mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-29 01:30:08 +01:00
1036 lines
37 KiB
C
1036 lines
37 KiB
C
/*
|
|
* Copyright © 2015 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdbool.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
|
|
#include "anv_private.h"
|
|
|
|
#include "genxml/gen_macros.h"
|
|
#include "genxml/genX_pack.h"
|
|
|
|
/* We reserve GPR 14 and 15 for conditional rendering */
|
|
#define GEN_MI_BUILDER_NUM_ALLOC_GPRS 14
|
|
#define __gen_get_batch_dwords anv_batch_emit_dwords
|
|
#define __gen_address_offset anv_address_add
|
|
#include "common/gen_mi_builder.h"
|
|
#include "perf/gen_perf.h"
|
|
#include "perf/gen_perf_mdapi.h"
|
|
|
|
#define OA_REPORT_N_UINT64 (256 / sizeof(uint64_t))
|
|
|
|
VkResult genX(CreateQueryPool)(
|
|
VkDevice _device,
|
|
const VkQueryPoolCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkQueryPool* pQueryPool)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
const struct anv_physical_device *pdevice = &device->instance->physicalDevice;
|
|
struct anv_query_pool *pool;
|
|
VkResult result;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO);
|
|
|
|
/* Query pool slots are made up of some number of 64-bit values packed
|
|
* tightly together. For most query types have the first 64-bit value is
|
|
* the "available" bit which is 0 when the query is unavailable and 1 when
|
|
* it is available. The 64-bit values that follow are determined by the
|
|
* type of query.
|
|
*
|
|
* For performance queries, we have a requirement to align OA reports at
|
|
* 64bytes so we put those first and have the "available" bit behind
|
|
* together with some other counters.
|
|
*/
|
|
uint32_t uint64s_per_slot = 1;
|
|
|
|
VkQueryPipelineStatisticFlags pipeline_statistics = 0;
|
|
switch (pCreateInfo->queryType) {
|
|
case VK_QUERY_TYPE_OCCLUSION:
|
|
/* Occlusion queries have two values: begin and end. */
|
|
uint64s_per_slot += 2;
|
|
break;
|
|
case VK_QUERY_TYPE_TIMESTAMP:
|
|
/* Timestamps just have the one timestamp value */
|
|
uint64s_per_slot += 1;
|
|
break;
|
|
case VK_QUERY_TYPE_PIPELINE_STATISTICS:
|
|
pipeline_statistics = pCreateInfo->pipelineStatistics;
|
|
/* We're going to trust this field implicitly so we need to ensure that
|
|
* no unhandled extension bits leak in.
|
|
*/
|
|
pipeline_statistics &= ANV_PIPELINE_STATISTICS_MASK;
|
|
|
|
/* Statistics queries have a min and max for every statistic */
|
|
uint64s_per_slot += 2 * util_bitcount(pipeline_statistics);
|
|
break;
|
|
case VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT:
|
|
/* Transform feedback queries are 4 values, begin/end for
|
|
* written/available.
|
|
*/
|
|
uint64s_per_slot += 4;
|
|
break;
|
|
case VK_QUERY_TYPE_PERFORMANCE_QUERY_INTEL: {
|
|
uint64s_per_slot = 2 * OA_REPORT_N_UINT64; /* begin & end OA reports */
|
|
uint64s_per_slot += 4; /* PerfCounter 1 & 2 */
|
|
uint64s_per_slot++; /* 2 * 32bit RPSTAT register */
|
|
uint64s_per_slot++; /* 64bit marker */
|
|
uint64s_per_slot++; /* availability */
|
|
uint64s_per_slot = align_u32(uint64s_per_slot, 8); /* OA reports must be aligned to 64 bytes */
|
|
break;
|
|
}
|
|
default:
|
|
assert(!"Invalid query type");
|
|
}
|
|
|
|
pool = vk_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if (pool == NULL)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
pool->type = pCreateInfo->queryType;
|
|
pool->pipeline_statistics = pipeline_statistics;
|
|
pool->stride = uint64s_per_slot * sizeof(uint64_t);
|
|
pool->slots = pCreateInfo->queryCount;
|
|
|
|
uint32_t bo_flags = 0;
|
|
if (pdevice->supports_48bit_addresses)
|
|
bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
|
|
|
|
if (pdevice->use_softpin)
|
|
bo_flags |= EXEC_OBJECT_PINNED;
|
|
|
|
if (pdevice->has_exec_async)
|
|
bo_flags |= EXEC_OBJECT_ASYNC;
|
|
|
|
uint64_t size = pool->slots * pool->stride;
|
|
result = anv_device_alloc_bo(device, size,
|
|
ANV_BO_ALLOC_MAPPED |
|
|
