFFER_INFO(CHIP, 0));
return;
}
const struct tu_image_view *iview = cmd->state.attachments[a];
const struct tu_render_pass_attachment *attachment =
&cmd->state.pass->attachments[a];
enum a6xx_depth_format fmt = tu6_pipe2depth(attachment->format);
tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6);
tu_cs_emit(cs, RB_DEPTH_BUFFER_INFO(CHIP,
.depth_format = fmt,
.tilemode = TILE6_3,
.losslesscompen = iview->view.ubwc_enabled,
).value);
if (attachment->format == VK_FORMAT_D32_SFLOAT_S8_UINT)
tu_cs_image_depth_ref(cs, iview, 0);
else
tu_cs_image_ref(cs, &iview->view, 0);
tu_cs_emit(cs, tu_attachment_gmem_offset(cmd, attachment, 0));
tu_cs_emit_regs(cs, GRAS_SU_DEPTH_BUFFER_INFO(CHIP, .depth_format = fmt));
tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE, 3);
tu_cs_image_flag_ref(cs, &iview->view, 0);
if (attachment->format == VK_FORMAT_D32_SFLOAT_S8_UINT ||
attachment->format == VK_FORMAT_S8_UINT) {
tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_BUFFER_INFO, 6);
tu_cs_emit(cs, RB_STENCIL_BUFFER_INFO(CHIP,
.separate_stencil = true,
.tilemode = TILE6_3,
).value);
if (attachment->format == VK_FORMAT_D32_SFLOAT_S8_UINT) {
tu_cs_image_stencil_ref(cs, iview, 0);
tu_cs_emit(cs, tu_attachment_gmem_offset_stencil(cmd, attachment, 0));
} else {
tu_cs_image_ref(cs, &iview->view, 0);
tu_cs_emit(cs, tu_attachment_gmem_offset(cmd, attachment, 0));
}
} else {
tu_cs_emit_regs(cs,
RB_STENCIL_BUFFER_INFO(CHIP, 0));
}
}
template <chip CHIP>
static void
tu6_emit_mrt(struct tu_cmd_buffer *cmd,
const struct tu_subpass *subpass,
struct tu_cs *cs)
{
const struct tu_framebuffer *fb = cmd->state.framebuffer;
enum a6xx_format mrt0_format = FMT6_NONE;
uint32_t written = 0;
for (uint32_t i = 0; i < subpass->color_count; ++i) {
uint32_t a = subpass->color_attachments[i].attachment;
unsigned remapped = cmd->vk.dynamic_graphics_state.cal.color_map[i];
if (a == VK_ATTACHMENT_UNUSED ||
remapped == MESA_VK_ATTACHMENT_UNUSED)
continue;
const struct tu_image_view *iview = cmd->state.attachments[a];
tu_cs_emit_regs(cs,
RB_MRT_BUF_INFO(CHIP, remapped, .dword = iview->view.RB_MRT_BUF_INFO),
A6XX_RB_MRT_PITCH(remapped, iview->view.pitch),
A6XX_RB_MRT_ARRAY_PITCH(remapped, iview->view.layer_size),
A6XX_RB_MRT_BASE(remapped, .qword = tu_layer_address(&iview->view, 0)),
A6XX_RB_MRT_BASE_GMEM(remapped,
tu_attachment_gmem_offset(cmd, &cmd->state.pass->attachments[a], 0)
),
);
tu_cs_emit_regs(cs,
A6XX_SP_PS_MRT_REG(remapped, .dword = iview->view.SP_PS_MRT_REG));
tu_cs_emit_pkt4(cs, REG_A6XX_RB_COLOR_FLAG_BUFFER_ADDR(remapped), 3);
tu_cs_image_flag_ref(cs, &iview->view, 0);
if (remapped == 0)
mrt0_format = (enum a6xx_format) (iview->view.SP_PS_MRT_REG & 0xff);
written |= 1u << remapped;
}
u_foreach_bit (i, ~written) {
if (i >= MAX_RTS)
break;
/* From the VkPipelineRenderingCreateInfo definition:
*
* Valid formats indicate that an attachment can be used - but it
* is still valid to set the attachment to NULL when beginning
* rendering.
*
* This means that with dynamic rendering, pipelines may write to
* some attachments that are UNUSED here. Setting the format to 0
* here should prevent them from writing to anything. This also seems
* to also be required for alpha-to-coverage which can use the alpha
* value for an otherwise-unused attachment.
*
* With VK_EXT_dynamic_rendering_unused_attachments, pipelines may also
* write to attachments beyond those that exist in the render pass, so
* we have all attachments not written up to MAX_RTS.
*/
tu_cs_emit_regs(cs,
RB_MRT_BUF_INFO(CHIP, i),
A6XX_RB_MRT_PITCH(i),
A6XX_RB_MRT_ARRAY_PITCH(i),
A6XX_RB_MRT_BASE(i),
A6XX_RB_MRT_BASE_GMEM(i),
);
tu_cs_emit_regs(cs,
A6XX_SP_PS_MRT_REG(i, .dword = 0));
}
tu_cs_emit_regs(cs, GRAS_LRZ_MRT_BUFFER_INFO_0(CHIP, .color_format = mrt0_format));
const bool dither = subpass->legacy_dithering_enabled;
const uint32_t dither_cntl =
A6XX_RB_DITHER_CNTL(
.dither_mode_mrt0 = dither ? DITHER_ALWAYS : DITHER_DISABLE,
.dither_mode_mrt1 = dither ? DITHER_ALWAYS : DITHER_DISABLE,
.dither_mode_mrt2 = dither ? DITHER_ALWAYS : DITHER_DISABLE,
.dither_mode_mrt3 = dither ? DITHER_ALWAYS : DITHER_DISABLE,
.dither_mode_mrt4 = dither ? DITHER_ALWAYS : DITHER_DISABLE,
.dither_mode_mrt5 = dither ? DITHER_ALWAYS : DITHER_DISABLE,
.dither_mode_mrt6 = dither ? DITHER_ALWAYS : DITHER_DISABLE,
.dither_mode_mrt7 = dither ? DITHER_ALWAYS : DITHER_DISABLE, )
.value;
tu_cs_emit_regs(cs, A6XX_RB_DITHER_CNTL(.dword = dither_cntl));
if (CHIP >= A7XX) {
tu_cs_emit_regs(cs, SP_DITHER_CNTL(CHIP, .dword = dither_cntl));
}
tu_cs_emit_regs(cs,
A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl));
tu_cs_emit_regs(cs,
A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl));
unsigned layers = MAX2(fb->layers, util_logbase2(subpass->multiview_mask) + 1);
tu_cs_emit_regs(cs, A6XX_GRAS_CL_ARRAY_SIZE(layers - 1));
}
struct tu_bin_size_params {
enum a6xx_render_mode render_mode;
bool force_lrz_write_dis;
enum a6xx_buffers_location buffers_location;
enum a6xx_lrz_feedback_mask lrz_feedback_zmode_mask;
bool force_lrz_dis;
};
template <chip CHIP>
static void
tu6_emit_bin_size(struct tu_cs *cs,
uint32_t bin_w,
uint32_t bin_h,
struct tu_bin_size_params &&p)
{
if (CHIP == A6XX) {
tu_cs_emit_regs(
cs, GRAS_SC_BIN_CNTL(CHIP, .binw = bin_w,
.binh = bin_h,
.render_mode = p.render_mode,
.force_lrz_write_dis = p.force_lrz_write_dis,
.buffers_location = p.buffers_location,
.lrz_feedback_zmode_mask = p.lrz_feedback_zmode_mask, ));
} else {
tu_cs_emit_regs(cs,
GRAS_SC_BIN_CNTL(CHIP, .binw = bin_w,
.binh = bin_h,
.render_mode = p.render_mode,
.force_lrz_write_dis = p.force_lrz_write_dis,
.lrz_feedback_zmode_mask =
p.lrz_feedback_zmode_mask,
.force_lrz_dis = p.force_lrz_dis));
}
tu_cs_emit_regs(cs, RB_CNTL(CHIP,
.binw = bin_w,
.binh = bin_h,
.render_mode = p.render_mode,
.force_lrz_write_dis = p.force_lrz_write_dis,
.buffers_location = p.buffers_location,
.lrz_feedback_zmode_mask = p.lrz_feedback_zmode_mask, ));
/* no flag for RB_RESOLVE_CNTL_3... */
tu_cs_emit_regs(cs, RB_RESOLVE_CNTL_3(CHIP, .binw = bin_w, .binh = bin_h));
}
template <chip CHIP>
static void
tu6_emit_render_cntl(struct tu_cmd_buffer *cmd,
const struct tu_subpass *subpass,
struct tu_cs *cs,
bool binning);
template <>
void
tu6_emit_render_cntl<A6XX>(struct tu_cmd_buffer *cmd,
const struct tu_subpass *subpass,
struct tu_cs *cs,
bool binning)
{
/* doesn't RB_RENDER_CNTL set differently for binning pass: */
bool no_track = !cmd->device->physical_device->info->props.has_cp_reg_write;
uint32_t cntl = 0;
cntl |= A6XX_RB_RENDER_CNTL_CCUSINGLECACHELINESIZE(2);
if (binning) {
if (no_track)
return;
cntl |= A6XX_RB_RENDER_CNTL_FS_DISABLE;
} else {
uint32_t mrts_ubwc_enable = 0;
for (uint32_t i = 0; i < subpass->color_count; ++i) {
uint32_t a = subpass->color_attachments[i].attachment;
unsigned remapped = cmd->vk.dynamic_graphics_state.cal.color_map[i];
if (a == VK_ATTACHMENT_UNUSED ||
remapped == MESA_VK_ATTACHMENT_UNUSED)
continue;
const struct tu_image_view *iview = cmd->state.attachments[a];
if (iview->view.ubwc_enabled)
mrts_ubwc_enable |= 1 << remapped;
}
cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable);
const uint32_t a = subpass->depth_stencil_attachment.attachment;
if (a != VK_ATTACHMENT_UNUSED) {
const struct tu_image_view *iview = cmd->state.attachments[a];
if (iview->view.ubwc_enabled)
cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH;
}
if (no_track) {
tu_cs_emit_pkt4(cs, REG_A6XX_RB_RENDER_CNTL, 1);
tu_cs_emit(cs, cntl);
return;
}
/* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs
* in order to set it correctly for the different subpasses. However,
* that means the packets we're emitting also happen during binning. So
* we need to guard the write on !BINNING at CP execution time.
*/
tu_cs_reserve(cs, 3 + 4);
tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM);
tu_cs_emit(cs, RENDER_MODE_CP_COND_REG_EXEC_1_DWORDS(4));
}
tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3);
tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL));
tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL);
tu_cs_emit(cs, cntl);
}
template <>
void
tu6_emit_render_cntl<A7XX>(struct tu_cmd_buffer *cmd,
const struct tu_subpass *subpass,
struct tu_cs *cs,
bool binning)
{
}
static void
tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align,
bool used_by_sysmem)
{
struct tu_physical_device *phys_dev = cmd->device->physical_device;
const VkRect2D *render_area = &cmd->state.render_area;
/* Avoid assertion fails with an empty render area at (0, 0) where the
* subtraction below wraps around. Empty render areas should be forced to
* the sysmem path by use_sysmem_rendering(). It's not even clear whether
* an empty scissor here works, and the blob seems to force sysmem too as
* it sets something wrong (non-empty) for the scissor.
*/
if (render_area->extent.width == 0 ||
render_area->extent.height == 0)
return;
uint32_t x1 = render_area->offset.x;
uint32_t y1 = render_area->offset.y;
uint32_t x2 = x1 + render_area->extent.width - 1;
uint32_t y2 = y1 + render_area->extent.height - 1;
if (align) {
x1 = x1 & ~(phys_dev->info->gmem_align_w - 1);
y1 = y1 & ~(phys_dev->info->gmem_align_h - 1);
x2 = ALIGN_POT(x2 + 1, phys_dev->info->gmem_align_w) - 1;
y2 = ALIGN_POT(y2 + 1, phys_dev->info->gmem_align_h) - 1;
}
/* With FDM offset, bins are shifted to the right in GMEM space compared to
* framebuffer space. We do not use RB_BLIT_SCISSOR_* for loads and stores
* because those do not use the fast path, but we do use it for
* LOAD_OP_CLEAR. Expand the render area so that GMEM clears work
* correctly. We may over-clear but that's ok because the store is clipped
* to the render area.
*/
if (tu_enable_fdm_offset(cmd)) {
const struct tu_tiling_config *tiling = cmd->state.tiling;
/* If this is a generic clear that's also used in sysmem mode then we
* need to emit the unmodified render area in sysmem mode because
* over-clearing is not allowed.
*/
if (used_by_sysmem) {
tu_cs_emit_regs(cs,
A6XX_RB_RESOLVE_CNTL_1(.x = x1, .y = y1),
A6XX_RB_RESOLVE_CNTL_2(.x = x2, .y = y2));
tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
CP_COND_REG_EXEC_0_GMEM);
}
x2 += tiling->tile0.width;
y2 += tiling->tile0.height;
tu_cs_emit_regs(cs,
A6XX_RB_RESOLVE_CNTL_1(.x = x1, .y = y1),
A6XX_RB_RESOLVE_CNTL_2(.x = x2, .y = y2));
if (used_by_sysmem) {
tu_cond_exec_end(cs);
}
} else {
tu_cs_emit_regs(cs,
A6XX_RB_RESOLVE_CNTL_1(.x = x1, .y = y1),
A6XX_RB_RESOLVE_CNTL_2(.x = x2, .y = y2));
}
}
template <chip CHIP>
void
tu6_emit_window_scissor(struct tu_cs *cs,
uint32_t x1,
uint32_t y1,
uint32_t x2,
uint32_t y2)
{
tu_cs_emit_regs(cs,
GRAS_SC_WINDOW_SCISSOR_TL(CHIP, .x = x1, .y = y1),
GRAS_SC_WINDOW_SCISSOR_BR(CHIP, .x = x2, .y = y2));
tu_cs_emit_regs(cs,
GRAS_A2D_SCISSOR_TL(CHIP, .x = x1, .y = y1),
GRAS_A2D_SCISSOR_BR(CHIP, .x = x2, .y = y2));
}
TU_GENX(tu6_emit_window_scissor);
template <chip CHIP>
void
tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1)
{
tu_cs_emit_regs(cs,
A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1));
tu_cs_emit_regs(cs,
A6XX_RB_RESOLVE_WINDOW_OFFSET(.x = x1, .y = y1));
tu_cs_emit_regs(cs,
SP_WINDOW_OFFSET(CHIP, .x = x1, .y = y1));
tu_cs_emit_regs(cs,
A6XX_TPL1_WINDOW_OFFSET(.x = x1, .y = y1));
if (CHIP >= A7XX) {
tu_cs_emit_regs(cs,
TPL1_A2D_WINDOW_OFFSET(CHIP, .x = x1, .y = y1));
}
}
void
tu6_apply_depth_bounds_workaround(struct tu_device *device,
uint32_t *rb_depth_cntl)
{
if (!device->physical_device->info->props.depth_bounds_require_depth_test_quirk)
return;
/* On some GPUs it is necessary to enable z test for depth bounds test when
* UBWC is enabled. Otherwise, the GPU would hang. FUNC_ALWAYS is required to
* pass z test. Relevant tests:
* dEQP-VK.pipeline.extended_dynamic_state.two_draws_dynamic.depth_bounds_test_disable
* dEQP-VK.dynamic_state.ds_state.depth_bounds_1
*/
*rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE |
A6XX_RB_DEPTH_CNTL_ZFUNC(FUNC_ALWAYS);
}
static void
tu_cs_emit_draw_state(struct tu_cs *cs, uint32_t id, struct tu_draw_state state)
{
uint32_t enable_mask;
switch (id) {
case TU_DRAW_STATE_VS:
case TU_DRAW_STATE_FS:
case TU_DRAW_STATE_VPC:
/* The blob seems to not enable this (DESC_SETS_LOAD) for binning, even
* when resources would actually be used in the binning shader.
* Presumably the overhead of prefetching the resources isn't
* worth it.
*/
case TU_DRAW_STATE_DESC_SETS_LOAD:
enable_mask = CP_SET_DRAW_STATE__0_GMEM |
CP_SET_DRAW_STATE__0_SYSMEM;
break;
case TU_DRAW_STATE_VS_BINNING:
case TU_DRAW_STATE_GS_BINNING:
enable_mask = CP_SET_DRAW_STATE__0_BINNING;
break;
case TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM:
enable_mask = CP_SET_DRAW_STATE__0_GMEM;
break;
case TU_DRAW_STATE_PRIM_MODE_GMEM:
/* On a7xx the prim mode is the same for gmem and sysmem, and it no
* longer depends on dynamic state, so we reuse the gmem state for
* everything:
*/
if (cs->device->physical_device->info->props.has_coherent_ubwc_flag_caches) {
enable_mask = CP_SET_DRAW_STATE__0_GMEM |
CP_SET_DRAW_STATE__0_SYSMEM |
CP_SET_DRAW_STATE__0_BINNING;
} else {
enable_mask = CP_SET_DRAW_STATE__0_GMEM;
}
break;
case TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM:
enable_mask = CP_SET_DRAW_STATE__0_SYSMEM;
break;
case TU_DRAW_STATE_DYNAMIC + TU_DYNAMIC_STATE_PRIM_MODE_SYSMEM:
if (!cs->device->physical_device->info->props.has_coherent_ubwc_flag_caches) {
/* By also applying the state during binning we ensure that there
* is no rotation applied, by previous A6XX_GRAS_SC_CNTL::rotation.
*/
enable_mask =
CP_SET_DRAW_STATE__0_SYSMEM | CP_SET_DRAW_STATE__0_BINNING;
} else {
static_assert(TU_DYNAMIC_STATE_PRIM_MODE_SYSMEM ==
TU_DYNAMIC_STATE_A7XX_FRAGMENT_SHADING_RATE);
enable_mask = CP_SET_DRAW_STATE__0_GMEM |
CP_SET_DRAW_STATE__0_SYSMEM |
CP_SET_DRAW_STATE__0_BINNING;
}
break;
default:
enable_mask = CP_SET_DRAW_STATE__0_GMEM |
CP_SET_DRAW_STATE__0_SYSMEM |
CP_SET_DRAW_STATE__0_BINNING;
break;
}
STATIC_ASSERT(TU_DRAW_STATE_COUNT <= 32);
/* We need to reload the descriptors every time the descriptor sets
* change. However, the commands we send only depend on the pipeline
* because the whole point is to cache descriptors which are used by the
* pipeline. There's a problem here, in that the firmware has an
* "optimization" which skips executing groups that are set to the same
* value as the last draw. This means that if the descriptor sets change
* but not the pipeline, we'd try to re-execute the same buffer which
* the firmware would ignore and we wouldn't pre-load the new
* descriptors. Set the DIRTY bit to avoid this optimization.
*
* We set the dirty bit for shader draw states because they contain
* CP_LOAD_STATE packets that are invalidated by the PROGRAM_CONFIG draw
* state, so if PROGRAM_CONFIG changes but one of the shaders stays the
* same then we still need to re-emit everything. The GLES blob which
* implements separate shader draw states does the same thing.
*
* We also need to set this bit for draw states which may be patched by the
* GPU, because their underlying memory may change between setting the draw
* state.
*/
if (id == TU_DRAW_STATE_DESC_SETS_LOAD ||
id == TU_DRAW_STATE_VS ||
id == TU_DRAW_STATE_VS_BINNING ||
id == TU_DRAW_STATE_HS ||
id == TU_DRAW_STATE_DS ||
id == TU_DRAW_STATE_GS ||
id == TU_DRAW_STATE_GS_BINNING ||
id == TU_DRAW_STATE_FS ||
state.writeable)
enable_mask |= CP_SET_DRAW_STATE__0_DIRTY;
tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(state.size) |
enable_mask |
CP_SET_DRAW_STATE__0_GROUP_ID(id) |
COND(!state.size || !state.iova, CP_SET_DRAW_STATE__0_DISABLE));
tu_cs_emit_qw(cs, state.iova);
}
template <chip CHIP>
void
tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples,
bool msaa_disable)
{
const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples);
msaa_disable |= (samples == MSAA_ONE);
tu_cs_emit_regs(cs,
A6XX_TPL1_RAS_MSAA_CNTL(samples),
A6XX_TPL1_DEST_MSAA_CNTL(.samples = samples,
.msaa_disable = msaa_disable));
tu_cs_emit_regs(cs,
GRAS_SC_RAS_MSAA_CNTL(CHIP, samples),
GRAS_SC_DEST_MSAA_CNTL(CHIP, .samples = samples,
.msaa_disable = msaa_disable));
tu_cs_emit_regs(cs,
A6XX_RB_RAS_MSAA_CNTL(samples),
A6XX_RB_DEST_MSAA_CNTL(.samples = samples,
.msaa_disable = msaa_disable));
}
TU_GENX(tu6_emit_msaa);
template <chip CHIP>
static void
tu6_update_msaa(struct tu_cmd_buffer *cmd)
{
VkSampleCountFlagBits samples =
cmd->vk.dynamic_graphics_state.ms.rasterization_samples;;
/* The samples may not be set by the pipeline or dynamically if raster
* discard is enabled. We can set any valid value, but don't set the
* default invalid value of 0.
*/
if (samples == 0)
samples = VK_SAMPLE_COUNT_1_BIT;
tu6_emit_msaa<CHIP>(&cmd->draw_cs, samples, cmd->state.msaa_disable);
}
template <chip CHIP>
static void
tu6_update_msaa_disable(struct tu_cmd_buffer *cmd)
{
VkPrimitiveTopology topology =
(VkPrimitiveTopology)cmd->vk.dynamic_graphics_state.ia.primitive_topology;
bool is_line =
topology == VK_PRIMITIVE_TOPOLOGY_LINE_LIST ||
topology == VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY ||
topology == VK_PRIMITIVE_TOPOLOGY_LINE_STRIP ||
topology == VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY ||
(topology == VK_PRIMITIVE_TOPOLOGY_PATCH_LIST &&
cmd->state.shaders[MESA_SHADER_TESS_EVAL] &&
cmd->state.shaders[MESA_SHADER_TESS_EVAL]->variant &&
cmd->state.shaders[MESA_SHADER_TESS_EVAL]->variant->key.tessellation == IR3_TESS_ISOLINES);
bool msaa_disable = is_line &&
cmd->vk.dynamic_graphics_state.rs.line.mode == VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR;
if (cmd->state.msaa_disable != msaa_disable) {
cmd->state.msaa_disable = msaa_disable;
tu6_update_msaa<CHIP>(cmd);
}
}
static const struct tu_vsc_config *
tu_vsc_config(struct tu_cmd_buffer *cmd, const struct tu_tiling_config *tiling)
{
if (tu_enable_fdm_offset(cmd))
return &tiling->fdm_offset_vsc;
return &tiling->vsc;
}
static bool
use_hw_binning(struct tu_cmd_buffer *cmd)
{
const struct tu_framebuffer *fb = cmd->state.framebuffer;
const struct tu_tiling_config *tiling = &fb->tiling[cmd->state.gmem_layout];
const struct tu_vsc_config *vsc = tu_vsc_config(cmd, tiling);
/* XFB commands are emitted for BINNING || SYSMEM, which makes it
* incompatible with non-hw binning GMEM rendering. this is required because
* some of the XFB commands need to only be executed once.
* use_sysmem_rendering() should have made sure we only ended up here if no
* XFB was used.
*/
if (cmd->state.rp.xfb_used) {
assert(vsc->binning_possible);
return true;
}
/* VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT emulates GL_PRIMITIVES_GENERATED,
* which wasn't designed to care about tilers and expects the result not to
* be multiplied by tile count.
* See https://gitlab.khronos.org/vulkan/vulkan/-/issues/3131
*/
if (cmd->state.rp.has_prim_generated_query_in_rp ||
cmd->state.prim_generated_query_running_before_rp) {
assert(vsc->binning_possible);
return true;
}
return vsc->binning;
}
static bool
use_sysmem_rendering(struct tu_cmd_buffer *cmd,
struct tu_renderpass_result **autotune_result)
{
if (TU_DEBUG(SYSMEM)) {
cmd->state.rp.gmem_disable_reason = "TU_DEBUG(SYSMEM)";
return true;
}
/* can't fit attachments into gmem */
if (!cmd->state.tiling->possible) {
cmd->state.rp.gmem_disable_reason = "Can't fit attachments into gmem";
return true;
}
/* Use sysmem for empty render areas */
if (cmd->state.render_area.extent.width == 0 ||
cmd->state.render_area.extent.height == 0) {
cmd->state.rp.gmem_disable_reason = "Render area is empty";
return true;
}
if (cmd->state.rp.has_tess) {
cmd->state.rp.gmem_disable_reason = "Uses tessellation shaders";
return true;
}
if (cmd->state.rp.disable_gmem) {
/* gmem_disable_reason is set where disable_gmem is set. */
return true;
}
const struct tu_vsc_config *vsc = tu_vsc_config(cmd, cmd->state.tiling);
/* XFB is incompatible with non-hw binning GMEM rendering, see use_hw_binning */
if (cmd->state.rp.xfb_used && !vsc->binning_possible) {
cmd->state.rp.gmem_disable_reason =
"XFB is incompatible with non-hw binning GMEM rendering";
return true;
}
/* QUERY_TYPE_PRIMITIVES_GENERATED is incompatible with non-hw binning
* GMEM rendering, see use_hw_binning.
*/
if ((cmd->state.rp.has_prim_generated_query_in_rp ||
cmd->state.prim_generated_query_running_before_rp) &&
!vsc->binning_possible) {
cmd->state.rp.gmem_disable_reason =
"QUERY_TYPE_PRIMITIVES_GENERATED is incompatible with non-hw binning GMEM rendering";
return true;
}
if (TU_DEBUG(GMEM))
return false;
bool use_sysmem = tu_autotune_use_bypass(&cmd->device->autotune,
cmd, autotune_result);
if (*autotune_result) {
list_addtail(&(*autotune_result)->node, &cmd->renderpass_autotune_results);
}
if (use_sysmem) {
cmd->state.rp.gmem_disable_reason = "Autotune selected sysmem";
}
return use_sysmem;
}
/* Optimization: there is no reason to load gmem if there is no
* geometry to process. COND_REG_EXEC predicate is set here,
* but the actual skip happens in tu_load_gmem_attachment() and tile_store_cs,
* for each blit separately.
*/
template <chip CHIP>
static void
tu6_emit_cond_for_load_stores(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
uint32_t pipe, uint32_t slot, bool skip_wfm)
{
const struct tu_vsc_config *vsc = tu_vsc_config(cmd, cmd->state.tiling);
if (vsc->binning_possible &&
cmd->state.pass->has_cond_load_store) {
if (CHIP >= A7XX) {
tu_cs_emit_pkt7(cs, CP_REG_TEST, 1);
tu_cs_emit(cs, A6XX_CP_REG_TEST_0_SCRATCH_MEM_OFFSET(pipe) |
A6XX_CP_REG_TEST_0_SOURCE(SOURCE_SCRATCH_MEM) |
A6XX_CP_REG_TEST_0_BIT(slot) |
A6XX_CP_REG_TEST_0_SKIP_WAIT_FOR_ME);
} else {
tu_cs_emit_pkt7(cs, CP_REG_TEST, 1);
tu_cs_emit(cs, A6XX_CP_REG_TEST_0_REG(REG_A6XX_VSC_CHANNEL_VISIBILITY(pipe)) |
A6XX_CP_REG_TEST_0_BIT(slot) |
COND(skip_wfm, A6XX_CP_REG_TEST_0_SKIP_WAIT_FOR_ME));
}
} else {
/* COND_REG_EXECs are not emitted in non-binning case */
}
}
struct tu_tile_config {
VkOffset2D pos;
uint32_t pipe;
uint32_t slot_mask;
VkExtent2D extent;
VkExtent2D frag_areas[MAX_VIEWS];
};
/* For bin offsetting we want to do "Euclidean division," where the remainder
* (i.e. the offset of the bin) is always positive. Unfortunately C/C++
* remainder and division don't do this, so we have to implement it ourselves.
*
* For example, we should have:
*
* euclid_rem(-3, 4) = 1
* euclid_rem(-4, 4) = 0
* euclid_rem(-4, 4) = 3
*/
static int32_t
euclid_rem(int32_t divisor, int32_t divisend)
{
if (divisor >= 0)
return divisor % divisend;
int32_t tmp = divisend - (-divisor % divisend);
return tmp == divisend ? 0 : tmp;
}
/* Calculate how much the bins for a given view should be shifted to the left
* and upwards, given the application-provided FDM offset.
*/
static VkOffset2D
tu_bin_offset(VkOffset2D fdm_offset, const struct tu_tiling_config *tiling)
{
return (VkOffset2D) {
euclid_rem(-fdm_offset.x, tiling->tile0.width),
euclid_rem(-fdm_offset.y, tiling->tile0.height),
};
}
static uint32_t
tu_fdm_num_layers(const struct tu_cmd_buffer *cmd)
{
return cmd->state.pass->num_views ? cmd->state.pass->num_views :
(cmd->state.fdm_per_layer ? cmd->state.framebuffer->layers : 1);
}
template <chip CHIP>
static void
tu6_emit_tile_select(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
const struct tu_tile_config *tile,
bool fdm, const VkOffset2D *fdm_offsets)
{
struct tu_physical_device *phys_dev = cmd->device->physical_device;
const struct tu_tiling_config *tiling = cmd->state.tiling;
const struct tu_framebuffer *fb = cmd->state.framebuffer;
const struct tu_vsc_config *vsc = tu_vsc_config(cmd, tiling);
bool hw_binning = use_hw_binning(cmd);
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BIN_RENDER_START) |
A6XX_CP_SET_MARKER_0_USES_GMEM);
if (CHIP == A6XX && cmd->device->physical_device->has_preemption) {
if (cmd->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT)
tu_cs_set_writeable(cs, true);
tu_emit_vsc<CHIP>(cmd, &cmd->cs);
if (cmd->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT)
tu_cs_set_writeable(cs, false);
}
unsigned views = tu_fdm_num_layers(cmd);
bool bin_is_scaled = false;
if (fdm) {
for (unsigned i = 0; i < views; i++) {
if (tile->frag_areas[i].width != 1 ||
tile->frag_areas[i].height != 1) {
bin_is_scaled = true;
break;
}
}
}
bool bin_scale_en =
cmd->device->physical_device->info->props.has_hw_bin_scaling &&
views <= MAX_HW_SCALED_VIEWS && !cmd->state.rp.shared_viewport &&
bin_is_scaled;
/* We cannot support LRZ if we cannot use HW bin scaling and the bin is
* scaled (i.e. less than full resolution)
*/
bool disable_lrz = bin_is_scaled && !bin_scale_en;
/* We cannot support LRZ for the first row and column because the offset
* required wouldn't be aligned to HW requirements.
*/
if (fdm_offsets && (tile->pos.x == 0 || tile->pos.y == 0))
disable_lrz = true;
tu6_emit_bin_size<CHIP>(
cs, tiling->tile0.width, tiling->tile0.height,
{
.render_mode = RENDERING_PASS,
.force_lrz_write_dis = !phys_dev->info->props.has_lrz_feedback,
.buffers_location = BUFFERS_IN_GMEM,
.lrz_feedback_zmode_mask =
phys_dev->info->props.has_lrz_feedback && !bin_is_scaled
? (hw_binning ? LRZ_FEEDBACK_EARLY_Z_OR_EARLY_Z_LATE_Z :
LRZ_FEEDBACK_EARLY_Z_LATE_Z)
: LRZ_FEEDBACK_NONE,
.force_lrz_dis = CHIP >= A7XX && disable_lrz,
});
tu_cs_emit_regs(cs,
A6XX_VFD_RENDER_MODE(RENDERING_PASS));
const uint32_t x1 = tiling->tile0.width * tile->pos.x;
const uint32_t y1 = tiling->tile0.height * tile->pos.y;
const uint32_t x2 = MIN2(x1 + tiling->tile0.width, MAX_VIEWPORT_SIZE);
const uint32_t y2 = MIN2(y1 + tiling->tile0.height, MAX_VIEWPORT_SIZE);
if (bin_scale_en) {
/* It seems that the window scissor happens *before*
* GRAS_BIN_FOVEAT_OFFSET_* is applied to the fragment coordinates,
* unlike the window offset which happens after it is applied. This
* means that the window scissor cannot do its job and we have to
* disable it by setting it to the entire FB size (plus an extra tile
* size, in case GRAS_BIN_FOVEAT_OFFSET_* is not in use). With FDM it is
* effectively replaced by the user's scissor anyway.
*/
uint32_t width = fb->width + tiling->tile0.width;
uint32_t height = fb->height + tiling->tile0.height;
tu6_emit_window_scissor<CHIP>(cs, 0, 0, width, height);
} else {
tu6_emit_window_scissor<CHIP>(cs, x1, y1, x2 - 1, y2 - 1);
}
tu6_emit_window_offset<CHIP>(cs, x1, y1);
unsigned slot = ffs(tile->slot_mask) - 1;
if (hw_binning) {
bool abs_mask =
cmd->device->physical_device->info->props.has_abs_bin_mask;
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
tu_cs_emit(cs, 0x0);
tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5_OFFSET, abs_mask ? 5 : 4);
/* A702 also sets BIT(0) but that hangchecks */
tu_cs_emit(cs, vsc->pipe_sizes[tile->pipe] |
CP_SET_BIN_DATA5_0_VSC_N(slot) |
CP_SET_BIN_DATA5_0_VSC_MASK(tile->slot_mask >> slot) |
COND(abs_mask, CP_SET_BIN_DATA5_0_ABS_MASK(ABS_MASK)));
if (abs_mask)
tu_cs_emit(cs, tile->slot_mask);
tu_cs_emit(cs, tile->pipe * cmd->vsc_draw_strm_pitch);
tu_cs_emit(cs, tile->pipe * 4);
tu_cs_emit(cs, tile->pipe * cmd->vsc_prim_strm_pitch);
}
if (util_is_power_of_two_nonzero(tile->slot_mask))
tu6_emit_cond_for_load_stores<CHIP>(cmd, cs, tile->pipe, slot, hw_binning);
tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
tu_cs_emit(cs, !hw_binning);
tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
tu_cs_emit(cs, 0x0);
if (fdm) {
VkRect2D bin = {
{ x1, y1 },
{ (x2 - x1) * tile->extent.width, (y2 - y1) * tile->extent.height }
};
VkRect2D bins[views];
VkOffset2D frag_offsets[MAX_VIEWS];
for (unsigned i = 0; i < views; i++) {
frag_offsets[i] = (VkOffset2D) { 0, 0 };
if (!fdm_offsets || cmd->state.rp.shared_viewport) {
bins[i] = bin;
continue;
}
VkOffset2D bin_offset = tu_bin_offset(fdm_offsets[i], tiling);
bins[i].offset.x = MAX2(0, (int32_t)x1 - bin_offset.x);
bins[i].offset.y = MAX2(0, (int32_t)y1 - bin_offset.y);
bins[i].extent.width =
MAX2(MIN2((int32_t)x1 + bin.extent.width - bin_offset.x, MAX_VIEWPORT_SIZE) - bins[i].offset.x, 0);
bins[i].extent.height =
MAX2(MIN2((int32_t)y1 + bin.extent.height - bin_offset.y, MAX_VIEWPORT_SIZE) - bins[i].offset.y, 0);
}
if (cmd->device->physical_device->info->props.has_hw_bin_scaling) {
if (bin_scale_en) {
VkExtent2D frag_areas[MAX_HW_SCALED_VIEWS];
for (unsigned i = 0; i < MAX_HW_SCALED_VIEWS; i++) {
if (i >= views) {
/* Make sure unused views aren't garbage */
frag_areas[i] = (VkExtent2D) {1, 1};
frag_offsets[i] = (VkOffset2D) { 0, 0 };
continue;
}
frag_areas[i] = tile->frag_areas[i];
frag_offsets[i].x = x1 - x1 / tile->frag_areas[i].width;
frag_offsets[i].y = y1 - y1 / tile->frag_areas[i].height;
}
tu_cs_emit_regs(cs, GRAS_BIN_FOVEAT(CHIP,
.binscaleen = bin_scale_en,
.xscale_0 = (enum a7xx_bin_scale)util_logbase2(frag_areas[0].width),
.yscale_0 = (enum a7xx_bin_scale)util_logbase2(frag_areas[0].height),
.xscale_1 = (enum a7xx_bin_scale)util_logbase2(frag_areas[1].width),
.yscale_1 = (enum a7xx_bin_scale)util_logbase2(frag_areas[1].height),
.xscale_2 = (enum a7xx_bin_scale)util_logbase2(frag_areas[2].width),
.yscale_2 = (enum a7xx_bin_scale)util_logbase2(frag_areas[2].height),
.xscale_3 = (enum a7xx_bin_scale)util_logbase2(frag_areas[3].width),
.yscale_3 = (enum a7xx_bin_scale)util_logbase2(frag_areas[3].height),
.xscale_4 = (enum a7xx_bin_scale)util_logbase2(frag_areas[4].width),
.yscale_4 = (enum a7xx_bin_scale)util_logbase2(frag_areas[4].height),
.xscale_5 = (enum a7xx_bin_scale)util_logbase2(frag_areas[5].width),
.yscale_5 = (enum a7xx_bin_scale)util_logbase2(frag_areas[5].height)),
GRAS_BIN_FOVEAT_OFFSET_0(CHIP,
.xoffset_0 = frag_offsets[0].x,
.xoffset_1 = frag_offsets[1].x,
.xoffset_2 = frag_offsets[2].x),
GRAS_BIN_FOVEAT_OFFSET_1(CHIP,
.xoffset_3 = frag_offsets[3].x,
.xoffset_4 = frag_offsets[4].x,
.xoffset_5 = frag_offsets[5].x),
GRAS_BIN_FOVEAT_OFFSET_2(CHIP,
.yoffset_0 = frag_offsets[0].y,
.yoffset_1 = frag_offsets[1].y,
.yoffset_2 = frag_offsets[2].y),
GRAS_BIN_FOVEAT_OFFSET_3(CHIP,
.yoffset_3 = frag_offsets[3].y,
.yoffset_4 = frag_offsets[4].y,
.yoffset_5 = frag_offsets[5].y));
tu_cs_emit_regs(cs, RB_BIN_FOVEAT(CHIP,
.binscaleen = bin_scale_en));
} else {
tu_cs_emit_regs(cs, GRAS_BIN_FOVEAT(CHIP));
tu_cs_emit_regs(cs, RB_BIN_FOVEAT(CHIP));
}
}
util_dynarray_foreach (&cmd->fdm_bin_patchpoints,
struct tu_fdm_bin_patchpoint, patch) {
tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 2 + patch->size);
tu_cs_emit_qw(cs, patch->iova);
patch->apply(cmd, cs, patch->data, (VkOffset2D) { x1, y1 },
frag_offsets, views, tile->frag_areas, bins);
}
/* Make the CP wait until the CP_MEM_WRITE's to the command buffers
* land. When loading FS params via UBOs, we also need to invalidate
* UCHE because the FS param patchpoint is read through UCHE.
*/
tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
if (cmd->device->compiler->load_shader_consts_via_preamble) {
tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
tu_cs_emit_wfi(cs);
}
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
} else if (cmd->device->physical_device->info->props.has_hw_bin_scaling) {
tu_cs_emit_regs(cs, GRAS_BIN_FOVEAT(CHIP, 0));
tu_cs_emit_regs(cs, RB_BIN_FOVEAT(CHIP, 0));
}
}
template <chip CHIP>
static void
tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
uint32_t layer_mask,
uint32_t a,
uint32_t gmem_a)
{
const struct tu_framebuffer *fb = cmd->state.framebuffer;
const struct tu_image_view *dst = cmd->state.attachments[a];
const struct tu_image_view *src = cmd->state.attachments[gmem_a];
tu_resolve_sysmem<CHIP>(cmd, cs, src, dst, layer_mask, fb->layers, &cmd->state.render_area);
}
template <chip CHIP>
static void
tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
const struct tu_subpass *subpass)
{
if (subpass->resolve_attachments) {
/* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass
* Commands":
*
* End-of-subpass multisample resolves are treated as color
* attachment writes for the purposes of synchronization.
* This applies to resolve operations for both color and
* depth/stencil attachments. That is, they are considered to
* execute in the VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT
* pipeline stage and their writes are synchronized with
* VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
* rendering within a subpass and any resolve operations at the end
* of the subpass occurs automatically, without need for explicit
* dependencies or pipeline barriers. However, if the resolve
* attachment is also used in a different subpass, an explicit
* dependency is needed.
*
* We use the CP_BLIT path for sysmem resolves, which is really a
* transfer command, so we have to manually flush similar to the gmem
* resolve case. However, a flush afterwards isn't needed because of the
* last sentence and the fact that we're in sysmem mode.
*/
tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_CLEAN_COLOR);
if (subpass->resolve_depth_stencil)
tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_CLEAN_DEPTH);
tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
/* Wait for the flushes to land before using the 2D engine */
tu_cs_emit_wfi(cs);
for (unsigned i = 0; i < subpass->resolve_count; i++) {
uint32_t a = subpass->resolve_attachments[i].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
uint32_t gmem_a = tu_subpass_get_attachment_to_resolve(subpass, i);
tu6_emit_sysmem_resolve<CHIP>(cmd, cs, subpass->multiview_mask, a, gmem_a);
}
}
}
template <chip CHIP>
static void
tu6_emit_sysmem_unresolve(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
uint32_t layer_mask,
uint32_t a,
uint32_t gmem_a)
{
const struct tu_framebuffer *fb = cmd->state.framebuffer;
const struct tu_image_view *src = cmd->state.attachments[a];
const struct tu_image_view *dst = cmd->state.attachments[gmem_a];
tu_resolve_sysmem<CHIP>(cmd, cs, src, dst, layer_mask, fb->layers, &cmd->state.render_area);
}
template <chip CHIP>
static void
tu6_emit_sysmem_unresolves(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
const struct tu_subpass *subpass)
{
if (subpass->unresolve_count) {
/* Similar to above, we need to explicitly flush afterwards to keep this
* in sync with draw commands. However we also don't currently insert
* dependencies when a resolve is followed by an unresolve so we also
* need to manually flush for that case.
