mesa/src/intel/blorp/blorp_blit.c
Topi Pohjolainen b863f4a39a intel/blorp: Allow single slice converter to suppress number of layers
Signed-off-by: Topi Pohjolainen <topi.pohjolainen@intel.com>
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
2016-09-08 08:53:45 +03:00

1646 lines
63 KiB
C

/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "program/prog_instruction.h"
#include "compiler/nir/nir_builder.h"
#include "blorp_priv.h"
#include "brw_meta_util.h"
#define FILE_DEBUG_FLAG DEBUG_BLORP
/**
* Enum to specify the order of arguments in a sampler message
*/
enum sampler_message_arg
{
SAMPLER_MESSAGE_ARG_U_FLOAT,
SAMPLER_MESSAGE_ARG_V_FLOAT,
SAMPLER_MESSAGE_ARG_U_INT,
SAMPLER_MESSAGE_ARG_V_INT,
SAMPLER_MESSAGE_ARG_R_INT,
SAMPLER_MESSAGE_ARG_SI_INT,
SAMPLER_MESSAGE_ARG_MCS_INT,
SAMPLER_MESSAGE_ARG_ZERO_INT,
};
struct brw_blorp_blit_vars {
/* Input values from brw_blorp_wm_inputs */
nir_variable *v_discard_rect;
nir_variable *v_rect_grid;
nir_variable *v_coord_transform;
nir_variable *v_src_z;
/* gl_FragCoord */
nir_variable *frag_coord;
/* gl_FragColor */
nir_variable *color_out;
};
static void
brw_blorp_blit_vars_init(nir_builder *b, struct brw_blorp_blit_vars *v,
const struct brw_blorp_blit_prog_key *key)
{
/* Blended and scaled blits never use pixel discard. */
assert(!key->use_kill || !(key->blend && key->blit_scaled));
#define LOAD_INPUT(name, type)\
v->v_##name = nir_variable_create(b->shader, nir_var_shader_in, \
type, #name); \
v->v_##name->data.interpolation = INTERP_MODE_FLAT; \
v->v_##name->data.location = VARYING_SLOT_VAR0 + \
offsetof(struct brw_blorp_wm_inputs, name) / (4 * sizeof(float));
LOAD_INPUT(discard_rect, glsl_vec4_type())
LOAD_INPUT(rect_grid, glsl_vec4_type())
LOAD_INPUT(coord_transform, glsl_vec4_type())
LOAD_INPUT(src_z, glsl_uint_type())
#undef LOAD_INPUT
v->frag_coord = nir_variable_create(b->shader, nir_var_shader_in,
glsl_vec4_type(), "gl_FragCoord");
v->frag_coord->data.location = VARYING_SLOT_POS;
v->frag_coord->data.origin_upper_left = true;
v->color_out = nir_variable_create(b->shader, nir_var_shader_out,
glsl_vec4_type(), "gl_FragColor");
v->color_out->data.location = FRAG_RESULT_COLOR;
}
static nir_ssa_def *
blorp_blit_get_frag_coords(nir_builder *b,
const struct brw_blorp_blit_prog_key *key,
struct brw_blorp_blit_vars *v)
{
nir_ssa_def *coord = nir_f2i(b, nir_load_var(b, v->frag_coord));
if (key->persample_msaa_dispatch) {
return nir_vec3(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1),
nir_load_sample_id(b));
} else {
return nir_vec2(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1));
}
}
/**
* Emit code to translate from destination (X, Y) coordinates to source (X, Y)
* coordinates.
*/
static nir_ssa_def *
blorp_blit_apply_transform(nir_builder *b, nir_ssa_def *src_pos,
struct brw_blorp_blit_vars *v)
{
nir_ssa_def *coord_transform = nir_load_var(b, v->v_coord_transform);
nir_ssa_def *offset = nir_vec2(b, nir_channel(b, coord_transform, 1),
nir_channel(b, coord_transform, 3));
nir_ssa_def *mul = nir_vec2(b, nir_channel(b, coord_transform, 0),
nir_channel(b, coord_transform, 2));
return nir_ffma(b, src_pos, mul, offset);
}
static inline void
blorp_nir_discard_if_outside_rect(nir_builder *b, nir_ssa_def *pos,
struct brw_blorp_blit_vars *v)
{
nir_ssa_def *c0, *c1, *c2, *c3;
nir_ssa_def *discard_rect = nir_load_var(b, v->v_discard_rect);
nir_ssa_def *dst_x0 = nir_channel(b, discard_rect, 0);
nir_ssa_def *dst_x1 = nir_channel(b, discard_rect, 1);
nir_ssa_def *dst_y0 = nir_channel(b, discard_rect, 2);
nir_ssa_def *dst_y1 = nir_channel(b, discard_rect, 3);
c0 = nir_ult(b, nir_channel(b, pos, 0), dst_x0);
c1 = nir_uge(b, nir_channel(b, pos, 0), dst_x1);
c2 = nir_ult(b, nir_channel(b, pos, 1), dst_y0);
c3 = nir_uge(b, nir_channel(b, pos, 1), dst_y1);
nir_ssa_def *oob = nir_ior(b, nir_ior(b, c0, c1), nir_ior(b, c2, c3));
nir_intrinsic_instr *discard =
nir_intrinsic_instr_create(b->shader, nir_intrinsic_discard_if);
discard->src[0] = nir_src_for_ssa(oob);
nir_builder_instr_insert(b, &discard->instr);
}
static nir_tex_instr *
blorp_create_nir_tex_instr(nir_builder *b, struct brw_blorp_blit_vars *v,
nir_texop op, nir_ssa_def *pos, unsigned num_srcs,
nir_alu_type dst_type)
{
nir_tex_instr *tex = nir_tex_instr_create(b->shader, num_srcs);
tex->op = op;
tex->dest_type = dst_type;
tex->is_array = false;
tex->is_shadow = false;
/* Blorp only has one texture and it's bound at unit 0 */
tex->texture = NULL;
tex->sampler = NULL;
tex->texture_index = 0;
tex->sampler_index = 0;
/* To properly handle 3-D and 2-D array textures, we pull the Z component
* from an input. TODO: This is a bit magic; we should probably make this
* more explicit in the future.
