mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-24 13:10:10 +01:00
Signed-off-by: Topi Pohjolainen <topi.pohjolainen@intel.com> Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
1646 lines
63 KiB
C
1646 lines
63 KiB
C
/*
|
|
* Copyright © 2012 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "program/prog_instruction.h"
|
|
#include "compiler/nir/nir_builder.h"
|
|
|
|
#include "blorp_priv.h"
|
|
#include "brw_meta_util.h"
|
|
|
|
#define FILE_DEBUG_FLAG DEBUG_BLORP
|
|
|
|
/**
|
|
* Enum to specify the order of arguments in a sampler message
|
|
*/
|
|
enum sampler_message_arg
|
|
{
|
|
SAMPLER_MESSAGE_ARG_U_FLOAT,
|
|
SAMPLER_MESSAGE_ARG_V_FLOAT,
|
|
SAMPLER_MESSAGE_ARG_U_INT,
|
|
SAMPLER_MESSAGE_ARG_V_INT,
|
|
SAMPLER_MESSAGE_ARG_R_INT,
|
|
SAMPLER_MESSAGE_ARG_SI_INT,
|
|
SAMPLER_MESSAGE_ARG_MCS_INT,
|
|
SAMPLER_MESSAGE_ARG_ZERO_INT,
|
|
};
|
|
|
|
struct brw_blorp_blit_vars {
|
|
/* Input values from brw_blorp_wm_inputs */
|
|
nir_variable *v_discard_rect;
|
|
nir_variable *v_rect_grid;
|
|
nir_variable *v_coord_transform;
|
|
nir_variable *v_src_z;
|
|
|
|
/* gl_FragCoord */
|
|
nir_variable *frag_coord;
|
|
|
|
/* gl_FragColor */
|
|
nir_variable *color_out;
|
|
};
|
|
|
|
static void
|
|
brw_blorp_blit_vars_init(nir_builder *b, struct brw_blorp_blit_vars *v,
|
|
const struct brw_blorp_blit_prog_key *key)
|
|
{
|
|
/* Blended and scaled blits never use pixel discard. */
|
|
assert(!key->use_kill || !(key->blend && key->blit_scaled));
|
|
|
|
#define LOAD_INPUT(name, type)\
|
|
v->v_##name = nir_variable_create(b->shader, nir_var_shader_in, \
|
|
type, #name); \
|
|
v->v_##name->data.interpolation = INTERP_MODE_FLAT; \
|
|
v->v_##name->data.location = VARYING_SLOT_VAR0 + \
|
|
offsetof(struct brw_blorp_wm_inputs, name) / (4 * sizeof(float));
|
|
|
|
LOAD_INPUT(discard_rect, glsl_vec4_type())
|
|
LOAD_INPUT(rect_grid, glsl_vec4_type())
|
|
LOAD_INPUT(coord_transform, glsl_vec4_type())
|
|
LOAD_INPUT(src_z, glsl_uint_type())
|
|
|
|
#undef LOAD_INPUT
|
|
|
|
v->frag_coord = nir_variable_create(b->shader, nir_var_shader_in,
|
|
glsl_vec4_type(), "gl_FragCoord");
|
|
v->frag_coord->data.location = VARYING_SLOT_POS;
|
|
v->frag_coord->data.origin_upper_left = true;
|
|
|
|
v->color_out = nir_variable_create(b->shader, nir_var_shader_out,
|
|
glsl_vec4_type(), "gl_FragColor");
|
|
v->color_out->data.location = FRAG_RESULT_COLOR;
|
|
}
|
|
|
|
static nir_ssa_def *
|
|
blorp_blit_get_frag_coords(nir_builder *b,
|
|
const struct brw_blorp_blit_prog_key *key,
|
|
struct brw_blorp_blit_vars *v)
|
|
{
|
|
nir_ssa_def *coord = nir_f2i(b, nir_load_var(b, v->frag_coord));
|
|
|
|
if (key->persample_msaa_dispatch) {
|
|
return nir_vec3(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1),
|
|
nir_load_sample_id(b));
|
|
} else {
|
|
return nir_vec2(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Emit code to translate from destination (X, Y) coordinates to source (X, Y)
|
|
* coordinates.