*/
tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_CLEAN_COLOR);
tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
/* Wait for the flushes to land before using the 2D engine */
tu_cs_emit_wfi(cs);
bool unresolve_ds = false;
for (unsigned i = 0; i < subpass->unresolve_count; i++) {
uint32_t a = subpass->unresolve_attachments[i].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
if (vk_format_is_depth_or_stencil(cmd->state.pass->attachments[a].format))
unresolve_ds = true;
uint32_t gmem_a = tu_subpass_get_attachment_to_unresolve(subpass, i);
tu6_emit_sysmem_unresolve<CHIP>(cmd, cs, subpass->multiview_mask, a, gmem_a);
}
tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_CLEAN_COLOR);
tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_INVALIDATE_COLOR);
if (unresolve_ds) {
tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_CLEAN_DEPTH);
tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_INVALIDATE_DEPTH);
}
tu_cs_emit_wfi(cs);
}
}
template <chip CHIP>
static void
tu6_emit_gmem_resolves(struct tu_cmd_buffer *cmd,
const struct tu_subpass *subpass,
struct tu_resolve_group *resolve_group,
struct tu_cs *cs)
{
const struct tu_render_pass *pass = cmd->state.pass;
const struct tu_framebuffer *fb = cmd->state.framebuffer;
if (subpass->resolve_attachments) {
for (unsigned i = 0; i < subpass->resolve_count; i++) {
uint32_t a = subpass->resolve_attachments[i].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
uint32_t gmem_a = tu_subpass_get_attachment_to_resolve(subpass, i);
tu_store_gmem_attachment<CHIP>(cmd, cs, resolve_group, a, gmem_a,
fb->layers, subpass->multiview_mask,
false);
if (pass->attachments[a].gmem) {
/* check if the resolved attachment is needed by later subpasses,
* if it is, should be doing a GMEM->GMEM resolve instead of
* GMEM->MEM->GMEM..
*/
perf_debug(cmd->device,
"TODO: missing GMEM->GMEM resolve path\n");
if (CHIP >= A7XX)
tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_CLEAN_BLIT_CACHE);
tu_load_gmem_attachment<CHIP>(cmd, cs, resolve_group, a, a, false, true);
}
}
}
}
/* Emits any tile stores at the end of a subpass.
*
* These are emitted into draw_cs for non-final subpasses, and tile_store_cs for
* the final subpass. The draw_cs ones mean that we have to disable IB2 skipping
* for the draw_cs so we don't exit before storing. The separate tile_store_cs
* lets us leave IB2 skipping enabled in the common case of a single-subpass
* renderpass (or dynamic rendering).
*
* To do better in the multi-subpass case, we'd need the individual CS entries
* of draw_cs to have a flag for whether they can be skipped or not, and
* interleave drawing cs entries with store cs entries.
*
* This is independent of cond_store_allowed, which is about "can we skip doing
* the store if no other rendering happened in the tile?" We can only skip if
* the cond that we set up at the start of the tile (or reset just before
* calling tile_store_cs) is still in place.
*/
template <chip CHIP>
static void
tu6_emit_gmem_stores(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
struct tu_resolve_group *resolve_group,
const struct tu_subpass *subpass)
{
const struct tu_render_pass *pass = cmd->state.pass;
const struct tu_framebuffer *fb = cmd->state.framebuffer;
const struct tu_vsc_config *vsc = tu_vsc_config(cmd, cmd->state.tiling);
uint32_t subpass_idx = subpass - cmd->state.pass->subpasses;
const bool cond_exec_allowed = vsc->binning_possible &&
cmd->state.pass->has_cond_load_store &&
(!cmd->state.rp.draw_cs_writes_to_cond_pred ||
cs != &cmd->draw_cs);
bool scissor_emitted = false;
/* Resolve should happen before store in case BLIT_EVENT_STORE_AND_CLEAR is
* used for a store.
*
* Note that we're emitting the resolves into the tile store CS, which is
* unconditionally executed (unlike draw_cs which depends on geometry having
* been generated). a7xx has HW conditional resolve support that may skip
* the resolve if geometry didn't cover it, anyway.
*/
if (subpass->resolve_attachments) {
if (!scissor_emitted) {
tu6_emit_blit_scissor(cmd, cs, true, false);
scissor_emitted = true;
}
tu6_emit_gmem_resolves<CHIP>(cmd, subpass, resolve_group, cs);
}
for (uint32_t a = 0; a < pass->attachment_count; ++a) {
const struct tu_render_pass_attachment *att = &pass->attachments[a];
/* Note: att->cond_store_allowed implies at least one of att->store_* set */
if (pass->attachments[a].gmem && att->last_subpass_idx == subpass_idx) {
if (!scissor_emitted) {
tu6_emit_blit_scissor(cmd, cs, true, false);
scissor_emitted = true;
}
tu_store_gmem_attachment<CHIP>(cmd, cs, resolve_group, a, a,
fb->layers, att->used_views,
cond_exec_allowed);
}
}
}
template <chip CHIP>
static void
tu6_emit_tile_store_cs(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
const struct tu_render_pass *pass = cmd->state.pass;
uint32_t subpass_idx = pass->subpass_count - 1;
const struct tu_subpass *subpass = &pass->subpasses[subpass_idx];
if (pass->has_fdm)
tu_cs_set_writeable(cs, true);
/* We believe setting the marker affects what state HW blocks save/restore
* during preemption. So we only emit it before the stores at the end of the
* last subpass, not other resolves.
*/
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BIN_RESOLVE) |
A6XX_CP_SET_MARKER_0_USES_GMEM);
struct tu_resolve_group resolve_group = {};
tu6_emit_gmem_stores<CHIP>(cmd, cs, &resolve_group, subpass);
tu_emit_resolve_group<CHIP>(cmd, cs, &resolve_group);
if (pass->has_fdm)
tu_cs_set_writeable(cs, false);
}
void
tu_disable_draw_states(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
CP_SET_DRAW_STATE__0_GROUP_ID(0));
tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
cmd->state.dirty |= TU_CMD_DIRTY_DRAW_STATE;
}
template <chip CHIP>
static void
tu6_init_static_regs(struct tu_device *dev, struct tu_cs *cs)
{
const struct tu_physical_device *phys_dev = dev->physical_device;
if (CHIP >= A7XX) {
/* On A7XX, RB_CCU_CNTL was broken into two registers, RB_CCU_CNTL which has
* static properties that can be set once, this requires a WFI to take effect.
* While the newly introduced register RB_CCU_CACHE_CNTL has properties that may
* change per-RP and don't require a WFI to take effect, only CCU inval/flush
* events are required.
*/
enum a7xx_concurrent_resolve_mode resolve_mode = CONCURRENT_RESOLVE_MODE_2;
if (TU_DEBUG(NO_CONCURRENT_RESOLVES))
resolve_mode = CONCURRENT_RESOLVE_MODE_DISABLED;
enum a7xx_concurrent_unresolve_mode unresolve_mode = CONCURRENT_UNRESOLVE_MODE_FULL;
if (TU_DEBUG(NO_CONCURRENT_UNRESOLVES))
unresolve_mode = CONCURRENT_UNRESOLVE_MODE_DISABLED;
tu_cs_emit_regs(cs, RB_CCU_CNTL(A7XX,
.gmem_fast_clear_disable =
!dev->physical_device->info->props.has_gmem_fast_clear,
.concurrent_resolve_mode = resolve_mode,
.concurrent_unresolve_mode = unresolve_mode,
));
}
for (size_t i = 0; i < ARRAY_SIZE(phys_dev->info->magic_raw); i++) {
auto magic_reg = phys_dev->info->magic_raw[i];
if (!magic_reg.reg)
break;
uint32_t value = magic_reg.value;
switch(magic_reg.reg) {
case REG_A6XX_TPL1_DBG_ECO_CNTL:
value = (value & ~A6XX_TPL1_DBG_ECO_CNTL_LINEAR_MIPMAP_FALLBACK_IN_BLOCKS) |
(phys_dev->info->props.supports_linear_mipmap_threshold_in_blocks
? A6XX_TPL1_DBG_ECO_CNTL_LINEAR_MIPMAP_FALLBACK_IN_BLOCKS
: 0);
break;
case REG_A6XX_TPL1_DBG_ECO_CNTL1:
value = (value & ~A6XX_TPL1_DBG_ECO_CNTL1_TP_UBWC_FLAG_HINT) |
(phys_dev->info->props.enable_tp_ubwc_flag_hint
? A6XX_TPL1_DBG_ECO_CNTL1_TP_UBWC_FLAG_HINT
: 0);
break;
}
tu_cs_emit_write_reg(cs, magic_reg.reg, value);
}
if (dev->physical_device->info->props.has_attachment_shading_rate) {
tu_cs_emit_write_reg(cs, REG_A7XX_GRAS_LRZ_QUALITY_LOOKUP_TABLE(0),
fd_gras_shading_rate_lut(0));
tu_cs_emit_write_reg(cs, REG_A7XX_GRAS_LRZ_QUALITY_LOOKUP_TABLE(1),
fd_gras_shading_rate_lut(1));
}
tu_cs_emit_write_reg(cs, REG_A6XX_SP_NC_MODE_CNTL_2, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_PERFCTR_SHADER_MASK, 0x3f);
if (CHIP == A6XX && !cs->device->physical_device->info->props.is_a702)
tu_cs_emit_write_reg(cs, REG_A6XX_TPL1_UNKNOWN_B605, 0x44);
if (CHIP == A6XX) {
tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
}
tu_cs_emit_write_reg(cs, REG_A6XX_SP_GFX_USIZE, 0); // 2 on a740 ???
tu_cs_emit_write_reg(cs, REG_A6XX_TPL1_PS_ROTATION_CNTL, 0);
if (CHIP == A6XX)
tu_cs_emit_regs(cs, A6XX_HLSQ_SHARED_CONSTS(.enable = false));
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0);
tu_cs_emit_regs(cs, A6XX_SP_MODE_CNTL(.constant_demotion_enable = true,
.isammode = ISAMMODE_GL,
.shared_consts_enable = false));
tu_cs_emit_regs(cs, A6XX_VFD_MODE_CNTL(.vertex = true, .instance = true));
tu_cs_emit_write_reg(cs, REG_A6XX_RB_MODE_CNTL, 0x00000010);
tu_cs_emit_regs(cs, GRAS_MODE_CNTL(CHIP, CHIP >= A7XX ? 0x2 : 0));
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0);
if (CHIP == A6XX) {
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0);
}
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0);
tu_cs_emit_regs(cs, VPC_REPLACE_MODE_CNTL(CHIP, false));
tu_cs_emit_regs(cs, VPC_ROTATION_CNTL(CHIP));
tu_cs_emit_regs(cs, VPC_SO_OVERRIDE(CHIP, true));
tu_cs_emit_write_reg(cs, REG_A6XX_TPL1_PS_SWIZZLE_CNTL, 0);
tu_cs_emit_regs(cs, GRAS_SC_SCREEN_SCISSOR_CNTL(CHIP));
if (CHIP == A6XX) {
tu_cs_emit_regs(cs, GRAS_SU_CONSERVATIVE_RAS_CNTL(CHIP, 0));
tu_cs_emit_regs(cs, PC_DGEN_SU_CONSERVATIVE_RAS_CNTL(CHIP));
tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0);
}
tu_cs_emit_write_reg(cs, REG_A6XX_VPC_LB_MODE_CNTL, 0);
tu_cs_emit_regs(cs, PC_CONTEXT_SWITCH_GFX_PREEMPTION_MODE(CHIP));
tu_cs_emit_regs(cs, A6XX_TPL1_MODE_CNTL(.isammode = ISAMMODE_GL,
.texcoordroundmode = dev->instance->use_tex_coord_round_nearest_even_mode
? COORD_ROUND_NEAREST_EVEN
: COORD_TRUNCATE,
.nearestmipsnap = CLAMP_ROUND_TRUNCATE,
.destdatatypeoverride = true));
tu_cs_emit_regs(cs, SP_REG_PROG_ID_3(CHIP, .dword = 0xfc));
tu_cs_emit_write_reg(cs, REG_A6XX_VFD_RENDER_MODE, 0x00000000);
tu_cs_emit_regs(cs, A6XX_RB_ALPHA_TEST_CNTL()); /* always disable alpha test */
tu_cs_emit_regs(cs,
A6XX_TPL1_GFX_BORDER_COLOR_BASE(.bo = dev->global_bo,
.bo_offset = gb_offset(bcolor)));
tu_cs_emit_regs(cs,
A6XX_TPL1_CS_BORDER_COLOR_BASE(.bo = dev->global_bo,
.bo_offset = gb_offset(bcolor)));
/* BR-only registers */
if (CHIP >= A7XX)
tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(THREAD_MODE) |
CP_COND_REG_EXEC_0_BR);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_DBG_ECO_CNTL,
phys_dev->info->magic.RB_DBG_ECO_CNTL);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_RBP_CNTL,
phys_dev->info->magic.RB_RBP_CNTL);
if (CHIP >= A7XX) {
tu_cs_emit_regs(cs, RB_UNKNOWN_8E09(CHIP, 0x7));
tu_cond_exec_end(cs);
}
if (CHIP == A7XX) {
tu_cs_emit_regs(cs, TPL1_BICUBIC_WEIGHTS_TABLE_REG(CHIP, 0, 0),
TPL1_BICUBIC_WEIGHTS_TABLE_REG(CHIP, 1, 0x3fe05ff4),
TPL1_BICUBIC_WEIGHTS_TABLE_REG(CHIP, 2, 0x3fa0ebee),
TPL1_BICUBIC_WEIGHTS_TABLE_REG(CHIP, 3, 0x3f5193ed),
TPL1_BICUBIC_WEIGHTS_TABLE_REG(CHIP, 4, 0x3f0243f0), );
}
if (CHIP >= A7XX) {
/* Blob sets these two per draw. */
tu_cs_emit_regs(cs, PC_HS_BUFFER_SIZE(CHIP, TU_TESS_PARAM_SIZE));
/* Blob adds a bit more space ({0x10, 0x20, 0x30, 0x40} bytes)
* but the meaning of this additional space is not known,
* so we play safe and don't add it.
*/
tu_cs_emit_regs(cs, PC_TF_BUFFER_SIZE(CHIP, TU_TESS_FACTOR_SIZE));
}
/* There is an optimization to skip executing draw states for draws with no
* instances. Instead of simply skipping the draw, internally the firmware
* sets a bit in PC_DRAW_INITIATOR that seemingly skips the draw. However
* there is a hardware bug where this bit does not always cause the FS
* early preamble to be skipped. Because the draw states were skipped,
* SP_PS_CNTL_0, SP_PS_BASE and so on are never updated and a
* random FS preamble from the last draw is executed. If the last visible
* draw is from the same submit, it shouldn't be a problem because we just
* re-execute the same preamble and preambles don't have side effects, but
* if it's from another process then we could execute a garbage preamble
* leading to hangs and faults. To make sure this doesn't happen, we reset
* SP_PS_CNTL_0 here, making sure that the EARLYPREAMBLE bit isn't set
* so any leftover early preamble doesn't get executed. Other stages don't
* seem to be affected.
*/
if (phys_dev->info->props.has_early_preamble) {
tu_cs_emit_regs(cs, A6XX_SP_PS_CNTL_0());
}
/* Workaround for draw state with constlen not being applied for
* zero-instance draw calls. See IR3_CONST_ALLOC_DRIVER_PARAMS allocation
* for more info.
*/
tu_cs_emit_pkt4(
cs, CHIP == A6XX ? REG_A6XX_SP_VS_CONST_CONFIG : REG_A7XX_SP_VS_CONST_CONFIG, 1);
tu_cs_emit(cs, A6XX_SP_VS_CONST_CONFIG_CONSTLEN(8) | A6XX_SP_VS_CONST_CONFIG_ENABLED);
}
/* Set always-identical registers used specifically for GMEM */
template <chip CHIP>
static void
tu7_emit_tile_render_begin_regs(struct tu_cs *cs)
{
tu_cs_emit_regs(cs, RB_BUFFER_CNTL(CHIP, 0x0));
tu_cs_emit_regs(cs, RB_CLEAR_TARGET(CHIP, .clear_mode = CLEAR_MODE_GMEM));
}
/* Emit the bin restore preamble, which runs in between bins when L1
* preemption with skipsaverestore happens and we switch back to this context.
* We need to restore static registers normally programmed at cmdbuf start
* which weren't saved, and we need to program the CCU state which is normally
* programmed before rendering the bins and isn't saved/restored by the CP
* because it is always the same for GMEM render passes.
*/
template <chip CHIP>
static void
tu_emit_bin_preamble(struct tu_device *dev, struct tu_cs *cs, bool bv)
{
tu6_init_static_regs<CHIP>(dev, cs);
if (!bv)
emit_rb_ccu_cntl<CHIP>(cs, dev, true);
emit_vpc_attr_buf<CHIP>(cs, dev, true);
if (CHIP == A7XX && !bv) {
tu7_emit_tile_render_begin_regs<CHIP>(cs);
}
if (CHIP == A6XX) {
tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VSC_CHANNEL_VISIBILITY(0)) |
CP_MEM_TO_REG_0_CNT(32));
tu_cs_emit_qw(cs, dev->global_bo->iova + gb_offset(vsc_state));
}
}
VkResult
tu_init_bin_preamble(struct tu_device *device)
{
struct tu_cs preamble_cs;
VkResult result = tu_cs_begin_sub_stream(&device->sub_cs, 256, &preamble_cs);
if (result != VK_SUCCESS)
return vk_startup_errorf(device->instance, result, "bin restore");
TU_CALLX(device, tu_emit_bin_preamble)(device, &preamble_cs, false);
device->bin_preamble_entry = tu_cs_end_sub_stream(&device->sub_cs, &preamble_cs);
if (device->physical_device->info->chip >= 7) {
result = tu_cs_begin_sub_stream(&device->sub_cs, 256, &preamble_cs);
if (result != VK_SUCCESS)
return vk_startup_errorf(device->instance, result, "bin restore");
TU_CALLX(device, tu_emit_bin_preamble)(device, &preamble_cs, true);
device->bin_preamble_bv_entry = tu_cs_end_sub_stream(&device->sub_cs, &preamble_cs);
}
return VK_SUCCESS;
}
template <chip CHIP>
static void
tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
struct tu_device *dev = cmd->device;
const struct tu_physical_device *phys_dev = dev->physical_device;
if (CHIP == A6XX) {
tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
} else {
tu7_thread_control(cs, CP_SET_THREAD_BOTH);
tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_INVALIDATE_COLOR);
tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_INVALIDATE_DEPTH);
tu_emit_event_write<CHIP>(cmd, cs, FD_LRZ_INVALIDATE);
tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
tu_cs_emit_wfi(cs);
}
tu_cs_emit_regs(cs, SP_UPDATE_CNTL(CHIP,
.vs_state = true,
.hs_state = true,
.ds_state = true,
.gs_state = true,
.fs_state = true,
.cs_state = true,
.cs_uav = true,
.gfx_uav = true,
.cs_shared_const = true,
.gfx_shared_const = true,
.cs_bindless = CHIP == A6XX ? 0x1f : 0xff,
.gfx_bindless = CHIP == A6XX ? 0x1f : 0xff,));
tu_cs_emit_wfi(cs);
if (dev->dbg_cmdbuf_stomp_cs) {
tu_cs_emit_call(cs, dev->dbg_cmdbuf_stomp_cs);
}
cmd->state.cache.pending_flush_bits &=
~(TU_CMD_FLAG_WAIT_FOR_IDLE | TU_CMD_FLAG_CACHE_INVALIDATE);
tu6_init_static_regs<CHIP>(cmd->device, cs);
emit_rb_ccu_cntl<CHIP>(cs, cmd->device, false);
emit_vpc_attr_buf<CHIP>(cs, cmd->device, false);
cmd->state.ccu_state = TU_CMD_CCU_SYSMEM;
tu_disable_draw_states(cmd, cs);
if (phys_dev->info->props.cmdbuf_start_a725_quirk) {
tu_cs_reserve(cs, 3 + 4);
tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(THREAD_MODE) |
CP_COND_REG_EXEC_0_BR | CP_COND_REG_EXEC_0_LPAC);
tu_cs_emit(cs, RENDER_MODE_CP_COND_REG_EXEC_1_DWORDS(4));
tu_cs_emit_ib(cs, &dev->cmdbuf_start_a725_quirk_entry);
}
if (CHIP >= A7XX) {
if (cmd->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT)
tu_cs_set_writeable(cs, true);
/* This sets the amount BV is allowed to be ahead of BR when we do
* BV_WAIT_FOR_BR. By setting it based on the vis stream count we
* prevent write-after-read races with the vis stream.
*/
tu_cs_emit_pkt7(cs, CP_BV_BR_COUNT_OPS, 2);
tu_cs_emit(cs, CP_BV_BR_COUNT_OPS_0_OP(PIPE_SET_BR_OFFSET));
struct tu_vis_stream_patchpoint *patchpoint =
&cmd->vis_stream_count_patchpoint;
patchpoint->data = cs->cur;
patchpoint->iova = tu_cs_get_cur_iova(cs);
tu_cs_emit(cs, 1);
if (cmd->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT)
tu_cs_set_writeable(cs, false);
tu7_set_thread_br_patchpoint(cmd, cs, false);
}
tu_cs_emit_pkt7(cs, CP_SET_AMBLE, 3);
tu_cs_emit_qw(cs, cmd->device->bin_preamble_entry.bo->iova +
cmd->device->bin_preamble_entry.offset);
tu_cs_emit(cs, CP_SET_AMBLE_2_DWORDS(cmd->device->bin_preamble_entry.size /
sizeof(uint32_t)) |
CP_SET_AMBLE_2_TYPE(BIN_PREAMBLE_AMBLE_TYPE));
if (CHIP >= A7XX) {
tu7_thread_control(cs, CP_SET_THREAD_BV);
tu_cs_emit_pkt7(cs, CP_SET_AMBLE, 3);
tu_cs_emit_qw(cs, cmd->device->bin_preamble_bv_entry.bo->iova +
cmd->device->bin_preamble_bv_entry.offset);
tu_cs_emit(cs, CP_SET_AMBLE_2_DWORDS(cmd->device->bin_preamble_bv_entry.size /
sizeof(uint32_t)) |
CP_SET_AMBLE_2_TYPE(BIN_PREAMBLE_AMBLE_TYPE));
tu7_thread_control(cs, CP_SET_THREAD_BOTH);
tu7_set_pred_mask(cs, (1u << TU_PREDICATE_VTX_STATS_RUNNING) |
(1u << TU_PREDICATE_VTX_STATS_NOT_RUNNING),
(1u << TU_PREDICATE_VTX_STATS_NOT_RUNNING));
}
tu_cs_emit_pkt7(cs, CP_SET_AMBLE, 3);
tu_cs_emit_qw(cs, 0);
tu_cs_emit(cs, CP_SET_AMBLE_2_TYPE(PREAMBLE_AMBLE_TYPE));
tu_cs_emit_pkt7(cs, CP_SET_AMBLE, 3);
tu_cs_emit_qw(cs, 0);
tu_cs_emit(cs, CP_SET_AMBLE_2_TYPE(POSTAMBLE_AMBLE_TYPE));
if (CHIP >= A7XX) {
tu7_set_thread_br_patchpoint(cmd, cs, false);
}
tu_cs_sanity_check(cs);
}
bool
tu_enable_fdm_offset(struct tu_cmd_buffer *cmd)
{
if (!cmd->state.pass)
return false;
if (!cmd->state.pass->has_fdm)
return false;
unsigned fdm_a = cmd->state.pass->fragment_density_map.attachment;
if (fdm_a == VK_ATTACHMENT_UNUSED)
return TU_DEBUG(FDM_OFFSET);
const struct tu_image_view *fdm = cmd->state.attachments[fdm_a];
return fdm->image->vk.create_flags &
VK_IMAGE_CREATE_FRAGMENT_DENSITY_MAP_OFFSET_BIT_EXT;
}
template <chip CHIP>
static void
update_vsc_pipe(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
uint32_t num_vsc_pipes)
{
const struct tu_tiling_config *tiling = cmd->state.tiling;
const struct tu_vsc_config *vsc = tu_vsc_config(cmd, tiling);
tu_cs_emit_regs(cs,
A6XX_VSC_BIN_SIZE(.width = tiling->tile0.width,
.height = tiling->tile0.height));
tu_cs_emit_regs(cs,
A6XX_VSC_EXPANDED_BIN_CNTL(.nx = vsc->tile_count.width,
.ny = vsc->tile_count.height));
tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), num_vsc_pipes);
tu_cs_emit_array(cs, vsc->pipe_config, num_vsc_pipes);
tu_cs_emit_regs(cs,
A6XX_VSC_PIPE_DATA_PRIM_STRIDE(cmd->vsc_prim_strm_pitch),
A6XX_VSC_PIPE_DATA_PRIM_LENGTH(cmd->vsc_prim_strm_pitch - VSC_PAD));
tu_cs_emit_regs(cs,
A6XX_VSC_PIPE_DATA_DRAW_STRIDE(cmd->vsc_draw_strm_pitch),
A6XX_VSC_PIPE_DATA_DRAW_LENGTH(cmd->vsc_draw_strm_pitch - VSC_PAD));
if (CHIP >= A7XX)
tu_cs_emit_regs(cs, VSC_UNKNOWN_0D08(CHIP, 0));
}
static void
emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
const struct tu_tiling_config *tiling = cmd->state.tiling;
const struct tu_vsc_config *vsc = tu_vsc_config(cmd, tiling);
const uint32_t used_pipe_count =
vsc->pipe_count.width * vsc->pipe_count.height;
for (int i = 0; i < used_pipe_count; i++) {
tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
CP_COND_WRITE5_0_WRITE_MEMORY);
tu_cs_emit(cs, REG_A6XX_VSC_PIPE_DATA_DRAW_SIZE(i));
tu_cs_emit(cs, 0);
tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_draw_strm_pitch - VSC_PAD));
tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
tu_cs_emit_qw(cs, global_iova(cmd, vsc_draw_overflow));
tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_draw_strm_pitch));
tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
CP_COND_WRITE5_0_WRITE_MEMORY);
tu_cs_emit(cs, REG_A6XX_VSC_PIPE_DATA_PRIM_SIZE(i));
tu_cs_emit(cs, 0);
tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_prim_strm_pitch - VSC_PAD));
tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
tu_cs_emit_qw(cs, global_iova(cmd, vsc_prim_overflow));
tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_prim_strm_pitch));
}
tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
}
template <chip CHIP>
static void
tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
const VkOffset2D *fdm_offsets, bool use_cb)
{
struct tu_physical_device *phys_dev = cmd->device->physical_device;
const struct tu_framebuffer *fb = cmd->state.framebuffer;
const struct tu_tiling_config *tiling = cmd->state.tiling;
/* If this command buffer may be executed multiple times, then
* viewports/scissor states may have been changed by previous executions
* and we need to reset them before executing the binning IB. With FDM
* offset the viewport also needs to be transformed during the binning
* phase.
*/
if ((!(cmd->usage_flags & VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT) ||
fdm_offsets) && cmd->fdm_bin_patchpoints.size != 0) {
unsigned num_views = tu_fdm_num_layers(cmd);
VkExtent2D unscaled_frag_areas[num_views];
VkRect2D bins[num_views];
VkOffset2D frag_offsets[num_views];
for (unsigned i = 0; i < num_views; i++) {
unscaled_frag_areas[i] = (VkExtent2D) { 1, 1 };
frag_offsets[i] = (VkOffset2D) { 0, 0 };
if (fdm_offsets && !cmd->state.rp.shared_viewport) {
/* We need to shift over the viewport and scissor during the
* binning pass to match the shift applied when rendering. The way
* to do this is to make the per-view bin start negative. In the
* actual rendering pass, the per-view bin start is shifted in a
* negative direction but the first bin is clipped so that the bin
* start is never negative, but we need to do this to avoid
* clipping the user scissor to a non-zero common bin start. We
* skip patching load/store below in order to avoid patching loads
* and stores to a crazy negative-offset bin. The parts of the
* framebuffer left or above the origin correspond to the
* non-visible parts of the left or top bins that will be
* discarded. The framebuffer still needs to extend to the
* original bottom and right, to avoid incorrectly clipping the
* user scissor, so we need to add to the width and height to
* compensate.
*/
VkOffset2D bin_offset = tu_bin_offset(fdm_offsets[i], tiling);
bins[i] = {
{ -bin_offset.x, -bin_offset.y },
{ fb->width + bin_offset.x, fb->height + bin_offset.y },
};
} else {
bins[i] = { { 0, 0 }, { fb->width, fb->height } };
}
}
util_dynarray_foreach (&cmd->fdm_bin_patchpoints,
struct tu_fdm_bin_patchpoint, patch) {
if (patch->flags & TU_FDM_SKIP_BINNING)
continue;
tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 2 + patch->size);
tu_cs_emit_qw(cs, patch->iova);
patch->apply(cmd, cs, patch->data, (VkOffset2D) {0, 0}, frag_offsets,
num_views, unscaled_frag_areas, bins);
}
tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
}
uint32_t width = fb->width + (fdm_offsets ? tiling->tile0.width : 0);
uint32_t height = fb->height + (fdm_offsets ? tiling->tile0.height : 0);
tu6_emit_window_scissor<CHIP>(cs, 0, 0, width - 1, height - 1);
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BIN_VISIBILITY));
tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
tu_cs_emit(cs, 0x1);
tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
tu_cs_emit(cs, 0x1);
tu_cs_emit_wfi(cs);
tu_cs_emit_regs(cs,
A6XX_VFD_RENDER_MODE(.render_mode = BINNING_PASS));
update_vsc_pipe<CHIP>(cmd, cs, phys_dev->info->num_vsc_pipes);
tu_emit_event_write<CHIP>(cmd, cs, FD_VSC_BINNING_START);
tu_cs_emit_regs(cs,
A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0));
tu_cs_emit_regs(cs,
A6XX_TPL1_WINDOW_OFFSET(.x = 0, .y = 0));
if (use_cb)
trace_start_concurrent_binning_ib(&cmd->trace, cs, cmd);
else
trace_start_binning_ib(&cmd->trace, cs, cmd);
/* emit IB to binning drawcmds: */
tu_cs_emit_call(cs, &cmd->draw_cs);
if (use_cb)
trace_end_concurrent_binning_ib(&cmd->trace, cs);
else
trace_end_binning_ib(&cmd->trace, cs);
tu_clone_trace_range(cmd, cs, &cmd->trace, cmd->trace_renderpass_start,
u_trace_end_iterator(&cmd->rp_trace));
/* switching from binning pass to GMEM pass will cause a switch from
* PROGRAM_BINNING to PROGRAM, which invalidates const state (XS_CONST states)
* so make sure these states are re-emitted
* (eventually these states shouldn't exist at all with shader prologue)
* only VS and GS are invalidated, as FS isn't emitted in binning pass,
* and we don't use HW binning when tesselation is used
*/
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
CP_SET_DRAW_STATE__0_DISABLE |
CP_SET_DRAW_STATE__0_GROUP_ID(TU_DRAW_STATE_CONST));
tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
tu_emit_event_write<CHIP>(cmd, cs, FD_VSC_BINNING_END);
/* This flush is probably required because the VSC, which produces the
* visibility stream, is a client of UCHE, whereas the CP needs to read the
* visibility stream (without caching) to do draw skipping. The
* WFI+WAIT_FOR_ME combination guarantees that the binning commands
* submitted are finished before reading the VSC regs (in
* emit_vsc_overflow_test) or the VSC_DATA buffer directly (implicitly as
* part of draws).
*/
tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_CLEAN);
tu_cs_emit_wfi(cs);
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
emit_vsc_overflow_test(cmd, cs);
tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
tu_cs_emit(cs, 0x0);
tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
tu_cs_emit(cs, 0x0);
}
static struct tu_draw_state
tu_emit_input_attachments(struct tu_cmd_buffer *cmd,
const struct tu_subpass *subpass,
bool gmem)
{
const struct tu_tiling_config *tiling = cmd->state.tiling;
/* note: we can probably emit input attachments just once for the whole
* renderpass, this would avoid emitting both sysmem/gmem versions
*
* emit two texture descriptors for each input, as a workaround for
* d24s8/d32s8, which can be sampled as both float (depth) and integer (stencil)
* tu_shader lowers uint input attachment loads to use the 2nd descriptor
* in the pair
* TODO: a smarter workaround
*/
if (!subpass->input_count)
return (struct tu_draw_state) {};
struct tu_cs_memory texture;
VkResult result = tu_cs_alloc(&cmd->sub_cs, subpass->input_count * 2,
A6XX_TEX_CONST_DWORDS, &texture);
if (result != VK_SUCCESS) {
vk_command_buffer_set_error(&cmd->vk, result);
return (struct tu_draw_state) {};
}
for (unsigned i = 0; i < subpass->input_count * 2; i++) {
uint32_t a = subpass->input_attachments[i / 2].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
const struct tu_image_view *iview = cmd->state.attachments[a];
const struct tu_render_pass_attachment *att =
&cmd->state.pass->attachments[a];
uint32_t dst[A6XX_TEX_CONST_DWORDS];
uint32_t gmem_offset = tu_attachment_gmem_offset(cmd, att, 0);
uint32_t cpp = att->cpp;
memcpy(dst, iview->view.descriptor, A6XX_TEX_CONST_DWORDS * 4);
/* Cube descriptors require a different sampling instruction in shader,
* however we don't know whether image is a cube or not until the start
* of a renderpass. We have to patch the descriptor to make it compatible
* with how it is sampled in shader.
*/
enum a6xx_tex_type tex_type =
(enum a6xx_tex_type) pkt_field_get(A6XX_TEX_CONST_2_TYPE, dst[2]);
if (tex_type == A6XX_TEX_CUBE) {
dst[2] = pkt_field_set(A6XX_TEX_CONST_2_TYPE, dst[2], A6XX_TEX_2D);
uint32_t depth = pkt_field_get(A6XX_TEX_CONST_5_DEPTH, dst[5]);
dst[5] = pkt_field_set(A6XX_TEX_CONST_5_DEPTH, dst[5], depth * 6);
}
if (i % 2 == 1 && att->format == VK_FORMAT_D24_UNORM_S8_UINT) {
/* note this works because spec says fb and input attachments
* must use identity swizzle
*
* Also we clear swap to WZYX. This is because the view might have
* picked XYZW to work better with border colors.
*/
dst[0] &= ~(A6XX_TEX_CONST_0_FMT__MASK |
A6XX_TEX_CONST_0_SWAP__MASK |
A6XX_TEX_CONST_0_SWIZ_X__MASK | A6XX_TEX_CONST_0_SWIZ_Y__MASK |
A6XX_TEX_CONST_0_SWIZ_Z__MASK | A6XX_TEX_CONST_0_SWIZ_W__MASK);
if (!cmd->device->physical_device->info->props.has_z24uint_s8uint) {
dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_8_8_8_8_UINT) |
A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_W) |
A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
} else {
dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_Z24_UINT_S8_UINT) |
A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_Y) |
A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
}
}
if (i % 2 == 1 && att->format == VK_FORMAT_D32_SFLOAT_S8_UINT) {
dst[0] = pkt_field_set(A6XX_TEX_CONST_0_FMT, dst[0], FMT6_8_UINT);
dst[2] = pkt_field_set(A6XX_TEX_CONST_2_PITCHALIGN, dst[2], 0);
dst[2] = pkt_field_set(A6XX_TEX_CONST_2_PITCH, dst[2],
iview->stencil_pitch);
dst[3] = 0;
dst[4] = iview->stencil_base_addr;
dst[5] = (dst[5] & 0xffff) | iview->stencil_base_addr >> 32;
cpp = att->samples;
gmem_offset = att->gmem_offset_stencil[cmd->state.gmem_layout];
}
if (!gmem || !subpass->input_attachments[i / 2].patch_input_gmem) {
memcpy(&texture.map[i * A6XX_TEX_CONST_DWORDS], dst, sizeof(dst));
continue;
}
/* patched for gmem */
dst[0] = pkt_field_set(A6XX_TEX_CONST_0_TILE_MODE, dst[0], TILE6_2);
if (!iview->view.is_mutable)
dst[0] = pkt_field_set(A6XX_TEX_CONST_0_SWAP, dst[0], WZYX);
/* If FDM offset is used, the last row and column extend beyond the
* framebuffer but are shifted over when storing. Expand the width and
* height to account for that.
*/
if (tu_enable_fdm_offset(cmd)) {
uint32_t width = pkt_field_get(A6XX_TEX_CONST_1_WIDTH, dst[1]);
uint32_t height = pkt_field_get(A6XX_TEX_CONST_1_HEIGHT, dst[1]);
width += cmd->state.tiling->tile0.width;
height += cmd->state.tiling->tile0.height;
dst[1] = pkt_field_set(A6XX_TEX_CONST_1_WIDTH, dst[1], width);
dst[1] = pkt_field_set(A6XX_TEX_CONST_1_HEIGHT, dst[1], height);
}
dst[2] =
A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) |
A6XX_TEX_CONST_2_PITCH(tiling->tile0.width * cpp);
/* Note: it seems the HW implicitly calculates the array pitch with the
* GMEM tiling, so we don't need to specify the pitch ourselves.
*/
dst[3] = 0;
dst[4] = cmd->device->physical_device->gmem_base + gmem_offset;
dst[5] &= A6XX_TEX_CONST_5_DEPTH__MASK;
for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
dst[i] = 0;
memcpy(&texture.map[i * A6XX_TEX_CONST_DWORDS], dst, sizeof(dst));
}
struct tu_cs cs;
struct tu_draw_state ds = tu_cs_draw_state(&cmd->sub_cs, &cs, 9);
tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3);
tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(0) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_TEX) |
CP_LOAD_STATE6_0_NUM_UNIT(subpass->input_count * 2));
tu_cs_emit_qw(&cs, texture.iova);
tu_cs_emit_regs(&cs, A6XX_SP_PS_TEXMEMOBJ_BASE(.qword = texture.iova));
tu_cs_emit_regs(&cs, A6XX_SP_PS_TSIZE(subpass->input_count * 2));
assert(cs.cur == cs.end); /* validate draw state size */
return ds;
}
static void
tu_set_input_attachments(struct tu_cmd_buffer *cmd, const struct tu_subpass *subpass)
{
struct tu_cs *cs = &cmd->draw_cs;
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 6);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM,
tu_emit_input_attachments(cmd, subpass, true));
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM,
tu_emit_input_attachments(cmd, subpass, false));
}
static void
tu_trace_start_render_pass(struct tu_cmd_buffer *cmd)
{
if (!u_trace_enabled(&cmd->device->trace_context))
return;
uint32_t load_cpp = 0;
uint32_t store_cpp = 0;
uint32_t clear_cpp = 0;
bool has_depth = false;
char ubwc[MAX_RTS + 3];
for (uint32_t i = 0; i < cmd->state.pass->attachment_count; i++) {
const struct tu_render_pass_attachment *attachment =
&cmd->state.pass->attachments[i];
if (attachment->load) {
load_cpp += attachment->cpp;
}
if (attachment->store) {
store_cpp += attachment->cpp;
}
if (attachment->clear_mask) {
clear_cpp += attachment->cpp;
}
has_depth |= vk_format_has_depth(attachment->format);
}
uint8_t ubwc_len = 0;
const struct tu_subpass *subpass = &cmd->state.pass->subpasses[0];
for (uint32_t i = 0; i < subpass->color_count; i++) {
uint32_t att = subpass->color_attachments[i].attachment;
ubwc[ubwc_len++] = att == VK_ATTACHMENT_UNUSED ? '-'
: cmd->state.attachments[att]->view.ubwc_enabled
? 'y'
: 'n';
}
if (subpass->depth_used) {
ubwc[ubwc_len++] = '|';
ubwc[ubwc_len++] =
cmd->state.attachments[subpass->depth_stencil_attachment.attachment]
->view.ubwc_enabled
? 'y'
: 'n';
}
ubwc[ubwc_len] = '\0';
uint32_t max_samples = 0;
for (uint32_t i = 0; i < cmd->state.pass->subpass_count; i++) {
max_samples = MAX2(max_samples, cmd->state.pass->subpasses[i].samples);
}
trace_start_render_pass(&cmd->trace, &cmd->cs, cmd, cmd->state.framebuffer,
cmd->state.tiling, max_samples, clear_cpp,
load_cpp, store_cpp, has_depth, ubwc,
cmd->state.rp.cb_disable_reason ? cmd->state.rp.cb_disable_reason : "");
}
template <chip CHIP>
static void
tu_trace_end_render_pass(struct tu_cmd_buffer *cmd, bool gmem)
{
if (!u_trace_enabled(&cmd->device->trace_context))
return;
uint32_t avg_per_sample_bandwidth =
cmd->state.rp.drawcall_bandwidth_per_sample_sum /
MAX2(cmd->state.rp.drawcall_count, 1);
struct u_trace_address addr = {};
if (cmd->state.lrz.image_view) {
struct tu_image *image = cmd->state.lrz.image_view->image;
addr.bo = image->mem->bo;
addr.offset = (image->iova - image->mem->iova) +
image->lrz_layout.lrz_fc_offset +
offsetof(fd_lrzfc_layout<CHIP>, buffer[0].dir_track);
}
int32_t lrz_disabled_at_draw = cmd->state.rp.lrz_disabled_at_draw
? cmd->state.rp.lrz_disabled_at_draw
: -1;
int32_t lrz_write_disabled_at_draw =
cmd->state.rp.lrz_write_disabled_at_draw
? cmd->state.rp.lrz_write_disabled_at_draw
: -1;
trace_end_render_pass(
&cmd->trace, &cmd->cs, gmem,
cmd->state.rp.gmem_disable_reason ? cmd->state.rp.gmem_disable_reason
: "",
cmd->state.rp.drawcall_count, avg_per_sample_bandwidth,
cmd->state.lrz.valid,
cmd->state.rp.lrz_disable_reason ? cmd->state.rp.lrz_disable_reason
: "",
lrz_disabled_at_draw, lrz_write_disabled_at_draw, addr);
}
static void
tu_emit_renderpass_begin(struct tu_cmd_buffer *cmd)
{
/* We need to re-emit any draw states that are patched in order for them to
* be correctly added to the per-renderpass patchpoint list, even if they
* are the same as before.
*/
if (cmd->state.pass->has_fdm)
cmd->state.dirty |= TU_CMD_DIRTY_FDM;
/* We need to re-emit MSAA at the beginning of every renderpass because it
* isn't part of a draw state that gets automatically re-emitted.
*/
BITSET_SET(cmd->vk.dynamic_graphics_state.dirty,
MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES);
/* PC_CNTL isn't a part of a draw state and may be changed
* by blits.
*/
BITSET_SET(cmd->vk.dynamic_graphics_state.dirty,
MESA_VK_DYNAMIC_IA_PRIMITIVE_RESTART_ENABLE);
cmd->state.fdm_enabled = cmd->state.pass->has_fdm;
}
static inline bool
tu7_cb_disable_reason(bool disable_cb,
struct tu_cmd_buffer *cmd,
const char *reason)
{
if (disable_cb && !cmd->state.rp.cb_disable_reason) {
cmd->state.rp.cb_disable_reason = reason;
}
return disable_cb;
}
static bool
tu7_emit_concurrent_binning_start(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
bool disable_cb)
{
if (tu7_cb_disable_reason(disable_cb, cmd, "disable_cb") ||
/* LRZ can only be cleared via fast clear in BV. Disable CB if we can't
* use it.