*/
assert(pos->num_components >= 2);
pos = nir_vec3(b, nir_channel(b, pos, 0), nir_channel(b, pos, 1),
nir_load_var(b, v->v_src_z));
tex->src[0].src_type = nir_tex_src_coord;
tex->src[0].src = nir_src_for_ssa(pos);
tex->coord_components = 3;
nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, NULL);
return tex;
}
static nir_ssa_def *
blorp_nir_tex(nir_builder *b, struct brw_blorp_blit_vars *v,
nir_ssa_def *pos, nir_alu_type dst_type)
{
nir_tex_instr *tex =
blorp_create_nir_tex_instr(b, v, nir_texop_tex, pos, 2, dst_type);
assert(pos->num_components == 2);
tex->sampler_dim = GLSL_SAMPLER_DIM_2D;
tex->src[1].src_type = nir_tex_src_lod;
tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
nir_builder_instr_insert(b, &tex->instr);
return &tex->dest.ssa;
}
static nir_ssa_def *
blorp_nir_txf(nir_builder *b, struct brw_blorp_blit_vars *v,
nir_ssa_def *pos, nir_alu_type dst_type)
{
nir_tex_instr *tex =
blorp_create_nir_tex_instr(b, v, nir_texop_txf, pos, 2, dst_type);
tex->sampler_dim = GLSL_SAMPLER_DIM_3D;
tex->src[1].src_type = nir_tex_src_lod;
tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
nir_builder_instr_insert(b, &tex->instr);
return &tex->dest.ssa;
}
static nir_ssa_def *
blorp_nir_txf_ms(nir_builder *b, struct brw_blorp_blit_vars *v,
nir_ssa_def *pos, nir_ssa_def *mcs, nir_alu_type dst_type)
{
nir_tex_instr *tex =
blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms, pos,
mcs != NULL ? 3 : 2, dst_type);
tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
tex->src[1].src_type = nir_tex_src_ms_index;
if (pos->num_components == 2) {
tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
} else {
assert(pos->num_components == 3);
tex->src[1].src = nir_src_for_ssa(nir_channel(b, pos, 2));
}
if (mcs) {
tex->src[2].src_type = nir_tex_src_ms_mcs;
tex->src[2].src = nir_src_for_ssa(mcs);
}
nir_builder_instr_insert(b, &tex->instr);
return &tex->dest.ssa;
}
static nir_ssa_def *
blorp_nir_txf_ms_mcs(nir_builder *b, struct brw_blorp_blit_vars *v, nir_ssa_def *pos)
{
nir_tex_instr *tex =
blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms_mcs,
pos, 1, nir_type_int);
tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
nir_builder_instr_insert(b, &tex->instr);
return &tex->dest.ssa;
}
static nir_ssa_def *
nir_mask_shift_or(struct nir_builder *b, nir_ssa_def *dst, nir_ssa_def *src,
uint32_t src_mask, int src_left_shift)
{
nir_ssa_def *masked = nir_iand(b, src, nir_imm_int(b, src_mask));
nir_ssa_def *shifted;
if (src_left_shift > 0) {
shifted = nir_ishl(b, masked, nir_imm_int(b, src_left_shift));
} else if (src_left_shift < 0) {
shifted = nir_ushr(b, masked, nir_imm_int(b, -src_left_shift));
} else {
assert(src_left_shift == 0);
shifted = masked;
}
return nir_ior(b, dst, shifted);
}
/**
* Emit code to compensate for the difference between Y and W tiling.
*
* This code modifies the X and Y coordinates according to the formula:
*
* (X', Y', S') = detile(W-MAJOR, tile(Y-MAJOR, X, Y, S))
*
* (See brw_blorp_build_nir_shader).
*/
static inline nir_ssa_def *
blorp_nir_retile_y_to_w(nir_builder *b, nir_ssa_def *pos)
{
assert(pos->num_components == 2);
nir_ssa_def *x_Y = nir_channel(b, pos, 0);
nir_ssa_def *y_Y = nir_channel(b, pos, 1);
/* Given X and Y coordinates that describe an address using Y tiling,
* translate to the X and Y coordinates that describe the same address
* using W tiling.
*
* If we break down the low order bits of X and Y, using a
* single letter to represent each low-order bit:
*
* X = A << 7 | 0bBCDEFGH
* Y = J << 5 | 0bKLMNP (1)
*
* Then we can apply the Y tiling formula to see the memory offset being
* addressed:
*
* offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2)
*
* If we apply the W detiling formula to this memory location, that the
* corresponding X' and Y' coordinates are:
*
* X' = A << 6 | 0bBCDPFH (3)
* Y' = J << 6 | 0bKLMNEG
*
* Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
* we need to make the following computation:
*
* X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4)
* Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
*/
nir_ssa_def *x_W = nir_imm_int(b, 0);
x_W = nir_mask_shift_or(b, x_W, x_Y, 0xfffffff4, -1);
x_W = nir_mask_shift_or(b, x_W, y_Y, 0x1, 2);
x_W = nir_mask_shift_or(b, x_W, x_Y, 0x1, 0);
nir_ssa_def *y_W = nir_imm_int(b, 0);
y_W = nir_mask_shift_or(b, y_W, y_Y, 0xfffffffe, 1);
y_W = nir_mask_shift_or(b, y_W, x_Y, 0x8, -2);
y_W = nir_mask_shift_or(b, y_W, x_Y, 0x2, -1);
return nir_vec2(b, x_W, y_W);
}
/**
* Emit code to compensate for the difference between Y and W tiling.
*
* This code modifies the X and Y coordinates according to the formula:
*
* (X', Y', S') = detile(Y-MAJOR, tile(W-MAJOR, X, Y, S))
*
* (See brw_blorp_build_nir_shader).
*/
static inline nir_ssa_def *
blorp_nir_retile_w_to_y(nir_builder *b, nir_ssa_def *pos)
{
assert(pos->num_components == 2);
nir_ssa_def *x_W = nir_channel(b, pos, 0);
nir_ssa_def *y_W = nir_channel(b, pos, 1);
/* Applying the same logic as above, but in reverse, we obtain the
* formulas:
*
* X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
* Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
*/
nir_ssa_def *x_Y = nir_imm_int(b, 0);
x_Y = nir_mask_shift_or(b, x_Y, x_W, 0xfffffffa, 1);
x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x2, 2);
x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x1, 1);
x_Y = nir_mask_shift_or(b, x_Y, x_W, 0x1, 0);
nir_ssa_def *y_Y = nir_imm_int(b, 0);
y_Y = nir_mask_shift_or(b, y_Y, y_W, 0xfffffffc, -1);
y_Y = nir_mask_shift_or(b, y_Y, x_W, 0x4, -2);
return nir_vec2(b, x_Y, y_Y);
}
/**
* Emit code to compensate for the difference between MSAA and non-MSAA
* surfaces.
*
* This code modifies the X and Y coordinates according to the formula:
*
* (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
*
* (See brw_blorp_blit_program).
*/
static inline nir_ssa_def *
blorp_nir_encode_msaa(nir_builder *b, nir_ssa_def *pos,
unsigned num_samples, enum isl_msaa_layout layout)
{
assert(pos->num_components == 2 || pos->num_components == 3);
switch (layout) {
case ISL_MSAA_LAYOUT_NONE:
assert(pos->num_components == 2);
return pos;
case ISL_MSAA_LAYOUT_ARRAY:
/* No translation needed */
return pos;
case ISL_MSAA_LAYOUT_INTERLEAVED: {
nir_ssa_def *x_in = nir_channel(b, pos, 0);
nir_ssa_def *y_in = nir_channel(b, pos, 1);
nir_ssa_def *s_in = pos->num_components == 2 ? nir_imm_int(b, 0) :
nir_channel(b, pos, 2);
nir_ssa_def *x_out = nir_imm_int(b, 0);
nir_ssa_def *y_out = nir_imm_int(b, 0);
switch (num_samples) {
case 2:
case 4:
/* encode_msaa(2, IMS, X, Y, S) = (X', Y', 0)
* where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
* Y' = Y
*
* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
* where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
* Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
*/
x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 1);
x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
if (num_samples == 2) {
y_out = y_in;
} else {
y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
}
break;
case 8:
/* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
* where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
* | (X & 0b1)
* Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
*/
x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
break;
case 16:
/* encode_msaa(16, IMS, X, Y, S) = (X', Y', 0)
* where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
* | (X & 0b1)
* Y' = (Y & ~0b1) << 2 | (S & 0b1000) >> 1 (S & 0b10)
* | (Y & 0b1)
*/
x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 2);
y_out = nir_mask_shift_or(b, y_out, s_in, 0x8, -1);
y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
break;
default:
unreachable("Invalid number of samples for IMS layout");
}
return nir_vec2(b, x_out, y_out);
}
default:
unreachable("Invalid MSAA layout");
}
}
/**
* Emit code to compensate for the difference between MSAA and non-MSAA
* surfaces.