ANV_BO_ALLOC_SNOOPED,
|
|
&pool->bo);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
|
|
*pQueryPool = anv_query_pool_to_handle(pool);
|
|
|
|
return VK_SUCCESS;
|
|
|
|
fail:
|
|
vk_free2(&device->alloc, pAllocator, pool);
|
|
|
|
return result;
|
|
}
|
|
|
|
void genX(DestroyQueryPool)(
|
|
VkDevice _device,
|
|
VkQueryPool _pool,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_query_pool, pool, _pool);
|
|
|
|
if (!pool)
|
|
return;
|
|
|
|
anv_device_release_bo(device, pool->bo);
|
|
vk_free2(&device->alloc, pAllocator, pool);
|
|
}
|
|
|
|
static struct anv_address
|
|
anv_query_address(struct anv_query_pool *pool, uint32_t query)
|
|
{
|
|
return (struct anv_address) {
|
|
.bo = pool->bo,
|
|
.offset = query * pool->stride,
|
|
};
|
|
}
|
|
|
|
/**
|
|
* VK_INTEL_performance_query layout:
|
|
*
|
|
* ------------------------------
|
|
* | end MI_RPC (256b) |
|
|
* |----------------------------|
|
|
* | begin MI_RPC (256b) |
|
|
* |----------------------------|
|
|
* | begin perfcntr 1 & 2 (16b) |
|
|
* |----------------------------|
|
|
* | end perfcntr 1 & 2 (16b) |
|
|
* |----------------------------|
|
|
* | begin RPSTAT register (4b) |
|
|
* |----------------------------|
|
|
* | end RPSTAT register (4b) |
|
|
* |----------------------------|
|
|
* | marker (8b) |
|
|
* |----------------------------|
|
|
* | availability (8b) |
|
|
* ------------------------------
|
|
*/
|
|
|
|
static uint32_t
|
|
intel_perf_mi_rpc_offset(bool end)
|
|
{
|
|
return end ? 0 : 256;
|
|
}
|
|
|
|
static uint32_t
|
|
intel_perf_counter(bool end)
|
|
{
|
|
uint32_t offset = 512;
|
|
offset += end ? 2 * sizeof(uint64_t) : 0;
|
|
return offset;
|
|
}
|
|
|
|
static uint32_t
|
|
intel_perf_rpstart_offset(bool end)
|
|
{
|
|
uint32_t offset = intel_perf_counter(false) +
|
|
4 * sizeof(uint64_t);
|
|
offset += end ? sizeof(uint32_t) : 0;
|
|
return offset;
|
|
}
|
|
|
|
static uint32_t
|
|
intel_perf_marker_offset(void)
|
|
{
|
|
return intel_perf_rpstart_offset(false) + sizeof(uint64_t);
|
|
}
|
|
|
|
static void
|
|
cpu_write_query_result(void *dst_slot, VkQueryResultFlags flags,
|
|
uint32_t value_index, uint64_t result)
|
|
{
|
|
if (flags & VK_QUERY_RESULT_64_BIT) {
|
|
uint64_t *dst64 = dst_slot;
|
|
dst64[value_index] = result;
|
|
} else {
|
|
uint32_t *dst32 = dst_slot;
|
|
dst32[value_index] = result;
|
|
}
|
|
}
|
|
|
|
static void *
|
|
query_slot(struct anv_query_pool *pool, uint32_t query)
|
|
{
|
|
return pool->bo->map + query * pool->stride;
|
|
}
|
|
|
|
static bool
|
|
query_is_available(struct anv_query_pool *pool, uint32_t query)
|
|
{
|
|
if (pool->type == VK_QUERY_TYPE_PERFORMANCE_QUERY_INTEL) {
|
|
return *(volatile uint64_t *)((uint8_t *)query_slot(pool, query) +
|
|
pool->stride - 8);
|
|
} else
|
|
return *(volatile uint64_t *)query_slot(pool, query);
|
|
}
|
|
|
|
static VkResult
|
|
wait_for_available(struct anv_device *device,
|
|
struct anv_query_pool *pool, uint32_t query)
|
|
{
|
|
while (true) {
|
|
if (query_is_available(pool, query))
|
|
return VK_SUCCESS;
|
|
|
|
int ret = anv_gem_busy(device, pool->bo->gem_handle);
|
|
if (ret == 1) {
|
|
/* The BO is still busy, keep waiting. */
|
|
continue;
|
|
} else if (ret == -1) {
|
|
/* We don't know the real error. */
|
|
return anv_device_set_lost(device, "gem wait failed: %m");
|
|
} else {
|
|
assert(ret == 0);
|
|
/* The BO is no longer busy. */
|
|
if (query_is_available(pool, query)) {
|
|
return VK_SUCCESS;
|
|
} else {
|
|
VkResult status = anv_device_query_status(device);
|
|
if (status != VK_SUCCESS)
|
|
return status;
|
|
|
|
/* If we haven't seen availability yet, then we never will. This
|
|
* can only happen if we have a client error where they call
|
|
* GetQueryPoolResults on a query that they haven't submitted to
|
|
* the GPU yet. The spec allows us to do anything in this case,
|
|
* but returning VK_SUCCESS doesn't seem right and we shouldn't
|
|
* just keep spinning.