*/
tu7_cb_disable_reason(
(!cmd->state.lrz.fast_clear && cmd->state.lrz.image_view), cmd,
"LRZ fast clear disabled") ||
tu7_cb_disable_reason(TU_DEBUG(NO_CONCURRENT_BINNING), cmd,
"TU_DEBUG(NO_CONCURRENT_BINNING)")) {
tu_cs_emit_pkt7(cs, CP_THREAD_CONTROL, 1);
tu_cs_emit(cs, CP_THREAD_CONTROL_0_THREAD(CP_SET_THREAD_BR) |
CP_THREAD_CONTROL_0_CONCURRENT_BIN_DISABLE);
tu7_set_pred_bit(cs, TU_PREDICATE_CB_ENABLED, false);
cmd->state.renderpass_cb_disabled = true;
tu_add_cb_barrier_info(cmd);
return false;
}
return true;
}
static void
tu7_emit_concurrent_binning(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
assert(!cmd->state.renderpass_cb_disabled);
tu7_thread_control(cs, CP_SET_THREAD_BOTH);
/* Increment timestamp to make it unique in subsequent commands */
tu_cs_emit_pkt7(cs, CP_MODIFY_TIMESTAMP, 1);
tu_cs_emit(cs, CP_MODIFY_TIMESTAMP_0_ADD(1) |
CP_MODIFY_TIMESTAMP_0_OP(MODIFY_TIMESTAMP_ADD_LOCAL));
/* We initialize the "is concurrent binning enabled?" predicate to true and
* disable it later if necessary.
*/
tu7_set_pred_bit(cs, TU_PREDICATE_CB_ENABLED, true);
tu7_thread_control(cs, CP_SET_THREAD_BV);
/* If there was an overflow in the BR resource table the register will be
* set to 1 by CP_RESOURCE_LIST. Wait for it to clear here.
*/
tu7_wait_onchip_val(cs, TU_ONCHIP_CB_RESLIST_OVERFLOW, 0);
tu_lrz_cb_begin(cmd, cs);
}
template <chip CHIP>
static void
tu7_emit_concurrent_binning_sysmem(struct tu_cmd_buffer *cmd,
struct tu_cs *cs)
{
/* Why all the complexity?
* The logic necessary to support concurrent binning running in parallel to
* sysmem has enough overhead to reduce performance for a workload with
* high number of renderpasses, so we have to patch out the CB logic if
* CB cannot run in parallel to this renderpass.
* It does everything in IB1 because from testing the CB logic hangs in IB2.
*/
struct tu_cs_patchable_state cb_state = tu_cs_patchable_start(cs, 128);
/* It seems that for sysmem render passes we have to use BV to clear LRZ
* before the renderpass. Otherwise the clear doesn't become visible to
* subsequent draws when LRZ has been flipped an odd number of times.
* Presumably this works if concurrent binning is disabled, because the
* blob relies on this, but that requires synchronizing BR and BV
* unnecessarily, and we want BV to skip ahead across sysmem renderpasses.
*
* In the future, we may also support writing LRZ in BV.
*/
{
tu7_emit_concurrent_binning(cmd, cs);
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BIN_VISIBILITY));
tu_lrz_sysmem_begin<CHIP>(cmd, cs);
tu_lrz_after_bv<CHIP>(cmd, cs);
tu7_write_onchip_timestamp(cs, TU_ONCHIP_CB_BV_TIMESTAMP);
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM7_BIN_VISIBILITY_END));
tu7_thread_control(cs, CP_SET_THREAD_BR);
tu7_wait_onchip_timestamp(cs, TU_ONCHIP_CB_BV_TIMESTAMP);
tu_lrz_before_sysmem_br<CHIP>(cmd, cs);
}
tu_cs_patchable_end(cs, false, &cb_state);
struct tu_cs_patchable_state no_cb_state = tu_cs_patchable_start(cs, 64);
{
tu_cs_emit_pkt7(cs, CP_THREAD_CONTROL, 1);
tu_cs_emit(cs, CP_THREAD_CONTROL_0_THREAD(CP_SET_THREAD_BR) |
CP_THREAD_CONTROL_0_CONCURRENT_BIN_DISABLE);
tu7_set_pred_bit(cs, TU_PREDICATE_CB_ENABLED, false);
tu_lrz_sysmem_begin<CHIP>(cmd, cs);
}
tu_cs_patchable_end(cs, true, &no_cb_state);
struct tu_cb_control_point enable_cb_patch = {
.type = TU_CB_CONTROL_TYPE_PATCHPOINT,
.patchpoint = cb_state.nop_header,
.patch_value = cb_state.enable_patch,
.original_value = cb_state.disable_patch,
};
util_dynarray_append(&cmd->cb_control_points, enable_cb_patch);
struct tu_cb_control_point disable_no_cb_patch = {
.type = TU_CB_CONTROL_TYPE_PATCHPOINT,
.patchpoint = no_cb_state.nop_header,
.patch_value = no_cb_state.disable_patch,
.original_value = no_cb_state.enable_patch,
};
util_dynarray_append(&cmd->cb_control_points, disable_no_cb_patch);
}
template <chip CHIP>
static void
tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
struct tu_renderpass_result *autotune_result)
{
const struct tu_framebuffer *fb = cmd->state.framebuffer;
if (CHIP == A6XX) {
tu_lrz_sysmem_begin<CHIP>(cmd, cs);
} else {
if (tu7_emit_concurrent_binning_start(cmd, cs, false)) {
tu7_emit_concurrent_binning_sysmem<CHIP>(cmd, cs);
} else {
tu_lrz_sysmem_begin<CHIP>(cmd, cs);
}
}
assert(fb->width > 0 && fb->height > 0);
tu6_emit_window_scissor<CHIP>(cs, 0, 0, fb->width - 1, fb->height - 1);
tu6_emit_window_offset<CHIP>(cs, 0, 0);
tu6_emit_bin_size<CHIP>(cs, 0, 0, {
.render_mode = RENDERING_PASS,
.force_lrz_write_dis =
!cmd->device->physical_device->info->props.has_lrz_feedback,
.buffers_location = BUFFERS_IN_SYSMEM,
.lrz_feedback_zmode_mask =
cmd->device->physical_device->info->props.has_lrz_feedback
? LRZ_FEEDBACK_EARLY_Z_OR_EARLY_Z_LATE_Z
: LRZ_FEEDBACK_NONE,
});
if (CHIP == A7XX) {
tu_cs_emit_regs(cs, RB_BUFFER_CNTL(CHIP,
.z_sysmem = true,
.s_sysmem = true,
.rt0_sysmem = true,
.rt1_sysmem = true,
.rt2_sysmem = true,
.rt3_sysmem = true,
.rt4_sysmem = true,
.rt5_sysmem = true,
.rt6_sysmem = true,
.rt7_sysmem = true,
));
tu_cs_emit_regs(cs, RB_CLEAR_TARGET(CHIP, .clear_mode = CLEAR_MODE_SYSMEM));
}
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_DIRECT_RENDER));
/* A7XX TODO: blob doesn't use CP_SKIP_IB2_ENABLE_* */
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
tu_cs_emit(cs, 0x0);
tu_emit_cache_flush_ccu<CHIP>(cmd, cs, TU_CMD_CCU_SYSMEM);
tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
tu_cs_emit(cs, 0x1);
tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
tu_cs_emit(cs, 0x0);
/* Reset bin scaling. */
if (cmd->device->physical_device->info->props.has_hw_bin_scaling) {
tu_cs_emit_regs(cs, GRAS_BIN_FOVEAT(CHIP));
tu_cs_emit_regs(cs, RB_BIN_FOVEAT(CHIP));
}
tu_autotune_begin_renderpass<CHIP>(cmd, cs, autotune_result);
tu_cs_sanity_check(cs);
}
template <chip CHIP>
static void
tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
struct tu_renderpass_result *autotune_result)
{
tu_autotune_end_renderpass<CHIP>(cmd, cs, autotune_result);
/* Do any resolves of the last subpass. These are handled in the
* tile_store_cs in the gmem path.
*/
tu6_emit_sysmem_resolves<CHIP>(cmd, cs, cmd->state.subpass);
tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
tu_cs_emit(cs, 0x0);
tu_lrz_sysmem_end<CHIP>(cmd, cs);
/* Clear the resource list for any LRZ resources we emitted at the
* beginning.
*/
if (CHIP >= A7XX) {
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, 4);
tu_cs_emit(cs, CP_EVENT_WRITE7_0_EVENT(DUMMY_EVENT) |
CP_EVENT_WRITE7_0_CLEAR_RENDER_RESOURCE |
CP_EVENT_WRITE7_0_WRITE_DST(EV_DST_ONCHIP) |
CP_EVENT_WRITE7_0_WRITE_SRC(EV_WRITE_USER_32B) |
CP_EVENT_WRITE7_0_WRITE_ENABLED);
tu_cs_emit_qw(cs, TU_ONCHIP_CB_RESLIST_OVERFLOW);
tu_cs_emit(cs, 0); /* value */
}
tu_cs_sanity_check(cs);
}
static void
tu7_write_and_wait_onchip_timestamp(struct tu_cs *cs, enum tu_onchip_addr onchip_addr)
{
tu7_write_onchip_timestamp(cs, onchip_addr);
tu7_wait_onchip_timestamp(cs, onchip_addr);
}
static bool
tu7_emit_concurrent_binning_gmem(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
bool use_hw_binning)
{
/* xfb queries use data from the binning pass. If they are running outside
* of a RP then we may have to deal with a mix of GMEM/sysmem renderpasses
* where the counters increase on different processors. Just disable CB so
* that everything happens on BR and we don't need difficult merging of BV
* and BR results. In addition, RBBM primitive counters seem to not work
* at all with concurrent binning, so disable if they are running before
* the RP.
*/
bool disable_cb =
cmd->state.xfb_query_running_before_rp ||
cmd->state.rp.has_prim_generated_query_in_rp ||
cmd->state.rp.has_vtx_stats_query_in_rp ||
cmd->state.prim_counters_running > 0;
tu7_cb_disable_reason(disable_cb, cmd,
"xfb/prim-gen/prim-counters/vtx-stats query is running");
tu7_cb_disable_reason(!use_hw_binning, cmd, "hw binning disabled");
if (!tu7_emit_concurrent_binning_start(cmd, cs, disable_cb || !use_hw_binning))
return false;
tu7_emit_concurrent_binning(cmd, cs);
struct tu_cb_control_point cb_enabled_info = {
.type = TU_CB_CONTROL_TYPE_CB_ENABLED,
};
util_dynarray_append(&cmd->cb_control_points, cb_enabled_info);
/* We want to disable concurrent binning if BV isn't far enough ahead of
* BR. The core idea is to write a timestamp in BR and BV, and compare the
* BR and BV timestamps for equality. if BR is fast enough, it will write
* the timestamp ahead of BV and then when BV compares for equality it will
* find them equal. BR cannot race too far ahead of BV because it must wait
* for BV's determination to finish, which we do via another timestamp, so
* either BV is ahead of BR or the timestamps are equal.
*
* We need to communicate the determination from BV to BR so they both
* agree on whether concurrent binning is enabled or not. The easiest way
* to do it is via a "when was concurrent binning last disabled" timestamp,
* because we only have to set it when disabling concurrent binning.
*/
if (!TU_DEBUG(FORCE_CONCURRENT_BINNING)) {
tu7_write_and_wait_onchip_timestamp(cs, TU_ONCHIP_CB_BV_TIMESTAMP);
tu7_thread_control(cs, CP_SET_THREAD_BR);
tu7_write_and_wait_onchip_timestamp(cs, TU_ONCHIP_CB_BR_TIMESTAMP);
tu7_thread_control(cs, CP_SET_THREAD_BV);
/* If in a secondary, dynamically disable CB if a vtx stats query is
* running.
*/
if (cmd->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(PRED_TEST) |
CP_COND_REG_EXEC_0_PRED_BIT(TU_PREDICATE_VTX_STATS_RUNNING));
}
const uint32_t bv_cond_dwords = 3 + 4 + 4;
tu_cs_reserve(cs, 4 + bv_cond_dwords);
tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 3);
tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(REG_COMPARE) |
CP_COND_REG_EXEC_0_REG0(TU_ONCHIP_CB_BR_TIMESTAMP) |
CP_COND_REG_EXEC_0_ONCHIP_MEM);
tu_cs_emit(cs, REG_COMPARE_CP_COND_REG_EXEC_1_REG1(TU_ONCHIP_CB_BV_TIMESTAMP) |
REG_COMPARE_CP_COND_REG_EXEC_1_ONCHIP_MEM);
tu_cs_emit(cs, bv_cond_dwords);
if (cmd->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY)
tu_cond_exec_end(cs);
/* if (BR_TIMESTAMP == BV_TIMESTAMP) */ {
tu7_write_and_wait_onchip_timestamp(cs, TU_ONCHIP_CB_BV_DISABLED_TIMESTAMP);
tu7_set_pred_bit(cs, TU_PREDICATE_CB_ENABLED, false);
}
tu7_write_onchip_timestamp(cs,
TU_ONCHIP_CB_BV_DETERMINATION_FINISHED_TIMESTAMP);
tu7_thread_control(cs, CP_SET_THREAD_BR);
tu7_wait_onchip_timestamp(cs, TU_ONCHIP_CB_BV_DETERMINATION_FINISHED_TIMESTAMP);
const uint32_t br_cond_dwords = 4;
tu_cs_reserve(cs, 4 + br_cond_dwords);
tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 3);
tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(REG_COMPARE) |
CP_COND_REG_EXEC_0_REG0(TU_ONCHIP_CB_BR_TIMESTAMP) |
CP_COND_REG_EXEC_0_ONCHIP_MEM);
tu_cs_emit(cs, REG_COMPARE_CP_COND_REG_EXEC_1_REG1(TU_ONCHIP_CB_BV_DISABLED_TIMESTAMP) |
REG_COMPARE_CP_COND_REG_EXEC_1_ONCHIP_MEM);
tu_cs_emit(cs, br_cond_dwords);
/* if (BR_TIMESTAMP == BV_DISABLED_TIMESTAMP) */ {
tu7_set_pred_bit(cs, TU_PREDICATE_CB_ENABLED, false);
}
}
/* At this point BV and BR are agreed on whether CB is enabled. If CB is
* enabled, set the thread to BV for the binning pass, otherwise set BR and
* disable concurrent binning.
*/
tu7_thread_control(cs, CP_SET_THREAD_BOTH);
const uint32_t if_dwords = 5;
const uint32_t else_dwords = 2;
tu_cs_reserve(cs, 3 + if_dwords + else_dwords);
tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(PRED_TEST) |
CP_COND_REG_EXEC_0_PRED_BIT(TU_PREDICATE_CB_ENABLED) |
CP_COND_REG_EXEC_0_SKIP_WAIT_FOR_ME);
tu_cs_emit(cs, if_dwords);
/* if (CB is enabled) */ {
tu7_thread_control(cs, CP_SET_THREAD_BV);
/* Wait for BR vis stream reads to finish */
tu_cs_emit_pkt7(cs, CP_BV_BR_COUNT_OPS, 1);
tu_cs_emit(cs, CP_BV_BR_COUNT_OPS_0_OP(PIPE_BV_WAIT_FOR_BR));
/* This is the NOP-as-else trick. If CB is disabled, this CP_NOP is
* skipped and its body (the else) is executed.
*/
tu_cs_emit_pkt7(cs, CP_NOP, else_dwords);
} /* else */ {
tu_cs_emit_pkt7(cs, CP_THREAD_CONTROL, 1);
tu_cs_emit(cs, CP_THREAD_CONTROL_0_THREAD(CP_SET_THREAD_BR) |
CP_THREAD_CONTROL_0_CONCURRENT_BIN_DISABLE);
}
return true;
}
template <chip CHIP>
static void
tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
struct tu_renderpass_result *autotune_result,
const VkOffset2D *fdm_offsets)
{
struct tu_physical_device *phys_dev = cmd->device->physical_device;
const struct tu_tiling_config *tiling = cmd->state.tiling;
const struct tu_vsc_config *vsc = tu_vsc_config(cmd, tiling);
const struct tu_render_pass *pass = cmd->state.pass;
bool use_binning = use_hw_binning(cmd);
/* User flushes should always be executed on BR. */
tu_emit_cache_flush_ccu<CHIP>(cmd, cs, TU_CMD_CCU_GMEM);
bool use_cb = false;
if (CHIP >= A7XX) {
tu7_emit_tile_render_begin_regs<CHIP>(cs);
use_cb = tu7_emit_concurrent_binning_gmem(cmd, cs, use_binning);
}
if (!use_cb)
tu_trace_start_render_pass(cmd);
tu_lrz_tiling_begin<CHIP>(cmd, cs);
/* tu_lrz_tiling_begin() can accumulate additional flushes. If that happens
* CB should be disabled, so it's safe to just emit them here.
*/
tu_emit_cache_flush_ccu<CHIP>(cmd, cs, TU_CMD_CCU_GMEM);
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
tu_cs_emit(cs, 0x0);
/* Reset bin scaling. */
if (phys_dev->info->props.has_hw_bin_scaling) {
tu_cs_emit_regs(cs, GRAS_BIN_FOVEAT(CHIP));
tu_cs_emit_regs(cs, RB_BIN_FOVEAT(CHIP));
}
if (use_binning) {
if (!cmd->vsc_initialized) {
tu6_lazy_init_vsc(cmd);
}
/* We always emit VSC before each renderpass, because due to
* skipsaverestore the underlying VSC registers may have become
* invalid. Normally we'd need to WFI before setting these non-context
* registers, but we should be safe because we're only setting it to the
* same value it had before.
*
* TODO: On a6xx, we have to emit this per-bin or make the amble include
* these registers, because CP_SET_BIN_DATA5_OFFSET will use the
* register instead of the pseudo register and its value won't survive
* across preemptions. The blob seems to take the second approach and
* emits the preamble lazily. We chose the per-bin approach but blob's
* should be a better one.
*/
if (cmd->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT)
tu_cs_set_writeable(cs, true);
tu_emit_vsc<CHIP>(cmd, cs);
if (cmd->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT)
tu_cs_set_writeable(cs, false);
tu6_emit_bin_size<CHIP>(cs, tiling->tile0.width, tiling->tile0.height,
{
.render_mode = BINNING_PASS,
.buffers_location = BUFFERS_IN_GMEM,
.lrz_feedback_zmode_mask =
phys_dev->info->props.has_lrz_feedback
? LRZ_FEEDBACK_EARLY_Z_LATE_Z
: LRZ_FEEDBACK_NONE
});
tu6_emit_render_cntl<CHIP>(cmd, cmd->state.subpass, cs, true);
tu6_emit_binning_pass<CHIP>(cmd, cs, fdm_offsets, use_cb);
/* Enable early return from CP_INDIRECT_BUFFER once the visibility stream
* is done. We don't enable this if there are stores in a non-final
* subpass, because it's more important to be able to share gmem space
* between attachments by storing early, than it is to do IB2 skipping
* (which has an effect we struggle to even measure).
*/
if (pass->allow_ib2_skipping) {
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
tu_cs_emit(cs, 0x1);
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_LOCAL, 1);
tu_cs_emit(cs, 0x1);
}
} else {
if (vsc->binning_possible) {
/* Mark all tiles as visible for tu6_emit_cond_for_load_stores(), since
* the actual binner didn't run.
*/
int pipe_count = vsc->pipe_count.width * vsc->pipe_count.height;
tu_cs_emit_pkt4(cs, REG_A6XX_VSC_CHANNEL_VISIBILITY(0), pipe_count);
for (int i = 0; i < pipe_count; i++)
tu_cs_emit(cs, ~0);
}
}
if (vsc->binning_possible) {
/* On a7xx we always need VSC allocated because the VSC state has to go
* together with other stream data. We could allocate just the VSC state
* if binning is disabled but it doesn't seem worth it.
*/
if (CHIP >= A7XX && !cmd->vsc_initialized)
tu6_lazy_init_vsc(cmd);
/* Upload state regs to memory to be restored on skipsaverestore
* preemption. On a7xx this is considered part of the vis stream that
* requires a patchpoint.
*/
if (CHIP >= A7XX &&
(cmd->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT))
tu_cs_set_writeable(cs, true);
tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(REG_A6XX_VSC_CHANNEL_VISIBILITY(0)) |
CP_REG_TO_MEM_0_CNT(32));
if (CHIP >= A7XX)
tu_emit_vis_stream_patchpoint(cmd, cs, cmd->vsc_state_offset);
else
tu_cs_emit_qw(cs, global_iova(cmd, vsc_state));
if (CHIP >= A7XX) {
uint32_t num_vsc_pipes = phys_dev->info->num_vsc_pipes;
tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
if (use_binning) {
tu_cs_emit_pkt7(cs, CP_THREAD_CONTROL, 1);
tu_cs_emit(cs, CP_THREAD_CONTROL_0_THREAD(CP_SET_THREAD_BV));
tu_lrz_after_bv<CHIP>(cmd, cs);
/* Signal that BV is done for this render pass. This always has to
* be executed, even when CB is dynamically disabled, because we
* need to keep BR and BV counts in sync with which visibility
* streams are in use.
*/
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, 1);
tu_cs_emit(cs, CP_EVENT_WRITE7_0_EVENT(DUMMY_EVENT) |
CP_EVENT_WRITE7_0_INC_BV_COUNT);
/* This mode seems to be only used by BV and signals that a
* simpler save/restore procedure can be used in between render
* passes.
*/
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM7_BIN_VISIBILITY_END));
}
tu7_thread_control(cs, CP_SET_THREAD_BR);
if (use_binning) {
/* Wait for the BV to be done for this render pass. */
tu_cs_emit_pkt7(cs, CP_BV_BR_COUNT_OPS, 1);
tu_cs_emit(cs, CP_BV_BR_COUNT_OPS_0_OP(PIPE_BR_WAIT_FOR_BV));
/* Emit vis stream on BR */
tu_emit_vsc<CHIP>(cmd, cs);
}
tu_cs_emit_pkt7(cs, CP_MEM_TO_SCRATCH_MEM, 4);
tu_cs_emit(cs, num_vsc_pipes); /* count */
tu_cs_emit(cs, 0); /* offset */
tu_emit_vis_stream_patchpoint(cmd, cs, cmd->vsc_state_offset);
}
if (CHIP >= A7XX &&
(cmd->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT))
tu_cs_set_writeable(cs, false);
} else if (CHIP >= A7XX) {
/* Earlier we disabled concurrent binning to make LRZ fast-clear work
* with no HW binning, now re-enable it while staying on BR.
*/
tu7_set_thread_br_patchpoint(cmd, cs, false);
}
tu_lrz_before_tiles<CHIP>(cmd, cs, use_cb);
if (use_cb)
tu_trace_start_render_pass(cmd);
tu_autotune_begin_renderpass<CHIP>(cmd, cs, autotune_result);
tu_cs_sanity_check(cs);
}
template <chip CHIP>
static void
tu6_render_tile(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
const struct tu_tile_config *tile,
bool fdm, const VkOffset2D *fdm_offsets)
{
tu6_emit_tile_select<CHIP>(cmd, &cmd->cs, tile, fdm, fdm_offsets);
tu_lrz_before_tile<CHIP>(cmd, &cmd->cs);
trace_start_draw_ib_gmem(&cmd->trace, &cmd->cs, cmd);
/* Primitives that passed all tests are still counted in in each
* tile even with HW binning beforehand. Do not permit it.
*/
if (cmd->state.prim_generated_query_running_before_rp)
tu_emit_event_write<CHIP>(cmd, cs, FD_STOP_PRIMITIVE_CTRS);
tu_cs_emit_call(cs, &cmd->draw_cs);
if (cmd->state.prim_generated_query_running_before_rp)
tu_emit_event_write<CHIP>(cmd, cs, FD_START_PRIMITIVE_CTRS);
if (use_hw_binning(cmd)) {
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BIN_END_OF_DRAWS) |
A6XX_CP_SET_MARKER_0_USES_GMEM);
}
/* Predicate is changed in draw_cs so we have to re-emit it */
if (cmd->state.rp.draw_cs_writes_to_cond_pred &&
util_is_power_of_two_nonzero(tile->slot_mask)) {
uint32_t slot = ffs(tile->slot_mask) - 1;
tu6_emit_cond_for_load_stores<CHIP>(cmd, cs, tile->pipe, slot, false);
}
if (cmd->state.pass->allow_ib2_skipping) {
/* Disable CP_INDIRECT_BUFFER/CP_DRAW skipping again at the end of the
* pass -- tile_store_cs is for stores that can't be skipped based on
* visibility.
*/
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
tu_cs_emit(cs, 0x0);
}
tu_cs_emit_call(cs, &cmd->tile_store_cs);
tu_clone_trace_range(cmd, cs, &cmd->trace, cmd->trace_renderpass_start,
u_trace_end_iterator(&cmd->rp_trace));
tu_cs_emit_wfi(cs);
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BIN_RENDER_END));
tu_cs_sanity_check(cs);
trace_end_draw_ib_gmem(&cmd->trace, &cmd->cs);
}
template <chip CHIP>
static void
tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
struct tu_renderpass_result *autotune_result)
{
tu_autotune_end_renderpass<CHIP>(cmd, cs, autotune_result);
tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
tu_lrz_tiling_end<CHIP>(cmd, cs);
bool hw_binning = use_hw_binning(cmd);
if (hw_binning) {
cmd->state.tile_render_pass_count++;
}
/* If we are using HW binning, signal that we are done with reading the vis
* stream for this render pass by advancing the counter. Also clear render
* resources, currently only used for LRZ, and reset the overflow onchip
* register.
*/
if (CHIP >= A7XX) {
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, 4);
tu_cs_emit(cs, CP_EVENT_WRITE7_0_EVENT(DUMMY_EVENT) |
COND(hw_binning, CP_EVENT_WRITE7_0_INC_BR_COUNT) |
CP_EVENT_WRITE7_0_CLEAR_RENDER_RESOURCE |
CP_EVENT_WRITE7_0_WRITE_DST(EV_DST_ONCHIP) |
CP_EVENT_WRITE7_0_WRITE_SRC(EV_WRITE_USER_32B) |
CP_EVENT_WRITE7_0_WRITE_ENABLED);
tu_cs_emit_qw(cs, TU_ONCHIP_CB_RESLIST_OVERFLOW);
tu_cs_emit(cs, 0); /* value */
}
tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_CLEAN_BLIT_CACHE);
tu_cs_sanity_check(cs);
}
static void
tu_calc_frag_area(struct tu_cmd_buffer *cmd,
struct tu_tile_config *tile,
const struct tu_image_view *fdm,
const VkOffset2D *fdm_offsets)
{
const struct tu_tiling_config *tiling = cmd->state.tiling;
const uint32_t x1 = tiling->tile0.width * tile->pos.x;
const uint32_t y1 = tiling->tile0.height * tile->pos.y;
const uint32_t x2 = MIN2(x1 + tiling->tile0.width, MAX_VIEWPORT_SIZE);
const uint32_t y2 = MIN2(y1 + tiling->tile0.height, MAX_VIEWPORT_SIZE);
unsigned views = tu_fdm_num_layers(cmd);
const struct tu_framebuffer *fb = cmd->state.framebuffer;
struct tu_frag_area raw_areas[views];
if (fdm) {
for (unsigned i = 0; i < views; i++) {
VkOffset2D sample_pos = { 0, 0 };
/* Offsets less than a tile size are accomplished by sliding the
* tiles. However once we shift a whole tile size then we reset the
* tiles back to where they were at the beginning and we need to
* adjust where each bin is sampling from:
*
* x offset = 0:
*
* ------------------------------------
* | * | * | * | (unused) |
* ------------------------------------
*
* x offset = 4:
*
* -------------------------
* | * | * | * | * |
* -------------------------
*
* x offset = 8:
*
* ------------------------------------
* | * | * | * | (unused) |
* ------------------------------------
*
* As the user's offset increases we slide the tiles to the right,
* until we reach the whole tile size and reset the tile positions.
* tu_bin_offset() returns an amount to shift to the left, negating
* the offset.
*
* If we were forced to use a shared viewport, then we must not shift
* over the tiles and instead must only shift when sampling because
* we cannot shift the tiles differently per view. This disables
* smooth transitions of the fragment density map and effectively
* negates the extension.
*
* Note that we cannot clamp x2/y2 to the framebuffer size, as we
* normally would do, because then tiles along the edge would
* incorrectly nudge the sample_pos towards the center of the
* framebuffer. If we shift one complete tile over towards the
* center and reset the tiles as above, the sample_pos would
* then shift back towards the edge and we could get a "pop" from
* suddenly changing density due to the slight shift.
*/
if (fdm_offsets) {
VkOffset2D offset = fdm_offsets[i];
if (!cmd->state.rp.shared_viewport) {
VkOffset2D bin_offset = tu_bin_offset(fdm_offsets[i], tiling);
offset.x += bin_offset.x;
offset.y += bin_offset.y;
}
sample_pos.x = (x1 + x2) / 2 - offset.x;
sample_pos.y = (y1 + y2) / 2 - offset.y;
} else {
sample_pos.x = (x1 + MIN2(x2, fb->width)) / 2;
sample_pos.y = (y1 + MIN2(y2, fb->height)) / 2;
}
tu_fragment_density_map_sample(fdm,
sample_pos.x,
sample_pos.y,
fb->width, fb->height, i,
&raw_areas[i]);
}
} else {
for (unsigned i = 0; i < views; i++)
raw_areas[i].width = raw_areas[i].height = 1.0f;
}
for (unsigned i = 0; i < views; i++) {
float floor_x, floor_y;
float area = raw_areas[i].width * raw_areas[i].height;
float frac_x = modff(raw_areas[i].width, &floor_x);
float frac_y = modff(raw_areas[i].height, &floor_y);
/* The spec allows rounding up one of the axes as long as the total
* area is less than or equal to the original area. Take advantage of
* this to try rounding up the number with the largest fraction.
*/
if ((frac_x > frac_y ? (floor_x + 1.f) * floor_y :
floor_x * (floor_y + 1.f)) <= area) {
if (frac_x > frac_y)
floor_x += 1.f;
else
floor_y += 1.f;
}
uint32_t width = floor_x;
uint32_t height = floor_y;
/* Areas that aren't a power of two, especially large areas, can create
* in floating-point rounding errors when dividing by the area in the
* viewport that result in under-rendering. Round down to a power of two
* to make sure all operations are exact.
*/
width = 1u << util_logbase2(width);
height = 1u << util_logbase2(height);
/* When FDM offset is enabled, the fragment area has to divide the
* offset to make sure that we don't have tiles with partial fragments.
* It would be bad to have the fragment area change as a function of the
* offset, because we'd get "popping" as the resolution changes with the
* offset, so just make sure it divides the offset granularity. This
* should mean it always divides the offset for any possible offset.
*/
if (fdm_offsets) {
width = MIN2(width, TU_FDM_OFFSET_GRANULARITY);
height = MIN2(height, TU_FDM_OFFSET_GRANULARITY);
}
/* HW viewport scaling supports a maximum fragment width/height of 4.
*/
if (views <= MAX_HW_SCALED_VIEWS) {
width = MIN2(width, 4);
height = MIN2(height, 4);
}
/* Make sure that the width/height divides the tile width/height so
* we don't have to do extra awkward clamping of the edges of each
* bin when resolving. It also has to divide the fdm offset, if any.
* Note that because the tile width is rounded to a multiple of 32 any
* power of two 32 or less will work, and if there is an offset then it
* must be a multiple of 4 so 2 or 4 will definitely work.
*
* TODO: Try to take advantage of the total area allowance here, too.
*/
while (tiling->tile0.width % width != 0)
width /= 2;
while (tiling->tile0.height % height != 0)
height /= 2;
tile->frag_areas[i].width = width;
tile->frag_areas[i].height = height;
}
/* If at any point we were forced to use the same scaling for all
* viewports, we need to make sure that any users *not* using shared
* scaling, including loads/stores, also consistently share the scaling.
*/
if (cmd->state.rp.shared_viewport) {
VkExtent2D frag_area = { UINT32_MAX, UINT32_MAX };
for (unsigned i = 0; i < views; i++) {
frag_area.width = MIN2(frag_area.width, tile->frag_areas[i].width);
frag_area.height = MIN2(frag_area.height, tile->frag_areas[i].height);
}
for (unsigned i = 0; i < views; i++)
tile->frag_areas[i] = frag_area;
}
}
static bool
try_merge_tiles(struct tu_tile_config *dst, const struct tu_tile_config *src,
unsigned views, bool has_abs_bin_mask)
{
uint32_t slot_mask = dst->slot_mask | src->slot_mask;
/* The fragment areas must be the same. */
for (unsigned i = 0; i < views; i++) {
if (dst->frag_areas[i].width != src->frag_areas[i].width ||
dst->frag_areas[i].height != src->frag_areas[i].height)
return false;
}
/* The tiles must be vertically or horizontally adjacent and have the
* compatible width/height.
*/
if (dst->pos.x == src->pos.x) {
if (dst->extent.height != src->extent.height)
return false;
} else if (dst->pos.y == src->pos.y) {
if (dst->extent.width != src->extent.width)
return false;
} else {
return false;
}
if (!has_abs_bin_mask) {
/* The mask of the combined tile has to fit in 16 bits */
uint32_t hw_mask = slot_mask >> (ffs(slot_mask) - 1);
if ((hw_mask & 0xffff) != hw_mask)
return false;
}
/* Note, this assumes that dst is below or to the right of src, which is
* how we call this function below.
*/
VkExtent2D extent = {
dst->extent.width + (dst->pos.x - src->pos.x),
dst->extent.height + (dst->pos.y - src->pos.y),
};
assert(dst->extent.height > 0);
/* The common fragment areas must not be smaller than the combined bin
* extent, so that the combined bin is not larger than the original
* unscaled bin.
*/
for (unsigned i = 0; i < views; i++) {
if (dst->frag_areas[i].width < extent.width ||
dst->frag_areas[i].height < extent.height)
return false;
}
/* Ok, let's combine them. dst is below or to the right of src, so it takes
* src's position.
*/
dst->extent = extent;
dst->pos = src->pos;
dst->slot_mask = slot_mask;
return true;
}
template <chip CHIP>
void
tu_render_pipe_fdm(struct tu_cmd_buffer *cmd, uint32_t pipe,
uint32_t tx1, uint32_t ty1, uint32_t tx2, uint32_t ty2,
const struct tu_image_view *fdm,
const VkOffset2D *fdm_offsets)
{
uint32_t width = tx2 - tx1;
uint32_t height = ty2 - ty1;
unsigned views = tu_fdm_num_layers(cmd);
bool has_abs_mask =
cmd->device->physical_device->info->props.has_abs_bin_mask;
struct tu_tile_config tiles[width * height];
/* Initialize tiles and sample fragment density map */
for (uint32_t y = 0; y < height; y++) {
for (uint32_t x = 0; x < width; x++) {
struct tu_tile_config *tile = &tiles[width * y + x];
tile->pos = { x + tx1, y + ty1 };
tile->extent = { 1, 1 };
tile->pipe = pipe;
tile->slot_mask = 1u << (width * y + x);
tu_calc_frag_area(cmd, tile, fdm, fdm_offsets);
}
}
uint32_t merged_tiles = 0;
/* Merge tiles */
for (uint32_t y = 0; y < height; y++) {
for (uint32_t x = 0; x < width; x++) {
struct tu_tile_config *tile = &tiles[width * y + x];
if (x > 0) {
struct tu_tile_config *prev_x_tile = &tiles[width * y + x - 1];
if (try_merge_tiles(tile, prev_x_tile, views, has_abs_mask)) {
merged_tiles |= prev_x_tile->slot_mask;
}
}
if (y > 0) {
unsigned prev_y_idx = width * (y - 1) + x;
struct tu_tile_config *prev_y_tile = &tiles[prev_y_idx];
/* We can't merge prev_y_tile into tile if it's already been
* merged horizontally into its neighbor in the previous row.
*/
if (!(merged_tiles & (1u << prev_y_idx)) &&
try_merge_tiles(tile, prev_y_tile, views, has_abs_mask)) {
merged_tiles |= prev_y_tile->slot_mask;
}
}
}
}
/* Finally, iterate over tiles and draw them */
for (uint32_t y = 0; y < height; y++) {
for (uint32_t x = 0; x < width; x++) {
uint32_t tx;
if (y & 1)
tx = width - 1 - x;
else
tx = x;
unsigned tile_idx = y * width + tx;
if (merged_tiles & (1u << tile_idx))
continue;
tu6_render_tile<CHIP>(cmd, &cmd->cs, &tiles[tile_idx],
true, fdm_offsets);
}
}
}
static VkResult
tu_allocate_transient_attachments(struct tu_cmd_buffer *cmd, bool sysmem)
{
const struct tu_framebuffer *fb = cmd->state.framebuffer;
const struct tu_render_pass *rp = cmd->state.pass;
for (unsigned i = 0; i < fb->attachment_count; i++) {
const struct tu_image_view *iview = cmd->state.attachments[i];
if (iview && !(iview->image->vk.create_flags &
VK_IMAGE_CREATE_SPARSE_BINDING_BIT) &&
!iview->image->mem->bo &&
(sysmem || rp->attachments[i].load ||
rp->attachments[i].load_stencil ||
rp->attachments[i].store ||
rp->attachments[i].store_stencil)) {
VkResult result = tu_allocate_lazy_memory(cmd->device,
iview->image->mem);
if (result != VK_SUCCESS)
return result;
}
}
return VK_SUCCESS;
}
template <chip CHIP>
static void
tu_cmd_render_tiles(struct tu_cmd_buffer *cmd,
struct tu_renderpass_result *autotune_result,
const VkOffset2D *fdm_offsets)
{
const struct tu_tiling_config *tiling = cmd->state.tiling;
const struct tu_vsc_config *vsc = tu_vsc_config(cmd, tiling);
const struct tu_image_view *fdm = NULL;
VkResult result = tu_allocate_transient_attachments(cmd, false);
if (result != VK_SUCCESS) {
vk_command_buffer_set_error(&cmd->vk, result);
return;
}
if (cmd->state.pass->fragment_density_map.attachment != VK_ATTACHMENT_UNUSED) {
fdm = cmd->state.attachments[cmd->state.pass->fragment_density_map.attachment];
}
bool has_fdm = fdm || (TU_DEBUG(FDM) && cmd->state.pass->has_fdm);
bool merge_tiles = has_fdm && !TU_DEBUG(NO_BIN_MERGING) &&
cmd->device->physical_device->info->props.has_bin_mask;
/* If not using FDM make sure not to accidentally apply the offsets */
if (!has_fdm)
fdm_offsets = NULL;
/* Create gmem stores now (at EndRenderPass time)) because they needed to
* know whether to allow their conditional execution, which was tied to a
* state that was known only at the end of the renderpass. They will be
* called from tu6_render_tile().
*/
tu_cs_begin(&cmd->tile_store_cs);
tu6_emit_tile_store_cs<CHIP>(cmd, &cmd->tile_store_cs);
tu_cs_end(&cmd->tile_store_cs);
tu6_tile_render_begin<CHIP>(cmd, &cmd->cs, autotune_result, fdm_offsets);
/* Note: we reverse the order of walking the pipes and tiles on every
* other row, to improve texture cache locality compared to raster order.
*/
for (uint32_t py = 0; py < vsc->pipe_count.height; py++) {
uint32_t pipe_row = py * vsc->pipe_count.width;
for (uint32_t pipe_row_i = 0; pipe_row_i < vsc->pipe_count.width; pipe_row_i++) {
uint32_t px;
if (py & 1)
px = vsc->pipe_count.width - 1 - pipe_row_i;
else
px = pipe_row_i;
uint32_t pipe = pipe_row + px;
uint32_t tx1 = px * vsc->pipe0.width;
uint32_t ty1 = py * vsc->pipe0.height;
uint32_t tx2 = MIN2(tx1 + vsc->pipe0.width, vsc->tile_count.width);
uint32_t ty2 = MIN2(ty1 + vsc->pipe0.height, vsc->tile_count.height);
if (merge_tiles) {
tu_render_pipe_fdm<CHIP>(cmd, pipe, tx1, ty1, tx2, ty2, fdm,
fdm_offsets);
continue;
}
uint32_t tile_row_stride = tx2 - tx1;
uint32_t slot_row = 0;
for (uint32_t ty = ty1; ty < ty2; ty++) {
for (uint32_t tile_row_i = 0; tile_row_i < tile_row_stride; tile_row_i++) {
uint32_t tx;
if (ty & 1)
tx = tile_row_stride - 1 - tile_row_i;
else
tx = tile_row_i;
struct tu_tile_config tile = {
.pos = { tx1 + tx, ty },
.pipe = pipe,
.slot_mask = 1u << (slot_row + tx),
.extent = { 1, 1 },
};
if (has_fdm)
tu_calc_frag_area(cmd, &tile, fdm, fdm_offsets);
tu6_render_tile<CHIP>(cmd, &cmd->cs, &tile, has_fdm,
fdm_offsets);
}
slot_row += tile_row_stride;
}
}
}
tu6_tile_render_end<CHIP>(cmd, &cmd->cs, autotune_result);
tu_trace_end_render_pass<CHIP>(cmd, true);
/* We have trashed the dynamically-emitted viewport, scissor, and FS params
* via the patchpoints, so we need to re-emit them if they are reused for a
* later render pass.
*/
if (cmd->state.pass->has_fdm)
cmd->state.dirty |= TU_CMD_DIRTY_FDM;
/* Reset the gmem store CS entry lists so that the next render pass
* does its own stores.
*/
tu_cs_discard_entries(&cmd->tile_store_cs);
}
template <chip CHIP>
static void
tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd,
struct tu_renderpass_result *autotune_result)
{
VkResult result = tu_allocate_transient_attachments(cmd, true);
if (result != VK_SUCCESS) {
vk_command_buffer_set_error(&cmd->vk, result);
return;
}
tu_trace_start_render_pass(cmd);
tu6_sysmem_render_begin<CHIP>(cmd, &cmd->cs, autotune_result);
trace_start_draw_ib_sysmem(&cmd->trace, &cmd->cs, cmd);
tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
trace_end_draw_ib_sysmem(&cmd->trace, &cmd->cs);
tu6_sysmem_render_end<CHIP>(cmd, &cmd->cs, autotune_result);
tu_clone_trace_range(cmd, &cmd->cs, &cmd->trace,
cmd->trace_renderpass_start,
u_trace_end_iterator(&cmd->rp_trace));
tu_trace_end_render_pass<CHIP>(cmd, false);
}
template <chip CHIP>
void
tu_cmd_render(struct tu_cmd_buffer *cmd_buffer,
const VkOffset2D *fdm_offsets)
{
if (cmd_buffer->state.rp.has_tess)
tu6_lazy_emit_tessfactor_addr<CHIP>(cmd_buffer);
struct tu_renderpass_result *autotune_result = NULL;
if (use_sysmem_rendering(cmd_buffer, &autotune_result))
tu_cmd_render_sysmem<CHIP>(cmd_buffer, autotune_result);
else
tu_cmd_render_tiles<CHIP>(cmd_buffer, autotune_result, fdm_offsets);
/* Outside of renderpasses we assume all draw states are disabled. We do
* this outside the draw CS for the normal case where 3d gmem stores aren't
* used.