*
* This code modifies the X and Y coordinates according to the formula:
*
* (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
*
* (See brw_blorp_blit_program).
*/
static inline nir_ssa_def *
blorp_nir_decode_msaa(nir_builder *b, nir_ssa_def *pos,
unsigned num_samples, enum isl_msaa_layout layout)
{
assert(pos->num_components == 2 || pos->num_components == 3);
switch (layout) {
case ISL_MSAA_LAYOUT_NONE:
/* No translation necessary, and S should already be zero. */
assert(pos->num_components == 2);
return pos;
case ISL_MSAA_LAYOUT_ARRAY:
/* No translation necessary. */
return pos;
case ISL_MSAA_LAYOUT_INTERLEAVED: {
assert(pos->num_components == 2);
nir_ssa_def *x_in = nir_channel(b, pos, 0);
nir_ssa_def *y_in = nir_channel(b, pos, 1);
nir_ssa_def *x_out = nir_imm_int(b, 0);
nir_ssa_def *y_out = nir_imm_int(b, 0);
nir_ssa_def *s_out = nir_imm_int(b, 0);
switch (num_samples) {
case 2:
case 4:
/* decode_msaa(2, IMS, X, Y, 0) = (X', Y', S)
* where X' = (X & ~0b11) >> 1 | (X & 0b1)
* S = (X & 0b10) >> 1
*
* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
* where X' = (X & ~0b11) >> 1 | (X & 0b1)
* Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
* S = (Y & 0b10) | (X & 0b10) >> 1
*/
x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffc, -1);
x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
if (num_samples == 2) {
y_out = y_in;
s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
} else {
y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
}
break;
case 8:
/* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
* where X' = (X & ~0b111) >> 2 | (X & 0b1)
* Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
* S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
*/
x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
break;
case 16:
/* decode_msaa(16, IMS, X, Y, 0) = (X', Y', S)
* where X' = (X & ~0b111) >> 2 | (X & 0b1)
* Y' = (Y & ~0b111) >> 2 | (Y & 0b1)
* S = (Y & 0b100) << 1 | (X & 0b100) |
* (Y & 0b10) | (X & 0b10) >> 1
*/
x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffff8, -2);
y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
s_out = nir_mask_shift_or(b, s_out, y_in, 0x4, 1);
s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
break;
default:
unreachable("Invalid number of samples for IMS layout");
}
return nir_vec3(b, x_out, y_out, s_out);
}
default:
unreachable("Invalid MSAA layout");
}
}
/**
* Count the number of trailing 1 bits in the given value. For example:
*
* count_trailing_one_bits(0) == 0
* count_trailing_one_bits(7) == 3
* count_trailing_one_bits(11) == 2
*/
static inline int count_trailing_one_bits(unsigned value)
{
#ifdef HAVE___BUILTIN_CTZ
return __builtin_ctz(~value);
#else
return _mesa_bitcount(value & ~(value + 1));
#endif
}
static nir_ssa_def *
blorp_nir_manual_blend_average(nir_builder *b, struct brw_blorp_blit_vars *v,
nir_ssa_def *pos, unsigned tex_samples,
enum isl_aux_usage tex_aux_usage,
nir_alu_type dst_type)
{
/* If non-null, this is the outer-most if statement */
nir_if *outer_if = NULL;
nir_variable *color =
nir_local_variable_create(b->impl, glsl_vec4_type(), "color");
nir_ssa_def *mcs = NULL;
if (tex_aux_usage == ISL_AUX_USAGE_MCS)
mcs = blorp_nir_txf_ms_mcs(b, v, pos);
/* We add together samples using a binary tree structure, e.g. for 4x MSAA:
*
* result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
*
* This ensures that when all samples have the same value, no numerical
* precision is lost, since each addition operation always adds two equal
* values, and summing two equal floating point values does not lose
* precision.
*
* We perform this computation by treating the texture_data array as a
* stack and performing the following operations:
*
* - push sample 0 onto stack
* - push sample 1 onto stack
* - add top two stack entries
* - push sample 2 onto stack
* - push sample 3 onto stack
* - add top two stack entries
* - add top two stack entries
* - divide top stack entry by 4
*
* Note that after pushing sample i onto the stack, the number of add
* operations we do is equal to the number of trailing 1 bits in i. This
* works provided the total number of samples is a power of two, which it
* always is for i965.
*
* For integer formats, we replace the add operations with average
* operations and skip the final division.
*/
nir_ssa_def *texture_data[5];
unsigned stack_depth = 0;
for (unsigned i = 0; i < tex_samples; ++i) {
assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
/* Push sample i onto the stack */
assert(stack_depth < ARRAY_SIZE(texture_data));
nir_ssa_def *ms_pos = nir_vec3(b, nir_channel(b, pos, 0),
nir_channel(b, pos, 1),
nir_imm_int(b, i));
texture_data[stack_depth++] = blorp_nir_txf_ms(b, v, ms_pos, mcs, dst_type);
if (i == 0 && tex_aux_usage == ISL_AUX_USAGE_MCS) {
/* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
* suggests an optimization:
*
* "A simple optimization with probable large return in
* performance is to compare the MCS value to zero (indicating
* all samples are on sample slice 0), and sample only from
* sample slice 0 using ld2dss if MCS is zero."
*
* Note that in the case where the MCS value is zero, sampling from
* sample slice 0 using ld2dss and sampling from sample 0 using
* ld2dms are equivalent (since all samples are on sample slice 0).
* Since we have already sampled from sample 0, all we need to do is
* skip the remaining fetches and averaging if MCS is zero.
*/
nir_ssa_def *mcs_zero =
nir_ieq(b, nir_channel(b, mcs, 0), nir_imm_int(b, 0));
if (tex_samples == 16) {
mcs_zero = nir_iand(b, mcs_zero,
nir_ieq(b, nir_channel(b, mcs, 1), nir_imm_int(b, 0)));
}
nir_if *if_stmt = nir_if_create(b->shader);
if_stmt->condition = nir_src_for_ssa(mcs_zero);
nir_cf_node_insert(b->cursor, &if_stmt->cf_node);
b->cursor = nir_after_cf_list(&if_stmt->then_list);
nir_store_var(b, color, texture_data[0], 0xf);
b->cursor = nir_after_cf_list(&if_stmt->else_list);
outer_if = if_stmt;
}
for (int j = 0; j < count_trailing_one_bits(i); j++) {
assert(stack_depth >= 2);
--stack_depth;
assert(dst_type == nir_type_float);
texture_data[stack_depth - 1] =
nir_fadd(b, texture_data[stack_depth - 1],
texture_data[stack_depth]);
}
}
/* We should have just 1 sample on the stack now. */
assert(stack_depth == 1);
texture_data[0] = nir_fmul(b, texture_data[0],
nir_imm_float(b, 1.0 / tex_samples));
nir_store_var(b, color, texture_data[0], 0xf);
if (outer_if)
b->cursor = nir_after_cf_node(&outer_if->cf_node);
return nir_load_var(b, color);
}
static inline nir_ssa_def *
nir_imm_vec2(nir_builder *build, float x, float y)
{
nir_const_value v;
memset(&v, 0, sizeof(v));
v.f32[0] = x;
v.f32[1] = y;
return nir_build_imm(build, 4, 32, v);
}
static nir_ssa_def *
blorp_nir_manual_blend_bilinear(nir_builder *b, nir_ssa_def *pos,
unsigned tex_samples,
const struct brw_blorp_blit_prog_key *key,
struct brw_blorp_blit_vars *v)
{
nir_ssa_def *pos_xy = nir_channels(b, pos, 0x3);
nir_ssa_def *rect_grid = nir_load_var(b, v->v_rect_grid);
nir_ssa_def *scale = nir_imm_vec2(b, key->x_scale, key->y_scale);
/* Translate coordinates to lay out the samples in a rectangular grid
* roughly corresponding to sample locations.