|
|
*/
|
|
return VK_NOT_READY;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
VkResult genX(GetQueryPoolResults)(
|
|
VkDevice _device,
|
|
VkQueryPool queryPool,
|
|
uint32_t firstQuery,
|
|
uint32_t queryCount,
|
|
size_t dataSize,
|
|
void* pData,
|
|
VkDeviceSize stride,
|
|
VkQueryResultFlags flags)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
|
|
|
|
assert(pool->type == VK_QUERY_TYPE_OCCLUSION ||
|
|
pool->type == VK_QUERY_TYPE_PIPELINE_STATISTICS ||
|
|
pool->type == VK_QUERY_TYPE_TIMESTAMP ||
|
|
pool->type == VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT ||
|
|
pool->type == VK_QUERY_TYPE_PERFORMANCE_QUERY_INTEL);
|
|
|
|
if (anv_device_is_lost(device))
|
|
return VK_ERROR_DEVICE_LOST;
|
|
|
|
if (pData == NULL)
|
|
return VK_SUCCESS;
|
|
|
|
void *data_end = pData + dataSize;
|
|
|
|
VkResult status = VK_SUCCESS;
|
|
for (uint32_t i = 0; i < queryCount; i++) {
|
|
bool available = query_is_available(pool, firstQuery + i);
|
|
|
|
if (!available && (flags & VK_QUERY_RESULT_WAIT_BIT)) {
|
|
status = wait_for_available(device, pool, firstQuery + i);
|
|
if (status != VK_SUCCESS)
|
|
return status;
|
|
|
|
available = true;
|
|
}
|
|
|
|
/* From the Vulkan 1.0.42 spec:
|
|
*
|
|
* "If VK_QUERY_RESULT_WAIT_BIT and VK_QUERY_RESULT_PARTIAL_BIT are
|
|
* both not set then no result values are written to pData for
|
|
* queries that are in the unavailable state at the time of the call,
|
|
* and vkGetQueryPoolResults returns VK_NOT_READY. However,
|
|
* availability state is still written to pData for those queries if
|
|
* VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is set."
|
|
*/
|
|
bool write_results = available || (flags & VK_QUERY_RESULT_PARTIAL_BIT);
|
|
|
|
uint32_t idx = 0;
|
|
switch (pool->type) {
|
|
case VK_QUERY_TYPE_OCCLUSION: {
|
|
uint64_t *slot = query_slot(pool, firstQuery + i);
|
|
if (write_results)
|
|
cpu_write_query_result(pData, flags, idx, slot[2] - slot[1]);
|
|
idx++;
|
|
break;
|
|
}
|
|
|
|
case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
|
|
uint64_t *slot = query_slot(pool, firstQuery + i);
|
|
uint32_t statistics = pool->pipeline_statistics;
|
|
while (statistics) {
|
|
uint32_t stat = u_bit_scan(&statistics);
|
|
if (write_results) {
|
|
uint64_t result = slot[idx * 2 + 2] - slot[idx * 2 + 1];
|
|
|
|
/* WaDividePSInvocationCountBy4:HSW,BDW */
|
|
if ((device->info.gen == 8 || device->info.is_haswell) &&
|
|
(1 << stat) == VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT)
|
|
result >>= 2;
|
|
|
|
cpu_write_query_result(pData, flags, idx, result);
|
|
}
|
|
idx++;
|
|
}
|
|
assert(idx == util_bitcount(pool->pipeline_statistics));
|
|
break;
|
|
}
|
|
|
|
case VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT: {
|
|
uint64_t *slot = query_slot(pool, firstQuery + i);
|
|
if (write_results)
|
|
cpu_write_query_result(pData, flags, idx, slot[2] - slot[1]);
|
|
idx++;
|
|
if (write_results)
|
|
cpu_write_query_result(pData, flags, idx, slot[4] - slot[3]);
|
|
idx++;
|
|
break;
|
|
}
|
|
|
|
case VK_QUERY_TYPE_TIMESTAMP: {
|
|
uint64_t *slot = query_slot(pool, firstQuery + i);
|
|
if (write_results)
|
|
cpu_write_query_result(pData, flags, idx, slot[1]);
|
|
idx++;
|
|
break;
|
|
}
|
|
|
|
case VK_QUERY_TYPE_PERFORMANCE_QUERY_INTEL: {
|
|
if (!write_results)
|
|
break;
|
|
const void *query_data = query_slot(pool, firstQuery + i);
|
|
const uint32_t *oa_begin = query_data + intel_perf_mi_rpc_offset(false);
|
|
const uint32_t *oa_end = query_data + intel_perf_mi_rpc_offset(true);
|
|
const uint32_t *rpstat_begin = query_data + intel_perf_rpstart_offset(false);
|
|
const uint32_t *rpstat_end = query_data + intel_perf_mi_rpc_offset(true);
|
|
struct gen_perf_query_result result;
|
|
struct gen_perf_query_info metric = {
|
|
.oa_format = (GEN_GEN >= 8 ?