*/
tu_disable_draw_states(cmd_buffer, &cmd_buffer->cs);
}
static void tu_reset_render_pass(struct tu_cmd_buffer *cmd_buffer)
{
/* discard draw_cs and draw_epilogue_cs entries now that the tiles are
rendered */
tu_cs_discard_entries(&cmd_buffer->draw_cs);
tu_cs_begin(&cmd_buffer->draw_cs);
tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
cmd_buffer->state.pass = NULL;
cmd_buffer->state.subpass = NULL;
cmd_buffer->state.framebuffer = NULL;
cmd_buffer->state.attachments = NULL;
cmd_buffer->state.clear_values = NULL;
cmd_buffer->state.gmem_layout = TU_GMEM_LAYOUT_COUNT; /* invalid value to prevent looking up gmem offsets */
cmd_buffer->state.renderpass_cb_disabled = false;
memset(&cmd_buffer->state.rp, 0, sizeof(cmd_buffer->state.rp));
/* LRZ is not valid next time we use it */
cmd_buffer->state.lrz.valid = false;
cmd_buffer->state.dirty |= TU_CMD_DIRTY_LRZ;
/* Patchpoints have been executed */
util_dynarray_clear(&cmd_buffer->fdm_bin_patchpoints);
ralloc_free(cmd_buffer->patchpoints_ctx);
cmd_buffer->patchpoints_ctx = NULL;
/* Discard RP trace contents */
u_trace_disable_event_range(cmd_buffer->trace_renderpass_start,
u_trace_end_iterator(&cmd_buffer->rp_trace));
cmd_buffer->trace_renderpass_start =
u_trace_end_iterator(&cmd_buffer->rp_trace);
}
static VkResult
tu_create_cmd_buffer(struct vk_command_pool *pool,
VkCommandBufferLevel level,
struct vk_command_buffer **cmd_buffer_out)
{
struct tu_device *device =
container_of(pool->base.device, struct tu_device, vk);
struct tu_cmd_buffer *cmd_buffer;
cmd_buffer = (struct tu_cmd_buffer *) vk_zalloc2(
&device->vk.alloc, NULL, sizeof(*cmd_buffer), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (cmd_buffer == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
VkResult result = vk_command_buffer_init(pool, &cmd_buffer->vk,
&tu_cmd_buffer_ops, level);
if (result != VK_SUCCESS) {
vk_free2(&device->vk.alloc, NULL, cmd_buffer);
return result;
}
cmd_buffer->device = device;
u_trace_init(&cmd_buffer->trace, &device->trace_context);
u_trace_init(&cmd_buffer->rp_trace, &device->trace_context);
cmd_buffer->trace_renderpass_start =
u_trace_begin_iterator(&cmd_buffer->rp_trace);
list_inithead(&cmd_buffer->renderpass_autotune_results);
if (TU_DEBUG_START(CHECK_CMD_BUFFER_STATUS)) {
cmd_buffer->status_bo = tu_cmd_buffer_setup_status_tracking(device);
if (cmd_buffer->status_bo == NULL) {
mesa_logw("Failed creating cmd_buffer status_bo. "
"Won't track status for this cmd_buffer.");
}
}
tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096, "cmd cs");
tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096, "draw cs");
tu_cs_init(&cmd_buffer->tile_store_cs, device, TU_CS_MODE_GROW, 2048, "tile store cs");
tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096, "draw epilogue cs");
tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048, "draw sub cs");
tu_cs_init(&cmd_buffer->pre_chain.draw_cs, device, TU_CS_MODE_GROW, 4096, "prechain draw cs");
tu_cs_init(&cmd_buffer->pre_chain.draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096, "prechain draw epiligoue cs");
for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
cmd_buffer->descriptors[i].push_set.base.type = VK_OBJECT_TYPE_DESCRIPTOR_SET;
*cmd_buffer_out = &cmd_buffer->vk;
return VK_SUCCESS;
}
static void
tu_cmd_buffer_destroy(struct vk_command_buffer *vk_cmd_buffer)
{
struct tu_cmd_buffer *cmd_buffer =
container_of(vk_cmd_buffer, struct tu_cmd_buffer, vk);
tu_cs_finish(&cmd_buffer->cs);
tu_cs_finish(&cmd_buffer->draw_cs);
tu_cs_finish(&cmd_buffer->tile_store_cs);
tu_cs_finish(&cmd_buffer->draw_epilogue_cs);
tu_cs_finish(&cmd_buffer->sub_cs);
tu_cs_finish(&cmd_buffer->pre_chain.draw_cs);
tu_cs_finish(&cmd_buffer->pre_chain.draw_epilogue_cs);
if (TU_DEBUG_START(CHECK_CMD_BUFFER_STATUS)) {
tu_cmd_buffer_status_check_idle(cmd_buffer);
tu_bo_unmap(cmd_buffer->device, cmd_buffer->status_bo, false);
tu_bo_finish(cmd_buffer->device, cmd_buffer->status_bo);
}
u_trace_fini(&cmd_buffer->trace);
u_trace_fini(&cmd_buffer->rp_trace);
tu_autotune_free_results(cmd_buffer->device, &cmd_buffer->renderpass_autotune_results);
for (unsigned i = 0; i < MAX_BIND_POINTS; i++) {
if (cmd_buffer->descriptors[i].push_set.layout)
vk_descriptor_set_layout_unref(&cmd_buffer->device->vk,
&cmd_buffer->descriptors[i].push_set.layout->vk);
vk_free(&cmd_buffer->device->vk.alloc,
cmd_buffer->descriptors[i].push_set.mapped_ptr);
}
util_dynarray_foreach (&cmd_buffer->msrtss_color_temporaries,
struct tu_device_memory *, mem) {
tu_destroy_memory(cmd_buffer->device, *mem);
}
util_dynarray_fini(&cmd_buffer->msrtss_color_temporaries);
util_dynarray_foreach (&cmd_buffer->msrtss_depth_temporaries,
struct tu_device_memory *, mem) {
tu_destroy_memory(cmd_buffer->device, *mem);
}
util_dynarray_fini(&cmd_buffer->msrtss_depth_temporaries);
ralloc_free(cmd_buffer->patchpoints_ctx);
ralloc_free(cmd_buffer->pre_chain.patchpoints_ctx);
util_dynarray_fini(&cmd_buffer->fdm_bin_patchpoints);
util_dynarray_fini(&cmd_buffer->pre_chain.fdm_bin_patchpoints);
util_dynarray_fini(&cmd_buffer->vis_stream_patchpoints);
util_dynarray_fini(&cmd_buffer->cb_control_points);
util_dynarray_foreach (&cmd_buffer->vis_stream_bos, struct tu_bo *,
bo) {
tu_bo_finish(cmd_buffer->device, *bo);
}
mtx_lock(&cmd_buffer->device->vis_stream_suballocator_mtx);
util_dynarray_foreach (&cmd_buffer->vis_stream_cs_bos,
struct tu_vis_stream_patchpoint_cs,
bo) {
tu_suballoc_bo_free(&cmd_buffer->device->vis_stream_suballocator,
&bo->cs_bo);
tu_suballoc_bo_free(&cmd_buffer->device->vis_stream_suballocator,
&bo->fence_bo);
}
mtx_unlock(&cmd_buffer->device->vis_stream_suballocator_mtx);
util_dynarray_fini(&cmd_buffer->vis_stream_bos);
util_dynarray_fini(&cmd_buffer->vis_stream_cs_bos);
vk_command_buffer_finish(&cmd_buffer->vk);
vk_free2(&cmd_buffer->device->vk.alloc, &cmd_buffer->vk.pool->alloc,
cmd_buffer);
}
static void
tu_reset_cmd_buffer(struct vk_command_buffer *vk_cmd_buffer,
UNUSED VkCommandBufferResetFlags flags)
{
struct tu_cmd_buffer *cmd_buffer =
container_of(vk_cmd_buffer, struct tu_cmd_buffer, vk);
VkResult status_check_result = VK_SUCCESS;
if (TU_DEBUG_START(CHECK_CMD_BUFFER_STATUS))
status_check_result = tu_cmd_buffer_status_check_idle(cmd_buffer);
vk_command_buffer_reset(&cmd_buffer->vk);
if (TU_DEBUG_START(CHECK_CMD_BUFFER_STATUS) &&
status_check_result != VK_SUCCESS) {
cmd_buffer->vk.record_result = status_check_result;
}
tu_cs_reset(&cmd_buffer->cs);
tu_cs_reset(&cmd_buffer->draw_cs);
tu_cs_reset(&cmd_buffer->tile_store_cs);
tu_cs_reset(&cmd_buffer->draw_epilogue_cs);
tu_cs_reset(&cmd_buffer->sub_cs);
tu_cs_reset(&cmd_buffer->pre_chain.draw_cs);
tu_cs_reset(&cmd_buffer->pre_chain.draw_epilogue_cs);
tu_autotune_free_results(cmd_buffer->device, &cmd_buffer->renderpass_autotune_results);
for (unsigned i = 0; i < MAX_BIND_POINTS; i++) {
memset(&cmd_buffer->descriptors[i].sets, 0, sizeof(cmd_buffer->descriptors[i].sets));
if (cmd_buffer->descriptors[i].push_set.layout) {
vk_descriptor_set_layout_unref(&cmd_buffer->device->vk,
&cmd_buffer->descriptors[i].push_set.layout->vk);
}
vk_free(&cmd_buffer->device->vk.alloc, cmd_buffer->descriptors[i].push_set.mapped_ptr);
memset(&cmd_buffer->descriptors[i].push_set, 0, sizeof(cmd_buffer->descriptors[i].push_set));
cmd_buffer->descriptors[i].push_set.base.type = VK_OBJECT_TYPE_DESCRIPTOR_SET;
cmd_buffer->descriptors[i].max_sets_bound = 0;
cmd_buffer->descriptors[i].max_dynamic_offset_size = 0;
}
util_dynarray_foreach (&cmd_buffer->msrtss_color_temporaries,
struct tu_device_memory *, mem) {
tu_destroy_memory(cmd_buffer->device, *mem);
}
util_dynarray_clear(&cmd_buffer->msrtss_color_temporaries);
util_dynarray_foreach (&cmd_buffer->msrtss_depth_temporaries,
struct tu_device_memory *, mem) {
tu_destroy_memory(cmd_buffer->device, *mem);
}
util_dynarray_clear(&cmd_buffer->msrtss_depth_temporaries);
u_trace_fini(&cmd_buffer->trace);
u_trace_init(&cmd_buffer->trace, &cmd_buffer->device->trace_context);
u_trace_fini(&cmd_buffer->rp_trace);
u_trace_init(&cmd_buffer->rp_trace, &cmd_buffer->device->trace_context);
cmd_buffer->trace_renderpass_start =
u_trace_begin_iterator(&cmd_buffer->rp_trace);
cmd_buffer->state.max_vbs_bound = 0;
cmd_buffer->vsc_initialized = false;
cmd_buffer->prev_fsr_is_null = false;
ralloc_free(cmd_buffer->patchpoints_ctx);
ralloc_free(cmd_buffer->pre_chain.patchpoints_ctx);
cmd_buffer->patchpoints_ctx = NULL;
cmd_buffer->pre_chain.patchpoints_ctx = NULL;
util_dynarray_clear(&cmd_buffer->fdm_bin_patchpoints);
util_dynarray_clear(&cmd_buffer->pre_chain.fdm_bin_patchpoints);
util_dynarray_clear(&cmd_buffer->vis_stream_patchpoints);
util_dynarray_clear(&cmd_buffer->cb_control_points);
util_dynarray_foreach (&cmd_buffer->vis_stream_bos, struct tu_bo *,
bo) {
tu_bo_finish(cmd_buffer->device, *bo);
}
mtx_lock(&cmd_buffer->device->vis_stream_suballocator_mtx);
util_dynarray_foreach (&cmd_buffer->vis_stream_cs_bos,
struct tu_vis_stream_patchpoint_cs,
bo) {
tu_suballoc_bo_free(&cmd_buffer->device->vis_stream_suballocator,
&bo->cs_bo);
tu_suballoc_bo_free(&cmd_buffer->device->vis_stream_suballocator,
&bo->fence_bo);
}
mtx_unlock(&cmd_buffer->device->vis_stream_suballocator_mtx);
util_dynarray_clear(&cmd_buffer->vis_stream_bos);
util_dynarray_clear(&cmd_buffer->vis_stream_cs_bos);
}
const struct vk_command_buffer_ops tu_cmd_buffer_ops = {
.create = tu_create_cmd_buffer,
.reset = tu_reset_cmd_buffer,
.destroy = tu_cmd_buffer_destroy,
};
/* Initialize the cache, assuming all necessary flushes have happened but *not*
* invalidations.
*/
static void
tu_cache_init(struct tu_cache_state *cache)
{
cache->flush_bits = 0;
cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE;
}
/* Unlike the public entrypoint, this doesn't handle cache tracking, and
* tracking the CCU state. It's used for the driver to insert its own command
* buffer in the middle of a submit.
*/
VkResult
tu_cmd_buffer_begin(struct tu_cmd_buffer *cmd_buffer,
const VkCommandBufferBeginInfo *pBeginInfo)
{
vk_command_buffer_begin(&cmd_buffer->vk, pBeginInfo);
memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
vk_dynamic_graphics_state_init(&cmd_buffer->vk.dynamic_graphics_state);
cmd_buffer->vk.dynamic_graphics_state.vi = &cmd_buffer->state.vi;
cmd_buffer->vk.dynamic_graphics_state.ms.sample_locations = &cmd_buffer->state.sl;
cmd_buffer->state.index_size = 0xff; /* dirty restart index */
cmd_buffer->state.gmem_layout = TU_GMEM_LAYOUT_COUNT; /* dirty value */
tu_cache_init(&cmd_buffer->state.cache);
tu_cache_init(&cmd_buffer->state.renderpass_cache);
cmd_buffer->usage_flags = pBeginInfo->flags;
tu_cs_begin(&cmd_buffer->cs);
tu_cs_begin(&cmd_buffer->draw_cs);
tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
if (u_trace_enabled(&cmd_buffer->device->trace_context)) {
trace_start_cmd_buffer(&cmd_buffer->trace, &cmd_buffer->cs,
cmd_buffer, tu_env_debug_as_string(),
ir3_shader_debug_as_string());
}
}
tu_cmd_buffer_status_gpu_write(cmd_buffer, TU_CMD_BUFFER_STATUS_ACTIVE);
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL
tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
const VkCommandBufferBeginInfo *pBeginInfo)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
VkResult result = tu_cmd_buffer_begin(cmd_buffer, pBeginInfo);
if (result != VK_SUCCESS)
return result;
/* setup initial configuration into command buffer */
if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
switch (cmd_buffer->queue_family_index) {
case TU_QUEUE_GENERAL:
TU_CALLX(cmd_buffer->device, tu6_init_hw)(cmd_buffer, &cmd_buffer->cs);
break;
default:
break;
}
} else if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
const bool pass_continue =
pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT;
if (u_trace_enabled(&cmd_buffer->device->trace_context)) {
trace_start_secondary_cmd_buffer(
pass_continue ? &cmd_buffer->rp_trace : &cmd_buffer->trace,
pass_continue ? &cmd_buffer->draw_cs : &cmd_buffer->cs,
cmd_buffer);
}
assert(pBeginInfo->pInheritanceInfo);
cmd_buffer->inherited_pipeline_statistics =
pBeginInfo->pInheritanceInfo->pipelineStatistics;
cmd_buffer->state.occlusion_query_may_be_running =
pBeginInfo->pInheritanceInfo->occlusionQueryEnable;
vk_foreach_struct_const(ext, pBeginInfo->pInheritanceInfo) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT: {
const VkCommandBufferInheritanceConditionalRenderingInfoEXT *cond_rend =
(VkCommandBufferInheritanceConditionalRenderingInfoEXT *) ext;
cmd_buffer->state.predication_active = cond_rend->conditionalRenderingEnable;
break;
}
default:
break;
}
}
if (pass_continue) {
const VkCommandBufferInheritanceRenderingInfo *rendering_info =
vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext,
COMMAND_BUFFER_INHERITANCE_RENDERING_INFO);
if (TU_DEBUG(DYNAMIC)) {
rendering_info =
vk_get_command_buffer_inheritance_rendering_info(cmd_buffer->vk.level,
pBeginInfo);
}
if (rendering_info) {
tu_setup_dynamic_inheritance(cmd_buffer, rendering_info);
cmd_buffer->state.pass = &cmd_buffer->dynamic_pass;
cmd_buffer->state.subpass = &cmd_buffer->dynamic_subpass;
const VkRenderingAttachmentLocationInfoKHR *location_info =
vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext,
RENDERING_ATTACHMENT_LOCATION_INFO_KHR);
if (location_info) {
vk_common_CmdSetRenderingAttachmentLocationsKHR(commandBuffer,
location_info);
}
/* Unfortunately with dynamic renderpasses we get no indication
* whether FDM is used in secondaries, so we have to assume it
* always might be enabled.
*/
cmd_buffer->state.fdm_enabled =
cmd_buffer->device->vk.enabled_features.fragmentDensityMap ||
TU_DEBUG(FDM);
} else {
cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
cmd_buffer->state.subpass =
&cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
cmd_buffer->state.fdm_enabled = cmd_buffer->state.pass->has_fdm;
}
tu_fill_render_pass_state(&cmd_buffer->state.vk_rp,
cmd_buffer->state.pass,
cmd_buffer->state.subpass);
vk_cmd_set_cb_attachment_count(&cmd_buffer->vk,
cmd_buffer->state.subpass->color_count);
cmd_buffer->state.dirty |= TU_CMD_DIRTY_SUBPASS;
cmd_buffer->patchpoints_ctx = ralloc_context(NULL);
/* We can't set the gmem layout here, because the state.pass only has
* to be compatible (same formats/sample counts) with the primary's
* renderpass, rather than exactly equal.
*/
tu_lrz_begin_secondary_cmdbuf(cmd_buffer);
} else {
/* When executing in the middle of another command buffer, the CCU
* state is unknown.
*/
cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN;
}
}
return VK_SUCCESS;
}
static struct tu_cs
tu_cmd_dynamic_state(struct tu_cmd_buffer *cmd, uint32_t id, uint32_t size)
{
struct tu_cs cs;
assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
cmd->state.dynamic_state[id] = tu_cs_draw_state(&cmd->sub_cs, &cs, size);
/* note: this also avoids emitting draw states before renderpass clears,
* which may use the 3D clear path (for MSAA cases)
*/
if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)
return cs;
tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
return cs;
}
static void
tu_cmd_end_dynamic_state(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
uint32_t id)
{
assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
cmd->state.dynamic_state[id] = tu_cs_end_draw_state(&cmd->sub_cs, cs);
/* note: this also avoids emitting draw states before renderpass clears,
* which may use the 3D clear path (for MSAA cases)
*/
if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)
return;
tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdBindVertexBuffers2(VkCommandBuffer commandBuffer,
uint32_t firstBinding,
uint32_t bindingCount,
const VkBuffer *pBuffers,
const VkDeviceSize *pOffsets,
const VkDeviceSize *pSizes,
const VkDeviceSize *pStrides)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs cs;
cmd->state.max_vbs_bound = MAX2(
cmd->state.max_vbs_bound, firstBinding + bindingCount);
if (pStrides) {
vk_cmd_set_vertex_binding_strides(&cmd->vk, firstBinding, bindingCount,
pStrides);
}
cmd->state.vertex_buffers.iova =
tu_cs_draw_state(&cmd->sub_cs, &cs, 4 * cmd->state.max_vbs_bound).iova;
for (uint32_t i = 0; i < bindingCount; i++) {
if (pBuffers[i] == VK_NULL_HANDLE) {
cmd->state.vb[firstBinding + i].base = 0;
cmd->state.vb[firstBinding + i].size = 0;
} else {
struct tu_buffer *buf = tu_buffer_from_handle(pBuffers[i]);
cmd->state.vb[firstBinding + i].base = vk_buffer_address(&buf->vk, pOffsets[i]);
cmd->state.vb[firstBinding + i].size =
vk_buffer_range(&buf->vk, pOffsets[i], pSizes ? pSizes[i] : VK_WHOLE_SIZE);
}
}
for (uint32_t i = 0; i < cmd->state.max_vbs_bound; i++) {
tu_cs_emit_regs(&cs,
A6XX_VFD_VERTEX_BUFFER_BASE(i, .qword = cmd->state.vb[i].base),
A6XX_VFD_VERTEX_BUFFER_SIZE(i, cmd->state.vb[i].size));
}
cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
}
template <chip CHIP>
VKAPI_ATTR void VKAPI_CALL
tu_CmdBindIndexBuffer2KHR(VkCommandBuffer commandBuffer,
VkBuffer buffer,
VkDeviceSize offset,
VkDeviceSize size,
VkIndexType indexType)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
VK_FROM_HANDLE(tu_buffer, buf, buffer);
size = buf ? vk_buffer_range(&buf->vk, offset, size) : 0;
uint32_t index_size, index_shift;
uint32_t restart_index = vk_index_to_restart(indexType);
switch (indexType) {
case VK_INDEX_TYPE_UINT16:
index_size = INDEX4_SIZE_16_BIT;
index_shift = 1;
break;
case VK_INDEX_TYPE_UINT32:
index_size = INDEX4_SIZE_32_BIT;
index_shift = 2;
break;
case VK_INDEX_TYPE_UINT8_KHR:
index_size = INDEX4_SIZE_8_BIT;
index_shift = 0;
break;
default:
UNREACHABLE("invalid VkIndexType");
}
if (buf) {
/* initialize/update the restart index */
if (cmd->state.index_size != index_size)
tu_cs_emit_regs(&cmd->draw_cs, PC_RESTART_INDEX(CHIP, restart_index));
cmd->state.index_va = vk_buffer_address(&buf->vk, offset);
cmd->state.max_index_count = size >> index_shift;
cmd->state.index_size = index_size;
} else {
cmd->state.index_va = 0;
cmd->state.max_index_count = 0;
cmd->state.index_size = 0;
}
}
TU_GENX(tu_CmdBindIndexBuffer2KHR);
template <chip CHIP>
static void
tu6_emit_descriptor_sets(struct tu_cmd_buffer *cmd,
VkPipelineBindPoint bind_point)
{
struct tu_descriptor_state *descriptors_state =
tu_get_descriptors_state(cmd, bind_point);
uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg;
struct tu_cs *cs, state_cs;
if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
sp_bindless_base_reg = __SP_GFX_BINDLESS_BASE_DESCRIPTOR<CHIP>(0, {}).reg;
hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0);
if (CHIP == A6XX) {
cmd->state.desc_sets =
tu_cs_draw_state(&cmd->sub_cs, &state_cs,
4 + 4 * descriptors_state->max_sets_bound +
(descriptors_state->max_dynamic_offset_size ? 6 : 0));
} else {
cmd->state.desc_sets =
tu_cs_draw_state(&cmd->sub_cs, &state_cs,
3 + 2 * descriptors_state->max_sets_bound +
(descriptors_state->max_dynamic_offset_size ? 3 : 0));
}
cs = &state_cs;
} else {
assert(bind_point == VK_PIPELINE_BIND_POINT_COMPUTE);
sp_bindless_base_reg = __SP_CS_BINDLESS_BASE_DESCRIPTOR<CHIP>(0, {}).reg;
hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0);
cs = &cmd->cs;
}
tu_cs_emit_pkt4(cs, sp_bindless_base_reg, 2 * descriptors_state->max_sets_bound);
tu_cs_emit_array(cs, (const uint32_t*)descriptors_state->set_iova, 2 * descriptors_state->max_sets_bound);
if (CHIP == A6XX) {
tu_cs_emit_pkt4(cs, hlsq_bindless_base_reg, 2 * descriptors_state->max_sets_bound);
tu_cs_emit_array(cs, (const uint32_t*)descriptors_state->set_iova, 2 * descriptors_state->max_sets_bound);
}
/* Dynamic descriptors get the reserved descriptor set. */
if (descriptors_state->max_dynamic_offset_size) {
int reserved_set_idx = cmd->device->physical_device->reserved_set_idx;
assert(reserved_set_idx >= 0); /* reserved set must be bound */
tu_cs_emit_pkt4(cs, sp_bindless_base_reg + reserved_set_idx * 2, 2);
tu_cs_emit_qw(cs, descriptors_state->set_iova[reserved_set_idx]);
if (CHIP == A6XX) {
tu_cs_emit_pkt4(cs, hlsq_bindless_base_reg + reserved_set_idx * 2, 2);
tu_cs_emit_qw(cs, descriptors_state->set_iova[reserved_set_idx]);
}
}
tu_cs_emit_regs(cs, SP_UPDATE_CNTL(CHIP,
.cs_bindless = bind_point == VK_PIPELINE_BIND_POINT_COMPUTE ? CHIP == A6XX ? 0x1f : 0xff : 0,
.gfx_bindless = bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS ? CHIP == A6XX ? 0x1f : 0xff : 0,
));
if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
assert(cs->cur == cs->end); /* validate draw state size */
/* note: this also avoids emitting draw states before renderpass clears,
* which may use the 3D clear path (for MSAA cases)
*/
if (!(cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
}
}
}
/* We lazily emit the draw state for desciptor sets at draw time, so that we can
* batch together multiple tu_CmdBindDescriptorSets() calls. ANGLE and zink
* will often emit multiple bind calls in a draw.
*/
static void
tu_dirty_desc_sets(struct tu_cmd_buffer *cmd,
VkPipelineBindPoint pipelineBindPoint)
{
if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESC_SETS;
} else {
assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS;
}
}
static void
tu_bind_descriptor_sets(struct tu_cmd_buffer *cmd,
const VkBindDescriptorSetsInfoKHR *info,
VkPipelineBindPoint bind_point)
{
VK_FROM_HANDLE(tu_pipeline_layout, layout, info->layout);
unsigned dyn_idx = 0;
struct tu_descriptor_state *descriptors_state =
tu_get_descriptors_state(cmd, bind_point);
descriptors_state->max_sets_bound =
MAX2(descriptors_state->max_sets_bound,
info->firstSet + info->descriptorSetCount);
unsigned dynamic_offset_offset = 0;
for (unsigned i = 0; i < info->firstSet; i++) {
if (layout->set[i].layout)
dynamic_offset_offset += layout->set[i].layout->dynamic_offset_size;
}
for (unsigned i = 0; i < info->descriptorSetCount; ++i) {
unsigned idx = i + info->firstSet;
VK_FROM_HANDLE(tu_descriptor_set, set, info->pDescriptorSets[i]);
descriptors_state->sets[idx] = set;
descriptors_state->set_iova[idx] = set ?
(set->va | BINDLESS_DESCRIPTOR_64B) : 0;
if (!set)
continue;
if (set->layout->has_inline_uniforms)
cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
if (!set->layout->dynamic_offset_size)
continue;
uint32_t *src = set->dynamic_descriptors;
uint32_t *dst = descriptors_state->dynamic_descriptors +
dynamic_offset_offset / 4;
for (unsigned j = 0; j < set->layout->binding_count; j++) {
struct tu_descriptor_set_binding_layout *binding =
&set->layout->binding[j];
if (vk_descriptor_type_is_dynamic(binding->type)) {
for (unsigned k = 0; k < binding->array_size; k++, dyn_idx++) {
assert(dyn_idx < info->dynamicOffsetCount);
uint32_t offset = info->pDynamicOffsets[dyn_idx];
memcpy(dst, src, binding->size);
if (binding->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC) {
/* Note: we can assume here that the addition won't roll
* over and change the SIZE field.
*/
uint64_t va = src[0] | ((uint64_t)src[1] << 32);
va += offset;
dst[0] = va;
dst[1] = va >> 32;
} else {
uint32_t *dst_desc = dst;
for (unsigned i = 0;
i < binding->size / (4 * A6XX_TEX_CONST_DWORDS);
i++, dst_desc += A6XX_TEX_CONST_DWORDS) {
/* Note: A6XX_TEX_CONST_5_DEPTH is always 0 */
uint64_t va = dst_desc[4] | ((uint64_t)dst_desc[5] << 32);
uint32_t desc_offset = pkt_field_get(
A6XX_TEX_CONST_2_STARTOFFSETTEXELS, dst_desc[2]);
/* Use descriptor's format to determine the shift amount
* that's to be used on the offset value.
*/
uint32_t format =
pkt_field_get(A6XX_TEX_CONST_0_FMT, dst_desc[0]);
unsigned offset_shift;
switch (format) {
case FMT6_16_UINT:
offset_shift = 1;
break;
case FMT6_32_UINT:
offset_shift = 2;
break;
case FMT6_8_UINT:
default:
offset_shift = 0;
break;
}
va += desc_offset << offset_shift;
va += offset;
unsigned new_offset = (va & 0x3f) >> offset_shift;
va &= ~0x3full;
dst_desc[4] = va;
dst_desc[5] = va >> 32;
dst_desc[2] =
pkt_field_set(A6XX_TEX_CONST_2_STARTOFFSETTEXELS,
dst_desc[2], new_offset);
}
}
dst += binding->size / 4;
src += binding->size / 4;
}
}
}
if (layout->set[idx].layout)
dynamic_offset_offset += layout->set[idx].layout->dynamic_offset_size;
}
assert(dyn_idx == info->dynamicOffsetCount);
if (dynamic_offset_offset) {
descriptors_state->max_dynamic_offset_size =
MAX2(descriptors_state->max_dynamic_offset_size, dynamic_offset_offset);
/* allocate and fill out dynamic descriptor set */
struct tu_cs_memory dynamic_desc_set;
int reserved_set_idx = cmd->device->physical_device->reserved_set_idx;
VkResult result =
tu_cs_alloc(&cmd->sub_cs,
descriptors_state->max_dynamic_offset_size /
(4 * A6XX_TEX_CONST_DWORDS),
A6XX_TEX_CONST_DWORDS, &dynamic_desc_set);
if (result != VK_SUCCESS) {
vk_command_buffer_set_error(&cmd->vk, result);
return;
}
memcpy(dynamic_desc_set.map, descriptors_state->dynamic_descriptors,
descriptors_state->max_dynamic_offset_size);
assert(reserved_set_idx >= 0); /* reserved set must be bound */
descriptors_state->set_iova[reserved_set_idx] = dynamic_desc_set.iova | BINDLESS_DESCRIPTOR_64B;
}
tu_dirty_desc_sets(cmd, bind_point);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdBindDescriptorSets2KHR(
VkCommandBuffer commandBuffer,
const VkBindDescriptorSetsInfoKHR *pBindDescriptorSetsInfo)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
if (pBindDescriptorSetsInfo->stageFlags & VK_SHADER_STAGE_COMPUTE_BIT) {
tu_bind_descriptor_sets(cmd, pBindDescriptorSetsInfo,
VK_PIPELINE_BIND_POINT_COMPUTE);
}
if (pBindDescriptorSetsInfo->stageFlags & VK_SHADER_STAGE_ALL_GRAPHICS) {
tu_bind_descriptor_sets(cmd, pBindDescriptorSetsInfo,
VK_PIPELINE_BIND_POINT_GRAPHICS);
}
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdBindDescriptorBuffersEXT(
VkCommandBuffer commandBuffer,
uint32_t bufferCount,
const VkDescriptorBufferBindingInfoEXT *pBindingInfos)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
for (unsigned i = 0; i < bufferCount; i++)
cmd->state.descriptor_buffer_iova[i] = pBindingInfos[i].address;
}
static void
tu_set_descriptor_buffer_offsets(
struct tu_cmd_buffer *cmd,
const VkSetDescriptorBufferOffsetsInfoEXT *info,
VkPipelineBindPoint bind_point)
{
VK_FROM_HANDLE(tu_pipeline_layout, layout, info->layout);
struct tu_descriptor_state *descriptors_state =
tu_get_descriptors_state(cmd, bind_point);
descriptors_state->max_sets_bound = MAX2(descriptors_state->max_sets_bound,
info->firstSet + info->setCount);
for (unsigned i = 0; i < info->setCount; ++i) {
unsigned idx = i + info->firstSet;
struct tu_descriptor_set_layout *set_layout = layout->set[idx].layout;
descriptors_state->set_iova[idx] =
(cmd->state.descriptor_buffer_iova[info->pBufferIndices[i]] +
info->pOffsets[i]) |
BINDLESS_DESCRIPTOR_64B;
if (set_layout->has_inline_uniforms)
cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
}
tu_dirty_desc_sets(cmd, bind_point);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetDescriptorBufferOffsets2EXT(
VkCommandBuffer commandBuffer,
const VkSetDescriptorBufferOffsetsInfoEXT *pSetDescriptorBufferOffsetsInfo)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
if (pSetDescriptorBufferOffsetsInfo->stageFlags &
VK_SHADER_STAGE_COMPUTE_BIT) {
tu_set_descriptor_buffer_offsets(cmd, pSetDescriptorBufferOffsetsInfo,
VK_PIPELINE_BIND_POINT_COMPUTE);
}
if (pSetDescriptorBufferOffsetsInfo->stageFlags &
VK_SHADER_STAGE_ALL_GRAPHICS) {
tu_set_descriptor_buffer_offsets(cmd, pSetDescriptorBufferOffsetsInfo,
VK_PIPELINE_BIND_POINT_GRAPHICS);
}
}
static void
tu_bind_descriptor_buffer_embedded_samplers(
struct tu_cmd_buffer *cmd,
const VkBindDescriptorBufferEmbeddedSamplersInfoEXT *info,
VkPipelineBindPoint bind_point)
{
VK_FROM_HANDLE(tu_pipeline_layout, layout, info->layout);
struct tu_descriptor_set_layout *set_layout =
layout->set[info->set].layout;
struct tu_descriptor_state *descriptors_state =
tu_get_descriptors_state(cmd, bind_point);
descriptors_state->max_sets_bound =
MAX2(descriptors_state->max_sets_bound, info->set + 1);
descriptors_state->set_iova[info->set] =
set_layout->embedded_samplers->iova | BINDLESS_DESCRIPTOR_64B;
tu_dirty_desc_sets(cmd, bind_point);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdBindDescriptorBufferEmbeddedSamplers2EXT(
VkCommandBuffer commandBuffer,
const VkBindDescriptorBufferEmbeddedSamplersInfoEXT
*pBindDescriptorBufferEmbeddedSamplersInfo)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
if (pBindDescriptorBufferEmbeddedSamplersInfo->stageFlags &
VK_SHADER_STAGE_COMPUTE_BIT) {
tu_bind_descriptor_buffer_embedded_samplers(
cmd, pBindDescriptorBufferEmbeddedSamplersInfo,
VK_PIPELINE_BIND_POINT_COMPUTE);
}
if (pBindDescriptorBufferEmbeddedSamplersInfo->stageFlags &
VK_SHADER_STAGE_ALL_GRAPHICS) {
tu_bind_descriptor_buffer_embedded_samplers(
cmd, pBindDescriptorBufferEmbeddedSamplersInfo,
VK_PIPELINE_BIND_POINT_GRAPHICS);
}
}
static VkResult
tu_push_descriptor_set_update_layout(struct tu_device *device,
struct tu_descriptor_set *set,
struct tu_descriptor_set_layout *layout)
{
if (set->layout == layout)
return VK_SUCCESS;
if (set->layout)
vk_descriptor_set_layout_unref(&device->vk, &set->layout->vk);
vk_descriptor_set_layout_ref(&layout->vk);
set->layout = layout;
if (set->host_size < layout->size) {
void *new_buf =
vk_realloc(&device->vk.alloc, set->mapped_ptr, layout->size, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!new_buf)
return VK_ERROR_OUT_OF_HOST_MEMORY;
set->mapped_ptr = (uint32_t *) new_buf;
set->host_size = layout->size;
}
return VK_SUCCESS;
}
static void
tu_push_descriptor_set(struct tu_cmd_buffer *cmd,
const VkPushDescriptorSetInfoKHR *info,
VkPipelineBindPoint bind_point)
{
VK_FROM_HANDLE(tu_pipeline_layout, pipe_layout, info->layout);
struct tu_descriptor_set_layout *layout =
pipe_layout->set[info->set].layout;
struct tu_descriptor_set *set =
&tu_get_descriptors_state(cmd, bind_point)->push_set;
struct tu_cs_memory set_mem;
VkResult result = tu_cs_alloc(&cmd->sub_cs,
DIV_ROUND_UP(layout->size, A6XX_TEX_CONST_DWORDS * 4),
A6XX_TEX_CONST_DWORDS, &set_mem);
if (result != VK_SUCCESS) {
vk_command_buffer_set_error(&cmd->vk, result);
return;
}
result = tu_push_descriptor_set_update_layout(cmd->device, set, layout);
if (result != VK_SUCCESS) {
vk_command_buffer_set_error(&cmd->vk, result);
return;
}
tu_update_descriptor_sets(cmd->device, tu_descriptor_set_to_handle(set),
info->descriptorWriteCount,
info->pDescriptorWrites, 0, NULL);
memcpy(set_mem.map, set->mapped_ptr, layout->size);
set->va = set_mem.iova;
const VkDescriptorSet desc_set[] = { tu_descriptor_set_to_handle(set) };
vk_common_CmdBindDescriptorSets(tu_cmd_buffer_to_handle(cmd), bind_point,
info->layout, info->set, 1, desc_set, 0,
NULL);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdPushDescriptorSet2KHR(
VkCommandBuffer commandBuffer,
const VkPushDescriptorSetInfoKHR *pPushDescriptorSetInfo)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
if (pPushDescriptorSetInfo->stageFlags & VK_SHADER_STAGE_COMPUTE_BIT) {
tu_push_descriptor_set(cmd, pPushDescriptorSetInfo,
VK_PIPELINE_BIND_POINT_COMPUTE);
}
if (pPushDescriptorSetInfo->stageFlags & VK_SHADER_STAGE_ALL_GRAPHICS) {
tu_push_descriptor_set(cmd, pPushDescriptorSetInfo,
VK_PIPELINE_BIND_POINT_GRAPHICS);
}
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdPushDescriptorSetWithTemplate2KHR(
VkCommandBuffer commandBuffer,
const VkPushDescriptorSetWithTemplateInfoKHR
*pPushDescriptorSetWithTemplateInfo)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
VK_FROM_HANDLE(tu_pipeline_layout, pipe_layout,
pPushDescriptorSetWithTemplateInfo->layout);
VK_FROM_HANDLE(
tu_descriptor_update_template, templ,
pPushDescriptorSetWithTemplateInfo->descriptorUpdateTemplate);
struct tu_descriptor_set_layout *layout =
pipe_layout->set[pPushDescriptorSetWithTemplateInfo->set].layout;
struct tu_descriptor_set *set =
&tu_get_descriptors_state(cmd, templ->bind_point)->push_set;
struct tu_cs_memory set_mem;
VkResult result = tu_cs_alloc(&cmd->sub_cs,
DIV_ROUND_UP(layout->size, A6XX_TEX_CONST_DWORDS * 4),
A6XX_TEX_CONST_DWORDS, &set_mem);
if (result != VK_SUCCESS) {
vk_command_buffer_set_error(&cmd->vk, result);
return;
}
result = tu_push_descriptor_set_update_layout(cmd->device, set, layout);
if (result != VK_SUCCESS) {
vk_command_buffer_set_error(&cmd->vk, result);
return;
}
tu_update_descriptor_set_with_template(
cmd->device, set,
pPushDescriptorSetWithTemplateInfo->descriptorUpdateTemplate,
pPushDescriptorSetWithTemplateInfo->pData);
memcpy(set_mem.map, set->mapped_ptr, layout->size);
set->va = set_mem.iova;
const VkDescriptorSet desc_set[] = { tu_descriptor_set_to_handle(set) };
vk_common_CmdBindDescriptorSets(
tu_cmd_buffer_to_handle(cmd), templ->bind_point,
pPushDescriptorSetWithTemplateInfo->layout,
pPushDescriptorSetWithTemplateInfo->set, 1, desc_set, 0, NULL);
}
template <chip CHIP>
VKAPI_ATTR void VKAPI_CALL
tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,
uint32_t firstBinding,
uint32_t bindingCount,
const VkBuffer *pBuffers,
const VkDeviceSize *pOffsets,
const VkDeviceSize *pSizes)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs *cs = &cmd->draw_cs;
/* using COND_REG_EXEC for xfb commands matches the blob behavior
* presumably there isn't any benefit using a draw state when the
* condition is (SYSMEM | BINNING)
*/
tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
CP_COND_REG_EXEC_0_SYSMEM |
CP_COND_REG_EXEC_0_BINNING);
for (uint32_t i = 0; i < bindingCount; i++) {
VK_FROM_HANDLE(tu_buffer, buf, pBuffers[i]);
uint64_t iova = vk_buffer_address(&buf->vk, pOffsets[i]);
uint32_t size = vk_buffer_range(&buf->vk, pOffsets[i],
pSizes ? pSizes[i] : VK_WHOLE_SIZE);
uint32_t idx = i + firstBinding;
/* BUFFER_BASE is 32-byte aligned, add remaining offset to BUFFER_OFFSET */
uint32_t offset = iova & 0x1f;
iova &= ~(uint64_t) 0x1f;
tu_cs_emit_regs(cs, VPC_SO_BUFFER_BASE(CHIP, idx, .qword = iova),
VPC_SO_BUFFER_SIZE(CHIP, idx, size + offset));
cmd->state.streamout_offset[idx] = offset;
}
tu_cond_exec_end(cs);
}
TU_GENX(tu_CmdBindTransformFeedbackBuffersEXT);
template <chip CHIP>
VKAPI_ATTR void VKAPI_CALL
tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,
uint32_t firstCounterBuffer,
uint32_t counterBufferCount,
const VkBuffer *pCounterBuffers,
const VkDeviceSize *pCounterBufferOffsets)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs *cs = &cmd->draw_cs;
tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
CP_COND_REG_EXEC_0_SYSMEM |
CP_COND_REG_EXEC_0_BINNING);
tu_cs_emit_regs(cs, VPC_SO_OVERRIDE(CHIP, false));
/* TODO: only update offset for active buffers */
for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++)
tu_cs_emit_regs(cs, VPC_SO_BUFFER_OFFSET(CHIP, i, cmd->state.streamout_offset[i]));
for (uint32_t i = 0; i < (pCounterBuffers ? counterBufferCount : 0); i++) {
uint32_t idx = firstCounterBuffer + i;
uint32_t offset = cmd->state.streamout_offset[idx];
uint64_t counter_buffer_offset = pCounterBufferOffsets ? pCounterBufferOffsets[i] : 0u;
if (!pCounterBuffers[i])
continue;
VK_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(VPC_SO_BUFFER_OFFSET(CHIP, idx).reg) |
CP_MEM_TO_REG_0_UNK31 |
CP_MEM_TO_REG_0_CNT(1));
tu_cs_emit_qw(cs, vk_buffer_address(&buf->vk, counter_buffer_offset));
if (offset) {
tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(VPC_SO_BUFFER_OFFSET(CHIP, idx).reg) |
CP_REG_RMW_0_SRC1_ADD);
tu_cs_emit(cs, 0xffffffff);
tu_cs_emit(cs, offset);
}
}
tu_cond_exec_end(cs);
}
TU_GENX(tu_CmdBeginTransformFeedbackEXT);
template <chip CHIP>
VKAPI_ATTR void VKAPI_CALL
tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,
uint32_t firstCounterBuffer,
uint32_t counterBufferCount,
const VkBuffer *pCounterBuffers,
const VkDeviceSize *pCounterBufferOffsets)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs *cs = &cmd->draw_cs;
tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
CP_COND_REG_EXEC_0_SYSMEM |
CP_COND_REG_EXEC_0_BINNING);
tu_cs_emit_regs(cs, VPC_SO_OVERRIDE(CHIP, true));
/* TODO: only flush buffers that need to be flushed */
for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
/* note: FLUSH_BASE is always the same, so it could go in init_hw()? */
tu_cs_emit_regs(cs, VPC_SO_FLUSH_BASE(CHIP, i, .qword = global_iova_arr(cmd, flush_base, i)));
tu_emit_event_write<CHIP>(cmd, cs, (enum fd_gpu_event) (FD_FLUSH_SO_0 + i));
}
for (uint32_t i = 0; i < (pCounterBuffers ? counterBufferCount : 0); i++) {
uint32_t idx = firstCounterBuffer + i;
uint32_t offset = cmd->state.streamout_offset[idx];
uint64_t counter_buffer_offset = pCounterBufferOffsets ? pCounterBufferOffsets[i] : 0u;
if (!pCounterBuffers[i])
continue;
VK_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
/* VPC_SO_FLUSH_BASE has dwords counter, but counter should be in bytes */
tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_CP_SCRATCH(0)) |
COND(CHIP == A6XX, CP_MEM_TO_REG_0_SHIFT_BY_2) |
0x40000 | /* ??? */
CP_MEM_TO_REG_0_UNK31 |
CP_MEM_TO_REG_0_CNT(1));
tu_cs_emit_qw(cs, global_iova_arr(cmd, flush_base, idx));
if (offset) {
tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_CP_SCRATCH(0)) |
CP_REG_RMW_0_SRC1_ADD);
tu_cs_emit(cs, 0xffffffff);
tu_cs_emit(cs, -offset);
}
tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(REG_A6XX_CP_SCRATCH(0)) |
CP_REG_TO_MEM_0_CNT(1));
tu_cs_emit_qw(cs, vk_buffer_address(&buf->vk, counter_buffer_offset));
}
tu_cond_exec_end(cs);
cmd->state.rp.xfb_used = true;
}
TU_GENX(tu_CmdEndTransformFeedbackEXT);
VKAPI_ATTR void VKAPI_CALL
tu_CmdPushConstants2KHR(VkCommandBuffer commandBuffer,
const VkPushConstantsInfoKHR *pPushConstantsInfo)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
memcpy((char *) cmd->push_constants + pPushConstantsInfo->offset,
pPushConstantsInfo->pValues, pPushConstantsInfo->size);
cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
}
/* Clean everything which has been made available but we haven't actually
* cleaned yet.