*/
pos_xy = nir_fmul(b, pos_xy, scale);
/* Adjust coordinates so that integers represent pixel centers rather
* than pixel edges.
*/
pos_xy = nir_fadd(b, pos_xy, nir_imm_float(b, -0.5));
/* Clamp the X, Y texture coordinates to properly handle the sampling of
* texels on texture edges.
*/
pos_xy = nir_fmin(b, nir_fmax(b, pos_xy, nir_imm_float(b, 0.0)),
nir_vec2(b, nir_channel(b, rect_grid, 0),
nir_channel(b, rect_grid, 1)));
/* Store the fractional parts to be used as bilinear interpolation
* coefficients.
*/
nir_ssa_def *frac_xy = nir_ffract(b, pos_xy);
/* Round the float coordinates down to nearest integer */
pos_xy = nir_fdiv(b, nir_ftrunc(b, pos_xy), scale);
nir_ssa_def *tex_data[4];
for (unsigned i = 0; i < 4; ++i) {
float sample_off_x = (float)(i & 0x1) / key->x_scale;
float sample_off_y = (float)((i >> 1) & 0x1) / key->y_scale;
nir_ssa_def *sample_off = nir_imm_vec2(b, sample_off_x, sample_off_y);
nir_ssa_def *sample_coords = nir_fadd(b, pos_xy, sample_off);
nir_ssa_def *sample_coords_int = nir_f2i(b, sample_coords);
/* The MCS value we fetch has to match up with the pixel that we're
* sampling from. Since we sample from different pixels in each
* iteration of this "for" loop, the call to mcs_fetch() should be
* here inside the loop after computing the pixel coordinates.
*/
nir_ssa_def *mcs = NULL;
if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
mcs = blorp_nir_txf_ms_mcs(b, v, sample_coords_int);
/* Compute sample index and map the sample index to a sample number.
* Sample index layout shows the numbering of slots in a rectangular
* grid of samples with in a pixel. Sample number layout shows the
* rectangular grid of samples roughly corresponding to the real sample
* locations with in a pixel.
* In case of 4x MSAA, layout of sample indices matches the layout of
* sample numbers:
* ---------
* | 0 | 1 |
* ---------
* | 2 | 3 |
* ---------
*
* In case of 8x MSAA the two layouts don't match.
* sample index layout : --------- sample number layout : ---------
* | 0 | 1 | | 3 | 7 |
* --------- ---------
* | 2 | 3 | | 5 | 0 |
* --------- ---------
* | 4 | 5 | | 1 | 2 |
* --------- ---------
* | 6 | 7 | | 4 | 6 |
* --------- ---------
*
* Fortunately, this can be done fairly easily as:
* S' = (0x17306425 >> (S * 4)) & 0xf
*
* In the case of 16x MSAA the two layouts don't match.
* Sample index layout: Sample number layout:
* --------------------- ---------------------
* | 0 | 1 | 2 | 3 | | 15 | 10 | 9 | 7 |
* --------------------- ---------------------
* | 4 | 5 | 6 | 7 | | 4 | 1 | 3 | 13 |
* --------------------- ---------------------
* | 8 | 9 | 10 | 11 | | 12 | 2 | 0 | 6 |
* --------------------- ---------------------
* | 12 | 13 | 14 | 15 | | 11 | 8 | 5 | 14 |
* --------------------- ---------------------
*
* This is equivalent to
* S' = (0xe58b602cd31479af >> (S * 4)) & 0xf
*/
nir_ssa_def *frac = nir_ffract(b, sample_coords);
nir_ssa_def *sample =
nir_fdot2(b, frac, nir_imm_vec2(b, key->x_scale,
key->x_scale * key->y_scale));
sample = nir_f2i(b, sample);
if (tex_samples == 8) {
sample = nir_iand(b, nir_ishr(b, nir_imm_int(b, 0x64210573),
nir_ishl(b, sample, nir_imm_int(b, 2))),
nir_imm_int(b, 0xf));
} else if (tex_samples == 16) {
nir_ssa_def *sample_low =
nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xd31479af),
nir_ishl(b, sample, nir_imm_int(b, 2))),
nir_imm_int(b, 0xf));
nir_ssa_def *sample_high =
nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xe58b602c),
nir_ishl(b, nir_iadd(b, sample,
nir_imm_int(b, -8)),
nir_imm_int(b, 2))),
nir_imm_int(b, 0xf));
sample = nir_bcsel(b, nir_ilt(b, sample, nir_imm_int(b, 8)),
sample_low, sample_high);
}
nir_ssa_def *pos_ms = nir_vec3(b, nir_channel(b, sample_coords_int, 0),
nir_channel(b, sample_coords_int, 1),
sample);
tex_data[i] = blorp_nir_txf_ms(b, v, pos_ms, mcs, key->texture_data_type);
}
nir_ssa_def *frac_x = nir_channel(b, frac_xy, 0);
nir_ssa_def *frac_y = nir_channel(b, frac_xy, 1);
return nir_flrp(b, nir_flrp(b, tex_data[0], tex_data[1], frac_x),
nir_flrp(b, tex_data[2], tex_data[3], frac_x),
frac_y);
}
/**
* Generator for WM programs used in BLORP blits.
*
* The bulk of the work done by the WM program is to wrap and unwrap the
* coordinate transformations used by the hardware to store surfaces in
* memory. The hardware transforms a pixel location (X, Y, S) (where S is the
* sample index for a multisampled surface) to a memory offset by the
* following formulas:
*
* offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
* (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
*
* For a single-sampled surface, or for a multisampled surface using
* INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
* function:
*
* encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
* decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
* encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
* decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
*
* For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
* embeds the sample number into bit 1 of the X and Y coordinates:
*
* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
* where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
* Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
* where X' = (X & ~0b11) >> 1 | (X & 0b1)
* Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
* S = (Y & 0b10) | (X & 0b10) >> 1
*
* For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
* embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
* the Y coordinate:
*
* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
* where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
* Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
* where X' = (X & ~0b111) >> 2 | (X & 0b1)
* Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
* S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
*
* For X tiling, tile() combines together the low-order bits of the X and Y
* coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
* bytes wide and 8 rows high:
*
* tile(x_tiled, X, Y, S) = A
* where A = tile_num << 12 | offset
* tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
* offset = (Y' & 0b111) << 9
* | (X & 0b111111111)
* X' = X * cpp
* Y' = Y + S * qpitch
* detile(x_tiled, A) = (X, Y, S)
* where X = X' / cpp
* Y = Y' % qpitch
* S = Y' / qpitch
* Y' = (tile_num / tile_pitch) << 3
* | (A & 0b111000000000) >> 9
* X' = (tile_num % tile_pitch) << 9
* | (A & 0b111111111)
*
* (In all tiling formulas, cpp is the number of bytes occupied by a single
* sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
* to fill the width of the surface, and qpitch is the spacing (in rows)
* between array slices).