|
|
I915_OA_FORMAT_A32u40_A4u32_B8_C8 :
|
|
I915_OA_FORMAT_A45_B8_C8),
|
|
};
|
|
uint32_t core_freq[2];
|
|
#if GEN_GEN < 9
|
|
core_freq[0] = ((*rpstat_begin >> 7) & 0x7f) * 1000000ULL;
|
|
core_freq[1] = ((*rpstat_end >> 7) & 0x7f) * 1000000ULL;
|
|
#else
|
|
core_freq[0] = ((*rpstat_begin >> 23) & 0x1ff) * 1000000ULL;
|
|
core_freq[1] = ((*rpstat_end >> 23) & 0x1ff) * 1000000ULL;
|
|
#endif
|
|
gen_perf_query_result_clear(&result);
|
|
gen_perf_query_result_accumulate(&result, &metric,
|
|
oa_begin, oa_end);
|
|
gen_perf_query_result_read_frequencies(&result, &device->info,
|
|
oa_begin, oa_end);
|
|
gen_perf_query_result_write_mdapi(pData, stride,
|
|
&device->info,
|
|
&result,
|
|
core_freq[0], core_freq[1]);
|
|
gen_perf_query_mdapi_write_perfcntr(pData, stride, &device->info,
|
|
query_data + intel_perf_counter(false),
|
|
query_data + intel_perf_counter(true));
|
|
const uint64_t *marker = query_data + intel_perf_marker_offset();
|
|
gen_perf_query_mdapi_write_marker(pData, stride, &device->info, *marker);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
unreachable("invalid pool type");
|
|
}
|
|
|
|
if (!write_results)
|
|
status = VK_NOT_READY;
|
|
|
|
if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT)
|
|
cpu_write_query_result(pData, flags, idx, available);
|
|
|
|
pData += stride;
|
|
if (pData >= data_end)
|
|
break;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static void
|
|
emit_ps_depth_count(struct anv_cmd_buffer *cmd_buffer,
|
|
struct anv_address addr)
|
|
{
|
|
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
|
|
pc.DestinationAddressType = DAT_PPGTT;
|
|
pc.PostSyncOperation = WritePSDepthCount;
|
|
pc.DepthStallEnable = true;
|
|
pc.Address = addr;
|
|
|
|
if (GEN_GEN == 9 && cmd_buffer->device->info.gt == 4)
|
|
pc.CommandStreamerStallEnable = true;
|
|
}
|
|
}
|
|
|
|
static void
|
|
emit_query_mi_availability(struct gen_mi_builder *b,
|
|
struct anv_address addr,
|
|
bool available)
|
|
{
|
|
gen_mi_store(b, gen_mi_mem64(addr), gen_mi_imm(available));
|
|
}
|
|
|
|
static void
|
|
emit_query_pc_availability(struct anv_cmd_buffer *cmd_buffer,
|
|
struct anv_address addr,
|
|
bool available)
|
|
{
|
|
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
|
|
pc.DestinationAddressType = DAT_PPGTT;
|
|
pc.PostSyncOperation = WriteImmediateData;
|
|
pc.Address = addr;
|
|
pc.ImmediateData = available;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Goes through a series of consecutive query indices in the given pool
|
|
* setting all element values to 0 and emitting them as available.
|
|
*/
|
|
static void
|
|
emit_zero_queries(struct anv_cmd_buffer *cmd_buffer,
|
|
struct gen_mi_builder *b, struct anv_query_pool *pool,
|
|
uint32_t first_index, uint32_t num_queries)
|
|
{
|
|
switch (pool->type) {
|
|
case VK_QUERY_TYPE_OCCLUSION:
|
|
case VK_QUERY_TYPE_TIMESTAMP:
|
|
/* These queries are written with a PIPE_CONTROL so clear them using the
|
|
* PIPE_CONTROL as well so we don't have to synchronize between 2 types
|
|
* of operations.
|
|
*/
|
|
assert((pool->stride % 8) == 0);
|
|
for (uint32_t i = 0; i < num_queries; i++) {
|
|
struct anv_address slot_addr =
|
|
anv_query_address(pool, first_index + i);
|
|
|
|
for (uint32_t qword = 1; qword < (pool->stride / 8); qword++) {
|
|
emit_query_pc_availability(cmd_buffer,
|
|
anv_address_add(slot_addr, qword * 8),
|
|
false);
|
|
}
|
|
emit_query_pc_availability(cmd_buffer, slot_addr, true);
|
|
}
|
|
break;
|
|
|
|
case VK_QUERY_TYPE_PIPELINE_STATISTICS:
|
|
case VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT:
|
|
for (uint32_t i = 0; i < num_queries; i++) {
|
|
struct anv_address slot_addr =
|
|
anv_query_address(pool, first_index + i);
|
|
gen_mi_memset(b, anv_address_add(slot_addr, 8), 0, pool->stride - 8);
|
|
emit_query_mi_availability(b, slot_addr, true);
|
|
}
|
|
break;
|
|
|
|
case VK_QUERY_TYPE_PERFORMANCE_QUERY_INTEL:
|
|
for (uint32_t i = 0; i < num_queries; i++) {
|
|
struct anv_address slot_addr =
|
|
anv_query_address(pool, first_index + i);
|
|
gen_mi_memset(b, slot_addr, 0, pool->stride - 8);
|
|
emit_query_mi_availability(b, anv_address_add(slot_addr,
|
|
pool->stride - 8), true);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
unreachable("Unsupported query type");