*/
static void
tu_clean_all_pending(struct tu_cache_state *cache)
{
cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_CLEAN;
cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_CLEAN;
}
template <chip CHIP>
VKAPI_ATTR VkResult VKAPI_CALL
tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
/* We currently flush CCU at the end of the command buffer, like
* what the blob does. There's implicit synchronization around every
* vkQueueSubmit, but the kernel only flushes the UCHE, and we don't
* know yet if this command buffer will be the last in the submit so we
* have to defensively flush everything else.
*
* TODO: We could definitely do better than this, since these flushes
* aren't required by Vulkan, but we'd need kernel support to do that.
* Ideally, we'd like the kernel to flush everything afterwards, so that we
* wouldn't have to do any flushes here, and when submitting multiple
* command buffers there wouldn't be any unnecessary flushes in between.
*/
if (cmd_buffer->state.pass) {
tu_clean_all_pending(&cmd_buffer->state.renderpass_cache);
tu_emit_cache_flush_renderpass<CHIP>(cmd_buffer);
} else {
tu_clean_all_pending(&cmd_buffer->state.cache);
cmd_buffer->state.cache.flush_bits |=
TU_CMD_FLAG_CCU_CLEAN_COLOR |
TU_CMD_FLAG_CCU_CLEAN_DEPTH;
tu_emit_cache_flush<CHIP>(cmd_buffer);
}
if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
trace_end_cmd_buffer(&cmd_buffer->trace, &cmd_buffer->cs, cmd_buffer);
} else {
trace_end_secondary_cmd_buffer(
cmd_buffer->state.pass ? &cmd_buffer->rp_trace : &cmd_buffer->trace,
cmd_buffer->state.pass ? &cmd_buffer->draw_cs : &cmd_buffer->cs);
}
if (TU_DEBUG_START(CHECK_CMD_BUFFER_STATUS))
tu_cmd_buffer_status_gpu_write(cmd_buffer, TU_CMD_BUFFER_STATUS_IDLE);
tu_cs_end(&cmd_buffer->cs);
tu_cs_end(&cmd_buffer->draw_cs);
tu_cs_end(&cmd_buffer->draw_epilogue_cs);
return vk_command_buffer_end(&cmd_buffer->vk);
}
TU_GENX(tu_EndCommandBuffer);
static void
tu_bind_vs(struct tu_cmd_buffer *cmd, struct tu_shader *vs)
{
cmd->state.shaders[MESA_SHADER_VERTEX] = vs;
}
static void
tu_bind_tcs(struct tu_cmd_buffer *cmd, struct tu_shader *tcs)
{
cmd->state.shaders[MESA_SHADER_TESS_CTRL] = tcs;
}
static void
tu_bind_tes(struct tu_cmd_buffer *cmd, struct tu_shader *tes)
{
if (cmd->state.shaders[MESA_SHADER_TESS_EVAL] != tes) {
cmd->state.shaders[MESA_SHADER_TESS_EVAL] = tes;
cmd->state.dirty |= TU_CMD_DIRTY_TES;
if (!cmd->state.tess_params.valid ||
cmd->state.tess_params.output_upper_left !=
tes->tes.tess_output_upper_left ||
cmd->state.tess_params.output_lower_left !=
tes->tes.tess_output_lower_left ||
cmd->state.tess_params.spacing != tes->tes.tess_spacing) {
cmd->state.tess_params.output_upper_left =
tes->tes.tess_output_upper_left;
cmd->state.tess_params.output_lower_left =
tes->tes.tess_output_lower_left;
cmd->state.tess_params.spacing = tes->tes.tess_spacing;
cmd->state.tess_params.valid = true;
cmd->state.dirty |= TU_CMD_DIRTY_TESS_PARAMS;
}
}
}
static void
tu_bind_gs(struct tu_cmd_buffer *cmd, struct tu_shader *gs)
{
cmd->state.shaders[MESA_SHADER_GEOMETRY] = gs;
}
static void
tu_bind_fs(struct tu_cmd_buffer *cmd, struct tu_shader *fs)
{
if (cmd->state.shaders[MESA_SHADER_FRAGMENT] != fs) {
cmd->state.shaders[MESA_SHADER_FRAGMENT] = fs;
cmd->state.dirty |= TU_CMD_DIRTY_LRZ | TU_CMD_DIRTY_FS;
}
}
/* We cannot do this only at pipeline bind time since pipeline
* could have been bound at any time before current renderpass,
* e.g. in the previous renderpass.
*/
static void
tu_pipeline_update_rp_state(struct tu_cmd_state *cmd_state)
{
if (cmd_state->pipeline_disable_gmem &&
!cmd_state->rp.disable_gmem) {
/* VK_EXT_attachment_feedback_loop_layout allows feedback loop to involve
* not only input attachments but also sampled images or image resources.
* But we cannot just patch gmem for image in the descriptors.
*
* At the moment, in context of DXVK, it is expected that only a few
* drawcalls in a frame would use feedback loop and they would be wrapped
* in their own renderpasses, so it should be ok to force sysmem.
*
* However, there are two further possible optimizations if need would
* arise for other translation layer:
* - Tiling could be enabled if we ensure that there is no barrier in
* the renderpass;
* - Check that both pipeline and attachments agree that feedback loop
* is needed.
*/
perf_debug(
cmd->device,
"Disabling gmem due to VK_EXT_attachment_feedback_loop_layout");
cmd_state->rp.disable_gmem = true;
cmd_state->rp.gmem_disable_reason =
"VK_EXT_attachment_feedback_loop_layout may involve textures";
}
if (cmd_state->pipeline_sysmem_single_prim_mode &&
!cmd_state->rp.sysmem_single_prim_mode) {
perf_debug(cmd->device, "single_prim_mode due to pipeline settings");
cmd_state->rp.sysmem_single_prim_mode = true;
}
if (cmd_state->pipeline_has_tess) {
cmd_state->rp.has_tess = true;
}
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdBindPipeline(VkCommandBuffer commandBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipeline _pipeline)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
VK_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
cmd->state.shaders[MESA_SHADER_COMPUTE] =
pipeline->shaders[MESA_SHADER_COMPUTE];
tu_cs_emit_state_ib(&cmd->cs,
pipeline->shaders[MESA_SHADER_COMPUTE]->state);
cmd->state.compute_load_state = pipeline->load_state;
return;
}
assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
struct tu_graphics_pipeline *gfx_pipeline = tu_pipeline_to_graphics(pipeline);
cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS | TU_CMD_DIRTY_SHADER_CONSTS |
TU_CMD_DIRTY_VS_PARAMS | TU_CMD_DIRTY_PROGRAM;
tu_bind_vs(cmd, pipeline->shaders[MESA_SHADER_VERTEX]);
tu_bind_tcs(cmd, pipeline->shaders[MESA_SHADER_TESS_CTRL]);
tu_bind_tes(cmd, pipeline->shaders[MESA_SHADER_TESS_EVAL]);
tu_bind_gs(cmd, pipeline->shaders[MESA_SHADER_GEOMETRY]);
tu_bind_fs(cmd, pipeline->shaders[MESA_SHADER_FRAGMENT]);
/* We precompile static state and count it as dynamic, so we have to
* manually clear bitset that tells which dynamic state is set, in order to
* make sure that future dynamic state will be emitted. The issue is that
* framework remembers only a past REAL dynamic state and compares a new
* dynamic state against it, and not against our static state masquaraded
* as dynamic.
*/
BITSET_ANDNOT(cmd->vk.dynamic_graphics_state.set,
cmd->vk.dynamic_graphics_state.set,
pipeline->static_state_mask);
vk_cmd_set_dynamic_graphics_state(&cmd->vk,
&gfx_pipeline->dynamic_state);
cmd->state.program = pipeline->program;
cmd->state.load_state = pipeline->load_state;
cmd->state.prim_order_gmem = pipeline->prim_order.state_gmem;
cmd->state.pipeline_sysmem_single_prim_mode = pipeline->prim_order.sysmem_single_prim_mode;
cmd->state.pipeline_has_tess = pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
cmd->state.pipeline_disable_gmem = gfx_pipeline->feedback_loop_may_involve_textures;
tu_pipeline_update_rp_state(&cmd->state);
if (pipeline->lrz_blend.valid) {
if (cmd->state.lrz_blend_status !=
pipeline->lrz_blend.lrz_blend_status) {
cmd->state.lrz_blend_status = pipeline->lrz_blend.lrz_blend_status;
cmd->state.dirty |= TU_CMD_DIRTY_LRZ;
}
}
cmd->state.pipeline_blend_lrz = pipeline->lrz_blend.valid;
if (pipeline->disable_fs.valid) {
if (cmd->state.disable_fs != pipeline->disable_fs.disable_fs) {
cmd->state.disable_fs = pipeline->disable_fs.disable_fs;
cmd->state.dirty |= TU_CMD_DIRTY_DISABLE_FS;
}
}
cmd->state.pipeline_disable_fs = pipeline->disable_fs.valid;
if (pipeline->bandwidth.valid)
cmd->state.bandwidth = pipeline->bandwidth;
cmd->state.pipeline_bandwidth = pipeline->bandwidth.valid;
struct tu_cs *cs = &cmd->draw_cs;
/* note: this also avoids emitting draw states before renderpass clears,
* which may use the 3D clear path (for MSAA cases)
*/
if (!(cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
uint32_t mask = pipeline->set_state_mask;
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (10 + util_bitcount(mask)));
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_CONFIG, pipeline->program.config_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS, pipeline->program.vs_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_BINNING, pipeline->program.vs_binning_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS, pipeline->program.hs_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, pipeline->program.ds_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS, pipeline->program.gs_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_BINNING, pipeline->program.gs_binning_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS, pipeline->program.fs_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VPC, pipeline->program.vpc_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PRIM_MODE_GMEM, pipeline->prim_order.state_gmem);
u_foreach_bit(i, mask)
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, pipeline->dynamic_state[i]);
}
cmd->state.pipeline_draw_states = pipeline->set_state_mask;
u_foreach_bit(i, pipeline->set_state_mask)
cmd->state.dynamic_state[i] = pipeline->dynamic_state[i];
if (pipeline->shaders[MESA_SHADER_FRAGMENT]->fs.has_fdm !=
cmd->state.has_fdm) {
cmd->state.dirty |= TU_CMD_DIRTY_FDM;
cmd->state.has_fdm =
pipeline->shaders[MESA_SHADER_FRAGMENT]->fs.has_fdm;
}
if (pipeline->program.per_layer_viewport != cmd->state.per_layer_viewport ||
pipeline->shaders[MESA_SHADER_FRAGMENT]->fs.max_fdm_layers !=
cmd->state.max_fdm_layers) {
cmd->state.per_layer_viewport = pipeline->program.per_layer_viewport;
cmd->state.max_fdm_layers =
pipeline->shaders[MESA_SHADER_FRAGMENT]->fs.max_fdm_layers;
cmd->state.dirty |= TU_CMD_DIRTY_FDM;
}
if (pipeline->program.per_view_viewport != cmd->state.per_view_viewport ||
pipeline->program.fake_single_viewport != cmd->state.fake_single_viewport) {
cmd->state.per_view_viewport = pipeline->program.per_view_viewport;
cmd->state.fake_single_viewport =
pipeline->program.fake_single_viewport;
cmd->state.dirty |= TU_CMD_DIRTY_PER_VIEW_VIEWPORT;
}
if (gfx_pipeline->feedback_loops != cmd->state.pipeline_feedback_loops) {
cmd->state.pipeline_feedback_loops = gfx_pipeline->feedback_loops;
cmd->state.dirty |= TU_CMD_DIRTY_FEEDBACK_LOOPS | TU_CMD_DIRTY_LRZ;
}
if (pipeline->program.writes_shading_rate !=
cmd->state.pipeline_writes_shading_rate ||
pipeline->program.reads_shading_rate !=
cmd->state.pipeline_reads_shading_rate) {
cmd->state.pipeline_writes_shading_rate =
pipeline->program.writes_shading_rate;
cmd->state.pipeline_reads_shading_rate =
pipeline->program.reads_shading_rate;
cmd->state.dirty |= TU_CMD_DIRTY_SHADING_RATE;
}
bool raster_order_attachment_access =
pipeline->output.raster_order_attachment_access ||
pipeline->ds.raster_order_attachment_access;
if (!cmd->state.raster_order_attachment_access_valid ||
raster_order_attachment_access !=
cmd->state.raster_order_attachment_access) {
cmd->state.raster_order_attachment_access =
raster_order_attachment_access;
cmd->state.dirty |= TU_CMD_DIRTY_RAST_ORDER;
cmd->state.raster_order_attachment_access_valid = true;
}
}
void
tu_flush_for_access(struct tu_cache_state *cache,
enum tu_cmd_access_mask src_mask,
enum tu_cmd_access_mask dst_mask)
{
BITMASK_ENUM(tu_cmd_flush_bits) flush_bits = 0;
if (src_mask & TU_ACCESS_SYSMEM_WRITE) {
cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE;
}
if (src_mask & TU_ACCESS_CP_WRITE) {
/* Flush the CP write queue.
*/
cache->pending_flush_bits |=
TU_CMD_FLAG_WAIT_MEM_WRITES |
TU_CMD_FLAG_ALL_INVALIDATE;
}
#define SRC_FLUSH(domain, clean, invalidate) \
if (src_mask & TU_ACCESS_##domain##_WRITE) { \
cache->pending_flush_bits |= TU_CMD_FLAG_##clean | \
(TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
}
SRC_FLUSH(UCHE, CACHE_CLEAN, CACHE_INVALIDATE)
SRC_FLUSH(CCU_COLOR, CCU_CLEAN_COLOR, CCU_INVALIDATE_COLOR)
SRC_FLUSH(CCU_DEPTH, CCU_CLEAN_DEPTH, CCU_INVALIDATE_DEPTH)
#undef SRC_FLUSH
#define SRC_INCOHERENT_FLUSH(domain, clean, invalidate) \
if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) { \
flush_bits |= TU_CMD_FLAG_##clean; \
cache->pending_flush_bits |= \
(TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
}
SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_CLEAN_COLOR, CCU_INVALIDATE_COLOR)
SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_CLEAN_DEPTH, CCU_INVALIDATE_DEPTH)
SRC_INCOHERENT_FLUSH(UCHE, CACHE_CLEAN, CACHE_INVALIDATE)
#undef SRC_INCOHERENT_FLUSH
/* Treat host & sysmem write accesses the same, since the kernel implicitly
* drains the queue before signalling completion to the host.
*/
if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE)) {
flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_CLEAN;
}
#define DST_FLUSH(domain, clean, invalidate) \
if (dst_mask & (TU_ACCESS_##domain##_READ | \
TU_ACCESS_##domain##_WRITE)) { \
flush_bits |= cache->pending_flush_bits & \
(TU_CMD_FLAG_##invalidate | \
(TU_CMD_FLAG_ALL_CLEAN & ~TU_CMD_FLAG_##clean)); \
}
DST_FLUSH(UCHE, CACHE_CLEAN, CACHE_INVALIDATE)
DST_FLUSH(CCU_COLOR, CCU_CLEAN_COLOR, CCU_INVALIDATE_COLOR)
DST_FLUSH(CCU_DEPTH, CCU_CLEAN_DEPTH, CCU_INVALIDATE_DEPTH)
#undef DST_FLUSH
#define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \
if (dst_mask & (TU_ACCESS_##domain##_INCOHERENT_READ | \
TU_ACCESS_##domain##_INCOHERENT_WRITE)) { \
flush_bits |= TU_CMD_FLAG_##invalidate | \
(cache->pending_flush_bits & \
(TU_CMD_FLAG_ALL_CLEAN & ~TU_CMD_FLAG_##flush)); \
}
DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_CLEAN_COLOR, CCU_INVALIDATE_COLOR)
DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_CLEAN_DEPTH, CCU_INVALIDATE_DEPTH)
DST_INCOHERENT_FLUSH(UCHE, CACHE_CLEAN, CACHE_INVALIDATE)
if (dst_mask & TU_ACCESS_BINDLESS_DESCRIPTOR_READ) {
flush_bits |= TU_CMD_FLAG_BINDLESS_DESCRIPTOR_INVALIDATE;
}
/* There are multiple incoherent copies of CCHE, so any read through it may
* require invalidating it and we cannot optimize away invalidates.
*/
if (dst_mask & TU_ACCESS_CCHE_READ) {
flush_bits |= TU_CMD_FLAG_CCHE_INVALIDATE;
}
/* The blit cache is a special case dependency between CP_EVENT_WRITE::BLIT
* (from GMEM loads/clears) to any GMEM attachment reads done via the UCHE
* (Eg: Input attachments/CP_BLIT) which needs an explicit BLIT_CACHE_CLEAN
* for the event blit writes to land, it has the following properties:
* - Set on reads rather than on writes, like flushes.
* - Not executed automatically if pending, like invalidates.
* - Pending bits passed through to secondary command buffers, if they're
* continuing the render pass.
*/
if (src_mask & TU_ACCESS_BLIT_WRITE_GMEM) {
cache->pending_flush_bits |= TU_CMD_FLAG_BLIT_CACHE_CLEAN;
}
if ((dst_mask & TU_ACCESS_UCHE_READ_GMEM) &&
(cache->pending_flush_bits & TU_CMD_FLAG_BLIT_CACHE_CLEAN)) {
flush_bits |= TU_CMD_FLAG_BLIT_CACHE_CLEAN;
}
/* Nothing writes through the RTU cache so there's no point trying to
* optimize this. Just always invalidate.
*/
if (dst_mask & TU_ACCESS_RTU_READ)
flush_bits |= TU_CMD_FLAG_RTU_INVALIDATE;
#undef DST_INCOHERENT_FLUSH
cache->flush_bits |= flush_bits;
cache->pending_flush_bits &= ~flush_bits;
}
/* When translating Vulkan access flags to which cache is accessed
* (CCU/UCHE/sysmem), we should take into account both the access flags and
* the stage so that accesses with MEMORY_READ_BIT/MEMORY_WRITE_BIT + a
* specific stage return something sensible. The specification for
* VK_KHR_synchronization2 says that we should do this:
*
* Additionally, scoping the pipeline stages into the barrier structs
* allows the use of the MEMORY_READ and MEMORY_WRITE flags without
* sacrificing precision. The per-stage access flags should be used to
* disambiguate specific accesses in a given stage or set of stages - for
* instance, between uniform reads and sampling operations.
*
* Note that while in all known cases the stage is actually enough, we should
* still narrow things down based on the access flags to handle "old-style"
* barriers that may specify a wider range of stages but more precise access
* flags. These helpers allow us to do both.
*/
static bool
filter_read_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages,
VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages)
{
return (flags & (tu_flags | VK_ACCESS_2_MEMORY_READ_BIT)) &&
(stages & (tu_stages | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT));
}
static bool
filter_write_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages,
VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages)
{
return (flags & (tu_flags | VK_ACCESS_2_MEMORY_WRITE_BIT)) &&
(stages & (tu_stages | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT));
}
static bool
gfx_read_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages,
VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages)
{
return filter_read_access(flags, stages, tu_flags,
tu_stages | VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT);
}
static bool
gfx_write_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages,
VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages)
{
return filter_write_access(flags, stages, tu_flags,
tu_stages | VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT);
}
static enum tu_cmd_access_mask
vk2tu_access(VkAccessFlags2 flags, VkAccessFlags3KHR flags2,
VkPipelineStageFlags2 stages, bool image_only, bool gmem,
bool sparse_aliasing)
{
BITMASK_ENUM(tu_cmd_access_mask) mask = 0;
if (gfx_read_access(flags, stages,
VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT |
VK_ACCESS_2_CONDITIONAL_RENDERING_READ_BIT_EXT |
VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT |
VK_ACCESS_2_HOST_READ_BIT,
VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT |
VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT |
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT |
VK_PIPELINE_STAGE_2_HOST_BIT))
mask |= TU_ACCESS_SYSMEM_READ;
if (gfx_write_access(flags, stages,
VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT,
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT))
mask |= TU_ACCESS_CP_WRITE;
if (gfx_write_access(flags, stages,
VK_ACCESS_2_HOST_WRITE_BIT,
VK_PIPELINE_STAGE_2_HOST_BIT))
mask |= TU_ACCESS_SYSMEM_WRITE;
#define SHADER_STAGES \
(VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT | \
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT | \
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT | \
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT | \
VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT | \
VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT | \
VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT)
if (gfx_read_access(flags, stages,
VK_ACCESS_2_INDEX_READ_BIT |
VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT |
VK_ACCESS_2_UNIFORM_READ_BIT |
VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT |
VK_ACCESS_2_SHADER_READ_BIT |
VK_ACCESS_2_SHADER_SAMPLED_READ_BIT |
VK_ACCESS_2_SHADER_STORAGE_READ_BIT |
VK_ACCESS_2_SHADER_BINDING_TABLE_READ_BIT_KHR |
VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR,
VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT |
VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT |
VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT |
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR |
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR |
SHADER_STAGES)) {
if (sparse_aliasing)
mask |= TU_ACCESS_UCHE_INCOHERENT_READ;
else
mask |= TU_ACCESS_UCHE_READ;
mask |= TU_ACCESS_CCHE_READ;
}
if (gfx_read_access(flags, stages,
VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR,
SHADER_STAGES))
mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_CCHE_READ | TU_ACCESS_RTU_READ;
/* Reading the AS for copying involves doing CmdDispatchIndirect with the
* copy size as a parameter, so it's read by the CP as well as a shader.
*/
if (gfx_read_access(flags, stages,
VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR |
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR))
mask |= TU_ACCESS_SYSMEM_READ | TU_ACCESS_UCHE_READ |
TU_ACCESS_CCHE_READ;
if (gfx_read_access(flags, stages,
VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT,
SHADER_STAGES)) {
mask |= TU_ACCESS_UCHE_READ_GMEM;
if (sparse_aliasing)
mask |= TU_ACCESS_UCHE_INCOHERENT_READ;
}
if (gfx_read_access(flags, stages,
VK_ACCESS_2_DESCRIPTOR_BUFFER_READ_BIT_EXT,
SHADER_STAGES)) {
if (sparse_aliasing)
mask |= TU_ACCESS_UCHE_INCOHERENT_READ;
else
mask |= TU_ACCESS_UCHE_READ;
mask |= TU_ACCESS_BINDLESS_DESCRIPTOR_READ |
TU_ACCESS_CCHE_READ;
}
if (gfx_write_access(flags, stages,
VK_ACCESS_2_SHADER_WRITE_BIT |
VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT |
VK_ACCESS_2_TRANSFORM_FEEDBACK_WRITE_BIT_EXT,
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT |
SHADER_STAGES)) {
if (sparse_aliasing)
mask |= TU_ACCESS_UCHE_INCOHERENT_WRITE;
else
mask |= TU_ACCESS_UCHE_WRITE;
}
if (gfx_write_access(flags, stages,
VK_ACCESS_2_ACCELERATION_STRUCTURE_WRITE_BIT_KHR,
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR))
mask |= TU_ACCESS_UCHE_WRITE | TU_ACCESS_CP_WRITE;
/* When using GMEM, the CCU is always flushed automatically to GMEM, and
* then GMEM is flushed to sysmem. Furthermore, we already had to flush any
* previous writes in sysmem mode when transitioning to GMEM. Therefore we
* can ignore CCU and pretend that color attachments and transfers use
* sysmem directly.
*/
if (gfx_read_access(flags, stages,
VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_2_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT,
VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT)) {
if (gmem)
mask |= TU_ACCESS_SYSMEM_READ;
else
mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ;
}
if (gfx_read_access(flags, stages,
VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT,
VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT)) {
if (gmem)
mask |= TU_ACCESS_SYSMEM_READ;
else
mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ;
}
if (gfx_write_access(flags, stages,
VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT,
VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT)) {
if (gmem) {
mask |= TU_ACCESS_SYSMEM_WRITE;
} else {
mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
}
}
if (gfx_write_access(flags, stages,
VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT)) {
if (gmem) {
mask |= TU_ACCESS_SYSMEM_WRITE;
} else {
mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
}
}
if (filter_write_access(flags, stages,
VK_ACCESS_2_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_2_COPY_BIT |
VK_PIPELINE_STAGE_2_BLIT_BIT |
VK_PIPELINE_STAGE_2_CLEAR_BIT |
VK_PIPELINE_STAGE_2_RESOLVE_BIT |
VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT)) {
if (gmem) {
mask |= TU_ACCESS_SYSMEM_WRITE;
} else if (image_only && !sparse_aliasing) {
/* Because we always split up blits/copies of images involving
* multiple layers, we always access each layer in the same way, with
* the same base address, same format, etc. This means we can avoid
* flushing between multiple writes to the same image. This elides
* flushes between e.g. multiple blits to the same image.
*/
mask |= TU_ACCESS_CCU_COLOR_WRITE;
} else {
mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
}
}
if (filter_read_access(flags, stages,
VK_ACCESS_2_TRANSFER_READ_BIT,
VK_PIPELINE_STAGE_2_COPY_BIT |
VK_PIPELINE_STAGE_2_BLIT_BIT |
VK_PIPELINE_STAGE_2_RESOLVE_BIT |
VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT)) {
if (sparse_aliasing)
mask |= TU_ACCESS_UCHE_INCOHERENT_READ;
else
mask |= TU_ACCESS_UCHE_READ;
mask |= TU_ACCESS_CCHE_READ;
}
return mask;
}
/* These helpers deal with legacy BOTTOM_OF_PIPE/TOP_OF_PIPE stages.
*/
static VkPipelineStageFlags2
sanitize_src_stage(VkPipelineStageFlags2 stage_mask)
{
/* From the Vulkan spec:
*
* VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT is ... equivalent to
* VK_PIPELINE_STAGE_2_NONE in the first scope.
*
* VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT is equivalent to
* VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT with VkAccessFlags2 set to 0
* when specified in the first synchronization scope, ...
*/
if (stage_mask & VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT)
return VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT;
return stage_mask & ~VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT;
}
static VkPipelineStageFlags2
sanitize_dst_stage(VkPipelineStageFlags2 stage_mask)
{
/* From the Vulkan spec:
*
* VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT is equivalent to
* VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT with VkAccessFlags2 set to 0
* when specified in the second synchronization scope, ...
*
* VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT is ... equivalent to
* VK_PIPELINE_STAGE_2_NONE in the second scope.
*
*/
if (stage_mask & VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT)
return VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT;
return stage_mask & ~VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT;
}
static enum tu_stage
vk2tu_single_stage(struct tu_device *dev,
VkPipelineStageFlags2 vk_stage, bool dst)
{
/* If the destination stage is executed on the CP, then the CP also has to
* wait for any WFI's to finish. This is already done for draw calls,
* including before indirect param reads, for the most part, so we just
* need to WFI and can use TU_STAGE_GPU.
*
* However, some indirect draw opcodes, depending on firmware, don't have
* implicit CP_WAIT_FOR_ME so we have to handle it manually.
*
* Transform feedback counters are read via CP_MEM_TO_REG, which implicitly
* does CP_WAIT_FOR_ME, so we don't include them here.
*
* Currently we read the draw predicate using CP_MEM_TO_MEM, which
* also implicitly does CP_WAIT_FOR_ME. However CP_DRAW_PRED_SET does *not*
* implicitly do CP_WAIT_FOR_ME, it seems to only wait for counters to
* complete since it's written for DX11 where you can only predicate on the
* result of a query object. So if we implement 64-bit comparisons in the
* future, or if CP_DRAW_PRED_SET grows the capability to do 32-bit
* comparisons, then this will have to be dealt with.
*/
if (vk_stage == VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT ||
vk_stage == VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT ||
vk_stage == VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT)
return TU_STAGE_BV_CP;
if (vk_stage == VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT ||
vk_stage == VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT)
return dst ? TU_STAGE_BV_CP : TU_STAGE_BR;
if (vk_stage == VK_PIPELINE_STAGE_2_HOST_BIT)
return dst ? TU_STAGE_BOTTOM : TU_STAGE_BV_CP;
if (dev->physical_device->info->chip >= 7) {
if (vk_stage == VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT ||
vk_stage == VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT ||
vk_stage == VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT ||
vk_stage == VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT ||
vk_stage == VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT ||
vk_stage == VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT ||
vk_stage == VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT ||
vk_stage == VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT ||
vk_stage == VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT ||
vk_stage == VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT) {
return dst ? TU_STAGE_BV : TU_STAGE_BR;
}
}
return TU_STAGE_BR;
}
static enum tu_stage
vk2tu_src_stage(struct tu_device *dev,
VkPipelineStageFlags2 vk_stages)
{
enum tu_stage stage = TU_STAGE_BV_CP;
u_foreach_bit64 (bit, vk_stages) {
enum tu_stage new_stage = vk2tu_single_stage(dev, 1ull << bit, false);
stage = MAX2(stage, new_stage);
}
return stage;
}
static enum tu_stage
vk2tu_dst_stage(struct tu_device *dev,
VkPipelineStageFlags2 vk_stages)
{
enum tu_stage stage = TU_STAGE_BOTTOM;
u_foreach_bit64 (bit, vk_stages) {
enum tu_stage new_stage = vk2tu_single_stage(dev, 1ull << bit, true);
stage = MIN2(stage, new_stage);
}
return stage;
}
static void
tu_flush_for_stage(struct tu_cache_state *cache,
enum tu_stage src_stage, enum tu_stage dst_stage)
{
/* Even if the source is the host or CP, the destination access could
* generate invalidates that we have to wait to complete.
*/
if (src_stage < TU_STAGE_BR &&
(cache->flush_bits & TU_CMD_FLAG_ALL_INVALIDATE))
src_stage = TU_STAGE_BR;
if (src_stage >= dst_stage) {
cache->flush_bits |= TU_CMD_FLAG_WAIT_FOR_IDLE;
if (dst_stage <= TU_STAGE_BV) {
cache->flush_bits |= TU_CMD_FLAG_WAIT_FOR_BR;
if (dst_stage == TU_STAGE_BV_CP)
cache->pending_flush_bits |= TU_CMD_FLAG_WAIT_FOR_ME;
}
}
}
void
tu_render_pass_state_merge(struct tu_render_pass_state *dst,
const struct tu_render_pass_state *src)
{
dst->xfb_used |= src->xfb_used;
dst->has_tess |= src->has_tess;
dst->has_prim_generated_query_in_rp |= src->has_prim_generated_query_in_rp;
dst->has_vtx_stats_query_in_rp |= src->has_vtx_stats_query_in_rp;
dst->has_zpass_done_sample_count_write_in_rp |= src->has_zpass_done_sample_count_write_in_rp;
dst->disable_gmem |= src->disable_gmem;
dst->sysmem_single_prim_mode |= src->sysmem_single_prim_mode;
dst->draw_cs_writes_to_cond_pred |= src->draw_cs_writes_to_cond_pred;
dst->shared_viewport |= src->shared_viewport;
dst->drawcall_count += src->drawcall_count;
dst->drawcall_bandwidth_per_sample_sum +=
src->drawcall_bandwidth_per_sample_sum;
if (!dst->lrz_disable_reason && src->lrz_disable_reason) {
dst->lrz_disable_reason = src->lrz_disable_reason;
dst->lrz_disabled_at_draw =
dst->drawcall_count + src->lrz_disabled_at_draw;
}
if (!dst->lrz_write_disabled_at_draw &&
src->lrz_write_disabled_at_draw) {
dst->lrz_write_disabled_at_draw =
dst->drawcall_count + src->lrz_write_disabled_at_draw;
}
if (!dst->gmem_disable_reason && src->gmem_disable_reason) {
dst->gmem_disable_reason = src->gmem_disable_reason;
}
}
void
tu_restore_suspended_pass(struct tu_cmd_buffer *cmd,
struct tu_cmd_buffer *suspended)
{
cmd->state.pass = suspended->state.suspended_pass.pass;
cmd->state.subpass = suspended->state.suspended_pass.subpass;
cmd->state.framebuffer = suspended->state.suspended_pass.framebuffer;
cmd->state.attachments = suspended->state.suspended_pass.attachments;
cmd->state.clear_values = suspended->state.suspended_pass.clear_values;
cmd->state.render_area = suspended->state.suspended_pass.render_area;
cmd->state.gmem_layout = suspended->state.suspended_pass.gmem_layout;
cmd->state.tiling = &cmd->state.framebuffer->tiling[cmd->state.gmem_layout];
cmd->state.lrz = suspended->state.suspended_pass.lrz;
}
/* Take the saved pre-chain in "secondary" and copy its commands to "cmd",
* appending it after any saved-up commands in "cmd".
*/
void
tu_append_pre_chain(struct tu_cmd_buffer *cmd,
struct tu_cmd_buffer *secondary)
{
tu_cs_add_entries(&cmd->draw_cs, &secondary->pre_chain.draw_cs);
tu_cs_add_entries(&cmd->draw_epilogue_cs,
&secondary->pre_chain.draw_epilogue_cs);
tu_render_pass_state_merge(&cmd->state.rp,
&secondary->pre_chain.state);
tu_clone_trace(cmd, &cmd->draw_cs,
&cmd->rp_trace, &secondary->pre_chain.rp_trace);
util_dynarray_append_dynarray(&cmd->fdm_bin_patchpoints,
&secondary->pre_chain.fdm_bin_patchpoints);
cmd->pre_chain.fdm_offset = secondary->pre_chain.fdm_offset;
if (secondary->pre_chain.fdm_offset) {
memcpy(cmd->pre_chain.fdm_offsets,
secondary->pre_chain.fdm_offsets,
sizeof(cmd->pre_chain.fdm_offsets));
}
}
/* Take the saved post-chain in "secondary" and copy it to "cmd".
*/
void
tu_append_post_chain(struct tu_cmd_buffer *cmd,
struct tu_cmd_buffer *secondary)
{
tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
tu_cs_add_entries(&cmd->draw_epilogue_cs, &secondary->draw_epilogue_cs);
tu_clone_trace(cmd, &cmd->draw_cs, &cmd->rp_trace, &secondary->rp_trace);
cmd->state.rp = secondary->state.rp;
util_dynarray_append_dynarray(&cmd->fdm_bin_patchpoints,
&secondary->fdm_bin_patchpoints);
}
/* Assuming "secondary" is just a sequence of suspended and resuming passes,
* copy its state to "cmd". This also works instead of tu_append_post_chain(),
* but it's a bit slower because we don't assume that the chain begins in
* "secondary" and therefore have to care about the command buffer's
* renderpass state.
*/
void
tu_append_pre_post_chain(struct tu_cmd_buffer *cmd,
struct tu_cmd_buffer *secondary)
{
tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
tu_cs_add_entries(&cmd->draw_epilogue_cs, &secondary->draw_epilogue_cs);
tu_clone_trace(cmd, &cmd->draw_cs, &cmd->rp_trace, &secondary->rp_trace);
tu_render_pass_state_merge(&cmd->state.rp,
&secondary->state.rp);
util_dynarray_append_dynarray(&cmd->fdm_bin_patchpoints,
&secondary->fdm_bin_patchpoints);
}
/* Take the current render pass state and save it to "pre_chain" to be
* combined later.
*/
static void
tu_save_pre_chain(struct tu_cmd_buffer *cmd)
{
tu_cs_add_entries(&cmd->pre_chain.draw_cs,
&cmd->draw_cs);
tu_cs_add_entries(&cmd->pre_chain.draw_epilogue_cs,
&cmd->draw_epilogue_cs);
u_trace_move(&cmd->pre_chain.rp_trace, &cmd->rp_trace);
cmd->pre_chain.state = cmd->state.rp;
util_dynarray_append_dynarray(&cmd->pre_chain.fdm_bin_patchpoints,
&cmd->fdm_bin_patchpoints);
cmd->pre_chain.patchpoints_ctx = cmd->patchpoints_ctx;
cmd->patchpoints_ctx = NULL;
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
uint32_t commandBufferCount,
const VkCommandBuffer *pCmdBuffers)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
VkResult result;
assert(commandBufferCount > 0);
/* Emit any pending flushes. */
if (cmd->state.pass) {
tu_clean_all_pending(&cmd->state.renderpass_cache);
TU_CALLX(cmd->device, tu_emit_cache_flush_renderpass)(cmd);
} else {
tu_clean_all_pending(&cmd->state.cache);
TU_CALLX(cmd->device, tu_emit_cache_flush)(cmd);
}
for (uint32_t i = 0; i < commandBufferCount; i++) {
VK_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
if (secondary->usage_flags &
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
assert(tu_cs_is_empty(&secondary->cs));
TU_CALLX(cmd->device, tu_lrz_flush_valid_during_renderpass)
(cmd, &cmd->draw_cs);
result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
if (result != VK_SUCCESS) {
vk_command_buffer_set_error(&cmd->vk, result);
break;
}
result = tu_cs_add_entries(&cmd->draw_epilogue_cs,
&secondary->draw_epilogue_cs);
if (result != VK_SUCCESS) {
vk_command_buffer_set_error(&cmd->vk, result);
break;
}
/* If LRZ was made invalid in secondary - we should disable
* LRZ retroactively for the whole renderpass.
*/
if (!secondary->state.lrz.valid)
cmd->state.lrz.valid = false;
if (secondary->state.lrz.gpu_dir_set)
cmd->state.lrz.gpu_dir_set = true;
if (cmd->state.lrz.prev_direction == TU_LRZ_UNKNOWN &&
secondary->state.lrz.prev_direction != TU_LRZ_UNKNOWN)
cmd->state.lrz.prev_direction =
secondary->state.lrz.prev_direction;
tu_clone_trace(cmd, &cmd->draw_cs, &cmd->rp_trace, &secondary->rp_trace);
tu_render_pass_state_merge(&cmd->state.rp, &secondary->state.rp);
util_dynarray_append_dynarray(&cmd->fdm_bin_patchpoints,
&secondary->fdm_bin_patchpoints);
} else {
struct tu_cs *cs = &cmd->cs;
/* If the secondary can be used multiple times, we have to set its
* patchpoints on the GPU. Set them here, and create a new
* patchpoint pointing to the CP_MEM_WRITE packet. Otherwise just
* copy them over adjusting the index.
*/
bool simultaneous_use = secondary->usage_flags &
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT;
/* If this cmdbuf itself can be used multiple times in a submit then
* its patchpoint will also be updated on the GPU.
*/
if (cmd->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT)
tu_cs_set_writeable(cs, true);
util_dynarray_foreach (&secondary->vis_stream_patchpoints,
struct tu_vis_stream_patchpoint,
secondary_patchpoint) {
struct tu_vis_stream_patchpoint patchpoint =
*secondary_patchpoint;
patchpoint.render_pass_idx += cmd->state.tile_render_pass_count;
if (simultaneous_use) {
tu_cs_reserve_space(cs, 5);
tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 4);
tu_cs_emit_qw(cs, patchpoint.iova);
patchpoint.iova = tu_cs_get_cur_iova(cs);
patchpoint.data = cs->cur;
tu_cs_emit_qw(cs, 0);
}
util_dynarray_append(&cmd->vis_stream_patchpoints,
patchpoint);
}
if (cmd->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT)
tu_cs_set_writeable(cs, false);
if (simultaneous_use) {
tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
/* Make BV wait for updates on BR to land */
if (cmd->device->physical_device->info->chip >= 7) {
tu_cs_emit_pkt7(cs, CP_THREAD_CONTROL, 1);
tu_cs_emit(cs, CP_THREAD_CONTROL_0_THREAD(CP_SET_THREAD_BR) |
CP_THREAD_CONTROL_0_SYNC_THREADS);
}
}
cmd->state.tile_render_pass_count +=
secondary->state.tile_render_pass_count;
cmd->vsc_size = MAX2(cmd->vsc_size, secondary->vsc_size);
switch (secondary->state.suspend_resume) {
case SR_NONE:
assert(tu_cs_is_empty(&secondary->draw_cs));
assert(tu_cs_is_empty(&secondary->draw_epilogue_cs));
tu_cs_add_entries(&cmd->cs, &secondary->cs);
tu_clone_trace(cmd, &cmd->cs, &cmd->trace, &secondary->trace);
break;
case SR_IN_PRE_CHAIN:
/* cmd may be empty, which means that the chain begins before cmd
* in which case we have to update its state.
*/
if (cmd->state.suspend_resume == SR_NONE) {
cmd->state.suspend_resume = SR_IN_PRE_CHAIN;
}
/* The secondary is just a continuous suspend/resume chain so we
* just have to append it to the the command buffer.