*
* For Y tiling, tile() combines together the low-order bits of the X and Y
* coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
* bytes wide and 32 rows high:
*
* tile(y_tiled, X, Y, S) = A
* where A = tile_num << 12 | offset
* tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
* offset = (X' & 0b1110000) << 5
* | (Y' & 0b11111) << 4
* | (X' & 0b1111)
* X' = X * cpp
* Y' = Y + S * qpitch
* detile(y_tiled, A) = (X, Y, S)
* where X = X' / cpp
* Y = Y' % qpitch
* S = Y' / qpitch
* Y' = (tile_num / tile_pitch) << 5
* | (A & 0b111110000) >> 4
* X' = (tile_num % tile_pitch) << 7
* | (A & 0b111000000000) >> 5
* | (A & 0b1111)
*
* For W tiling, tile() combines together the low-order bits of the X and Y
* coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
* bytes wide and 64 rows high (note that W tiling is only used for stencil
* buffers, which always have cpp = 1 and S=0):
*
* tile(w_tiled, X, Y, S) = A
* where A = tile_num << 12 | offset
* tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
* offset = (X' & 0b111000) << 6
* | (Y' & 0b111100) << 3
* | (X' & 0b100) << 2
* | (Y' & 0b10) << 2
* | (X' & 0b10) << 1
* | (Y' & 0b1) << 1
* | (X' & 0b1)
* X' = X * cpp = X
* Y' = Y + S * qpitch
* detile(w_tiled, A) = (X, Y, S)
* where X = X' / cpp = X'
* Y = Y' % qpitch = Y'
* S = Y / qpitch = 0
* Y' = (tile_num / tile_pitch) << 6
* | (A & 0b111100000) >> 3
* | (A & 0b1000) >> 2
* | (A & 0b10) >> 1
* X' = (tile_num % tile_pitch) << 6
* | (A & 0b111000000000) >> 6
* | (A & 0b10000) >> 2
* | (A & 0b100) >> 1
* | (A & 0b1)
*
* Finally, for a non-tiled surface, tile() simply combines together the X and
* Y coordinates in the natural way:
*
* tile(untiled, X, Y, S) = A
* where A = Y * pitch + X'
* X' = X * cpp
* Y' = Y + S * qpitch
* detile(untiled, A) = (X, Y, S)
* where X = X' / cpp
* Y = Y' % qpitch
* S = Y' / qpitch
* X' = A % pitch
* Y' = A / pitch
*
* (In these formulas, pitch is the number of bytes occupied by a single row
* of samples).
*/
static nir_shader *
brw_blorp_build_nir_shader(struct blorp_context *blorp,
const struct brw_blorp_blit_prog_key *key)
{
const struct gen_device_info *devinfo = blorp->isl_dev->info;
nir_ssa_def *src_pos, *dst_pos, *color;
/* Sanity checks */
if (key->dst_tiled_w && key->rt_samples > 1) {
/* If the destination image is W tiled and multisampled, then the thread
* must be dispatched once per sample, not once per pixel. This is
* necessary because after conversion between W and Y tiling, there's no
* guarantee that all samples corresponding to a single pixel will still
* be together.
*/
assert(key->persample_msaa_dispatch);
}
if (key->blend) {
/* We are blending, which means we won't have an opportunity to
* translate the tiling and sample count for the texture surface. So
* the surface state for the texture must be configured with the correct
* tiling and sample count.
*/
assert(!key->src_tiled_w);
assert(key->tex_samples == key->src_samples);
assert(key->tex_layout == key->src_layout);
assert(key->tex_samples > 0);
}
if (key->persample_msaa_dispatch) {
/* It only makes sense to do persample dispatch if the render target is
* configured as multisampled.
*/
assert(key->rt_samples > 0);
}
/* Make sure layout is consistent with sample count */
assert((key->tex_layout == ISL_MSAA_LAYOUT_NONE) ==
(key->tex_samples <= 1));
assert((key->rt_layout == ISL_MSAA_LAYOUT_NONE) ==
(key->rt_samples <= 1));
assert((key->src_layout == ISL_MSAA_LAYOUT_NONE) ==
(key->src_samples <= 1));
assert((key->dst_layout == ISL_MSAA_LAYOUT_NONE) ==
(key->dst_samples <= 1));
nir_builder b;
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
struct brw_blorp_blit_vars v;
brw_blorp_blit_vars_init(&b, &v, key);
dst_pos = blorp_blit_get_frag_coords(&b, key, &v);
/* Render target and texture hardware don't support W tiling until Gen8. */
const bool rt_tiled_w = false;
const bool tex_tiled_w = devinfo->gen >= 8 && key->src_tiled_w;
/* The address that data will be written to is determined by the
* coordinates supplied to the WM thread and the tiling and sample count of
* the render target, according to the formula:
*
* (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
*
* If the actual tiling and sample count of the destination surface are not
* the same as the configuration of the render target, then these
* coordinates are wrong and we have to adjust them to compensate for the
* difference.
*/
if (rt_tiled_w != key->dst_tiled_w ||
key->rt_samples != key->dst_samples ||
key->rt_layout != key->dst_layout) {
dst_pos = blorp_nir_encode_msaa(&b, dst_pos, key->rt_samples,
key->rt_layout);
/* Now (X, Y, S) = detile(rt_tiling, offset) */
if (rt_tiled_w != key->dst_tiled_w)
dst_pos = blorp_nir_retile_y_to_w(&b, dst_pos);
/* Now (X, Y, S) = detile(rt_tiling, offset) */
dst_pos = blorp_nir_decode_msaa(&b, dst_pos, key->dst_samples,
key->dst_layout);
}
/* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
*
* That is: X, Y and S now contain the true coordinates and sample index of
* the data that the WM thread should output.
*
* If we need to kill pixels that are outside the destination rectangle,
* now is the time to do it.
*/
if (key->use_kill) {
assert(!(key->blend && key->blit_scaled));
blorp_nir_discard_if_outside_rect(&b, dst_pos, &v);
}
src_pos = blorp_blit_apply_transform(&b, nir_i2f(&b, dst_pos), &v);
if (dst_pos->num_components == 3) {
/* The sample coordinate is an integer that we want left alone but
* blorp_blit_apply_transform() blindly applies the transform to all
* three coordinates. Grab the original sample index.
*/
src_pos = nir_vec3(&b, nir_channel(&b, src_pos, 0),
nir_channel(&b, src_pos, 1),
nir_channel(&b, dst_pos, 2));
}
/* If the source image is not multisampled, then we want to fetch sample
* number 0, because that's the only sample there is.