|
|
}
|
|
}
|
|
|
|
void genX(CmdResetQueryPool)(
|
|
VkCommandBuffer commandBuffer,
|
|
VkQueryPool queryPool,
|
|
uint32_t firstQuery,
|
|
uint32_t queryCount)
|
|
{
|
|
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
|
|
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
|
|
|
|
switch (pool->type) {
|
|
case VK_QUERY_TYPE_OCCLUSION:
|
|
case VK_QUERY_TYPE_TIMESTAMP:
|
|
for (uint32_t i = 0; i < queryCount; i++) {
|
|
emit_query_pc_availability(cmd_buffer,
|
|
anv_query_address(pool, firstQuery + i),
|
|
false);
|
|
}
|
|
break;
|
|
|
|
case VK_QUERY_TYPE_PIPELINE_STATISTICS:
|
|
case VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT: {
|
|
struct gen_mi_builder b;
|
|
gen_mi_builder_init(&b, &cmd_buffer->batch);
|
|
|
|
for (uint32_t i = 0; i < queryCount; i++)
|
|
emit_query_mi_availability(&b, anv_query_address(pool, firstQuery + i), false);
|
|
break;
|
|
}
|
|
|
|
case VK_QUERY_TYPE_PERFORMANCE_QUERY_INTEL: {
|
|
struct gen_mi_builder b;
|
|
gen_mi_builder_init(&b, &cmd_buffer->batch);
|
|
|
|
for (uint32_t i = 0; i < queryCount; i++) {
|
|
emit_query_mi_availability(
|
|
&b,
|
|
anv_address_add(
|
|
anv_query_address(pool, firstQuery + i),
|
|
pool->stride - 8),
|
|
false);
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
unreachable("Unsupported query type");
|
|
}
|
|
}
|
|
|
|
void genX(ResetQueryPoolEXT)(
|
|
VkDevice _device,
|
|
VkQueryPool queryPool,
|
|
uint32_t firstQuery,
|
|
uint32_t queryCount)
|
|
{
|
|
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
|
|
|
|
for (uint32_t i = 0; i < queryCount; i++) {
|
|
uint64_t *slot = query_slot(pool, firstQuery + i);
|
|
*slot = 0;
|
|
}
|
|
}
|
|
|
|
static const uint32_t vk_pipeline_stat_to_reg[] = {
|
|
GENX(IA_VERTICES_COUNT_num),
|
|
GENX(IA_PRIMITIVES_COUNT_num),
|
|
GENX(VS_INVOCATION_COUNT_num),
|
|
GENX(GS_INVOCATION_COUNT_num),
|
|
GENX(GS_PRIMITIVES_COUNT_num),
|
|
GENX(CL_INVOCATION_COUNT_num),
|
|
GENX(CL_PRIMITIVES_COUNT_num),
|
|
GENX(PS_INVOCATION_COUNT_num),
|
|
GENX(HS_INVOCATION_COUNT_num),
|
|
GENX(DS_INVOCATION_COUNT_num),
|
|
GENX(CS_INVOCATION_COUNT_num),
|
|
};
|
|
|
|
static void
|
|
emit_pipeline_stat(struct gen_mi_builder *b, uint32_t stat,
|
|
struct anv_address addr)
|
|
{
|
|
STATIC_ASSERT(ANV_PIPELINE_STATISTICS_MASK ==
|
|
(1 << ARRAY_SIZE(vk_pipeline_stat_to_reg)) - 1);
|
|
|
|
assert(stat < ARRAY_SIZE(vk_pipeline_stat_to_reg));
|
|
gen_mi_store(b, gen_mi_mem64(addr),
|
|
gen_mi_reg64(vk_pipeline_stat_to_reg[stat]));
|
|
}
|
|
|
|
static void
|
|
emit_xfb_query(struct gen_mi_builder *b, uint32_t stream,
|
|
struct anv_address addr)
|
|
{
|
|
assert(stream < MAX_XFB_STREAMS);
|
|
|
|
gen_mi_store(b, gen_mi_mem64(anv_address_add(addr, 0)),
|
|
gen_mi_reg64(GENX(SO_NUM_PRIMS_WRITTEN0_num) + stream * 8));
|
|
gen_mi_store(b, gen_mi_mem64(anv_address_add(addr, 16)),
|
|
gen_mi_reg64(GENX(SO_PRIM_STORAGE_NEEDED0_num) + stream * 8));
|
|
}
|
|
|
|
void genX(CmdBeginQuery)(
|
|
VkCommandBuffer commandBuffer,
|
|
VkQueryPool queryPool,
|
|
uint32_t query,
|
|
VkQueryControlFlags flags)
|
|
{
|
|
genX(CmdBeginQueryIndexedEXT)(commandBuffer, queryPool, query, flags, 0);
|
|
}
|
|
|
|
void genX(CmdBeginQueryIndexedEXT)(
|
|
VkCommandBuffer commandBuffer,
|
|
VkQueryPool queryPool,
|
|
uint32_t query,
|
|
VkQueryControlFlags flags,
|
|
uint32_t index)
|
|
{
|
|
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
|
|
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
|
|
struct anv_address query_addr = anv_query_address(pool, query);
|
|
|
|
struct gen_mi_builder b;
|
|
gen_mi_builder_init(&b, &cmd_buffer->batch);
|
|
|
|
switch (pool->type) {
|
|
case VK_QUERY_TYPE_OCCLUSION:
|
|
emit_ps_depth_count(cmd_buffer, anv_address_add(query_addr, 8));
|
|
break;
|
|
|
|
case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
|
|
/* TODO: This might only be necessary for certain stats */
|
|
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
|
|
pc.CommandStreamerStallEnable = true;
|
|
pc.StallAtPixelScoreboard = true;
|
|
}
|
|
|
|
uint32_t statistics = pool->pipeline_statistics;
|
|
uint32_t offset = 8;
|
|
while (statistics) {
|
|
uint32_t stat = u_bit_scan(&statistics);
|
|
emit_pipeline_stat(&b, stat, anv_address_add(query_addr, offset));
|
|