*/
assert(tu_cs_is_empty(&secondary->cs));
tu_append_pre_post_chain(cmd, secondary);
break;
case SR_AFTER_PRE_CHAIN:
case SR_IN_CHAIN:
case SR_IN_CHAIN_AFTER_PRE_CHAIN:
if (secondary->state.suspend_resume == SR_AFTER_PRE_CHAIN ||
secondary->state.suspend_resume == SR_IN_CHAIN_AFTER_PRE_CHAIN) {
tu_append_pre_chain(cmd, secondary);
/* We're about to render, so we need to end the command stream
* in case there were any extra commands generated by copying
* the trace.
*/
tu_cs_end(&cmd->draw_cs);
tu_cs_end(&cmd->draw_epilogue_cs);
switch (cmd->state.suspend_resume) {
case SR_NONE:
case SR_IN_PRE_CHAIN:
/* The renderpass chain ends in the secondary but isn't
* started in the primary, so we have to move the state to
* `pre_chain`.
*/
tu_save_pre_chain(cmd);
cmd->state.suspend_resume = SR_AFTER_PRE_CHAIN;
break;
case SR_IN_CHAIN:
case SR_IN_CHAIN_AFTER_PRE_CHAIN: {
/* The renderpass ends in the secondary and starts somewhere
* earlier in this primary. Since the last render pass in
* the chain is in the secondary, we are technically outside
* of a render pass. Fix that here by reusing the dynamic
* render pass that was setup for the last suspended render
* pass before the secondary.
*/
tu_restore_suspended_pass(cmd, cmd);
const struct VkOffset2D *fdm_offsets =
cmd->pre_chain.fdm_offset ?
cmd->pre_chain.fdm_offsets : NULL;
TU_CALLX(cmd->device, tu_cmd_render)(cmd, fdm_offsets);
if (cmd->state.suspend_resume == SR_IN_CHAIN)
cmd->state.suspend_resume = SR_NONE;
else
cmd->state.suspend_resume = SR_AFTER_PRE_CHAIN;
break;
}
case SR_AFTER_PRE_CHAIN:
UNREACHABLE("resuming render pass is not preceded by suspending one");
}
tu_reset_render_pass(cmd);
}
tu_cs_add_entries(&cmd->cs, &secondary->cs);
if (secondary->state.suspend_resume == SR_IN_CHAIN_AFTER_PRE_CHAIN ||
secondary->state.suspend_resume == SR_IN_CHAIN) {
/* The secondary ends in a "post-chain" (the opposite of a
* pre-chain) that we need to copy into the current command
* buffer.
*/
tu_append_post_chain(cmd, secondary);
cmd->state.suspended_pass = secondary->state.suspended_pass;
switch (cmd->state.suspend_resume) {
case SR_NONE:
cmd->state.suspend_resume = SR_IN_CHAIN;
break;
case SR_AFTER_PRE_CHAIN:
cmd->state.suspend_resume = SR_IN_CHAIN_AFTER_PRE_CHAIN;
break;
default:
UNREACHABLE("suspending render pass is followed by a not resuming one");
}
}
}
cmd->state.total_renderpasses += secondary->state.total_renderpasses;
cmd->state.total_dispatches += secondary->state.total_dispatches;
}
cmd->state.index_size = secondary->state.index_size; /* for restart index update */
}
cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
if (!cmd->state.lrz.gpu_dir_tracking && cmd->state.pass) {
/* After a secondary command buffer is executed, LRZ is not valid
* until it is cleared again.
*/
cmd->state.lrz.valid = false;
}
/* After executing secondary command buffers, there may have been arbitrary
* flushes executed, so when we encounter a pipeline barrier with a
* srcMask, we have to assume that we need to invalidate. Therefore we need
* to re-initialize the cache with all pending invalidate bits set.
*/
if (cmd->state.pass) {
struct tu_cache_state *cache = &cmd->state.renderpass_cache;
BITMASK_ENUM(tu_cmd_flush_bits) retained_pending_flush_bits =
cache->pending_flush_bits & TU_CMD_FLAG_BLIT_CACHE_CLEAN;
tu_cache_init(cache);
cache->pending_flush_bits |= retained_pending_flush_bits;
} else {
tu_cache_init(&cmd->state.cache);
}
}
static void
tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
const struct tu_subpass_barrier *barrier,
bool external)
{
/* Note: we don't know until the end of the subpass whether we'll use
* sysmem, so assume sysmem here to be safe.
*/
struct tu_cache_state *cache =
external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache;
VkPipelineStageFlags2 src_stage_vk =
sanitize_src_stage(barrier->src_stage_mask);
VkPipelineStageFlags2 dst_stage_vk =
sanitize_dst_stage(barrier->dst_stage_mask);
BITMASK_ENUM(tu_cmd_access_mask) src_flags =
vk2tu_access(barrier->src_access_mask, barrier->src_access_mask2,
src_stage_vk, false, false,
cmd_buffer->device->vk.enabled_features.sparseResidencyAliased);
BITMASK_ENUM(tu_cmd_access_mask) dst_flags =
vk2tu_access(barrier->dst_access_mask, barrier->dst_access_mask2,
dst_stage_vk, false, false,
cmd_buffer->device->vk.enabled_features.sparseResidencyAliased);
if (barrier->incoherent_ccu_color)
src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
if (barrier->incoherent_ccu_depth)
src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
tu_flush_for_access(cache, src_flags, dst_flags);
enum tu_stage src_stage = vk2tu_src_stage(cmd_buffer->device, src_stage_vk);
enum tu_stage dst_stage = vk2tu_dst_stage(cmd_buffer->device, dst_stage_vk);
tu_flush_for_stage(cache, src_stage, dst_stage);
}
template <chip CHIP>
static void
tu_emit_subpass_begin_gmem(struct tu_cmd_buffer *cmd, struct tu_resolve_group *resolve_group)
{
struct tu_cs *cs = &cmd->draw_cs;
uint32_t subpass_idx = cmd->state.subpass - cmd->state.pass->subpasses;
const struct tu_vsc_config *vsc = tu_vsc_config(cmd, cmd->state.tiling);
/* If we might choose to bin, then put the loads under a check for geometry
* having been binned to this tile. If we don't choose to bin in the end,
* then we will have manually set those registers to say geometry is present.
*
* However, if the draw CS has a write to the condition for some other reason
* (perf queries), then we can't do this optimization since the
* start-of-the-CS geometry condition will have been overwritten.
*/
bool cond_load_allowed = vsc->binning &&
cmd->state.pass->has_cond_load_store &&
!cmd->state.rp.draw_cs_writes_to_cond_pred;
if (cmd->state.pass->has_fdm)
tu_cs_set_writeable(cs, true);
tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
/* This appears to be necessary when stores are followed by loads to the
* same memory in GMEM, to prevent the loads from starting before the
* stores have completed. See
* dEQP-VK.pipeline.monolithic.multisample.multisampled_render_to_single_sampled.input_attachments.initialize.r8g8b8a8_unorm_r16g16b16a16_sfloat_r16g16b16a16_sint_d16_unorm.2x.ds_resolve_sample_zero.whole_framebuffer
* for a testcase.
*
* TODO: why is this not necessary between the end of one tile and the
* start of another?
*/
if (subpass_idx != 0) {
tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_CLEAN_BLIT_CACHE);
}
/* Emit gmem loads that are first used in this subpass. */
bool emitted_scissor = false;
for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i) {
struct tu_render_pass_attachment *att = &cmd->state.pass->attachments[i];
if ((att->load || att->load_stencil) && att->first_subpass_idx == subpass_idx) {
if (!emitted_scissor) {
tu6_emit_blit_scissor(cmd, cs, true, false);
emitted_scissor = true;
}
tu_load_gmem_attachment<CHIP>(cmd, cs, resolve_group, i, i,
cond_load_allowed, false);
}
}
/* Emit unresolves that replicate single-sampled attachments into
* multisampled GMEM attachments.
*/
for (uint32_t i = 0; i < cmd->state.subpass->unresolve_count; ++i) {
uint32_t a = cmd->state.subpass->unresolve_attachments[i].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
uint32_t gmem_a =
tu_subpass_get_attachment_to_unresolve(cmd->state.subpass, i);
tu_load_gmem_attachment<CHIP>(cmd, cs, resolve_group, a, gmem_a,
cond_load_allowed, true);
}
if (!cmd->device->physical_device->info->props.has_generic_clear) {
/* Emit gmem clears that are first used in this subpass. */
emitted_scissor = false;
for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i) {
struct tu_render_pass_attachment *att =
&cmd->state.pass->attachments[i];
if (att->clear_mask && att->first_subpass_idx == subpass_idx) {
if (!emitted_scissor) {
tu6_emit_blit_scissor(cmd, cs, false, false);
emitted_scissor = true;
}
tu_clear_gmem_attachment<CHIP>(cmd, cs, resolve_group, i);
}
}
}
tu_cond_exec_end(cs); /* CP_COND_EXEC_0_RENDER_MODE_GMEM */
if (cmd->state.pass->has_fdm)
tu_cs_set_writeable(cs, false);
}
/* Emits sysmem clears that are first used in this subpass. */
template <chip CHIP>
static void
tu_emit_subpass_begin_sysmem(struct tu_cmd_buffer *cmd)
{
if (cmd->device->physical_device->info->props.has_generic_clear &&
!cmd->state.subpass->unresolve_count)
return;
struct tu_cs *cs = &cmd->draw_cs;
uint32_t subpass_idx = cmd->state.subpass - cmd->state.pass->subpasses;
tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
tu6_emit_sysmem_unresolves<CHIP>(cmd, cs, cmd->state.subpass);
for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i) {
struct tu_render_pass_attachment *att = &cmd->state.pass->attachments[i];
if (att->clear_mask && att->first_subpass_idx == subpass_idx)
tu_clear_sysmem_attachment<CHIP>(cmd, cs, i);
}
tu_cond_exec_end(cs); /* sysmem */
}
static void
tu7_emit_subpass_clear(struct tu_cmd_buffer *cmd, struct tu_resolve_group *resolve_group)
{
if (cmd->state.render_area.extent.width == 0 ||
cmd->state.render_area.extent.height == 0)
return;
struct tu_cs *cs = &cmd->draw_cs;
uint32_t subpass_idx = cmd->state.subpass - cmd->state.pass->subpasses;
tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
CP_COND_REG_EXEC_0_GMEM |
CP_COND_REG_EXEC_0_SYSMEM);
bool emitted_scissor = false;
for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i) {
struct tu_render_pass_attachment *att =
&cmd->state.pass->attachments[i];
if (att->clear_mask && att->first_subpass_idx == subpass_idx) {
if (!emitted_scissor) {
tu6_emit_blit_scissor(cmd, cs, false, true);
emitted_scissor = true;
}
tu7_generic_clear_attachment(cmd, cs, resolve_group, i);
}
}
tu_cond_exec_end(cs);
}
template <chip CHIP>
static void
tu7_emit_subpass_shading_rate(struct tu_cmd_buffer *cmd,
const struct tu_subpass *subpass,
struct tu_cs *cs)
{
if (subpass->fsr_attachment == VK_ATTACHMENT_UNUSED) {
tu_cs_emit_regs(cs, GRAS_QUALITY_BUFFER_INFO(CHIP),
GRAS_QUALITY_BUFFER_DIMENSION(CHIP));
tu_cs_emit_regs(cs, GRAS_QUALITY_BUFFER_PITCH(CHIP));
tu_cs_emit_regs(cs, GRAS_QUALITY_BUFFER_BASE(CHIP));
/* We need to invalidate cache when changing to NULL FSR attachment, but
* only once.
*/
if (!cmd->prev_fsr_is_null) {
tu_emit_raw_event_write<A7XX>(cmd, cs, LRZ_Q_CACHE_INVALIDATE,
false);
cmd->prev_fsr_is_null = true;
}
return;
}
const struct tu_image_view *iview =
cmd->state.attachments[subpass->fsr_attachment];
assert(iview->vk.format == VK_FORMAT_R8_UINT);
tu_cs_emit_regs(
cs,
GRAS_QUALITY_BUFFER_INFO(
CHIP, .layered = true,
.tile_mode = (a6xx_tile_mode) iview->image->layout[0].tile_mode, ),
GRAS_QUALITY_BUFFER_DIMENSION(CHIP, .width = iview->view.width,
.height = iview->view.height));
tu_cs_emit_regs(
cs, GRAS_QUALITY_BUFFER_PITCH(CHIP, .pitch = iview->view.pitch,
.array_pitch = iview->view.layer_size));
tu_cs_emit_regs(
cs, GRAS_QUALITY_BUFFER_BASE(CHIP, .qword = iview->view.base_addr));
tu_emit_raw_event_write<A7XX>(cmd, cs, LRZ_Q_CACHE_INVALIDATE, false);
cmd->prev_fsr_is_null = false;
}
/* emit loads, clears, and mrt/zs/msaa/ubwc state for the subpass that is
* starting (either at vkCmdBeginRenderPass2() or vkCmdNextSubpass2())
*
* Clears and loads have to happen at this point, because with
* VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT the loads may depend on the output of
* a previous aliased attachment's store.
*/
template <chip CHIP>
static void
tu_emit_subpass_begin(struct tu_cmd_buffer *cmd)
{
tu_fill_render_pass_state(&cmd->state.vk_rp, cmd->state.pass, cmd->state.subpass);
struct tu_resolve_group resolve_group = {};
tu_emit_subpass_begin_gmem<CHIP>(cmd, &resolve_group);
tu_emit_subpass_begin_sysmem<CHIP>(cmd);
if (cmd->device->physical_device->info->props.has_generic_clear) {
tu7_emit_subpass_clear(cmd, &resolve_group);
}
tu_emit_resolve_group<CHIP>(cmd, &cmd->draw_cs, &resolve_group);
tu6_emit_zs<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs);
tu6_emit_mrt<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs);
tu6_emit_render_cntl<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs, false);
if (CHIP >= A7XX) {
tu7_emit_subpass_shading_rate<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs);
}
tu_set_input_attachments(cmd, cmd->state.subpass);
vk_cmd_set_cb_attachment_count(&cmd->vk, cmd->state.subpass->color_count);
cmd->state.dirty |= TU_CMD_DIRTY_SUBPASS;
}
template <chip CHIP>
VKAPI_ATTR void VKAPI_CALL
tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo *pRenderPassBegin,
const VkSubpassBeginInfo *pSubpassBeginInfo)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
if (TU_DEBUG(DYNAMIC)) {
vk_common_CmdBeginRenderPass2(commandBuffer, pRenderPassBegin,
pSubpassBeginInfo);
return;
}
VK_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass);
VK_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer);
const struct VkRenderPassAttachmentBeginInfo *pAttachmentInfo =
vk_find_struct_const(pRenderPassBegin->pNext,
RENDER_PASS_ATTACHMENT_BEGIN_INFO);
cmd->state.pass = pass;
cmd->state.subpass = pass->subpasses;
cmd->state.framebuffer = fb;
cmd->state.render_area = pRenderPassBegin->renderArea;
cmd->state.fdm_per_layer = pass->has_layered_fdm;
if (pass->attachment_count > 0) {
VK_MULTIALLOC(ma);
vk_multialloc_add(&ma, &cmd->state.attachments,
const struct tu_image_view *, pass->attachment_count);
vk_multialloc_add(&ma, &cmd->state.clear_values, VkClearValue,
pass->attachment_count);
if (!vk_multialloc_alloc(&ma, &cmd->vk.pool->alloc,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT)) {
vk_command_buffer_set_error(&cmd->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
return;
}
}
if (cmd->device->dbg_renderpass_stomp_cs) {
tu_cs_emit_call(&cmd->cs, cmd->device->dbg_renderpass_stomp_cs);
}
for (unsigned i = 0; i < pass->user_attachment_count; i++) {
cmd->state.attachments[i] = pAttachmentInfo ?
tu_image_view_from_handle(pAttachmentInfo->pAttachments[i]) :
cmd->state.framebuffer->attachments[i];
}
for (unsigned i = 0; i < pass->attachment_count - pass->user_attachment_count; i++) {
/* With imageless attachments, the only attachments in the framebuffer
* are MSRTSS attachments. Without imageless attachments, they are after
* the user's attachments.
*/
unsigned fb_idx = i + (pAttachmentInfo ? 0 : pass->user_attachment_count);
cmd->state.attachments[i + pass->user_attachment_count] =
cmd->state.framebuffer->attachments[fb_idx];
}
if (pass->attachment_count) {
for (unsigned i = 0; i < MIN2(pRenderPassBegin->clearValueCount,
pass->user_attachment_count); i++) {
struct tu_render_pass_attachment *att = &pass->attachments[i];
uint32_t idx = i;
/* Clear values have to be remapped for MSRTSS, because they may be
* moved to the multisample attachment.
*/
if (att->remapped_clear_att != VK_ATTACHMENT_UNUSED)
idx = att->remapped_clear_att;
cmd->state.clear_values[idx] = pRenderPassBegin->pClearValues[i];
}
}
tu_choose_gmem_layout(cmd);
/* Note: because this is external, any flushes will happen before draw_cs
* gets called. However deferred flushes could have to happen later as part
* of the subpass.
*/
tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true);
cmd->state.renderpass_cache.pending_flush_bits =
cmd->state.cache.pending_flush_bits;
cmd->state.renderpass_cache.flush_bits = 0;
if (pass->subpasses[0].feedback_invalidate) {
cmd->state.renderpass_cache.flush_bits |=
TU_CMD_FLAG_CACHE_INVALIDATE | TU_CMD_FLAG_BLIT_CACHE_CLEAN |
TU_CMD_FLAG_WAIT_FOR_IDLE;
}
tu_lrz_begin_renderpass<CHIP>(cmd);
tu_emit_renderpass_begin(cmd);
tu_emit_subpass_begin<CHIP>(cmd);
cmd->patchpoints_ctx = ralloc_context(NULL);
}
TU_GENX(tu_CmdBeginRenderPass2);
template <chip CHIP>
VKAPI_ATTR void VKAPI_CALL
tu_CmdBeginRendering(VkCommandBuffer commandBuffer,
const VkRenderingInfo *pRenderingInfo)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
tu_setup_dynamic_render_pass(cmd, pRenderingInfo);
tu_setup_dynamic_framebuffer(cmd, pRenderingInfo);
cmd->state.pass = &cmd->dynamic_pass;
cmd->state.subpass = &cmd->dynamic_subpass;
cmd->state.framebuffer = &cmd->dynamic_framebuffer;
cmd->state.render_area = pRenderingInfo->renderArea;
cmd->state.fdm_per_layer =
pRenderingInfo->flags & VK_RENDERING_PER_LAYER_FRAGMENT_DENSITY_BIT_VALVE;
cmd->state.blit_cache_cleaned = false;
cmd->state.attachments = cmd->dynamic_attachments;
cmd->state.clear_values = cmd->dynamic_clear_values;
for (unsigned i = 0; i < pRenderingInfo->colorAttachmentCount; i++) {
if (!pRenderingInfo->pColorAttachments[i].imageView)
continue;
uint32_t a = cmd->dynamic_subpass.color_attachments[i].attachment;
cmd->state.clear_values[a] =
pRenderingInfo->pColorAttachments[i].clearValue;
/* With MSRTSS, the user's attachment corresponds to the
* resolve/unresolve attachment, not the color attachment. The color
* attachment is the transient multisample attachment. However the clear
* happens on the multisample attachment, so we don't remap the
* clear_values assignment above.
*/
bool msrtss = false;
if (a >= cmd->dynamic_pass.user_attachment_count) {
a = cmd->dynamic_pass.attachments[a].user_att;
msrtss = true;
}
VK_FROM_HANDLE(tu_image_view, view,
pRenderingInfo->pColorAttachments[i].imageView);
cmd->state.attachments[a] = view;
a = cmd->dynamic_subpass.resolve_attachments[i].attachment;
if (!msrtss && a != VK_ATTACHMENT_UNUSED) {
VK_FROM_HANDLE(tu_image_view, resolve_view,
pRenderingInfo->pColorAttachments[i].resolveImageView);
cmd->state.attachments[a] = resolve_view;
}
}
uint32_t a = cmd->dynamic_subpass.depth_stencil_attachment.attachment;
if (pRenderingInfo->pDepthAttachment || pRenderingInfo->pStencilAttachment) {
const struct VkRenderingAttachmentInfo *common_info =
(pRenderingInfo->pDepthAttachment &&
pRenderingInfo->pDepthAttachment->imageView != VK_NULL_HANDLE) ?
pRenderingInfo->pDepthAttachment :
pRenderingInfo->pStencilAttachment;
if (common_info && common_info->imageView != VK_NULL_HANDLE) {
VK_FROM_HANDLE(tu_image_view, view, common_info->imageView);
if (pRenderingInfo->pDepthAttachment) {
cmd->state.clear_values[a].depthStencil.depth =
pRenderingInfo->pDepthAttachment->clearValue.depthStencil.depth;
}
if (pRenderingInfo->pStencilAttachment) {
cmd->state.clear_values[a].depthStencil.stencil =
pRenderingInfo->pStencilAttachment->clearValue.depthStencil.stencil;
}
bool msrtss = false;
if (a >= cmd->dynamic_pass.user_attachment_count) {
a = cmd->dynamic_pass.attachments[a].user_att;
msrtss = true;
}
cmd->state.attachments[a] = view;
if (!msrtss && cmd->dynamic_subpass.resolve_count >
cmd->dynamic_subpass.color_count) {
VK_FROM_HANDLE(tu_image_view, resolve_view,
common_info->resolveImageView);
a = cmd->dynamic_subpass.resolve_attachments[cmd->dynamic_subpass.color_count].attachment;
cmd->state.attachments[a] = resolve_view;
}
}
}
a = cmd->dynamic_pass.fragment_density_map.attachment;
if (a != VK_ATTACHMENT_UNUSED) {
const VkRenderingFragmentDensityMapAttachmentInfoEXT *fdm_info =
vk_find_struct_const(pRenderingInfo->pNext,
RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_INFO_EXT);
VK_FROM_HANDLE(tu_image_view, view, fdm_info->imageView);
cmd->state.attachments[a] = view;
}
const VkRenderingAttachmentLocationInfoKHR ral_info = {
.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_LOCATION_INFO_KHR,
.colorAttachmentCount = pRenderingInfo->colorAttachmentCount,
};
vk_cmd_set_rendering_attachment_locations(&cmd->vk, &ral_info);
cmd->patchpoints_ctx = ralloc_context(NULL);
a = cmd->dynamic_subpass.fsr_attachment;
if (a != VK_ATTACHMENT_UNUSED) {
const VkRenderingFragmentShadingRateAttachmentInfoKHR *fsr_info =
vk_find_struct_const(pRenderingInfo->pNext,
RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_INFO_KHR);
VK_FROM_HANDLE(tu_image_view, view, fsr_info->imageView);
cmd->state.attachments[a] = view;
}
VkResult result = tu_setup_dynamic_msrtss(cmd);
if (result != VK_SUCCESS) {
vk_command_buffer_set_error(&cmd->vk, result);
return;
}
tu_choose_gmem_layout(cmd);
cmd->state.renderpass_cache.pending_flush_bits =
cmd->state.cache.pending_flush_bits;
cmd->state.renderpass_cache.flush_bits = 0;
bool resuming = pRenderingInfo->flags & VK_RENDERING_RESUMING_BIT;
bool suspending = pRenderingInfo->flags & VK_RENDERING_SUSPENDING_BIT;
cmd->state.suspending = suspending;
cmd->state.resuming = resuming;
if (!resuming && cmd->device->dbg_renderpass_stomp_cs) {
tu_cs_emit_call(&cmd->cs, cmd->device->dbg_renderpass_stomp_cs);
}
/* We can't track LRZ across command buffer boundaries, so we have to
* disable LRZ when resuming/suspending unless we can track on the GPU.
*/
if ((resuming || suspending) &&
!cmd->device->physical_device->info->props.has_lrz_dir_tracking) {
cmd->state.lrz.valid = false;
} else {
if (resuming)
tu_lrz_begin_resumed_renderpass<CHIP>(cmd);
else
tu_lrz_begin_renderpass<CHIP>(cmd);
}
if (suspending) {
cmd->state.suspended_pass.pass = cmd->state.pass;
cmd->state.suspended_pass.subpass = cmd->state.subpass;
cmd->state.suspended_pass.framebuffer = cmd->state.framebuffer;
cmd->state.suspended_pass.render_area = cmd->state.render_area;
cmd->state.suspended_pass.attachments = cmd->state.attachments;
cmd->state.suspended_pass.clear_values = cmd->state.clear_values;
cmd->state.suspended_pass.gmem_layout = cmd->state.gmem_layout;
}
if (!resuming) {
tu_emit_renderpass_begin(cmd);
tu_emit_subpass_begin<CHIP>(cmd);
}
if (suspending && !resuming) {
/* entering a chain */
switch (cmd->state.suspend_resume) {
case SR_NONE:
cmd->state.suspend_resume = SR_IN_CHAIN;
break;
case SR_AFTER_PRE_CHAIN:
cmd->state.suspend_resume = SR_IN_CHAIN_AFTER_PRE_CHAIN;
break;
case SR_IN_PRE_CHAIN:
case SR_IN_CHAIN:
case SR_IN_CHAIN_AFTER_PRE_CHAIN:
UNREACHABLE("suspending render pass not followed by resuming pass");
break;
}
}
if (resuming && cmd->state.suspend_resume == SR_NONE)
cmd->state.suspend_resume = SR_IN_PRE_CHAIN;
}
TU_GENX(tu_CmdBeginRendering);
template <chip CHIP>
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetRenderingAttachmentLocationsKHR(
VkCommandBuffer commandBuffer,
const VkRenderingAttachmentLocationInfoKHR *pLocationInfo)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
vk_common_CmdSetRenderingAttachmentLocationsKHR(commandBuffer, pLocationInfo);
tu6_emit_mrt<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs);
tu6_emit_render_cntl<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs, false);
/* Same case as a drawcall not writing to some color attachments, but not
* trying to make LRZ work in cases where we can prove that LRZ can work.
*/
if (cmd->state.lrz.valid)
tu_lrz_disable_write_for_rp(cmd, "CmdSetRenderingAttachmentLocations");
/* Because this is just a remapping and not a different "reference", there
* doesn't need to be a barrier between accesses to the same attachment
* with a different index. This is different from "classic" renderpasses.
* Before a7xx the CCU includes the render target ID in the cache location
* calculation, so we need to manually flush/invalidate color CCU here
* since the same render target/attachment may be in a different location.
*/
if (cmd->device->physical_device->info->chip == 6) {
struct tu_cache_state *cache = &cmd->state.renderpass_cache;
tu_flush_for_access(cache, TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE,
TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE);
cache->flush_bits |= TU_CMD_FLAG_WAIT_FOR_IDLE;
}
}
TU_GENX(tu_CmdSetRenderingAttachmentLocationsKHR);
VKAPI_ATTR void VKAPI_CALL
tu_CmdSetRenderingInputAttachmentIndicesKHR(
VkCommandBuffer commandBuffer,
const VkRenderingInputAttachmentIndexInfoKHR *pLocationInfo)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
vk_common_CmdSetRenderingInputAttachmentIndicesKHR(commandBuffer, pLocationInfo);
const struct vk_input_attachment_location_state *ial =
&cmd->vk.dynamic_graphics_state.ial;
struct tu_subpass *subpass = &cmd->dynamic_subpass;
for (unsigned i = 0; i < ARRAY_SIZE(cmd->dynamic_input_attachments); i++) {
subpass->input_attachments[i].attachment = VK_ATTACHMENT_UNUSED;
}
unsigned input_count = 0;
for (unsigned i = 0; i < subpass->color_count; i++) {
if (ial->color_map[i] == MESA_VK_ATTACHMENT_UNUSED)
continue;
subpass->input_attachments[ial->color_map[i] + TU_DYN_INPUT_ATT_OFFSET].attachment =
subpass->color_attachments[i].attachment;
input_count = MAX2(input_count, ial->color_map[i] + TU_DYN_INPUT_ATT_OFFSET + 1);
}
if (ial->depth_att != MESA_VK_ATTACHMENT_UNUSED) {
if (ial->depth_att == MESA_VK_ATTACHMENT_NO_INDEX) {
subpass->input_attachments[0].attachment =
subpass->depth_stencil_attachment.attachment;
input_count = MAX2(input_count, 1);
} else {
subpass->input_attachments[ial->depth_att + TU_DYN_INPUT_ATT_OFFSET].attachment =
subpass->depth_stencil_attachment.attachment;
input_count = MAX2(input_count, ial->depth_att + TU_DYN_INPUT_ATT_OFFSET + 1);
}
}
if (ial->stencil_att != MESA_VK_ATTACHMENT_UNUSED) {
if (ial->stencil_att == MESA_VK_ATTACHMENT_NO_INDEX) {
subpass->input_attachments[0].attachment =
subpass->depth_stencil_attachment.attachment;
input_count = MAX2(input_count, 1);
} else {
subpass->input_attachments[ial->stencil_att + TU_DYN_INPUT_ATT_OFFSET].attachment =
subpass->depth_stencil_attachment.attachment;
input_count = MAX2(input_count, ial->stencil_att + TU_DYN_INPUT_ATT_OFFSET + 1);
}
}
subpass->input_count = input_count;
tu_set_input_attachments(cmd, cmd->state.subpass);
}
template <chip CHIP>
VKAPI_ATTR void VKAPI_CALL
tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,
const VkSubpassBeginInfo *pSubpassBeginInfo,
const VkSubpassEndInfo *pSubpassEndInfo)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
if (TU_DEBUG(DYNAMIC)) {
vk_common_CmdNextSubpass2(commandBuffer, pSubpassBeginInfo,
pSubpassEndInfo);
return;
}
struct tu_cs *cs = &cmd->draw_cs;
const struct tu_subpass *subpass = cmd->state.subpass++;
const struct tu_subpass *new_subpass = cmd->state.subpass;
/* Track LRZ valid state
*
* TODO: Improve this tracking for keeping the state of the past depth/stencil images,
* so if they become active again, we reuse its old state.
*/
if (new_subpass->depth_stencil_attachment.attachment != subpass->depth_stencil_attachment.attachment) {
cmd->state.lrz.valid = false;
cmd->state.dirty |= TU_CMD_DIRTY_LRZ;
}
if (cmd->state.tiling->possible) {
if (cmd->state.pass->has_fdm)
tu_cs_set_writeable(cs, true);
tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
struct tu_resolve_group resolve_group = {};
tu6_emit_gmem_stores<CHIP>(cmd, &cmd->draw_cs, &resolve_group, subpass);
tu_emit_resolve_group<CHIP>(cmd, cs, &resolve_group);
tu_cond_exec_end(cs);
if (cmd->state.pass->has_fdm)
tu_cs_set_writeable(cs, false);
tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
}
tu6_emit_sysmem_resolves<CHIP>(cmd, cs, subpass);
if (cmd->state.tiling->possible)
tu_cond_exec_end(cs);
/* Handle dependencies for the next subpass */
tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false);
if (cmd->state.subpass->feedback_invalidate) {
cmd->state.renderpass_cache.flush_bits |=
TU_CMD_FLAG_CACHE_INVALIDATE | TU_CMD_FLAG_BLIT_CACHE_CLEAN |
TU_CMD_FLAG_WAIT_FOR_IDLE;
}
tu_emit_subpass_begin<CHIP>(cmd);
}
TU_GENX(tu_CmdNextSubpass2);
static uint32_t
tu6_user_consts_size(const struct tu_const_state *const_state,
bool ldgk,
mesa_shader_stage type)
{
uint32_t dwords = 0;
if (const_state->push_consts.type == IR3_PUSH_CONSTS_PER_STAGE) {
unsigned num_units = const_state->push_consts.dwords;
dwords += 4 + num_units;
assert(num_units > 0);
}
if (ldgk) {
dwords += 6 + (2 * const_state->num_inline_ubos + 4);
} else {
dwords += 8 * const_state->num_inline_ubos;
}
return dwords;
}
static void
tu6_emit_per_stage_push_consts(struct tu_cs *cs,
const struct tu_const_state *const_state,
const struct ir3_const_state *ir_const_state,
mesa_shader_stage type,
uint32_t *push_constants)
{
if (const_state->push_consts.type == IR3_PUSH_CONSTS_PER_STAGE) {
unsigned num_units = const_state->push_consts.dwords;
unsigned offset_vec4 =
ir_const_state->allocs.consts[IR3_CONST_ALLOC_PUSH_CONSTS]
.offset_vec4;
assert(num_units > 0);
/* DST_OFF and NUM_UNIT requires vec4 units */
tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset_vec4) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
CP_LOAD_STATE6_0_NUM_UNIT(num_units / 4));
tu_cs_emit(cs, 0);
tu_cs_emit(cs, 0);
unsigned lo = const_state->push_consts.lo_dwords;
for (unsigned i = 0; i < num_units; i++)
tu_cs_emit(cs, push_constants[i + lo]);
}
}
static void
tu6_emit_inline_ubo(struct tu_cs *cs,
const struct tu_const_state *const_state,
unsigned constlen,
mesa_shader_stage type,
struct tu_descriptor_state *descriptors)
{
assert(const_state->num_inline_ubos == 0 || !cs->device->physical_device->info->props.load_shader_consts_via_preamble);
/* Emit loads of inline uniforms. These load directly from the uniform's
* storage space inside the descriptor set.
*/
for (unsigned i = 0; i < const_state->num_inline_ubos; i++) {
const struct tu_inline_ubo *ubo = &const_state->ubos[i];
if (constlen <= ubo->const_offset_vec4)
continue;
uint64_t va = descriptors->set_iova[ubo->base] & ~0x3f;
tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), ubo->push_address ? 7 : 3);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(ubo->const_offset_vec4) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(ubo->push_address ? SS6_DIRECT : SS6_INDIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
CP_LOAD_STATE6_0_NUM_UNIT(MIN2(ubo->size_vec4, constlen - ubo->const_offset_vec4)));
if (ubo->push_address) {
tu_cs_emit(cs, 0);
tu_cs_emit(cs, 0);
tu_cs_emit_qw(cs, va + ubo->offset);
tu_cs_emit(cs, 0);
tu_cs_emit(cs, 0);
} else {
tu_cs_emit_qw(cs, va + ubo->offset);
}
}
}
static void
tu7_emit_inline_ubo(struct tu_cs *cs,
const struct tu_const_state *const_state,
const struct ir3_const_state *ir_const_state,
unsigned constlen,
mesa_shader_stage type,
struct tu_descriptor_state *descriptors)
{
uint64_t addresses[7] = {0};
unsigned offset = const_state->inline_uniforms_ubo.idx;
if (offset == -1)
return;
for (unsigned i = 0; i < const_state->num_inline_ubos; i++) {
const struct tu_inline_ubo *ubo = &const_state->ubos[i];
uint64_t va = descriptors->set_iova[ubo->base] & ~0x3f;
addresses[i] = va + ubo->offset;
}
/* A7XX TODO: Emit data via sub_cs instead of NOP */
uint64_t iova = tu_cs_emit_data_nop(cs, (uint32_t *)addresses, const_state->num_inline_ubos * 2, 4);
tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 5);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_UBO) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
CP_LOAD_STATE6_0_NUM_UNIT(1));
tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
int size_vec4s = DIV_ROUND_UP(const_state->num_inline_ubos * 2, 4);
tu_cs_emit_qw(cs, iova | ((uint64_t)A6XX_UBO_1_SIZE(size_vec4s) << 32));
}
static void
tu_emit_inline_ubo(struct tu_cs *cs,
const struct tu_const_state *const_state,
const struct ir3_const_state *ir_const_state,
unsigned constlen,
mesa_shader_stage type,
struct tu_descriptor_state *descriptors)
{
if (!const_state->num_inline_ubos)
return;
if (cs->device->physical_device->info->props.load_inline_uniforms_via_preamble_ldgk) {
tu7_emit_inline_ubo(cs, const_state, ir_const_state, constlen, type, descriptors);
} else {
tu6_emit_inline_ubo(cs, const_state, constlen, type, descriptors);
}
}
static void
tu6_emit_shared_consts(struct tu_cs *cs,
const struct tu_push_constant_range *shared_consts,
uint32_t *push_constants,
bool compute)
{
if (shared_consts->dwords > 0) {
/* Offset and num_units for shared consts are in units of dwords. */
unsigned num_units = shared_consts->dwords;
unsigned offset = shared_consts->lo_dwords;
enum a6xx_state_type st = compute ? ST6_UBO : ST6_CONSTANTS;
uint32_t cp_load_state = compute ? CP_LOAD_STATE6_FRAG : CP_LOAD_STATE6;
tu_cs_emit_pkt7(cs, cp_load_state, 3 + num_units);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
CP_LOAD_STATE6_0_STATE_TYPE(st) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(SB6_UAV) |
CP_LOAD_STATE6_0_NUM_UNIT(num_units));
tu_cs_emit(cs, 0);
tu_cs_emit(cs, 0);
for (unsigned i = 0; i < num_units; i++)
tu_cs_emit(cs, push_constants[i + offset]);
}
}
static void
tu7_emit_shared_preamble_consts(
struct tu_cs *cs,
const struct tu_push_constant_range *shared_consts,
uint32_t *push_constants)
{
tu_cs_emit_pkt4(cs, REG_A7XX_SP_SHARED_CONSTANT_GFX(shared_consts->lo_dwords),
shared_consts->dwords);
tu_cs_emit_array(cs, push_constants + shared_consts->lo_dwords,
shared_consts->dwords);
}
static uint32_t
tu6_const_size(struct tu_cmd_buffer *cmd,
const struct tu_push_constant_range *shared_consts,
bool compute)
{
uint32_t dwords = 0;
if (shared_consts->type == IR3_PUSH_CONSTS_SHARED) {
dwords += shared_consts->dwords + 4;
} else if (shared_consts->type == IR3_PUSH_CONSTS_SHARED_PREAMBLE) {
dwords += shared_consts->dwords + 1;
}
bool ldgk = cmd->device->physical_device->info->props.load_inline_uniforms_via_preamble_ldgk;
if (compute) {
dwords +=
tu6_user_consts_size(&cmd->state.shaders[MESA_SHADER_COMPUTE]->const_state, ldgk, MESA_SHADER_COMPUTE);
} else {
for (uint32_t type = MESA_SHADER_VERTEX; type <= MESA_SHADER_FRAGMENT; type++)
dwords += tu6_user_consts_size(&cmd->state.shaders[type]->const_state, ldgk, (mesa_shader_stage) type);
}
return dwords;
}
static struct tu_draw_state
tu_emit_consts(struct tu_cmd_buffer *cmd, bool compute)
{
uint32_t dwords = 0;
const struct tu_push_constant_range *shared_consts =
compute ? &cmd->state.shaders[MESA_SHADER_COMPUTE]->const_state.push_consts :
&cmd->state.program.shared_consts;
dwords = tu6_const_size(cmd, shared_consts, compute);
if (dwords == 0)
return (struct tu_draw_state) {};
struct tu_cs cs;
tu_cs_begin_sub_stream(&cmd->sub_cs, dwords, &cs);
if (shared_consts->type == IR3_PUSH_CONSTS_SHARED) {
tu6_emit_shared_consts(&cs, shared_consts, cmd->push_constants, compute);
} else if (shared_consts->type == IR3_PUSH_CONSTS_SHARED_PREAMBLE) {
tu7_emit_shared_preamble_consts(&cs, shared_consts, cmd->push_constants);
}
if (compute) {
tu6_emit_per_stage_push_consts(
&cs, &cmd->state.shaders[MESA_SHADER_COMPUTE]->const_state,
cmd->state.shaders[MESA_SHADER_COMPUTE]->variant->const_state,
MESA_SHADER_COMPUTE, cmd->push_constants);
tu_emit_inline_ubo(
&cs, &cmd->state.shaders[MESA_SHADER_COMPUTE]->const_state,
cmd->state.shaders[MESA_SHADER_COMPUTE]->variant->const_state,
cmd->state.shaders[MESA_SHADER_COMPUTE]->variant->constlen,
MESA_SHADER_COMPUTE,
tu_get_descriptors_state(cmd, VK_PIPELINE_BIND_POINT_COMPUTE));
} else {
struct tu_descriptor_state *descriptors =
tu_get_descriptors_state(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS);
for (uint32_t type = MESA_SHADER_VERTEX; type <= MESA_SHADER_FRAGMENT; type++) {
const struct tu_program_descriptor_linkage *link =
&cmd->state.program.link[type];
tu6_emit_per_stage_push_consts(&cs, &link->tu_const_state,
&link->const_state,
(mesa_shader_stage) type,
cmd->push_constants);
tu_emit_inline_ubo(&cs, &link->tu_const_state,
&link->const_state, link->constlen,
(mesa_shader_stage) type, descriptors);
}
}
return tu_cs_end_draw_state(&cmd->sub_cs, &cs);
}
/* Returns true if stencil may be written when depth test fails.
* This could be either from stencil written on depth test fail itself,
* or stencil written on the stencil test failure where subsequent depth
* test may also fail.
*/
static bool
tu6_stencil_written_on_depth_fail(
const struct vk_stencil_test_face_state *face)
{
switch (face->op.compare) {
case VK_COMPARE_OP_ALWAYS:
/* The stencil op always passes, no need to worry about failOp. */
return face->op.depth_fail != VK_STENCIL_OP_KEEP;
case VK_COMPARE_OP_NEVER:
/* The stencil op always fails, so failOp will always be used. */
return face->op.fail != VK_STENCIL_OP_KEEP;
default:
/* If the stencil test fails, depth may fail as well, so we can write
* stencil when the depth fails if failOp is not VK_STENCIL_OP_KEEP.
*/
return face->op.fail != VK_STENCIL_OP_KEEP ||
face->op.depth_fail != VK_STENCIL_OP_KEEP;
}
}
/* Returns true if the stencil write result may change based on the result of a
* depth test.
*/
static bool
tu6_stencil_written_based_on_depth_test(
const struct vk_stencil_test_face_state *face)
{
switch (face->op.compare) {
case VK_COMPARE_OP_ALWAYS:
/* The stencil op always passes, no need to worry about failOp. */
return face->op.depth_fail != VK_STENCIL_OP_KEEP ||
face->op.pass != VK_STENCIL_OP_KEEP;
case VK_COMPARE_OP_NEVER:
/* The stencil op always fails, so failOp will always be used. */
return face->op.fail != VK_STENCIL_OP_KEEP;
default:
/* If the stencil test fails, depth may fail as well, so we can write
* stencil when the depth fails if failOp is not VK_STENCIL_OP_KEEP.
*/
return face->op.fail != VK_STENCIL_OP_KEEP ||
face->op.pass != VK_STENCIL_OP_KEEP ||
face->op.depth_fail != VK_STENCIL_OP_KEEP;
}
}
/* Various frontends (ANGLE, zink at least) will enable stencil testing with
* what works out to be no-op writes. Simplify what they give us into flags
* that LRZ can use.