*/
if (key->src_samples == 1)
src_pos = nir_channels(&b, src_pos, 0x3);
/* X, Y, and S are now the coordinates of the pixel in the source image
* that we want to texture from. Exception: if we are blending, then S is
* irrelevant, because we are going to fetch all samples.
*/
if (key->blend && !key->blit_scaled) {
/* Resolves (effecively) use texelFetch, so we need integers and we
* don't care about the sample index if we got one.
*/
src_pos = nir_f2i(&b, nir_channels(&b, src_pos, 0x3));
if (devinfo->gen == 6) {
/* Because gen6 only supports 4x interleved MSAA, we can do all the
* blending we need with a single linear-interpolated texture lookup
* at the center of the sample. The texture coordinates to be odd
* integers so that they correspond to the center of a 2x2 block
* representing the four samples that maxe up a pixel. So we need
* to multiply our X and Y coordinates each by 2 and then add 1.
*/
src_pos = nir_ishl(&b, src_pos, nir_imm_int(&b, 1));
src_pos = nir_iadd(&b, src_pos, nir_imm_int(&b, 1));
src_pos = nir_i2f(&b, src_pos);
color = blorp_nir_tex(&b, &v, src_pos, key->texture_data_type);
} else {
/* Gen7+ hardware doesn't automaticaly blend. */
color = blorp_nir_manual_blend_average(&b, &v, src_pos, key->src_samples,
key->tex_aux_usage,
key->texture_data_type);
}
} else if (key->blend && key->blit_scaled) {
assert(!key->use_kill);
color = blorp_nir_manual_blend_bilinear(&b, src_pos, key->src_samples, key, &v);
} else {
if (key->bilinear_filter) {
color = blorp_nir_tex(&b, &v, src_pos, key->texture_data_type);
} else {
/* We're going to use texelFetch, so we need integers */
if (src_pos->num_components == 2) {
src_pos = nir_f2i(&b, src_pos);
} else {
assert(src_pos->num_components == 3);
src_pos = nir_vec3(&b, nir_channel(&b, nir_f2i(&b, src_pos), 0),
nir_channel(&b, nir_f2i(&b, src_pos), 1),
nir_channel(&b, src_pos, 2));
}
/* We aren't blending, which means we just want to fetch a single
* sample from the source surface. The address that we want to fetch
* from is related to the X, Y and S values according to the formula:
*
* (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
*
* If the actual tiling and sample count of the source surface are
* not the same as the configuration of the texture, then we need to
* adjust the coordinates to compensate for the difference.
*/
if (tex_tiled_w != key->src_tiled_w ||
key->tex_samples != key->src_samples ||
key->tex_layout != key->src_layout) {
src_pos = blorp_nir_encode_msaa(&b, src_pos, key->src_samples,
key->src_layout);
/* Now (X, Y, S) = detile(src_tiling, offset) */
if (tex_tiled_w != key->src_tiled_w)
src_pos = blorp_nir_retile_w_to_y(&b, src_pos);
/* Now (X, Y, S) = detile(tex_tiling, offset) */
src_pos = blorp_nir_decode_msaa(&b, src_pos, key->tex_samples,
key->tex_layout);
}
/* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
*
* In other words: X, Y, and S now contain values which, when passed to
* the texturing unit, will cause data to be read from the correct
* memory location. So we can fetch the texel now.
*/
if (key->src_samples == 1) {
color = blorp_nir_txf(&b, &v, src_pos, key->texture_data_type);
} else {
nir_ssa_def *mcs = NULL;
if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
mcs = blorp_nir_txf_ms_mcs(&b, &v, src_pos);
color = blorp_nir_txf_ms(&b, &v, src_pos, mcs, key->texture_data_type);
}
}
}
nir_store_var(&b, v.color_out, color, 0xf);
return b.shader;
}
static void
brw_blorp_get_blit_kernel(struct blorp_context *blorp,
struct blorp_params *params,
const struct brw_blorp_blit_prog_key *prog_key)
{
if (blorp->lookup_shader(blorp, prog_key, sizeof(*prog_key),
&params->wm_prog_kernel, &params->wm_prog_data))
return;
const unsigned *program;
unsigned program_size;
struct brw_blorp_prog_data prog_data;
/* Try and compile with NIR first. If that fails, fall back to the old
* method of building shaders manually.
*/
nir_shader *nir = brw_blorp_build_nir_shader(blorp, prog_key);
struct brw_wm_prog_key wm_key;
brw_blorp_init_wm_prog_key(&wm_key);
wm_key.tex.compressed_multisample_layout_mask =
prog_key->tex_aux_usage == ISL_AUX_USAGE_MCS;
wm_key.tex.msaa_16 = prog_key->tex_samples == 16;
wm_key.multisample_fbo = prog_key->rt_samples > 1;
program = brw_blorp_compile_nir_shader(blorp, nir, &wm_key, false,
&prog_data, &program_size);
blorp->upload_shader(blorp, prog_key, sizeof(*prog_key),
program, program_size,
&prog_data, sizeof(prog_data),
&params->wm_prog_kernel, &params->wm_prog_data);
}
static void
brw_blorp_setup_coord_transform(struct brw_blorp_coord_transform *xform,
GLfloat src0, GLfloat src1,
GLfloat dst0, GLfloat dst1,
bool mirror)
{
float scale = (src1 - src0) / (dst1 - dst0);
if (!mirror) {
/* When not mirroring a coordinate (say, X), we need:
* src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale
* Therefore:
* src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale
*
* blorp program uses "round toward zero" to convert the
* transformed floating point coordinates to integer coordinates,
* whereas the behaviour we actually want is "round to nearest",
* so 0.5 provides the necessary correction.
*/
xform->multiplier = scale;
xform->offset = src0 + (-dst0 + 0.5f) * scale;
} else {
/* When mirroring X we need:
* src_x - src_x0 = dst_x1 - dst_x - 0.5
* Therefore:
* src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale
*/
xform->multiplier = -scale;
xform->offset = src0 + (dst1 - 0.5f) * scale;
}
}
/**
* Convert an swizzle enumeration (i.e. SWIZZLE_X) to one of the Gen7.5+
* "Shader Channel Select" enumerations (i.e. HSW_SCS_RED). The mappings are
*
* SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W, SWIZZLE_ZERO, SWIZZLE_ONE
* 0 1 2 3 4 5
* 4 5 6 7 0 1
* SCS_RED, SCS_GREEN, SCS_BLUE, SCS_ALPHA, SCS_ZERO, SCS_ONE
*
* which is simply adding 4 then modding by 8 (or anding with 7).
*
* We then may need to apply workarounds for textureGather hardware bugs.
*/
static enum isl_channel_select
swizzle_to_scs(GLenum swizzle)
{
return (enum isl_channel_select)((swizzle + 4) & 7);
}
static void
surf_convert_to_single_slice(const struct isl_device *isl_dev,
struct brw_blorp_surface_info *info)
{
/* Just bail if we have nothing to do. */
if (info->surf.dim == ISL_SURF_DIM_2D &&
info->view.base_level == 0 && info->view.base_array_layer == 0 &&
info->surf.levels == 0 && info->surf.logical_level0_px.array_len == 0)
return;
uint32_t x_offset_sa, y_offset_sa;
isl_surf_get_image_offset_sa(&info->surf, info->view.base_level,
info->view.base_array_layer, 0,
&x_offset_sa, &y_offset_sa);
uint32_t byte_offset;
isl_tiling_get_intratile_offset_sa(isl_dev, info->surf.tiling,
info->view.format, info->surf.row_pitch,
x_offset_sa, y_offset_sa,
&byte_offset,
&info->tile_x_sa, &info->tile_y_sa);
info->addr.offset += byte_offset;
/* TODO: Once this file gets converted to C, we shouls just use designated
* initializers.