offset += 16;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT:
|
|
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
|
|
pc.CommandStreamerStallEnable = true;
|
|
pc.StallAtPixelScoreboard = true;
|
|
}
|
|
emit_xfb_query(&b, index, anv_address_add(query_addr, 8));
|
|
break;
|
|
|
|
case VK_QUERY_TYPE_PERFORMANCE_QUERY_INTEL: {
|
|
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
|
|
pc.CommandStreamerStallEnable = true;
|
|
pc.StallAtPixelScoreboard = true;
|
|
}
|
|
anv_batch_emit(&cmd_buffer->batch, GENX(MI_REPORT_PERF_COUNT), rpc) {
|
|
rpc.MemoryAddress =
|
|
anv_address_add(query_addr, intel_perf_mi_rpc_offset(false));
|
|
}
|
|
#if GEN_GEN < 9
|
|
gen_mi_store(&b,
|
|
gen_mi_mem32(anv_address_add(query_addr,
|
|
intel_perf_rpstart_offset(false))),
|
|
gen_mi_reg32(GENX(RPSTAT1_num)));
|
|
#else
|
|
gen_mi_store(&b,
|
|
gen_mi_mem32(anv_address_add(query_addr,
|
|
intel_perf_rpstart_offset(false))),
|
|
gen_mi_reg32(GENX(RPSTAT0_num)));
|
|
#endif
|
|
#if GEN_GEN >= 8 && GEN_GEN <= 11
|
|
gen_mi_store(&b, gen_mi_mem64(anv_address_add(query_addr,
|
|
intel_perf_counter(false))),
|
|
gen_mi_reg64(GENX(PERFCNT1_num)));
|
|
gen_mi_store(&b, gen_mi_mem64(anv_address_add(query_addr,
|
|
intel_perf_counter(false) + 8)),
|
|
gen_mi_reg64(GENX(PERFCNT2_num)));
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
default:
|
|
unreachable("");
|
|
}
|
|
}
|
|
|
|
void genX(CmdEndQuery)(
|
|
VkCommandBuffer commandBuffer,
|
|
VkQueryPool queryPool,
|
|
uint32_t query)
|
|
{
|
|
genX(CmdEndQueryIndexedEXT)(commandBuffer, queryPool, query, 0);
|
|
}
|
|
|
|
void genX(CmdEndQueryIndexedEXT)(
|
|
VkCommandBuffer commandBuffer,
|
|
VkQueryPool queryPool,
|
|
uint32_t query,
|
|
uint32_t index)
|
|
{
|
|
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
|
|
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
|
|
struct anv_address query_addr = anv_query_address(pool, query);
|
|
|
|
struct gen_mi_builder b;
|
|
gen_mi_builder_init(&b, &cmd_buffer->batch);
|
|
|
|
switch (pool->type) {
|
|
case VK_QUERY_TYPE_OCCLUSION:
|
|
emit_ps_depth_count(cmd_buffer, anv_address_add(query_addr, 16));
|
|
emit_query_pc_availability(cmd_buffer, query_addr, true);
|
|
break;
|
|
|
|
case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
|
|
/* TODO: This might only be necessary for certain stats */
|
|
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
|
|
pc.CommandStreamerStallEnable = true;
|
|
pc.StallAtPixelScoreboard = true;
|
|
}
|
|
|
|
uint32_t statistics = pool->pipeline_statistics;
|
|
uint32_t offset = 16;
|
|
while (statistics) {
|
|
uint32_t stat = u_bit_scan(&statistics);
|
|
emit_pipeline_stat(&b, stat, anv_address_add(query_addr, offset));
|
|
offset += 16;
|
|
}
|
|
|
|
emit_query_mi_availability(&b, query_addr, true);
|
|
break;
|
|
}
|
|
|
|
case VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT:
|
|
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
|
|
pc.CommandStreamerStallEnable = true;
|
|
pc.StallAtPixelScoreboard = true;
|
|
}
|
|
|
|
emit_xfb_query(&b, index, anv_address_add(query_addr, 16));
|
|
emit_query_mi_availability(&b, query_addr, true);
|
|
break;
|
|
|
|
case VK_QUERY_TYPE_PERFORMANCE_QUERY_INTEL: {
|
|
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
|
|
pc.CommandStreamerStallEnable = true;
|
|
pc.StallAtPixelScoreboard = true;
|
|
}
|
|
uint32_t marker_offset = intel_perf_marker_offset();
|
|
gen_mi_store(&b, gen_mi_mem64(anv_address_add(query_addr, marker_offset)),
|
|
gen_mi_imm(cmd_buffer->intel_perf_marker));
|
|
#if GEN_GEN >= 8 && GEN_GEN <= 11
|
|
gen_mi_store(&b, gen_mi_mem64(anv_address_add(query_addr, intel_perf_counter(true))),
|
|
gen_mi_reg64(GENX(PERFCNT1_num)));
|
|
gen_mi_store(&b, gen_mi_mem64(anv_address_add(query_addr, intel_perf_counter(true) + 8)),
|
|
gen_mi_reg64(GENX(PERFCNT2_num)));
|
|
#endif
|
|
#if GEN_GEN < 9
|
|
gen_mi_store(&b,
|
|
gen_mi_mem32(anv_address_add(query_addr,
|
|
intel_perf_rpstart_offset(true))),
|
|
gen_mi_reg32(GENX(RPSTAT1_num)));
|
|
#else
|
|
gen_mi_store(&b,
|
|
gen_mi_mem32(anv_address_add(query_addr,
|
|
intel_perf_rpstart_offset(true))),
|
|
gen_mi_reg32(GENX(RPSTAT0_num)));
|
|
#endif
|
|
/* Position the last OA snapshot at the beginning of the query so that
|
|
* we can tell whether it's ready.