*/
static void
tu6_update_simplified_stencil_state(struct tu_cmd_buffer *cmd)
{
const struct vk_depth_stencil_state *ds =
&cmd->vk.dynamic_graphics_state.ds;
bool stencil_test_enable = ds->stencil.test_enable;
if (!stencil_test_enable) {
cmd->state.stencil_front_write = false;
cmd->state.stencil_back_write = false;
cmd->state.stencil_written_on_depth_fail = false;
cmd->state.stencil_written_based_on_depth_test = false;
return;
}
bool stencil_front_writemask = ds->stencil.front.write_mask;
bool stencil_back_writemask = ds->stencil.back.write_mask;
VkStencilOp front_fail_op = (VkStencilOp)ds->stencil.front.op.fail;
VkStencilOp front_pass_op = (VkStencilOp)ds->stencil.front.op.pass;
VkStencilOp front_depth_fail_op = (VkStencilOp)ds->stencil.front.op.depth_fail;
VkStencilOp back_fail_op = (VkStencilOp)ds->stencil.back.op.fail;
VkStencilOp back_pass_op = (VkStencilOp)ds->stencil.back.op.pass;
VkStencilOp back_depth_fail_op = (VkStencilOp)ds->stencil.back.op.depth_fail;
bool stencil_front_op_writes =
front_pass_op != VK_STENCIL_OP_KEEP ||
front_fail_op != VK_STENCIL_OP_KEEP ||
front_depth_fail_op != VK_STENCIL_OP_KEEP;
bool stencil_back_op_writes =
back_pass_op != VK_STENCIL_OP_KEEP ||
back_fail_op != VK_STENCIL_OP_KEEP ||
back_depth_fail_op != VK_STENCIL_OP_KEEP;
cmd->state.stencil_front_write =
stencil_front_op_writes && stencil_front_writemask;
cmd->state.stencil_back_write =
stencil_back_op_writes && stencil_back_writemask;
cmd->state.stencil_written_on_depth_fail =
(cmd->state.stencil_front_write &&
tu6_stencil_written_on_depth_fail(&ds->stencil.front)) ||
(cmd->state.stencil_back_write &&
tu6_stencil_written_on_depth_fail(&ds->stencil.back));
cmd->state.stencil_written_based_on_depth_test =
(cmd->state.stencil_front_write &&
tu6_stencil_written_based_on_depth_test(&ds->stencil.front)) ||
(cmd->state.stencil_back_write &&
tu6_stencil_written_based_on_depth_test(&ds->stencil.back));
}
static bool
tu6_writes_depth(struct tu_cmd_buffer *cmd, bool depth_test_enable)
{
bool depth_write_enable =
cmd->vk.dynamic_graphics_state.ds.depth.write_enable;
VkCompareOp depth_compare_op = (VkCompareOp)
cmd->vk.dynamic_graphics_state.ds.depth.compare_op;
bool depth_compare_op_writes = depth_compare_op != VK_COMPARE_OP_NEVER;
return depth_test_enable && depth_write_enable && depth_compare_op_writes;
}
static bool
tu6_writes_stencil(struct tu_cmd_buffer *cmd)
{
return cmd->state.stencil_front_write || cmd->state.stencil_back_write;
}
static bool
tu_fs_reads_dynamic_ds_input_attachment(struct tu_cmd_buffer *cmd,
const struct tu_shader *fs)
{
uint8_t depth_att = cmd->vk.dynamic_graphics_state.ial.depth_att;
if (depth_att == MESA_VK_ATTACHMENT_UNUSED)
return false;
unsigned depth_idx =
(depth_att == MESA_VK_ATTACHMENT_NO_INDEX) ? 0 : depth_att + 1;
return fs->fs.dynamic_input_attachments_used & (1u << depth_idx);
}
template <chip CHIP>
static void
tu6_build_depth_plane_z_mode(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
enum a6xx_ztest_mode zmode = A6XX_EARLY_Z;
bool depth_test_enable = cmd->vk.dynamic_graphics_state.ds.depth.test_enable;
bool stencil_test_enable = cmd->vk.dynamic_graphics_state.ds.stencil.test_enable;
bool ds_test_enable = depth_test_enable || stencil_test_enable;
bool depth_write = tu6_writes_depth(cmd, depth_test_enable);
bool stencil_write = tu6_writes_stencil(cmd);
const struct tu_shader *fs = cmd->state.shaders[MESA_SHADER_FRAGMENT];
const struct tu_render_pass *pass = cmd->state.pass;
const struct tu_subpass *subpass = cmd->state.subpass;
VkFormat depth_format = VK_FORMAT_UNDEFINED;
if (subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED)
depth_format = pass->attachments[subpass->depth_stencil_attachment.attachment].format;
bool fs_kill_fragments =
fs->variant->has_kill ||
/* EARLY_Z causes D/S to be written before FS but gl_SampleMask can
* kill fragments, we cannot have EARLY_Z + gl_SampleMask + D/S writes.
*/
fs->variant->writes_smask ||
/* Alpha-to-coverage behaves like a discard. */
cmd->vk.dynamic_graphics_state.ms.alpha_to_coverage_enable;
if ((fs_kill_fragments ||
(cmd->state.pipeline_feedback_loops & VK_IMAGE_ASPECT_DEPTH_BIT) ||
(cmd->vk.dynamic_graphics_state.feedback_loops &
VK_IMAGE_ASPECT_DEPTH_BIT) ||
tu_fs_reads_dynamic_ds_input_attachment(cmd, fs)) &&
(depth_write || stencil_write)) {
zmode = A6XX_EARLY_Z_LATE_Z;
}
/* If there is explicit depth direction in FS writing gl_FragDepth
* may be compatible with LRZ test.
*/
if (cmd->state.lrz.enabled && fs->variant->writes_pos &&
zmode == A6XX_EARLY_Z) {
zmode = A6XX_EARLY_Z_LATE_Z;
}
/* "EARLY_Z + discard" would yield incorrect occlusion query result,
* since Vulkan expects occlusion query to happen after fragment shader.
*/
if (zmode == A6XX_EARLY_Z && fs_kill_fragments &&
cmd->state.occlusion_query_may_be_running)
zmode = A6XX_EARLY_Z_LATE_Z;
VkCompareOp compare_op =
cmd->vk.dynamic_graphics_state.ds.depth.compare_op;
/* This state combination wedges something in GPU causing hang.
* Forcing A6XX_LATE_Z prevents it. Prop driver does the same.
*/
if (zmode == A6XX_EARLY_Z_LATE_Z && !depth_write &&
cmd->state.occlusion_query_may_be_running &&
(compare_op == VK_COMPARE_OP_ALWAYS ||
compare_op == VK_COMPARE_OP_NEVER)) {
zmode = A6XX_LATE_Z;
}
if (zmode == A6XX_EARLY_Z_LATE_Z &&
(cmd->state.stencil_written_on_depth_fail || fs->fs.sample_shading ||
!vk_format_has_depth(depth_format) || !ds_test_enable)) {
zmode = A6XX_LATE_Z;
}
if ((stencil_test_enable && depth_format == VK_FORMAT_S8_UINT) ||
(ds_test_enable &&
(fs->fs.lrz.force_late_z || cmd->state.lrz.force_late_z)))
zmode = A6XX_LATE_Z;
/* User defined early tests take precedence above all else */
if (fs->variant->fs.early_fragment_tests)
zmode = A6XX_EARLY_Z;
/* FS bypass requires early Z */
if (cmd->state.disable_fs)
zmode = A6XX_EARLY_Z;
tu_cs_emit_regs(cs, GRAS_SU_DEPTH_PLANE_CNTL(CHIP, .z_mode = zmode));
tu_cs_emit_regs(cs, A6XX_RB_DEPTH_PLANE_CNTL(.z_mode = zmode));
}
static uint32_t
fs_params_offset(struct tu_cmd_buffer *cmd)
{
const struct tu_program_descriptor_linkage *link =
&cmd->state.program.link[MESA_SHADER_FRAGMENT];
const struct ir3_const_state *const_state = &link->const_state;
if (const_state->num_driver_params <= IR3_DP_FS_DYNAMIC)
return 0;
uint32_t param_offset =
const_state->allocs.consts[IR3_CONST_ALLOC_DRIVER_PARAMS].offset_vec4;
if (param_offset + IR3_DP_FS_DYNAMIC / 4 >= link->constlen)
return 0;
return param_offset + IR3_DP_FS_DYNAMIC / 4;
}
static uint32_t
fs_params_size(struct tu_cmd_buffer *cmd)
{
const struct tu_program_descriptor_linkage *link =
&cmd->state.program.link[MESA_SHADER_FRAGMENT];
const struct ir3_const_state *const_state = &link->const_state;
return DIV_ROUND_UP(const_state->num_driver_params - IR3_DP_FS_DYNAMIC, 4);
}
struct apply_fs_params_state {
unsigned num_consts;
};
static void
fdm_apply_fs_params(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
void *data,
VkOffset2D common_bin_offset,
const VkOffset2D *hw_viewport_offsets,
unsigned views,
const VkExtent2D *frag_areas,
const VkRect2D *bins)
{
const struct apply_fs_params_state *state =
(const struct apply_fs_params_state *)data;
unsigned num_consts = state->num_consts;
for (unsigned i = 0; i < num_consts; i++) {
/* FDM per layer may be enabled in the shader but not in the renderpass,
* in which case views will be 1 and we have to replicate the one view
* to all of the layers.
*/
VkExtent2D area = frag_areas[MIN2(i, views - 1)];
VkRect2D bin = bins[MIN2(i, views - 1)];
VkOffset2D hw_viewport_offset = hw_viewport_offsets[MIN2(i, views - 1)];
VkOffset2D offset = tu_fdm_per_bin_offset(area, bin, common_bin_offset);
offset.x -= hw_viewport_offset.x;
offset.y -= hw_viewport_offset.y;
tu_cs_emit(cs, area.width);
tu_cs_emit(cs, area.height);
tu_cs_emit(cs, fui(offset.x));
tu_cs_emit(cs, fui(offset.y));
}
}
static void
tu_emit_fdm_params(struct tu_cmd_buffer *cmd,
struct tu_cs *cs, struct tu_shader *fs,
unsigned num_units)
{
STATIC_ASSERT(IR3_DP_FS(frag_invocation_count) == IR3_DP_FS_DYNAMIC);
tu_cs_emit(cs, fs->fs.sample_shading ?
cmd->vk.dynamic_graphics_state.ms.rasterization_samples : 1);
tu_cs_emit(cs, 0);
tu_cs_emit(cs, 0);
tu_cs_emit(cs, 0);
STATIC_ASSERT(IR3_DP_FS(frag_size) == IR3_DP_FS_DYNAMIC + 4);
STATIC_ASSERT(IR3_DP_FS(frag_offset) == IR3_DP_FS_DYNAMIC + 6);
if (num_units > 1) {
if (fs->fs.has_fdm) {
struct apply_fs_params_state state = {
.num_consts = num_units - 1,
};
tu_create_fdm_bin_patchpoint(cmd, cs, 4 * (num_units - 1),
TU_FDM_SKIP_BINNING,
fdm_apply_fs_params, state);
} else {
for (unsigned i = 1; i < num_units; i++) {
tu_cs_emit(cs, 1);
tu_cs_emit(cs, 1);
tu_cs_emit(cs, fui(0.0f));
tu_cs_emit(cs, fui(0.0f));
}
}
}
}
static void
tu6_emit_fs_params(struct tu_cmd_buffer *cmd)
{
uint32_t offset = fs_params_offset(cmd);
if (offset == 0) {
cmd->state.fs_params = (struct tu_draw_state) {};
return;
}
struct tu_shader *fs = cmd->state.shaders[MESA_SHADER_FRAGMENT];
unsigned num_units = fs_params_size(cmd);
if (fs->fs.has_fdm)
tu_cs_set_writeable(&cmd->sub_cs, true);
struct tu_cs cs;
VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 4 + 4 * num_units, &cs);
if (result != VK_SUCCESS) {
tu_cs_set_writeable(&cmd->sub_cs, false);
vk_command_buffer_set_error(&cmd->vk, result);
return;
}
tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3 + 4 * num_units);
tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_SHADER) |
CP_LOAD_STATE6_0_NUM_UNIT(num_units));
tu_cs_emit(&cs, 0);
tu_cs_emit(&cs, 0);
tu_emit_fdm_params(cmd, &cs, fs, num_units);
cmd->state.fs_params = tu_cs_end_draw_state(&cmd->sub_cs, &cs);
if (fs->fs.has_fdm)
tu_cs_set_writeable(&cmd->sub_cs, false);
}
static void
tu7_emit_fs_params(struct tu_cmd_buffer *cmd)
{
struct tu_shader *fs = cmd->state.shaders[MESA_SHADER_FRAGMENT];
int ubo_offset = fs->const_state.fdm_ubo.idx;
if (ubo_offset < 0) {
cmd->state.fs_params = (struct tu_draw_state) {};
return;
}
unsigned num_units = DIV_ROUND_UP(fs->const_state.fdm_ubo.size, 4);
if (fs->fs.has_fdm)
tu_cs_set_writeable(&cmd->sub_cs, true);
struct tu_cs cs;
VkResult result =
tu_cs_begin_sub_stream_aligned(&cmd->sub_cs, num_units, 4, &cs);
if (result != VK_SUCCESS) {
tu_cs_set_writeable(&cmd->sub_cs, false);
vk_command_buffer_set_error(&cmd->vk, result);
return;
}
tu_emit_fdm_params(cmd, &cs, fs, num_units);
struct tu_draw_state fdm_ubo = tu_cs_end_draw_state(&cmd->sub_cs, &cs);
if (fs->fs.has_fdm)
tu_cs_set_writeable(&cmd->sub_cs, false);
result = tu_cs_begin_sub_stream(&cmd->sub_cs, 6, &cs);
if (result != VK_SUCCESS) {
vk_command_buffer_set_error(&cmd->vk, result);
return;
}
tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 5);
tu_cs_emit(&cs,
CP_LOAD_STATE6_0_DST_OFF(ubo_offset) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_UBO)|
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_SHADER) |
CP_LOAD_STATE6_0_NUM_UNIT(1));
tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
tu_cs_emit_qw(&cs,
fdm_ubo.iova |
(uint64_t)A6XX_UBO_1_SIZE(num_units) << 32);
cmd->state.fs_params = tu_cs_end_draw_state(&cmd->sub_cs, &cs);
}
static void
tu_emit_fs_params(struct tu_cmd_buffer *cmd)
{
if (cmd->device->compiler->load_shader_consts_via_preamble)
tu7_emit_fs_params(cmd);
else
tu6_emit_fs_params(cmd);
}
static void
tu_flush_dynamic_input_attachments(struct tu_cmd_buffer *cmd)
{
struct tu_shader *fs = cmd->state.shaders[MESA_SHADER_FRAGMENT];
if (!fs->fs.dynamic_input_attachments_used)
return;
/* Input attachments may read data from a load op, so we have to invalidate
* UCHE and force pending blits to complete unless we know it's already
* been invalidated. This is the same as tu_subpass::feedback_invalidate
* but for dynamic renderpasses.
*/
if (!cmd->state.blit_cache_cleaned) {
cmd->state.renderpass_cache.flush_bits |=
TU_CMD_FLAG_CACHE_INVALIDATE | TU_CMD_FLAG_BLIT_CACHE_CLEAN |
TU_CMD_FLAG_WAIT_FOR_IDLE;
}
}
template <chip CHIP>
static VkResult
tu6_draw_common(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
bool indexed,
/* note: draw_count is 0 for indirect */
uint32_t draw_count)
{
const struct tu_program_state *program = &cmd->state.program;
struct tu_render_pass_state *rp = &cmd->state.rp;
trace_start_draw(
&cmd->rp_trace, &cmd->draw_cs, cmd, draw_count,
cmd->state.program.stage_sha1[MESA_SHADER_VERTEX],
cmd->state.program.stage_sha1[MESA_SHADER_TESS_CTRL],
cmd->state.program.stage_sha1[MESA_SHADER_TESS_EVAL],
cmd->state.program.stage_sha1[MESA_SHADER_GEOMETRY],
cmd->state.program.stage_sha1[MESA_SHADER_FRAGMENT]);
/* Emit state first, because it's needed for bandwidth calculations */
uint32_t dynamic_draw_state_dirty = 0;
if (!BITSET_IS_EMPTY(cmd->vk.dynamic_graphics_state.dirty) ||
(cmd->state.dirty & ~TU_CMD_DIRTY_COMPUTE_DESC_SETS)) {
dynamic_draw_state_dirty = tu_emit_draw_state<CHIP>(cmd);
}
/* Primitive restart value works in non-indexed draws, we have to disable
* prim restart for such draws since we may read stale restart index.
*/
if (cmd->state.last_draw_indexed != indexed) {
cmd->state.last_draw_indexed = indexed;
BITSET_SET(cmd->vk.dynamic_graphics_state.dirty,
MESA_VK_DYNAMIC_IA_PRIMITIVE_RESTART_ENABLE);
}
/* Fill draw stats for autotuner */
rp->drawcall_count++;
rp->drawcall_bandwidth_per_sample_sum +=
cmd->state.bandwidth.color_bandwidth_per_sample;
/* add depth memory bandwidth cost */
const uint32_t depth_bandwidth = cmd->state.bandwidth.depth_cpp_per_sample;
if (cmd->vk.dynamic_graphics_state.ds.depth.write_enable)
rp->drawcall_bandwidth_per_sample_sum += depth_bandwidth;
if (cmd->vk.dynamic_graphics_state.ds.depth.test_enable)
rp->drawcall_bandwidth_per_sample_sum += depth_bandwidth;
/* add stencil memory bandwidth cost */
const uint32_t stencil_bandwidth =
cmd->state.bandwidth.stencil_cpp_per_sample;
if (cmd->vk.dynamic_graphics_state.ds.stencil.test_enable)
rp->drawcall_bandwidth_per_sample_sum += stencil_bandwidth * 2;
if (cmd->state.dirty & TU_CMD_DIRTY_FS)
tu_flush_dynamic_input_attachments(cmd);
tu_emit_cache_flush_renderpass<CHIP>(cmd);
if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
MESA_VK_DYNAMIC_IA_PRIMITIVE_RESTART_ENABLE) ||
BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
MESA_VK_DYNAMIC_RS_PROVOKING_VERTEX) ||
(cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
bool primitive_restart_enabled =
cmd->vk.dynamic_graphics_state.ia.primitive_restart_enable;
bool primitive_restart = primitive_restart_enabled && indexed;
bool provoking_vtx_last =
cmd->vk.dynamic_graphics_state.rs.provoking_vertex ==
VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT;
uint32_t primitive_cntl_0 =
PC_CNTL(CHIP, .primitive_restart = primitive_restart,
.provoking_vtx_last = provoking_vtx_last)
.value;
tu_cs_emit_regs(cs, PC_CNTL(CHIP, .dword = primitive_cntl_0));
if (CHIP == A7XX) {
tu_cs_emit_regs(cs, VPC_PC_CNTL(CHIP, .dword = primitive_cntl_0));
}
}
struct tu_tess_params *tess_params = &cmd->state.tess_params;
if ((cmd->state.dirty & TU_CMD_DIRTY_TESS_PARAMS) ||
BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
MESA_VK_DYNAMIC_TS_DOMAIN_ORIGIN) ||
(cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
bool tess_upper_left_domain_origin =
(VkTessellationDomainOrigin)cmd->vk.dynamic_graphics_state.ts.domain_origin ==
VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT;
tu_cs_emit_regs(cs, PC_DS_PARAM(CHIP,
.spacing = tess_params->spacing,
.output = tess_upper_left_domain_origin ?
tess_params->output_upper_left :
tess_params->output_lower_left));
}
if (cmd->device->physical_device->info->props.has_rt_workaround &&
cmd->state.program.uses_ray_intersection) {
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_SHADER_USES_RT);
}
/* Early exit if there is nothing to emit, saves CPU cycles */
uint32_t dirty = cmd->state.dirty;
if (!dynamic_draw_state_dirty && !(dirty & ~TU_CMD_DIRTY_COMPUTE_DESC_SETS))
return VK_SUCCESS;
bool dirty_lrz =
(dirty & TU_CMD_DIRTY_LRZ) ||
BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
MESA_VK_DYNAMIC_DS_DEPTH_TEST_ENABLE) ||
BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
MESA_VK_DYNAMIC_DS_DEPTH_WRITE_ENABLE) ||
BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
MESA_VK_DYNAMIC_DS_DEPTH_BOUNDS_TEST_ENABLE) ||
BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
MESA_VK_DYNAMIC_DS_DEPTH_COMPARE_OP) ||
BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
MESA_VK_DYNAMIC_DS_STENCIL_TEST_ENABLE) ||
BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
MESA_VK_DYNAMIC_DS_STENCIL_OP) ||
BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
MESA_VK_DYNAMIC_DS_STENCIL_WRITE_MASK) ||
BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
MESA_VK_DYNAMIC_MS_ALPHA_TO_COVERAGE_ENABLE) ||
BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
MESA_VK_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE);
if (dirty_lrz) {
struct tu_cs cs;
uint32_t size = 8 +
(cmd->device->physical_device->info->props.lrz_track_quirk ? 2 : 0) +
(CHIP >= A7XX ? 2 : 0); // A7XX has extra packets from LRZ_CNTL2.
cmd->state.lrz_and_depth_plane_state =
tu_cs_draw_state(&cmd->sub_cs, &cs, size);
tu6_update_simplified_stencil_state(cmd);
tu6_emit_lrz<CHIP>(cmd, &cs);
tu6_build_depth_plane_z_mode<CHIP>(cmd, &cs);
}
if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
MESA_VK_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE)) {
if (cmd->vk.dynamic_graphics_state.feedback_loops &&
!cmd->state.rp.disable_gmem) {
perf_debug(
cmd->device,
"Disabling gmem due to VK_EXT_attachment_feedback_loop_layout");
cmd->state.rp.disable_gmem = true;
cmd->state.rp.gmem_disable_reason =
"MESA_VK_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE";
}
}
if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
MESA_VK_DYNAMIC_VI_BINDINGS_VALID)) {
cmd->state.vertex_buffers.size =
util_last_bit(cmd->vk.dynamic_graphics_state.vi_bindings_valid) * 4;
dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
}
if (dirty & TU_CMD_DIRTY_SHADER_CONSTS)
cmd->state.shader_const = tu_emit_consts(cmd, false);
if (dirty & TU_CMD_DIRTY_DESC_SETS)
tu6_emit_descriptor_sets<CHIP>(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS);
if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) ||
BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
MESA_VK_DYNAMIC_IA_PRIMITIVE_TOPOLOGY) ||
BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
MESA_VK_DYNAMIC_RS_LINE_MODE) ||
(cmd->state.dirty & TU_CMD_DIRTY_TES) ||
(cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
tu6_update_msaa_disable<CHIP>(cmd);
}
if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) ||
(cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
tu6_update_msaa<CHIP>(cmd);
}
bool dirty_fs_params = false;
if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) ||
(cmd->state.dirty & (TU_CMD_DIRTY_PROGRAM | TU_CMD_DIRTY_FDM))) {
tu_emit_fs_params(cmd);
dirty_fs_params = true;
}
/* for the first draw in a renderpass, re-emit all the draw states
*
* and if a draw-state disabling path (CmdClearAttachments 3D fallback) was
* used, then draw states must be re-emitted. note however this only happens
* in the sysmem path, so this can be skipped this for the gmem path (TODO)
*
* the two input attachment states are excluded because secondary command
* buffer doesn't have a state ib to restore it, and not re-emitting them
* is OK since CmdClearAttachments won't disable/overwrite them
*/
if (dirty & TU_CMD_DIRTY_DRAW_STATE) {
tu_pipeline_update_rp_state(&cmd->state);
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (TU_DRAW_STATE_COUNT - 2));
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_CONFIG, program->config_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS, program->vs_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_BINNING, program->vs_binning_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS, program->hs_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, program->ds_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS, program->gs_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_BINNING, program->gs_binning_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS, program->fs_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VPC, program->vpc_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PRIM_MODE_GMEM, cmd->state.prim_order_gmem);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_CONST, cmd->state.shader_const);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.load_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_PARAMS, cmd->state.fs_params);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_LRZ_AND_DEPTH_PLANE, cmd->state.lrz_and_depth_plane_state);
for (uint32_t i = 0; i < ARRAY_SIZE(cmd->state.dynamic_state); i++) {
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
cmd->state.dynamic_state[i]);
}
} else {
/* emit draw states that were just updated */
uint32_t draw_state_count =
util_bitcount(dynamic_draw_state_dirty) +
((dirty & TU_CMD_DIRTY_SHADER_CONSTS) ? 1 : 0) +
((dirty & TU_CMD_DIRTY_DESC_SETS) ? 1 : 0) +
((dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) ? 1 : 0) +
((dirty & TU_CMD_DIRTY_VS_PARAMS) ? 1 : 0) +
(dirty_fs_params ? 1 : 0) +
(dirty_lrz ? 1 : 0);
if (draw_state_count > 0)
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_count);
if (dirty & TU_CMD_DIRTY_SHADER_CONSTS)
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_CONST, cmd->state.shader_const);
if (dirty & TU_CMD_DIRTY_DESC_SETS) {
/* tu6_emit_descriptor_sets emitted the cmd->state.desc_sets draw state. */
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.load_state);
}
if (dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
u_foreach_bit (i, dynamic_draw_state_dirty) {
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
cmd->state.dynamic_state[i]);
}
if (dirty & TU_CMD_DIRTY_VS_PARAMS)
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
if (dirty_fs_params)
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_PARAMS, cmd->state.fs_params);
if (dirty_lrz) {
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_LRZ_AND_DEPTH_PLANE, cmd->state.lrz_and_depth_plane_state);
}
}
tu_cs_sanity_check(cs);
/* There are too many graphics dirty bits to list here, so just list the
* bits to preserve instead. The only things not emitted here are
* compute-related state.
*/
cmd->state.dirty &= TU_CMD_DIRTY_COMPUTE_DESC_SETS;
BITSET_ZERO(cmd->vk.dynamic_graphics_state.dirty);
return VK_SUCCESS;
}
static uint32_t
tu_draw_initiator(struct tu_cmd_buffer *cmd, enum pc_di_src_sel src_sel)
{
enum pc_di_primtype primtype =
tu6_primtype((VkPrimitiveTopology)cmd->vk.dynamic_graphics_state.ia.primitive_topology);
if (primtype == DI_PT_PATCHES0)
primtype = (enum pc_di_primtype) (primtype +
cmd->vk.dynamic_graphics_state.ts.patch_control_points);
uint32_t initiator =
CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(primtype) |
CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(src_sel) |
CP_DRAW_INDX_OFFSET_0_INDEX_SIZE((enum a4xx_index_size) cmd->state.index_size) |
CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY);
if (cmd->state.shaders[MESA_SHADER_GEOMETRY]->variant)
initiator |= CP_DRAW_INDX_OFFSET_0_GS_ENABLE;
const struct tu_shader *tes = cmd->state.shaders[MESA_SHADER_TESS_EVAL];
if (tes->variant) {
switch (tes->variant->key.tessellation) {
case IR3_TESS_TRIANGLES:
initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_TRIANGLES) |
CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
break;
case IR3_TESS_ISOLINES:
initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_ISOLINES) |
CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
break;
case IR3_TESS_QUADS:
initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS) |
CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
break;
}
}
return initiator;
}
static uint32_t
vs_params_offset(struct tu_cmd_buffer *cmd)
{
const struct tu_program_descriptor_linkage *link =
&cmd->state.program.link[MESA_SHADER_VERTEX];
const struct ir3_const_state *const_state = &link->const_state;
uint32_t param_offset =
const_state->allocs.consts[IR3_CONST_ALLOC_DRIVER_PARAMS].offset_vec4;
if (!ir3_const_can_upload(&const_state->allocs,
IR3_CONST_ALLOC_DRIVER_PARAMS, link->constlen))
return 0;
/* this layout is required by CP_DRAW_INDIRECT_MULTI */
STATIC_ASSERT(IR3_DP_VS(draw_id) == 0);
STATIC_ASSERT(IR3_DP_VS(vtxid_base) == 1);
STATIC_ASSERT(IR3_DP_VS(instid_base) == 2);
/* 0 means disabled for CP_DRAW_INDIRECT_MULTI */
assert(param_offset != 0);
return param_offset;
}
template <chip CHIP>
static void
tu6_emit_empty_vs_params(struct tu_cmd_buffer *cmd)
{
if (cmd->state.last_vs_params.empty)
return;
if (cmd->device->physical_device->info->props.load_shader_consts_via_preamble) {
struct tu_cs cs;
cmd->state.vs_params = tu_cs_draw_state(&cmd->sub_cs, &cs, 2);
/* CP_LOAD_STATE6_GEOM from previous draws can override consts loaded for
* indirect draws, causing problems like incorrect vertex index computation.
* VS state invalidation avoids that.
*/
tu_cs_emit_regs(&cs, SP_UPDATE_CNTL(CHIP,
.vs_state = true));
assert(cs.cur == cs.end);
} else {
cmd->state.vs_params = (struct tu_draw_state) {};
}
cmd->state.dirty |= TU_CMD_DIRTY_VS_PARAMS;
cmd->state.last_vs_params.empty = true;
}
static void
tu6_emit_vs_params(struct tu_cmd_buffer *cmd,
uint32_t draw_id,
uint32_t vertex_offset,
uint32_t first_instance)
{
uint32_t offset = vs_params_offset(cmd);
/* Beside re-emitting params when they are changed, we should re-emit
* them after constants are invalidated via SP_UPDATE_CNTL or after we
* emit an empty vs params.
*/
if (!(cmd->state.dirty & (TU_CMD_DIRTY_DRAW_STATE | TU_CMD_DIRTY_VS_PARAMS |
TU_CMD_DIRTY_PROGRAM)) &&
!cmd->state.last_vs_params.empty &&
(offset == 0 || draw_id == cmd->state.last_vs_params.draw_id) &&
vertex_offset == cmd->state.last_vs_params.vertex_offset &&
first_instance == cmd->state.last_vs_params.first_instance) {
return;
}
uint64_t consts_iova = 0;
if (offset) {
struct tu_cs_memory consts;
VkResult result = tu_cs_alloc(&cmd->sub_cs, 1, 4, &consts);
if (result != VK_SUCCESS) {
vk_command_buffer_set_error(&cmd->vk, result);
return;
}
consts.map[0] = draw_id;
consts.map[1] = vertex_offset;
consts.map[2] = first_instance;
consts.map[3] = 0;
consts_iova = consts.iova;
}
struct tu_cs cs;
VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 3 + (offset ? 4 : 0), &cs);
if (result != VK_SUCCESS) {
vk_command_buffer_set_error(&cmd->vk, result);
return;
}
tu_cs_emit_regs(&cs,
A6XX_VFD_INDEX_OFFSET(vertex_offset),
A6XX_VFD_INSTANCE_START_OFFSET(first_instance));
/* It is implemented as INDIRECT load even on a750+ because with UBO
* lowering it would be tricky to get const offset for to use in multidraw,
* also we would need to ensure the offset is not 0.
* TODO/A7XX: Rework vs params to use UBO lowering.
*/
if (offset) {
tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3);
tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) |
CP_LOAD_STATE6_0_NUM_UNIT(1));
tu_cs_emit_qw(&cs, consts_iova);
}
cmd->state.last_vs_params.vertex_offset = vertex_offset;
cmd->state.last_vs_params.first_instance = first_instance;
cmd->state.last_vs_params.draw_id = draw_id;
cmd->state.last_vs_params.empty = false;
struct tu_cs_entry entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
cmd->state.vs_params = (struct tu_draw_state) {entry.bo->iova + entry.offset, entry.size / 4};
cmd->state.dirty |= TU_CMD_DIRTY_VS_PARAMS;
}
template <chip CHIP>
VKAPI_ATTR void VKAPI_CALL
tu_CmdDraw(VkCommandBuffer commandBuffer,
uint32_t vertexCount,
uint32_t instanceCount,
uint32_t firstVertex,
uint32_t firstInstance)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs *cs = &cmd->draw_cs;
tu6_emit_vs_params(cmd, 0, firstVertex, firstInstance);
tu6_draw_common<CHIP>(cmd, cs, false, vertexCount);
tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
tu_cs_emit(cs, instanceCount);
tu_cs_emit(cs, vertexCount);
trace_end_draw(&cmd->rp_trace, cs);
}
TU_GENX(tu_CmdDraw);
template <chip CHIP>
VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawMultiEXT(VkCommandBuffer commandBuffer,
uint32_t drawCount,
const VkMultiDrawInfoEXT *pVertexInfo,
uint32_t instanceCount,
uint32_t firstInstance,
uint32_t stride)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs *cs = &cmd->draw_cs;
if (!drawCount)
return;
bool has_tess = cmd->state.shaders[MESA_SHADER_TESS_CTRL]->variant;
uint32_t max_vertex_count = 0;
if (has_tess) {
uint32_t i = 0;
vk_foreach_multi_draw(draw, i, pVertexInfo, drawCount, stride) {
max_vertex_count = MAX2(max_vertex_count, draw->vertexCount);
}
}
uint32_t i = 0;
vk_foreach_multi_draw(draw, i, pVertexInfo, drawCount, stride) {
tu6_emit_vs_params(cmd, i, draw->firstVertex, firstInstance);
if (i == 0)
tu6_draw_common<CHIP>(cmd, cs, false, max_vertex_count);
if (cmd->state.dirty & TU_CMD_DIRTY_VS_PARAMS) {
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
cmd->state.dirty &= ~TU_CMD_DIRTY_VS_PARAMS;
}
tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
tu_cs_emit(cs, instanceCount);
tu_cs_emit(cs, draw->vertexCount);
}
if (i != 0)
trace_end_draw(&cmd->rp_trace, cs);
}
TU_GENX(tu_CmdDrawMultiEXT);
template <chip CHIP>
VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,
uint32_t indexCount,
uint32_t instanceCount,
uint32_t firstIndex,
int32_t vertexOffset,
uint32_t firstInstance)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs *cs = &cmd->draw_cs;
tu6_emit_vs_params(cmd, 0, vertexOffset, firstInstance);
tu6_draw_common<CHIP>(cmd, cs, true, indexCount);
tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
tu_cs_emit(cs, instanceCount);
tu_cs_emit(cs, indexCount);
tu_cs_emit(cs, firstIndex);
tu_cs_emit_qw(cs, cmd->state.index_va);
tu_cs_emit(cs, cmd->state.max_index_count);
trace_end_draw(&cmd->rp_trace, cs);
}
TU_GENX(tu_CmdDrawIndexed);
template <chip CHIP>
VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawMultiIndexedEXT(VkCommandBuffer commandBuffer,
uint32_t drawCount,
const VkMultiDrawIndexedInfoEXT *pIndexInfo,
uint32_t instanceCount,
uint32_t firstInstance,
uint32_t stride,
const int32_t *pVertexOffset)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs *cs = &cmd->draw_cs;
if (!drawCount)
return;
bool has_tess = cmd->state.shaders[MESA_SHADER_TESS_CTRL]->variant;
uint32_t max_index_count = 0;
if (has_tess) {
uint32_t i = 0;
vk_foreach_multi_draw_indexed(draw, i, pIndexInfo, drawCount, stride) {
max_index_count = MAX2(max_index_count, draw->indexCount);
}
}
uint32_t i = 0;
vk_foreach_multi_draw_indexed(draw, i, pIndexInfo, drawCount, stride) {
int32_t vertexOffset = pVertexOffset ? *pVertexOffset : draw->vertexOffset;
tu6_emit_vs_params(cmd, i, vertexOffset, firstInstance);
if (i == 0)
tu6_draw_common<CHIP>(cmd, cs, true, max_index_count);
if (cmd->state.dirty & TU_CMD_DIRTY_VS_PARAMS) {
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
cmd->state.dirty &= ~TU_CMD_DIRTY_VS_PARAMS;
}
tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
tu_cs_emit(cs, instanceCount);
tu_cs_emit(cs, draw->indexCount);
tu_cs_emit(cs, draw->firstIndex);
tu_cs_emit_qw(cs, cmd->state.index_va);
tu_cs_emit(cs, cmd->state.max_index_count);
}
if (i != 0)
trace_end_draw(&cmd->rp_trace, cs);
}
TU_GENX(tu_CmdDrawMultiIndexedEXT);
/* Various firmware bugs/inconsistencies mean that some indirect draw opcodes
* do not wait for WFI's to complete before executing. Add a WAIT_FOR_ME if
* pending for these opcodes. This may result in a few extra WAIT_FOR_ME's
* with these opcodes, but the alternative would add unnecessary WAIT_FOR_ME's
* before draw opcodes that don't need it.
*/
static void
draw_wfm(struct tu_cmd_buffer *cmd)
{
cmd->state.renderpass_cache.flush_bits |=
cmd->state.renderpass_cache.pending_flush_bits & TU_CMD_FLAG_WAIT_FOR_ME;
cmd->state.renderpass_cache.pending_flush_bits &= ~TU_CMD_FLAG_WAIT_FOR_ME;
}
template <chip CHIP>
VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
VK_FROM_HANDLE(tu_buffer, buf, _buffer);
struct tu_cs *cs = &cmd->draw_cs;
tu6_emit_empty_vs_params<CHIP>(cmd);
if (cmd->device->physical_device->info->props.indirect_draw_wfm_quirk)
draw_wfm(cmd);
tu6_draw_common<CHIP>(cmd, cs, false, 0);
tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 6);
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_NORMAL) |
A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
tu_cs_emit(cs, drawCount);
tu_cs_emit_qw(cs, vk_buffer_address(&buf->vk, offset));
tu_cs_emit(cs, stride);
trace_end_draw(&cmd->rp_trace, cs);
}
TU_GENX(tu_CmdDrawIndirect);
template <chip CHIP>
VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
VK_FROM_HANDLE(tu_buffer, buf, _buffer);
struct tu_cs *cs = &cmd->draw_cs;
tu6_emit_empty_vs_params<CHIP>(cmd);
if (cmd->device->physical_device->info->props.indirect_draw_wfm_quirk)
draw_wfm(cmd);
tu6_draw_common<CHIP>(cmd, cs, true, 0);
tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 9);
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDEXED) |
A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
tu_cs_emit(cs, drawCount);
tu_cs_emit_qw(cs, cmd->state.index_va);
tu_cs_emit(cs, cmd->state.max_index_count);
tu_cs_emit_qw(cs, vk_buffer_address(&buf->vk, offset));
tu_cs_emit(cs, stride);
trace_end_draw(&cmd->rp_trace, cs);
}
TU_GENX(tu_CmdDrawIndexedIndirect);
template <chip CHIP>
VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndirectCount(VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
VkBuffer countBuffer,
VkDeviceSize countBufferOffset,
uint32_t drawCount,
uint32_t stride)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
VK_FROM_HANDLE(tu_buffer, buf, _buffer);
VK_FROM_HANDLE(tu_buffer, count_buf, countBuffer);
struct tu_cs *cs = &cmd->draw_cs;
tu6_emit_empty_vs_params<CHIP>(cmd);
/* It turns out that the firmware we have for a650 only partially fixed the
* problem with CP_DRAW_INDIRECT_MULTI not waiting for WFI's to complete
* before reading indirect parameters. It waits for WFI's before reading
* the draw parameters, but after reading the indirect count :(.
*/
draw_wfm(cmd);
tu6_draw_common<CHIP>(cmd, cs, false, 0);
tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 8);
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDIRECT_COUNT) |
A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
tu_cs_emit(cs, drawCount);
tu_cs_emit_qw(cs, vk_buffer_address(&buf->vk, offset));
tu_cs_emit_qw(cs, vk_buffer_address(&count_buf->vk, countBufferOffset));
tu_cs_emit(cs, stride);
trace_end_draw(&cmd->rp_trace, cs);
}
TU_GENX(tu_CmdDrawIndirectCount);
template <chip CHIP>
VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
VkBuffer countBuffer,
VkDeviceSize countBufferOffset,
uint32_t drawCount,
uint32_t stride)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
VK_FROM_HANDLE(tu_buffer, buf, _buffer);
VK_FROM_HANDLE(tu_buffer, count_buf, countBuffer);
struct tu_cs *cs = &cmd->draw_cs;
tu6_emit_empty_vs_params<CHIP>(cmd);
draw_wfm(cmd);
tu6_draw_common<CHIP>(cmd, cs, true, 0);
tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 11);
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDIRECT_COUNT_INDEXED) |
A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
tu_cs_emit(cs, drawCount);
tu_cs_emit_qw(cs, cmd->state.index_va);
tu_cs_emit(cs, cmd->state.max_index_count);
tu_cs_emit_qw(cs, vk_buffer_address(&buf->vk, offset));
tu_cs_emit_qw(cs, vk_buffer_address(&count_buf->vk, countBufferOffset));
tu_cs_emit(cs, stride);
trace_end_draw(&cmd->rp_trace, cs);
}
TU_GENX(tu_CmdDrawIndexedIndirectCount);
template <chip CHIP>
VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,
uint32_t instanceCount,
uint32_t firstInstance,
VkBuffer _counterBuffer,
VkDeviceSize counterBufferOffset,
uint32_t counterOffset,
uint32_t vertexStride)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
VK_FROM_HANDLE(tu_buffer, buf, _counterBuffer);
struct tu_cs *cs = &cmd->draw_cs;
/* All known firmware versions do not wait for WFI's with CP_DRAW_AUTO.
* Plus, for the common case where the counter buffer is written by
* vkCmdEndTransformFeedback, we need to wait for the CP_WAIT_MEM_WRITES to
* complete which means we need a WAIT_FOR_ME anyway.
*/
draw_wfm(cmd);
tu6_emit_vs_params(cmd, 0, 0, firstInstance);
tu6_draw_common<CHIP>(cmd, cs, false, 0);
tu_cs_emit_pkt7(cs, CP_DRAW_AUTO, 6);
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_XFB));
if (CHIP >= A7XX) {
/* On a7xx the counter value and offset are shifted right by 2, so
* the vertexStride should also be in units of dwords.
*/
vertexStride = vertexStride >> 2;
}
tu_cs_emit(cs, instanceCount);
tu_cs_emit_qw(cs, vk_buffer_address(&buf->vk, counterBufferOffset));
tu_cs_emit(cs, counterOffset);
tu_cs_emit(cs, vertexStride);
trace_end_draw(&cmd->rp_trace, cs);
}
TU_GENX(tu_CmdDrawIndirectByteCountEXT);
struct tu_dispatch_info
{
/**
* Determine the layout of the grid (in block units) to be used.
*/
uint32_t blocks[3];
/**
* A starting offset for the grid. If unaligned is set, the offset
* must still be aligned.
*/
uint32_t offsets[3];
/**
* Whether it's an unaligned compute dispatch.
*/
bool unaligned;
/**
* Indirect compute parameters resource.