*/
struct isl_surf_init_info init_info = { 0, };
init_info.dim = ISL_SURF_DIM_2D;
init_info.format = ISL_FORMAT_R8_UINT;
init_info.width =
minify(info->surf.logical_level0_px.width, info->view.base_level);
init_info.height =
minify(info->surf.logical_level0_px.height, info->view.base_level);
init_info.depth = 1;
init_info.levels = 1;
init_info.array_len = 1;
init_info.samples = info->surf.samples;
init_info.min_pitch = info->surf.row_pitch;
init_info.usage = info->surf.usage;
init_info.tiling_flags = 1 << info->surf.tiling;
isl_surf_init_s(isl_dev, &info->surf, &init_info);
assert(info->surf.row_pitch == init_info.min_pitch);
/* The view is also different now. */
info->view.base_level = 0;
info->view.levels = 1;
info->view.base_array_layer = 0;
info->view.array_len = 1;
}
static void
surf_fake_interleaved_msaa(const struct isl_device *isl_dev,
struct brw_blorp_surface_info *info)
{
assert(info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
/* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
surf_convert_to_single_slice(isl_dev, info);
info->surf.logical_level0_px = info->surf.phys_level0_sa;
info->surf.samples = 1;
info->surf.msaa_layout = ISL_MSAA_LAYOUT_NONE;
}
static void
surf_retile_w_to_y(const struct isl_device *isl_dev,
struct brw_blorp_surface_info *info)
{
assert(info->surf.tiling == ISL_TILING_W);
/* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
surf_convert_to_single_slice(isl_dev, info);
/* On gen7+, we don't have interleaved multisampling for color render
* targets so we have to fake it.
*
* TODO: Are we sure we don't also need to fake it on gen6?
*/
if (isl_dev->info->gen > 6 &&
info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
info->surf.logical_level0_px = info->surf.phys_level0_sa;
info->surf.samples = 1;
info->surf.msaa_layout = ISL_MSAA_LAYOUT_NONE;
}
if (isl_dev->info->gen == 6) {
/* Gen6 stencil buffers have a very large alignment coming in from the
* miptree. It's out-of-bounds for what the surface state can handle.
* Since we have a single layer and level, it doesn't really matter as
* long as we don't pass a bogus value into isl_surf_fill_state().
*/
info->surf.image_alignment_el = isl_extent3d(4, 2, 1);
}
/* Now that we've converted everything to a simple 2-D surface with only
* one miplevel, we can go about retiling it.
*/
const unsigned x_align = 8, y_align = info->surf.samples != 0 ? 8 : 4;
info->surf.tiling = ISL_TILING_Y0;
info->surf.logical_level0_px.width =
ALIGN(info->surf.logical_level0_px.width, x_align) * 2;
info->surf.logical_level0_px.height =
ALIGN(info->surf.logical_level0_px.height, y_align) / 2;
info->tile_x_sa *= 2;
info->tile_y_sa /= 2;
}
void
blorp_blit(struct blorp_batch *batch,
const struct blorp_surf *src_surf,
unsigned src_level, unsigned src_layer,
enum isl_format src_format, int src_swizzle,
const struct blorp_surf *dst_surf,
unsigned dst_level, unsigned dst_layer,
enum isl_format dst_format,
float src_x0, float src_y0,
float src_x1, float src_y1,
float dst_x0, float dst_y0,
float dst_x1, float dst_y1,
GLenum filter, bool mirror_x, bool mirror_y)
{
const struct gen_device_info *devinfo = batch->blorp->isl_dev->info;
struct blorp_params params;
blorp_params_init(&params);
brw_blorp_surface_info_init(batch->blorp, &params.src, src_surf, src_level,
src_layer, src_format, false);
brw_blorp_surface_info_init(batch->blorp, &params.dst, dst_surf, dst_level,
dst_layer, dst_format, true);
struct brw_blorp_blit_prog_key wm_prog_key;
memset(&wm_prog_key, 0, sizeof(wm_prog_key));
if (isl_format_has_sint_channel(params.src.view.format)) {
wm_prog_key.texture_data_type = nir_type_int;
} else if (isl_format_has_uint_channel(params.src.view.format)) {
wm_prog_key.texture_data_type = nir_type_uint;
} else {
wm_prog_key.texture_data_type = nir_type_float;
}
/* Scaled blitting or not. */
wm_prog_key.blit_scaled =
((dst_x1 - dst_x0) == (src_x1 - src_x0) &&
(dst_y1 - dst_y0) == (src_y1 - src_y0)) ? false : true;
/* Scaling factors used for bilinear filtering in multisample scaled
* blits.
*/
if (params.src.surf.samples == 16)
wm_prog_key.x_scale = 4.0f;
else
wm_prog_key.x_scale = 2.0f;
wm_prog_key.y_scale = params.src.surf.samples / wm_prog_key.x_scale;
if (filter == GL_LINEAR &&
params.src.surf.samples <= 1 && params.dst.surf.samples <= 1)
wm_prog_key.bilinear_filter = true;
if ((params.src.surf.usage & ISL_SURF_USAGE_DEPTH_BIT) == 0 &&
(params.src.surf.usage & ISL_SURF_USAGE_STENCIL_BIT) == 0 &&
!isl_format_has_int_channel(params.src.surf.format) &&
params.src.surf.samples > 1 && params.dst.surf.samples <= 1) {
/* We are downsampling a non-integer color buffer, so blend.
*
* Regarding integer color buffers, the OpenGL ES 3.2 spec says:
*
* "If the source formats are integer types or stencil values, a
* single sample's value is selected for each pixel."
*
* This implies we should not blend in that case.
*/
wm_prog_key.blend = true;
}
/* src_samples and dst_samples are the true sample counts */
wm_prog_key.src_samples = params.src.surf.samples;
wm_prog_key.dst_samples = params.dst.surf.samples;
wm_prog_key.tex_aux_usage = params.src.aux_usage;
/* src_layout and dst_layout indicate the true MSAA layout used by src and
* dst.
*/
wm_prog_key.src_layout = params.src.surf.msaa_layout;
wm_prog_key.dst_layout = params.dst.surf.msaa_layout;
/* Round floating point values to nearest integer to avoid "off by one texel"
* kind of errors when blitting.