|
|
*/
|
|
anv_batch_emit(&cmd_buffer->batch, GENX(MI_REPORT_PERF_COUNT), rpc) {
|
|
rpc.MemoryAddress = anv_address_add(query_addr,
|
|
intel_perf_mi_rpc_offset(true));
|
|
rpc.ReportID = 0xdeadbeef; /* This goes in the first dword */
|
|
}
|
|
emit_query_mi_availability(&b,
|
|
anv_address_add(query_addr, pool->stride - 8),
|
|
true);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
unreachable("");
|
|
}
|
|
|
|
/* When multiview is active the spec requires that N consecutive query
|
|
* indices are used, where N is the number of active views in the subpass.
|
|
* The spec allows that we only write the results to one of the queries
|
|
* but we still need to manage result availability for all the query indices.
|
|
* Since we only emit a single query for all active views in the
|
|
* first index, mark the other query indices as being already available
|
|
* with result 0.
|
|
*/
|
|
if (cmd_buffer->state.subpass && cmd_buffer->state.subpass->view_mask) {
|
|
const uint32_t num_queries =
|
|
util_bitcount(cmd_buffer->state.subpass->view_mask);
|
|
if (num_queries > 1)
|
|
emit_zero_queries(cmd_buffer, &b, pool, query + 1, num_queries - 1);
|
|
}
|
|
}
|
|
|
|
#define TIMESTAMP 0x2358
|
|
|
|
void genX(CmdWriteTimestamp)(
|
|
VkCommandBuffer commandBuffer,
|
|
VkPipelineStageFlagBits pipelineStage,
|
|
VkQueryPool queryPool,
|
|
uint32_t query)
|
|
{
|
|
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
|
|
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
|
|
struct anv_address query_addr = anv_query_address(pool, query);
|
|
|
|
assert(pool->type == VK_QUERY_TYPE_TIMESTAMP);
|
|
|
|
struct gen_mi_builder b;
|
|
gen_mi_builder_init(&b, &cmd_buffer->batch);
|
|
|
|
switch (pipelineStage) {
|
|
case VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT:
|
|
gen_mi_store(&b, gen_mi_mem64(anv_address_add(query_addr, 8)),
|
|
gen_mi_reg64(TIMESTAMP));
|
|
break;
|
|
|
|
default:
|
|
/* Everything else is bottom-of-pipe */
|
|
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
|
|
pc.DestinationAddressType = DAT_PPGTT;
|
|
pc.PostSyncOperation = WriteTimestamp;
|
|
pc.Address = anv_address_add(query_addr, 8);
|
|
|
|
if (GEN_GEN == 9 && cmd_buffer->device->info.gt == 4)
|
|
pc.CommandStreamerStallEnable = true;
|
|
}
|
|
break;
|
|
}
|
|
|
|
emit_query_pc_availability(cmd_buffer, query_addr, true);
|
|
|
|
/* When multiview is active the spec requires that N consecutive query
|
|
* indices are used, where N is the number of active views in the subpass.
|
|
* The spec allows that we only write the results to one of the queries
|
|
* but we still need to manage result availability for all the query indices.
|
|
* Since we only emit a single query for all active views in the
|
|
* first index, mark the other query indices as being already available
|
|
* with result 0.
|
|
*/
|
|
if (cmd_buffer->state.subpass && cmd_buffer->state.subpass->view_mask) {
|
|
const uint32_t num_queries =
|
|
util_bitcount(cmd_buffer->state.subpass->view_mask);
|
|
if (num_queries > 1)
|
|
emit_zero_queries(cmd_buffer, &b, pool, query + 1, num_queries - 1);
|
|
}
|
|
}
|
|
|
|
#if GEN_GEN > 7 || GEN_IS_HASWELL
|
|
|
|
static void
|
|
gpu_write_query_result(struct gen_mi_builder *b,
|
|
struct anv_address dst_addr,
|
|
VkQueryResultFlags flags,
|
|
uint32_t value_index,
|
|
struct gen_mi_value query_result)
|
|
{
|
|
if (flags & VK_QUERY_RESULT_64_BIT) {
|
|
struct anv_address res_addr = anv_address_add(dst_addr, value_index * 8);
|
|
gen_mi_store(b, gen_mi_mem64(res_addr), query_result);
|
|
} else {
|
|
struct anv_address res_addr = anv_address_add(dst_addr, value_index * 4);
|
|
gen_mi_store(b, gen_mi_mem32(res_addr), query_result);
|
|
}
|
|
}
|
|
|
|
static struct gen_mi_value
|
|
compute_query_result(struct gen_mi_builder *b, struct anv_address addr)
|
|
{
|
|
return gen_mi_isub(b, gen_mi_mem64(anv_address_add(addr, 8)),
|
|
gen_mi_mem64(anv_address_add(addr, 0)));
|
|
}
|
|
|
|
void genX(CmdCopyQueryPoolResults)(
|
|
VkCommandBuffer commandBuffer,
|
|
VkQueryPool queryPool,
|
|
uint32_t firstQuery,
|
|
uint32_t queryCount,
|
|
VkBuffer destBuffer,
|
|
VkDeviceSize destOffset,
|
|
VkDeviceSize destStride,
|
|
VkQueryResultFlags flags)
|
|
{
|
|
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
|
|
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
|
|
ANV_FROM_HANDLE(anv_buffer, buffer, destBuffer);
|
|
|
|
struct gen_mi_builder b;
|
|
gen_mi_builder_init(&b, &cmd_buffer->batch);
|
|
struct gen_mi_value result;
|
|
|
|
/* If render target writes are ongoing, request a render target cache flush
|
|
* to ensure proper ordering of the commands from the 3d pipe and the
|
|
* command streamer.