*/
VkDeviceAddress indirect;
};
static inline struct ir3_driver_params_cs
build_driver_params_cs(const struct ir3_shader_variant *variant,
const struct tu_dispatch_info *info)
{
unsigned subgroup_size = variant->info.subgroup_size;
unsigned subgroup_shift = util_logbase2(subgroup_size);
return (struct ir3_driver_params_cs) {
.num_work_groups_x = info->blocks[0],
.num_work_groups_y = info->blocks[1],
.num_work_groups_z = info->blocks[2],
.work_dim = 0,
.base_group_x = info->offsets[0],
.base_group_y = info->offsets[1],
.base_group_z = info->offsets[2],
.subgroup_size = subgroup_size,
.local_group_size_x = 0,
.local_group_size_y = 0,
.local_group_size_z = 0,
.subgroup_id_shift = subgroup_shift,
};
}
template <chip CHIP>
static void
tu_emit_compute_driver_params(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
const struct tu_dispatch_info *info)
{
mesa_shader_stage type = MESA_SHADER_COMPUTE;
const struct tu_shader *shader = cmd->state.shaders[MESA_SHADER_COMPUTE];
const struct ir3_shader_variant *variant = shader->variant;
const struct ir3_const_state *const_state = variant->const_state;
unsigned subgroup_size = variant->info.subgroup_size;
unsigned subgroup_shift = util_logbase2(subgroup_size);
if (cmd->device->physical_device->info->props.load_shader_consts_via_preamble) {
uint32_t num_consts = const_state->driver_params_ubo.size;
if (num_consts == 0)
return;
bool direct_indirect_load =
!(info->indirect & 0xf) &&
!(info->indirect && num_consts > IR3_DP_CS(base_group_x));
uint64_t iova = 0;
if (!info->indirect) {
struct ir3_driver_params_cs driver_params =
build_driver_params_cs(variant, info);
assert(num_consts <= dword_sizeof(driver_params));
struct tu_cs_memory consts;
uint32_t consts_vec4 = DIV_ROUND_UP(num_consts, 4);
VkResult result = tu_cs_alloc(&cmd->sub_cs, consts_vec4, 4, &consts);
if (result != VK_SUCCESS) {
vk_command_buffer_set_error(&cmd->vk, result);
return;
}
memcpy(consts.map, &driver_params, num_consts * sizeof(uint32_t));
iova = consts.iova;
} else if (direct_indirect_load) {
iova = info->indirect;
} else {
/* Vulkan guarantees only 4 byte alignment for indirect_offset.
* However, CP_LOAD_STATE.EXT_SRC_ADDR needs 16 byte alignment.
*/
uint64_t indirect_iova = info->indirect;
/* Wait for any previous uses to finish. */
tu_cs_emit_wfi(cs);
for (uint32_t i = 0; i < 3; i++) {
tu_cs_emit_pkt7(cs, CP_MEM_TO_MEM, 5);
tu_cs_emit(cs, 0);
tu_cs_emit_qw(cs, global_iova_arr(cmd, cs_indirect_xyz, i));
tu_cs_emit_qw(cs, indirect_iova + i * sizeof(uint32_t));
}
/* Fill out IR3_DP_CS_SUBGROUP_SIZE and IR3_DP_SUBGROUP_ID_SHIFT for
* indirect dispatch.
*/
if (info->indirect && num_consts > IR3_DP_CS(base_group_x)) {
uint32_t indirect_driver_params[8] = {
0, 0, 0, subgroup_size,
0, 0, 0, subgroup_shift,
};
bool emit_local = num_consts > IR3_DP_CS(local_group_size_x);
uint32_t emit_size = emit_local ? 8 : 4;
tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 2 + emit_size);
tu_cs_emit_qw(cs, global_iova_arr(cmd, cs_indirect_xyz, 0) + 4 * sizeof(uint32_t));
for (uint32_t i = 0; i < emit_size; i++) {
tu_cs_emit(cs, indirect_driver_params[i]);
}
}
tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
tu_cs_emit_wfi(cs);
iova = global_iova(cmd, cs_indirect_xyz[0]);
}
tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 5);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(const_state->driver_params_ubo.idx) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_UBO) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
CP_LOAD_STATE6_0_NUM_UNIT(1));
tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
int size_vec4s = DIV_ROUND_UP(num_consts, 4);
tu_cs_emit_qw(cs, iova | ((uint64_t)A6XX_UBO_1_SIZE(size_vec4s) << 32));
} else {
uint32_t offset =
const_state->allocs.consts[IR3_CONST_ALLOC_DRIVER_PARAMS].offset_vec4;
if (!ir3_const_can_upload(&const_state->allocs,
IR3_CONST_ALLOC_DRIVER_PARAMS,
variant->constlen))
return;
uint32_t num_consts = MIN2(const_state->num_driver_params,
(variant->constlen - offset) * 4);
if (!info->indirect) {
struct ir3_driver_params_cs driver_params =
build_driver_params_cs(variant, info);
assert(num_consts <= dword_sizeof(driver_params));
/* push constants */
tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4));
tu_cs_emit(cs, 0);
tu_cs_emit(cs, 0);
tu_cs_emit_array(cs, (uint32_t *)&driver_params, num_consts);
} else if (!(info->indirect & 0xf)) {
tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
CP_LOAD_STATE6_0_NUM_UNIT(1));
tu_cs_emit_qw(cs, info->indirect);
} else {
/* Vulkan guarantees only 4 byte alignment for indirect_offset.
* However, CP_LOAD_STATE.EXT_SRC_ADDR needs 16 byte alignment.
*/
/* Wait for any previous uses to finish. */
tu_cs_emit_wfi(cs);
for (uint32_t i = 0; i < 3; i++) {
tu_cs_emit_pkt7(cs, CP_MEM_TO_MEM, 5);
tu_cs_emit(cs, 0);
tu_cs_emit_qw(cs, global_iova_arr(cmd, cs_indirect_xyz, i));
tu_cs_emit_qw(cs, info->indirect + i * 4);
}
tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
tu_cs_emit_wfi(cs);
tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
CP_LOAD_STATE6_0_NUM_UNIT(1));
tu_cs_emit_qw(cs, global_iova(cmd, cs_indirect_xyz[0]));
}
/* Fill out IR3_DP_CS_SUBGROUP_SIZE and IR3_DP_SUBGROUP_ID_SHIFT for
* indirect dispatch.
*/
if (info->indirect && num_consts > IR3_DP_CS(base_group_x)) {
bool emit_local = num_consts > IR3_DP_CS(local_group_size_x);
tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 7 + (emit_local ? 4 : 0));
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset + (IR3_DP_CS(base_group_x) / 4)) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
CP_LOAD_STATE6_0_NUM_UNIT((num_consts - IR3_DP_CS(base_group_x)) / 4));
tu_cs_emit_qw(cs, 0);
tu_cs_emit(cs, 0); /* BASE_GROUP_X */
tu_cs_emit(cs, 0); /* BASE_GROUP_Y */
tu_cs_emit(cs, 0); /* BASE_GROUP_Z */
tu_cs_emit(cs, subgroup_size);
if (emit_local) {
assert(num_consts == align(IR3_DP_CS(subgroup_id_shift), 4));
tu_cs_emit(cs, 0); /* LOCAL_GROUP_SIZE_X */
tu_cs_emit(cs, 0); /* LOCAL_GROUP_SIZE_Y */
tu_cs_emit(cs, 0); /* LOCAL_GROUP_SIZE_Z */
tu_cs_emit(cs, subgroup_shift);
}
}
}
}
template <chip CHIP>
static void
tu_dispatch(struct tu_cmd_buffer *cmd,
const struct tu_dispatch_info *info)
{
if (!info->indirect &&
(info->blocks[0] == 0 || info->blocks[1] == 0 || info->blocks[2] == 0))
return;
struct tu_cs *cs = &cmd->cs;
struct tu_shader *shader = cmd->state.shaders[MESA_SHADER_COMPUTE];
bool emit_instrlen_workaround =
shader->variant->instrlen >
cmd->device->physical_device->info->props.instr_cache_size;
/* We don't use draw states for dispatches, so the bound pipeline
* could be overwritten by reg stomping in a renderpass or blit.
*/
if (cmd->device->dbg_renderpass_stomp_cs) {
tu_cs_emit_state_ib(&cmd->cs, shader->state);
}
/* There appears to be a HW bug where in some rare circumstances it appears
* to accidentally use the FS instrlen instead of the CS instrlen, which
* affects all known gens. Based on various experiments it appears that the
* issue is that when prefetching a branch destination and there is a cache
* miss, when fetching from memory the HW bounds-checks the fetch against
* SP_CS_INSTR_SIZE, except when one of the two register contexts is active
* it accidentally fetches SP_PS_INSTR_SIZE from the other (inactive)
* context. To workaround it we set the FS instrlen here and do a dummy
* event to roll the context (because it fetches SP_PS_INSTR_SIZE from the
* "wrong" context). Because the bug seems to involve cache misses, we
* don't emit this if the entire CS program fits in cache, which will
* hopefully be the majority of cases.
*
* See https://gitlab.freedesktop.org/mesa/mesa/-/issues/5892
*/
if (emit_instrlen_workaround) {
tu_cs_emit_regs(cs, A6XX_SP_PS_INSTR_SIZE(shader->variant->instrlen));
tu_emit_event_write<CHIP>(cmd, cs, FD_LABEL);
}
/* TODO: We could probably flush less if we add a compute_flush_bits
* bitfield.
*/
tu_emit_cache_flush<CHIP>(cmd);
/* note: no reason to have this in a separate IB */
tu_cs_emit_state_ib(cs, tu_emit_consts(cmd, true));
tu_emit_compute_driver_params<CHIP>(cmd, cs, info);
if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESC_SETS) {
tu6_emit_descriptor_sets<CHIP>(cmd, VK_PIPELINE_BIND_POINT_COMPUTE);
tu_cs_emit_state_ib(cs, cmd->state.compute_load_state);
}
cmd->state.dirty &= ~TU_CMD_DIRTY_COMPUTE_DESC_SETS;
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
const uint16_t *local_size = shader->variant->local_size;
const uint32_t *num_groups = info->blocks;
if (info->unaligned) {
assert(CHIP >= A7XX);
if (info->indirect) {
/* This path is tailored for BVH building and currently only supports
* 1-dimensional dispatches with a power-of-two local size. We use
* CP_RUN_OPENCL instead of CP_EXEC_CS in order to dynamically set
* SP_CS_KERNEL_GROUP_X, which is usually set implicitly by the
* packet, to the number of workgroups. The registers for Y and Z
* dimensions should be unused because we set the kernel dimension to
* 1.
*/
assert(local_size[1] == 1 && local_size[2] == 1);
assert(util_is_power_of_two_nonzero(local_size[0]));
tu_cs_emit_regs(cs,
SP_CS_NDRANGE_0(CHIP, .kerneldim = 1,
.localsizex = local_size[0] - 1));
tu_cs_emit_regs(cs, SP_CS_NDRANGE_2(CHIP, .globaloff_x = 0));
/* This does:
* - waits for pending cache flushes to finish
* - CP_WAIT_FOR_ME
*
* In a sequence of indirect dispatches this shouldn't wait for the
* previous dispatches to finish.
*/
tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A7XX_SP_CS_NDRANGE_1));
tu_cs_emit_qw(cs, info->indirect);
tu_cs_emit_pkt7(cs, CP_SCRATCH_WRITE, 2);
tu_cs_emit(cs, CP_SCRATCH_WRITE_0_SCRATCH(0));
tu_cs_emit(cs, ~0u);
/* CP_REG_RMW and CP_REG_TO_SCRATCH implicitly do a CP_WAIT_FOR_IDLE
* *and* CP_WAIT_FOR_ME, which is a full pipeline stall that we don't
* want, so manually wait for the CP_MEM_TO_REG write to land and
* then skip waiting below with SKIP_WAIT_FOR_ME.
*/
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
/* scratch0 = ((scratch0 & CS_NDRANGE_1) + -1
* = ((~0 & CS_NDRANGE_1) + -1
* = CS_NDRANGE_1 - 1
*/
tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
tu_cs_emit(cs,
CP_REG_RMW_0_DST_REG(0) |
CP_REG_RMW_0_DST_SCRATCH |
CP_REG_RMW_0_SKIP_WAIT_FOR_ME |
CP_REG_RMW_0_SRC0_IS_REG |
CP_REG_RMW_0_SRC1_ADD);
tu_cs_emit(cs, REG_A7XX_SP_CS_NDRANGE_1); /* SRC0 */
tu_cs_emit(cs, -1); /* SRC1 */
/* scratch0 = ((scratch0 & (local_size - 1)) rot 2
* = ((scratch0 & (local_size - 1)) << 2
*/
tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
tu_cs_emit(cs,
CP_REG_RMW_0_DST_REG(0) |
CP_REG_RMW_0_DST_SCRATCH |
CP_REG_RMW_0_SKIP_WAIT_FOR_ME |
CP_REG_RMW_0_ROTATE(A7XX_SP_CS_NDRANGE_7_LOCALSIZEX__SHIFT));
tu_cs_emit(cs, local_size[0] - 1); /* SRC0 */
tu_cs_emit(cs, 0); /* SRC1 */
/* write scratch0 to SP_CS_NDRANGE_7 */
tu_cs_emit_pkt7(cs, CP_SCRATCH_TO_REG, 1);
tu_cs_emit(cs,
CP_SCRATCH_TO_REG_0_REG(REG_A7XX_SP_CS_NDRANGE_7) |
CP_SCRATCH_TO_REG_0_SCRATCH(0));
tu_cs_emit_pkt7(cs, CP_SCRATCH_WRITE, 2);
tu_cs_emit(cs, CP_SCRATCH_WRITE_0_SCRATCH(0));
tu_cs_emit(cs, ~0u);
/* scratch0 = (scratch0 & CS_NDRANGE_1) + local_size - 1
* = (~0u & CS_NDRANGE_1) + local_size - 1
* = CS_NDRANGE_1 + local_size - 1
*/
tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
tu_cs_emit(cs,
CP_REG_RMW_0_DST_REG(0) |
CP_REG_RMW_0_DST_SCRATCH |
CP_REG_RMW_0_SKIP_WAIT_FOR_ME |
CP_REG_RMW_0_SRC0_IS_REG |
CP_REG_RMW_0_SRC1_ADD);
tu_cs_emit(cs, REG_A7XX_SP_CS_NDRANGE_1); /* SRC0 */
tu_cs_emit(cs, local_size[0] - 1); /* SRC1 */
unsigned local_size_log2 = util_logbase2(local_size[0]);
/* scratch0 = (scratch0 & (~(local_size - 1)) rot (32 - log2(local_size))
* = scratch0 >> log2(local_size)
* = scratch0 / local_size
* = (CS_NDRANGE_1 + local_size - 1) / local_size
*/
tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
tu_cs_emit(cs,
CP_REG_RMW_0_DST_REG(0) |
CP_REG_RMW_0_DST_SCRATCH |
CP_REG_RMW_0_SKIP_WAIT_FOR_ME |
CP_REG_RMW_0_ROTATE(32 - local_size_log2));
tu_cs_emit(cs, ~(local_size[0] - 1)); /* SRC0 */
tu_cs_emit(cs, 0); /* SRC1 */
/* write scratch0 to SP_CS_KERNEL_GROUP_X */
tu_cs_emit_pkt7(cs, CP_SCRATCH_TO_REG, 1);
tu_cs_emit(cs,
CP_SCRATCH_TO_REG_0_REG(REG_A7XX_SP_CS_KERNEL_GROUP_X) |
CP_SCRATCH_TO_REG_0_SCRATCH(0));
} else {
tu_cs_emit_regs(cs,
SP_CS_NDRANGE_0(CHIP, .kerneldim = 3,
.localsizex = local_size[0] - 1,
.localsizey = local_size[1] - 1,
.localsizez = local_size[2] - 1),
SP_CS_NDRANGE_1(CHIP, .globalsize_x = num_groups[0]),
SP_CS_NDRANGE_2(CHIP, .globaloff_x = 0),
SP_CS_NDRANGE_3(CHIP, .globalsize_y = num_groups[1]),
SP_CS_NDRANGE_4(CHIP, .globaloff_y = 0),
SP_CS_NDRANGE_5(CHIP, .globalsize_z = num_groups[2]),
SP_CS_NDRANGE_6(CHIP, .globaloff_z = 0));
uint32_t last_local_size[3];
for (unsigned i = 0; i < 3; i++)
last_local_size[i] = ((num_groups[i] - 1) % local_size[i]) + 1;
tu_cs_emit_regs(cs,
SP_CS_NDRANGE_7(CHIP, .localsizex = last_local_size[0] - 1,
.localsizey = last_local_size[1] - 1,
.localsizez = last_local_size[2] - 1));
}
} else {
tu_cs_emit_regs(cs,
SP_CS_NDRANGE_0(CHIP, .kerneldim = 3,
.localsizex = local_size[0] - 1,
.localsizey = local_size[1] - 1,
.localsizez = local_size[2] - 1),
SP_CS_NDRANGE_1(CHIP, .globalsize_x = local_size[0] * num_groups[0]),
SP_CS_NDRANGE_2(CHIP, .globaloff_x = 0),
SP_CS_NDRANGE_3(CHIP, .globalsize_y = local_size[1] * num_groups[1]),
SP_CS_NDRANGE_4(CHIP, .globaloff_y = 0),
SP_CS_NDRANGE_5(CHIP, .globalsize_z = local_size[2] * num_groups[2]),
SP_CS_NDRANGE_6(CHIP, .globaloff_z = 0));
if (CHIP >= A7XX) {
tu_cs_emit_regs(cs,
SP_CS_NDRANGE_7(CHIP, .localsizex = local_size[0] - 1,
.localsizey = local_size[1] - 1,
.localsizez = local_size[2] - 1));
}
}
if (cmd->device->physical_device->info->props.has_rt_workaround &&
shader->variant->info.uses_ray_intersection) {
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_SHADER_USES_RT);
}
if (info->indirect) {
trace_start_compute_indirect(&cmd->trace, cs, cmd, info->unaligned,
(char *)shader->variant->sha1_str);
if (info->unaligned) {
tu_cs_emit_pkt7(cs, CP_RUN_OPENCL, 1);
tu_cs_emit(cs, 0x00000000);
} else {
tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4);
tu_cs_emit(cs, 0x00000000);
tu_cs_emit_qw(cs, info->indirect);
tu_cs_emit(cs,
A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) |
A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) |
A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1));
}
trace_end_compute_indirect(&cmd->trace, cs,
(struct u_trace_address) {
.bo = NULL,
.offset = info->indirect,
});
} else {
trace_start_compute(&cmd->trace, cs, cmd, info->indirect != 0,
info->unaligned, local_size[0], local_size[1],
local_size[2], info->blocks[0], info->blocks[1],
info->blocks[2], (char *)shader->variant->sha1_str);
if (info->unaligned) {
tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
tu_cs_emit(cs, 0x00000000);
tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(DIV_ROUND_UP(info->blocks[0],
local_size[0])));
tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(DIV_ROUND_UP(info->blocks[1],
local_size[1])));
tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(DIV_ROUND_UP(info->blocks[2],
local_size[2])));
} else {
tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
tu_cs_emit(cs, 0x00000000);
tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0]));
tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1]));
tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2]));
}
trace_end_compute(&cmd->trace, cs);
}
/* For the workaround above, because it's using the "wrong" context for
* SP_PS_INSTR_SIZE we should emit another dummy event write to avoid a
* potential race between writing the register and the CP_EXEC_CS we just
* did. We don't need to reset the register because it will be re-emitted
* anyway when the next renderpass starts.
*/
if (emit_instrlen_workaround) {
tu_emit_event_write<CHIP>(cmd, cs, FD_LABEL);
}
cmd->state.total_dispatches++;
}
template <chip CHIP>
VKAPI_ATTR void VKAPI_CALL
tu_CmdDispatchBase(VkCommandBuffer commandBuffer,
uint32_t base_x,
uint32_t base_y,
uint32_t base_z,
uint32_t x,
uint32_t y,
uint32_t z)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
struct tu_dispatch_info info = {};
info.blocks[0] = x;
info.blocks[1] = y;
info.blocks[2] = z;
info.offsets[0] = base_x;
info.offsets[1] = base_y;
info.offsets[2] = base_z;
tu_dispatch<CHIP>(cmd_buffer, &info);
}
TU_GENX(tu_CmdDispatchBase);
template <chip CHIP>
VKAPI_ATTR void VKAPI_CALL
tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
VK_FROM_HANDLE(tu_buffer, buffer, _buffer);
struct tu_dispatch_info info = {};
info.indirect = vk_buffer_address(&buffer->vk, offset);
tu_dispatch<CHIP>(cmd_buffer, &info);
}
TU_GENX(tu_CmdDispatchIndirect);
void
tu_dispatch_unaligned(VkCommandBuffer commandBuffer,
uint32_t x, uint32_t y, uint32_t z)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
struct tu_dispatch_info info = {};
info.unaligned = true;
info.blocks[0] = x;
info.blocks[1] = y;
info.blocks[2] = z;
TU_CALLX(cmd_buffer->device, tu_dispatch)(cmd_buffer, &info);
}
void
tu_dispatch_unaligned_indirect(VkCommandBuffer commandBuffer,
VkDeviceAddress size_addr)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
struct tu_dispatch_info info = {};
info.unaligned = true;
info.indirect = size_addr;
TU_CALLX(cmd_buffer->device, tu_dispatch)(cmd_buffer, &info);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
const VkSubpassEndInfo *pSubpassEndInfo)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
if (TU_DEBUG(DYNAMIC)) {
vk_common_CmdEndRenderPass2(commandBuffer, pSubpassEndInfo);
return;
}
const VkRenderPassFragmentDensityMapOffsetEndInfoEXT *fdm_offset_info =
vk_find_struct_const(pSubpassEndInfo->pNext,
RENDER_PASS_FRAGMENT_DENSITY_MAP_OFFSET_END_INFO_EXT);
const VkOffset2D *fdm_offsets =
(fdm_offset_info && fdm_offset_info->fragmentDensityOffsetCount > 0) ?
fdm_offset_info->pFragmentDensityOffsets : NULL;
VkOffset2D test_offsets[MAX_VIEWS];
if (TU_DEBUG(FDM) && TU_DEBUG(FDM_OFFSET)) {
for (unsigned i = 0; i < tu_fdm_num_layers(cmd_buffer); i++) {
test_offsets[i] = { 64, 64 };
}
fdm_offsets = test_offsets;
}
tu_cs_end(&cmd_buffer->draw_cs);
tu_cs_end(&cmd_buffer->draw_epilogue_cs);
TU_CALLX(cmd_buffer->device, tu_cmd_render)(cmd_buffer, fdm_offsets);
cmd_buffer->state.cache.pending_flush_bits |=
cmd_buffer->state.renderpass_cache.pending_flush_bits;
tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true);
vk_free(&cmd_buffer->vk.pool->alloc, cmd_buffer->state.attachments);
tu_reset_render_pass(cmd_buffer);
cmd_buffer->state.total_renderpasses++;
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdEndRendering2EXT(VkCommandBuffer commandBuffer,
const VkRenderingEndInfoEXT *pRenderingEndInfo)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
if (cmd_buffer->state.suspending) {
cmd_buffer->state.suspended_pass.lrz = cmd_buffer->state.lrz;
/* We cannot pass LRZ state to next resuming renderpass, so we have to
* force disable it here.
*/
TU_CALLX(cmd_buffer->device, tu_lrz_flush_valid_during_renderpass)
(cmd_buffer, &cmd_buffer->draw_cs);
}
const VkRenderPassFragmentDensityMapOffsetEndInfoEXT *fdm_offset_info =
vk_find_struct_const(pRenderingEndInfo,
RENDER_PASS_FRAGMENT_DENSITY_MAP_OFFSET_END_INFO_EXT);
const VkOffset2D *fdm_offsets =
(fdm_offset_info && fdm_offset_info->fragmentDensityOffsetCount > 0) ?
fdm_offset_info->pFragmentDensityOffsets : NULL;
VkOffset2D test_offsets[MAX_VIEWS];
if (TU_DEBUG(FDM) && TU_DEBUG(FDM_OFFSET)) {
for (unsigned i = 0; i < tu_fdm_num_layers(cmd_buffer); i++) {
test_offsets[i] = { 64, 64 };
}
fdm_offsets = test_offsets;
}
if (!cmd_buffer->state.suspending) {
tu_cs_end(&cmd_buffer->draw_cs);
tu_cs_end(&cmd_buffer->draw_epilogue_cs);
if (cmd_buffer->state.suspend_resume == SR_IN_PRE_CHAIN) {
tu_save_pre_chain(cmd_buffer);
cmd_buffer->pre_chain.fdm_offset = !!fdm_offsets;
if (fdm_offsets) {
memcpy(cmd_buffer->pre_chain.fdm_offsets,
fdm_offsets, sizeof(VkOffset2D) *
tu_fdm_num_layers(cmd_buffer));
}
/* Even we don't call tu_cmd_render here, renderpass is finished
* and draw states should be disabled.
*/
tu_disable_draw_states(cmd_buffer, &cmd_buffer->cs);
} else {
TU_CALLX(cmd_buffer->device, tu_cmd_render)(cmd_buffer, fdm_offsets);
}
tu_reset_render_pass(cmd_buffer);
}
if (cmd_buffer->state.resuming && !cmd_buffer->state.suspending) {
/* exiting suspend/resume chain */
switch (cmd_buffer->state.suspend_resume) {
case SR_IN_CHAIN:
cmd_buffer->state.suspend_resume = SR_NONE;
break;
case SR_IN_PRE_CHAIN:
case SR_IN_CHAIN_AFTER_PRE_CHAIN:
cmd_buffer->state.suspend_resume = SR_AFTER_PRE_CHAIN;
break;
default:
UNREACHABLE("suspending render pass not followed by resuming pass");
}
}
if (!cmd_buffer->state.suspending) {
cmd_buffer->state.total_renderpasses++;
}
}
void
tu_barrier(struct tu_cmd_buffer *cmd,
uint32_t dep_count,
const VkDependencyInfo *dep_infos)
{
VkPipelineStageFlags2 srcStage = 0;
VkPipelineStageFlags2 dstStage = 0;
BITMASK_ENUM(tu_cmd_access_mask) src_flags = 0;
BITMASK_ENUM(tu_cmd_access_mask) dst_flags = 0;
/* Inside a renderpass, we don't know yet whether we'll be using sysmem
* so we have to use the sysmem flushes.
*/
bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM &&
!cmd->state.pass;
for (uint32_t dep_idx = 0; dep_idx < dep_count; dep_idx++) {
const VkDependencyInfo *dep_info = &dep_infos[dep_idx];
for (uint32_t i = 0; i < dep_info->memoryBarrierCount; i++) {
const VkMemoryBarrier2 *barrier = &dep_info->pMemoryBarriers[i];
VkPipelineStageFlags2 sanitized_src_stage =
sanitize_src_stage(barrier->srcStageMask);
VkPipelineStageFlags2 sanitized_dst_stage =
sanitize_dst_stage(barrier->dstStageMask);
VkAccessFlags3KHR src_access_mask2 = 0, dst_access_mask2 = 0;
const VkMemoryBarrierAccessFlags3KHR *access3 =
vk_find_struct_const(barrier->pNext, MEMORY_BARRIER_ACCESS_FLAGS_3_KHR);
if (access3) {
src_access_mask2 = access3->srcAccessMask3;
dst_access_mask2 = access3->dstAccessMask3;
}
src_flags |= vk2tu_access(barrier->srcAccessMask, src_access_mask2,
sanitized_src_stage, false, gmem,
cmd->device->vk.enabled_features.sparseResidencyAliased);
dst_flags |= vk2tu_access(barrier->dstAccessMask, dst_access_mask2,
sanitized_dst_stage, false, gmem,
cmd->device->vk.enabled_features.sparseResidencyAliased);
srcStage |= sanitized_src_stage;
dstStage |= sanitized_dst_stage;
}
for (uint32_t i = 0; i < dep_info->bufferMemoryBarrierCount; i++) {
const VkBufferMemoryBarrier2 *barrier =
&dep_info->pBufferMemoryBarriers[i];
VK_FROM_HANDLE(tu_buffer, buffer, barrier->buffer);
bool sparse_aliasing =
buffer->vk.create_flags & VK_BUFFER_CREATE_SPARSE_ALIASED_BIT;
VkPipelineStageFlags2 sanitized_src_stage =
sanitize_src_stage(barrier->srcStageMask);
VkPipelineStageFlags2 sanitized_dst_stage =
sanitize_dst_stage(barrier->dstStageMask);
VkAccessFlags3KHR src_access_mask2 = 0, dst_access_mask2 = 0;
const VkMemoryBarrierAccessFlags3KHR *access3 =
vk_find_struct_const(barrier->pNext, MEMORY_BARRIER_ACCESS_FLAGS_3_KHR);
if (access3) {
src_access_mask2 = access3->srcAccessMask3;
dst_access_mask2 = access3->dstAccessMask3;
}
src_flags |= vk2tu_access(barrier->srcAccessMask, src_access_mask2,
sanitized_src_stage, false, gmem,
sparse_aliasing);
dst_flags |= vk2tu_access(barrier->dstAccessMask, dst_access_mask2,
sanitized_dst_stage, false, gmem,
sparse_aliasing);
srcStage |= sanitized_src_stage;
dstStage |= sanitized_dst_stage;
}
for (uint32_t i = 0; i < dep_info->imageMemoryBarrierCount; i++) {
const VkImageMemoryBarrier2 *barrier =
&dep_info->pImageMemoryBarriers[i];
VK_FROM_HANDLE(tu_image, image, barrier->image);
VkImageLayout old_layout = barrier->oldLayout;
bool sparse_aliasing =
image->vk.create_flags & VK_BUFFER_CREATE_SPARSE_ALIASED_BIT;
if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
old_layout == VK_IMAGE_LAYOUT_ZERO_INITIALIZED_EXT) {
/* The underlying memory for this image may have been used earlier
* within the same queue submission for a different image, which
* means that there may be old, stale cache entries which are in the
* "wrong" location, which could cause problems later after writing
* to the image. We don't want these entries being flushed later and
* overwriting the actual image, so we need to flush the CCU.
*/
if (vk_format_is_depth_or_stencil(image->vk.format)) {
src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
} else {
src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
}
}
VkPipelineStageFlags2 sanitized_src_stage =
sanitize_src_stage(barrier->srcStageMask);
VkPipelineStageFlags2 sanitized_dst_stage =
sanitize_dst_stage(barrier->dstStageMask);
VkAccessFlags3KHR src_access_mask2 = 0, dst_access_mask2 = 0;
const VkMemoryBarrierAccessFlags3KHR *access3 =
vk_find_struct_const(barrier->pNext, MEMORY_BARRIER_ACCESS_FLAGS_3_KHR);
if (access3) {
src_access_mask2 = access3->srcAccessMask3;
dst_access_mask2 = access3->dstAccessMask3;
}
src_flags |= vk2tu_access(barrier->srcAccessMask, src_access_mask2,
sanitized_src_stage, true, gmem,
sparse_aliasing);
dst_flags |= vk2tu_access(barrier->dstAccessMask, dst_access_mask2,
sanitized_dst_stage, true, gmem,
sparse_aliasing);
srcStage |= sanitized_src_stage;
dstStage |= sanitized_dst_stage;
}
}
if (cmd->state.pass) {
const VkPipelineStageFlags framebuffer_space_stages =
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT |
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
/* We cannot have non-by-region "fb-space to fb-space" barriers.
*
* From the Vulkan 1.2.185 spec, section 7.6.1 "Subpass Self-dependency":
*
* If the source and destination stage masks both include
* framebuffer-space stages, then dependencyFlags must include
* VK_DEPENDENCY_BY_REGION_BIT.
* [...]
* Each of the synchronization scopes and access scopes of a
* vkCmdPipelineBarrier2 or vkCmdPipelineBarrier command inside
* a render pass instance must be a subset of the scopes of one of
* the self-dependencies for the current subpass.
*
* If the self-dependency has VK_DEPENDENCY_BY_REGION_BIT or
* VK_DEPENDENCY_VIEW_LOCAL_BIT set, then so must the pipeline barrier.
*
* By-region barriers are ok for gmem. All other barriers would involve
* vtx stages which are NOT ok for gmem rendering.
* See dep_invalid_for_gmem().
*/
if ((srcStage & ~framebuffer_space_stages) ||
(dstStage & ~framebuffer_space_stages)) {
cmd->state.rp.disable_gmem = true;
cmd->state.rp.gmem_disable_reason = "Non-framebuffer-space barrier";
}
}
struct tu_cache_state *cache =
cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
/* a750 has a HW bug where writing a UBWC compressed image with a compute
* shader followed by reading it as a texture (or readonly image) requires
* a CACHE_CLEAN event. Some notes about this bug:
* - It only happens after a blit happens.
* - It's fast-clear related, it happens when the image is fast cleared
* before the write and the value read is (incorrectly) the fast clear
* color.
* - CACHE_FLUSH is supposed to be the same as CACHE_CLEAN +
* CACHE_INVALIDATE, but it doesn't work whereas CACHE_CLEAN +
* CACHE_INVALIDATE does.
*
* The srcAccess can be replaced by a OpMemoryBarrier(MakeAvailable), so
* we can't use that to insert the flush. Instead we use the shader source
* stage.
*/
if (cmd->device->physical_device->info->props.ubwc_coherency_quirk &&
(srcStage &
(VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT |
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT |
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT |
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT |
VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT |
VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT |
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT |
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT))) {
cache->flush_bits |= TU_CMD_FLAG_CACHE_CLEAN;
cache->pending_flush_bits &= ~TU_CMD_FLAG_CACHE_CLEAN;
}
tu_flush_for_access(cache, src_flags, dst_flags);
enum tu_stage src_stage = vk2tu_src_stage(cmd->device, srcStage);
enum tu_stage dst_stage = vk2tu_dst_stage(cmd->device, dstStage);
tu_flush_for_stage(cache, src_stage, dst_stage);
}
VKAPI_ATTR void VKAPI_CALL
tu_CmdPipelineBarrier2(VkCommandBuffer commandBuffer,
const VkDependencyInfo *pDependencyInfo)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
tu_barrier(cmd_buffer, 1, pDependencyInfo);
}
template <chip CHIP>
void
tu_write_event(struct tu_cmd_buffer *cmd, struct tu_event *event,
VkPipelineStageFlags2 stageMask, unsigned value)
{
struct tu_cs *cs = &cmd->cs;
/* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */
assert(!cmd->state.pass);
tu_emit_cache_flush<CHIP>(cmd);
/* Flags that only require a top-of-pipe event. DrawIndirect parameters are
* read by the CP, so the draw indirect stage counts as top-of-pipe too.
*/
VkPipelineStageFlags2 top_of_pipe_flags =
VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT |
VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT;
if (!(stageMask & ~top_of_pipe_flags)) {
tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
tu_cs_emit_qw(cs, event->bo.iova); /* ADDR_LO/HI */
tu_cs_emit(cs, value);
} else {
/* Use a RB_DONE_TS event to wait for everything to complete. */
if (CHIP == A6XX) {
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
} else {
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, 4);
tu_cs_emit(cs, CP_EVENT_WRITE7_0(.event = RB_DONE_TS,
.write_src = EV_WRITE_USER_32B,
.write_dst = EV_DST_RAM,
.write_enabled = true).value);
}
tu_cs_emit_qw(cs, event->bo.iova);
tu_cs_emit(cs, value);
}
}
TU_GENX(tu_write_event);
template <chip CHIP>
VKAPI_ATTR void VKAPI_CALL
tu_CmdBeginConditionalRenderingEXT(VkCommandBuffer commandBuffer,
const VkConditionalRenderingBeginInfoEXT *pConditionalRenderingBegin)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
cmd->state.predication_active = true;
struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
/* Wait for any writes to the predicate to land */
if (cmd->state.pass)
tu_emit_cache_flush_renderpass<CHIP>(cmd);
else
tu_emit_cache_flush<CHIP>(cmd);
VK_FROM_HANDLE(tu_buffer, buf, pConditionalRenderingBegin->buffer);
uint64_t iova = vk_buffer_address(&buf->vk, pConditionalRenderingBegin->offset);
/* qcom doesn't support 32-bit reference values, only 64-bit, but Vulkan
* mandates 32-bit comparisons. Our workaround is to copy the the reference
* value to the low 32-bits of a location where the high 32 bits are known
* to be 0 and then compare that.
*
* BR and BV use separate predicate values so that setting the predicate
* doesn't have to be synchronized between them.
*/
if (CHIP >= A7XX) {
if (!cmd->state.pass) {
tu_cs_emit_pkt7(cs, CP_THREAD_CONTROL, 1);
tu_cs_emit(cs, CP_THREAD_CONTROL_0_THREAD(CP_SET_THREAD_BOTH));
}
tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(THREAD_MODE) |
CP_COND_REG_EXEC_0_BR);
}
tu_cs_emit_pkt7(cs, CP_MEM_TO_MEM, 5);
tu_cs_emit(cs, 0);
tu_cs_emit_qw(cs, global_iova(cmd, predicate));
tu_cs_emit_qw(cs, iova);
if (CHIP >= A7XX) {
tu_cond_exec_end(cs);
tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(THREAD_MODE) |
CP_COND_REG_EXEC_0_BV);
tu_cs_emit_pkt7(cs, CP_MEM_TO_MEM, 5);
tu_cs_emit(cs, 0);
tu_cs_emit_qw(cs, global_iova(cmd, bv_predicate));
tu_cs_emit_qw(cs, iova);
tu_cond_exec_end(cs);
}
tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
tu_cs_emit_pkt7(cs, CP_DRAW_PRED_ENABLE_GLOBAL, 1);
tu_cs_emit(cs, 1);
bool inv = pConditionalRenderingBegin->flags & VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT;
if (CHIP >= A7XX) {
tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(THREAD_MODE) |
CP_COND_REG_EXEC_0_BR);
}
tu_cs_emit_pkt7(cs, CP_DRAW_PRED_SET, 3);
tu_cs_emit(cs, CP_DRAW_PRED_SET_0_SRC(PRED_SRC_MEM) |
CP_DRAW_PRED_SET_0_TEST(inv ? EQ_0_PASS : NE_0_PASS));
tu_cs_emit_qw(cs, global_iova(cmd, predicate));
if (CHIP >= A7XX) {
tu_cond_exec_end(cs);
tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(THREAD_MODE) |
CP_COND_REG_EXEC_0_BV);
tu_cs_emit_pkt7(cs, CP_DRAW_PRED_SET, 3);
tu_cs_emit(cs, CP_DRAW_PRED_SET_0_SRC(PRED_SRC_MEM) |
CP_DRAW_PRED_SET_0_TEST(inv ? EQ_0_PASS : NE_0_PASS));
tu_cs_emit_qw(cs, global_iova(cmd, bv_predicate));
tu_cond_exec_end(cs);
}
/* Restore original BR thread after setting BOTH */
if (CHIP >= A7XX && !cmd->state.pass) {
tu7_set_thread_br_patchpoint(cmd, cs, false);
}
}
TU_GENX(tu_CmdBeginConditionalRenderingEXT);
template <chip CHIP>
VKAPI_ATTR void VKAPI_CALL
tu_CmdEndConditionalRenderingEXT(VkCommandBuffer commandBuffer)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
cmd->state.predication_active = false;
struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
if (CHIP >= A7XX && !cmd->state.pass) {
tu_cs_emit_pkt7(cs, CP_THREAD_CONTROL, 1);
tu_cs_emit(cs, CP_THREAD_CONTROL_0_THREAD(CP_SET_THREAD_BOTH));
}
tu_cs_emit_pkt7(cs, CP_DRAW_PRED_ENABLE_GLOBAL, 1);
tu_cs_emit(cs, 0);
if (CHIP >= A7XX && !cmd->state.pass) {
tu7_set_thread_br_patchpoint(cmd, cs, false);
}
}
TU_GENX(tu_CmdEndConditionalRenderingEXT);
template <chip CHIP>
void
tu_CmdWriteBufferMarker2AMD(VkCommandBuffer commandBuffer,
VkPipelineStageFlagBits2 pipelineStage,
VkBuffer dstBuffer,
VkDeviceSize dstOffset,
uint32_t marker)
{
/* Almost the same as tu_write_event, but also allowed in renderpass */
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
VK_FROM_HANDLE(tu_buffer, buffer, dstBuffer);
uint64_t va = vk_buffer_address(&buffer->vk, dstOffset);
struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
struct tu_cache_state *cache =
cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
/* From the Vulkan 1.2.203 spec:
*
* The access scope for buffer marker writes falls under
* the VK_ACCESS_TRANSFER_WRITE_BIT, and the pipeline stages for
* identifying the synchronization scope must include both pipelineStage
* and VK_PIPELINE_STAGE_TRANSFER_BIT.
*
* Transfer operations use CCU however here we write via CP.
* Flush CCU in order to make the results of previous transfer
* operation visible to CP.
*/
tu_flush_for_access(cache, TU_ACCESS_NONE, TU_ACCESS_SYSMEM_WRITE);
/* Flags that only require a top-of-pipe event. DrawIndirect parameters are
* read by the CP, so the draw indirect stage counts as top-of-pipe too.
*/
VkPipelineStageFlags2 top_of_pipe_flags =
VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT |
VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT;
bool is_top_of_pipe = !(pipelineStage & ~top_of_pipe_flags);
/* We have to WFI only if we flushed CCU here and are using CP_MEM_WRITE.
* Otherwise:
* - We do CP_EVENT_WRITE(RB_DONE_TS) which should wait for flushes;
* - There was a barrier to synchronize other writes with WriteBufferMarkerAMD
* and they had to include our pipelineStage which forces the WFI.
*/
if (cache->flush_bits && is_top_of_pipe) {
cache->flush_bits |= TU_CMD_FLAG_WAIT_FOR_IDLE;
}
if (cmd->state.pass) {
tu_emit_cache_flush_renderpass<CHIP>(cmd);
} else {
tu_emit_cache_flush<CHIP>(cmd);
}
if (is_top_of_pipe) {
tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
tu_cs_emit_qw(cs, va); /* ADDR_LO/HI */
tu_cs_emit(cs, marker);
} else {
/* Use a RB_DONE_TS event to wait for everything to complete. */
if (CHIP == A6XX) {
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
} else {
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, 4);
tu_cs_emit(cs, CP_EVENT_WRITE7_0(.event = RB_DONE_TS,
.write_src = EV_WRITE_USER_32B,
.write_dst = EV_DST_RAM,
.write_enabled = true).value);
}
tu_cs_emit_qw(cs, va);
tu_cs_emit(cs, marker);
}
/* Make sure the result of this write is visible to others. */
tu_flush_for_access(cache, TU_ACCESS_CP_WRITE, TU_ACCESS_NONE);
}
TU_GENX(tu_CmdWriteBufferMarker2AMD);
void
tu_write_buffer_cp(VkCommandBuffer commandBuffer,
VkDeviceAddress addr,
void *data, uint32_t size)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_CALLX(cmd->device, tu_emit_cache_flush)(cmd);
struct tu_cs *cs = &cmd->cs;
tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 2 + size / 4);
tu_cs_emit_qw(cs, addr);
tu_cs_emit_array(cs, (uint32_t *)data, size / 4);
}
void
tu_flush_buffer_write_cp(VkCommandBuffer commandBuffer)
{
VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cache_state *cache = &cmd->state.cache;
tu_flush_for_access(cache, TU_ACCESS_CP_WRITE, (enum tu_cmd_access_mask)0);
}