*/
params.x0 = params.wm_inputs.discard_rect.x0 = roundf(dst_x0);
params.y0 = params.wm_inputs.discard_rect.y0 = roundf(dst_y0);
params.x1 = params.wm_inputs.discard_rect.x1 = roundf(dst_x1);
params.y1 = params.wm_inputs.discard_rect.y1 = roundf(dst_y1);
params.wm_inputs.rect_grid.x1 =
minify(params.src.surf.logical_level0_px.width, src_level) *
wm_prog_key.x_scale - 1.0f;
params.wm_inputs.rect_grid.y1 =
minify(params.src.surf.logical_level0_px.height, src_level) *
wm_prog_key.y_scale - 1.0f;
brw_blorp_setup_coord_transform(&params.wm_inputs.coord_transform[0],
src_x0, src_x1, dst_x0, dst_x1, mirror_x);
brw_blorp_setup_coord_transform(&params.wm_inputs.coord_transform[1],
src_y0, src_y1, dst_y0, dst_y1, mirror_y);
/* For some texture types, we need to pass the layer through the sampler. */
params.wm_inputs.src_z = params.src.z_offset;
if (devinfo->gen > 6 &&
params.dst.surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
assert(params.dst.surf.samples > 1);
/* We must expand the rectangle we send through the rendering pipeline,
* to account for the fact that we are mapping the destination region as
* single-sampled when it is in fact multisampled. We must also align
* it to a multiple of the multisampling pattern, because the
* differences between multisampled and single-sampled surface formats
* will mean that pixels are scrambled within the multisampling pattern.
* TODO: what if this makes the coordinates too large?
*
* Note: this only works if the destination surface uses the IMS layout.
* If it's UMS, then we have no choice but to set up the rendering
* pipeline as multisampled.
*/
switch (params.dst.surf.samples) {
case 2:
params.x0 = ROUND_DOWN_TO(params.x0 * 2, 4);
params.y0 = ROUND_DOWN_TO(params.y0, 4);
params.x1 = ALIGN(params.x1 * 2, 4);
params.y1 = ALIGN(params.y1, 4);
break;
case 4:
params.x0 = ROUND_DOWN_TO(params.x0 * 2, 4);
params.y0 = ROUND_DOWN_TO(params.y0 * 2, 4);
params.x1 = ALIGN(params.x1 * 2, 4);
params.y1 = ALIGN(params.y1 * 2, 4);
break;
case 8:
params.x0 = ROUND_DOWN_TO(params.x0 * 4, 8);
params.y0 = ROUND_DOWN_TO(params.y0 * 2, 4);
params.x1 = ALIGN(params.x1 * 4, 8);
params.y1 = ALIGN(params.y1 * 2, 4);
break;
case 16:
params.x0 = ROUND_DOWN_TO(params.x0 * 4, 8);
params.y0 = ROUND_DOWN_TO(params.y0 * 4, 8);
params.x1 = ALIGN(params.x1 * 4, 8);
params.y1 = ALIGN(params.y1 * 4, 8);
break;
default:
unreachable("Unrecognized sample count in brw_blorp_blit_params ctor");
}
surf_fake_interleaved_msaa(batch->blorp->isl_dev, &params.dst);
wm_prog_key.use_kill = true;
}
if (params.dst.surf.tiling == ISL_TILING_W) {
/* We must modify the rectangle we send through the rendering pipeline
* (and the size and x/y offset of the destination surface), to account
* for the fact that we are mapping it as Y-tiled when it is in fact
* W-tiled.
*
* Both Y tiling and W tiling can be understood as organizations of
* 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
* is different, but the layout of the 32-byte sub-tiles within the 4k
* tile is the same (8 sub-tiles across by 16 sub-tiles down, in
* column-major order). In Y tiling, the sub-tiles are 16 bytes wide
* and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
*
* Therefore, to account for the layout differences within the 32-byte
* sub-tiles, we must expand the rectangle so the X coordinates of its
* edges are multiples of 8 (the W sub-tile width), and its Y
* coordinates of its edges are multiples of 4 (the W sub-tile height).
* Then we need to scale the X and Y coordinates of the rectangle to
* account for the differences in aspect ratio between the Y and W
* sub-tiles. We need to modify the layer width and height similarly.
*
* A correction needs to be applied when MSAA is in use: since
* INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
* we need to align the Y coordinates to multiples of 8, so that when
* they are divided by two they are still multiples of 4.
*
* Note: Since the x/y offset of the surface will be applied using the
* SURFACE_STATE command packet, it will be invisible to the swizzling
* code in the shader; therefore it needs to be in a multiple of the
* 32-byte sub-tile size. Fortunately it is, since the sub-tile is 8
* pixels wide and 4 pixels high (when viewed as a W-tiled stencil
* buffer), and the miplevel alignment used for stencil buffers is 8
* pixels horizontally and either 4 or 8 pixels vertically (see
* intel_horizontal_texture_alignment_unit() and
* intel_vertical_texture_alignment_unit()).
*
* Note: Also, since the SURFACE_STATE command packet can only apply
* offsets that are multiples of 4 pixels horizontally and 2 pixels
* vertically, it is important that the offsets will be multiples of
* these sizes after they are converted into Y-tiled coordinates.
* Fortunately they will be, since we know from above that the offsets
* are a multiple of the 32-byte sub-tile size, and in Y-tiled
* coordinates the sub-tile is 16 pixels wide and 2 pixels high.
*
* TODO: what if this makes the coordinates (or the texture size) too
* large?
*/
const unsigned x_align = 8, y_align = params.dst.surf.samples != 0 ? 8 : 4;
params.x0 = ROUND_DOWN_TO(params.x0, x_align) * 2;
params.y0 = ROUND_DOWN_TO(params.y0, y_align) / 2;
params.x1 = ALIGN(params.x1, x_align) * 2;
params.y1 = ALIGN(params.y1, y_align) / 2;
/* Retile the surface to Y-tiled */
surf_retile_w_to_y(batch->blorp->isl_dev, &params.dst);
wm_prog_key.dst_tiled_w = true;
wm_prog_key.use_kill = true;
if (params.dst.surf.samples > 1) {
/* If the destination surface is a W-tiled multisampled stencil
* buffer that we're mapping as Y tiled, then we need to arrange for
* the WM program to run once per sample rather than once per pixel,
* because the memory layout of related samples doesn't match between
* W and Y tiling.
*/
wm_prog_key.persample_msaa_dispatch = true;
}
}
if (devinfo->gen < 8 && params.src.surf.tiling == ISL_TILING_W) {
/* On Haswell and earlier, we have to fake W-tiled sources as Y-tiled.
* Broadwell adds support for sampling from stencil.
*
* See the comments above concerning x/y offset alignment for the
* destination surface.
*
* TODO: what if this makes the texture size too large?
*/
surf_retile_w_to_y(batch->blorp->isl_dev, &params.src);
wm_prog_key.src_tiled_w = true;
}
/* tex_samples and rt_samples are the sample counts that are set up in
* SURFACE_STATE.
*/
wm_prog_key.tex_samples = params.src.surf.samples;
wm_prog_key.rt_samples = params.dst.surf.samples;
/* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
* use to access the source and destination surfaces.
*/
wm_prog_key.tex_layout = params.src.surf.msaa_layout;
wm_prog_key.rt_layout = params.dst.surf.msaa_layout;
if (params.src.surf.samples > 0 && params.dst.surf.samples > 1) {
/* We are blitting from a multisample buffer to a multisample buffer, so
* we must preserve samples within a pixel. This means we have to
* arrange for the WM program to run once per sample rather than once
* per pixel.
*/
wm_prog_key.persample_msaa_dispatch = true;
}
brw_blorp_get_blit_kernel(batch->blorp, &params, &wm_prog_key);
for (unsigned i = 0; i < 4; i++) {
params.src.view.channel_select[i] =
swizzle_to_scs(GET_SWZ(src_swizzle, i));
}
batch->blorp->exec(batch, &params);
}