|
|
*/
|
|
if (cmd_buffer->state.pending_pipe_bits & ANV_PIPE_RENDER_TARGET_BUFFER_WRITES) {
|
|
cmd_buffer->state.pending_pipe_bits |=
|
|
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
|
|
}
|
|
|
|
if ((flags & VK_QUERY_RESULT_WAIT_BIT) ||
|
|
(cmd_buffer->state.pending_pipe_bits & ANV_PIPE_FLUSH_BITS) ||
|
|
/* Occlusion & timestamp queries are written using a PIPE_CONTROL and
|
|
* because we're about to copy values from MI commands, we need to
|
|
* stall the command streamer to make sure the PIPE_CONTROL values have
|
|
* landed, otherwise we could see inconsistent values & availability.
|
|
*
|
|
* From the vulkan spec:
|
|
*
|
|
* "vkCmdCopyQueryPoolResults is guaranteed to see the effect of
|
|
* previous uses of vkCmdResetQueryPool in the same queue, without
|
|
* any additional synchronization."
|
|
*/
|
|
pool->type == VK_QUERY_TYPE_OCCLUSION ||
|
|
pool->type == VK_QUERY_TYPE_TIMESTAMP) {
|
|
cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
|
|
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
|
|
}
|
|
|
|
struct anv_address dest_addr = anv_address_add(buffer->address, destOffset);
|
|
for (uint32_t i = 0; i < queryCount; i++) {
|
|
struct anv_address query_addr = anv_query_address(pool, firstQuery + i);
|
|
uint32_t idx = 0;
|
|
switch (pool->type) {
|
|
case VK_QUERY_TYPE_OCCLUSION:
|
|
result = compute_query_result(&b, anv_address_add(query_addr, 8));
|
|
gpu_write_query_result(&b, dest_addr, flags, idx++, result);
|
|
break;
|
|
|
|
case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
|
|
uint32_t statistics = pool->pipeline_statistics;
|
|
while (statistics) {
|
|
uint32_t stat = u_bit_scan(&statistics);
|
|
|
|
result = compute_query_result(&b, anv_address_add(query_addr,
|
|
idx * 16 + 8));
|
|
|
|
/* WaDividePSInvocationCountBy4:HSW,BDW */
|
|
if ((cmd_buffer->device->info.gen == 8 ||
|
|
cmd_buffer->device->info.is_haswell) &&
|
|
(1 << stat) == VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT) {
|
|
result = gen_mi_ushr32_imm(&b, result, 2);
|
|
}
|
|
|
|
gpu_write_query_result(&b, dest_addr, flags, idx++, result);
|
|
}
|
|
assert(idx == util_bitcount(pool->pipeline_statistics));
|
|
break;
|
|
}
|
|
|
|
case VK_QUERY_TYPE_TRANSFORM_FEEDBACK_STREAM_EXT:
|
|
result = compute_query_result(&b, anv_address_add(query_addr, 8));
|
|
gpu_write_query_result(&b, dest_addr, flags, idx++, result);
|
|
result = compute_query_result(&b, anv_address_add(query_addr, 24));
|
|
gpu_write_query_result(&b, dest_addr, flags, idx++, result);
|
|
break;
|
|
|
|
case VK_QUERY_TYPE_TIMESTAMP:
|
|
result = gen_mi_mem64(anv_address_add(query_addr, 8));
|
|
gpu_write_query_result(&b, dest_addr, flags, 0, result);
|
|
break;
|
|
|
|
default:
|
|
unreachable("unhandled query type");
|
|
}
|
|
|
|
if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT) {
|
|
gpu_write_query_result(&b, dest_addr, flags, idx,
|
|
gen_mi_mem64(query_addr));
|
|
}
|
|
|
|
dest_addr = anv_address_add(dest_addr, destStride);
|
|
}
|
|
}
|
|
|
|
#else
|
|
void genX(CmdCopyQueryPoolResults)(
|
|
VkCommandBuffer commandBuffer,
|
|
VkQueryPool queryPool,
|
|
uint32_t firstQuery,
|
|
uint32_t queryCount,
|
|
VkBuffer destBuffer,
|
|
VkDeviceSize destOffset,
|
|
VkDeviceSize destStride,
|
|
VkQueryResultFlags flags)
|
|
{
|
|
anv_finishme("Queries not yet supported on Ivy Bridge");
|
|
}
|
|
#endif
|