|
|
*/
|
|
static nir_ssa_def *
|
|
blorp_blit_apply_transform(nir_builder *b, nir_ssa_def *src_pos,
|
|
struct brw_blorp_blit_vars *v)
|
|
{
|
|
nir_ssa_def *coord_transform = nir_load_var(b, v->v_coord_transform);
|
|
|
|
nir_ssa_def *offset = nir_vec2(b, nir_channel(b, coord_transform, 1),
|
|
nir_channel(b, coord_transform, 3));
|
|
nir_ssa_def *mul = nir_vec2(b, nir_channel(b, coord_transform, 0),
|
|
nir_channel(b, coord_transform, 2));
|
|
|
|
return nir_ffma(b, src_pos, mul, offset);
|
|
}
|
|
|
|
static inline void
|
|
blorp_nir_discard_if_outside_rect(nir_builder *b, nir_ssa_def *pos,
|
|
struct brw_blorp_blit_vars *v)
|
|
{
|
|
nir_ssa_def *c0, *c1, *c2, *c3;
|
|
nir_ssa_def *discard_rect = nir_load_var(b, v->v_discard_rect);
|
|
nir_ssa_def *dst_x0 = nir_channel(b, discard_rect, 0);
|
|
nir_ssa_def *dst_x1 = nir_channel(b, discard_rect, 1);
|
|
nir_ssa_def *dst_y0 = nir_channel(b, discard_rect, 2);
|
|
nir_ssa_def *dst_y1 = nir_channel(b, discard_rect, 3);
|
|
|
|
c0 = nir_ult(b, nir_channel(b, pos, 0), dst_x0);
|
|
c1 = nir_uge(b, nir_channel(b, pos, 0), dst_x1);
|
|
c2 = nir_ult(b, nir_channel(b, pos, 1), dst_y0);
|
|
c3 = nir_uge(b, nir_channel(b, pos, 1), dst_y1);
|
|
|
|
nir_ssa_def *oob = nir_ior(b, nir_ior(b, c0, c1), nir_ior(b, c2, c3));
|
|
|
|
nir_intrinsic_instr *discard =
|
|
nir_intrinsic_instr_create(b->shader, nir_intrinsic_discard_if);
|
|
discard->src[0] = nir_src_for_ssa(oob);
|
|
nir_builder_instr_insert(b, &discard->instr);
|
|
}
|
|
|
|
static nir_tex_instr *
|
|
blorp_create_nir_tex_instr(nir_builder *b, struct brw_blorp_blit_vars *v,
|
|
nir_texop op, nir_ssa_def *pos, unsigned num_srcs,
|
|
nir_alu_type dst_type)
|
|
{
|
|
nir_tex_instr *tex = nir_tex_instr_create(b->shader, num_srcs);
|
|
|
|
tex->op = op;
|
|
|
|
tex->dest_type = dst_type;
|
|
tex->is_array = false;
|
|
tex->is_shadow = false;
|
|
|
|
/* Blorp only has one texture and it's bound at unit 0 */
|
|
tex->texture = NULL;
|
|
tex->sampler = NULL;
|
|
tex->texture_index = 0;
|
|
tex->sampler_index = 0;
|
|
|
|
/* To properly handle 3-D and 2-D array textures, we pull the Z component
|
|
* from an input. TODO: This is a bit magic; we should probably make this
|
|
* more explicit in the future.
|
|
*/
|
|
assert(pos->num_components >= 2);
|
|
pos = nir_vec3(b, nir_channel(b, pos, 0), nir_channel(b, pos, 1),
|
|
nir_load_var(b, v->v_src_z));
|
|
|
|
tex->src[0].src_type = nir_tex_src_coord;
|
|
tex->src[0].src = nir_src_for_ssa(pos);
|
|
tex->coord_components = 3;
|
|
|
|
nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, NULL);
|
|
|
|
return tex;
|
|
}
|
|
|
|
static nir_ssa_def *
|
|
blorp_nir_tex(nir_builder *b, struct brw_blorp_blit_vars *v,
|
|
nir_ssa_def *pos, nir_alu_type dst_type)
|
|
{
|
|
nir_tex_instr *tex =
|
|
blorp_create_nir_tex_instr(b, v, nir_texop_tex, pos, 2, dst_type);
|
|
|
|
assert(pos->num_components == 2);
|
|
tex->sampler_dim = GLSL_SAMPLER_DIM_2D;
|
|
tex->src[1].src_type = nir_tex_src_lod;
|
|
tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
|
|
|
|
nir_builder_instr_insert(b, &tex->instr);
|
|
|
|
return &tex->dest.ssa;
|
|
}
|
|
|
|
static nir_ssa_def *
|
|
blorp_nir_txf(nir_builder *b, struct brw_blorp_blit_vars *v,
|
|
nir_ssa_def *pos, nir_alu_type dst_type)
|
|
{
|
|
nir_tex_instr *tex =
|
|
blorp_create_nir_tex_instr(b, v, nir_texop_txf, pos, 2, dst_type);
|
|
|
|
tex->sampler_dim = GLSL_SAMPLER_DIM_3D;
|
|
tex->src[1].src_type = nir_tex_src_lod;
|
|
tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
|
|
|
|
nir_builder_instr_insert(b, &tex->instr);
|
|
|
|
return &tex->dest.ssa;
|
|
}
|
|
|
|
static nir_ssa_def *
|
|
blorp_nir_txf_ms(nir_builder *b, struct brw_blorp_blit_vars *v,
|
|
nir_ssa_def *pos, nir_ssa_def *mcs, nir_alu_type dst_type)
|
|
{
|
|
nir_tex_instr *tex =
|
|
blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms, pos,
|
|
mcs != NULL ? 3 : 2, dst_type);
|
|
|
|
tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
|
|
|
|
tex->src[1].src_type = nir_tex_src_ms_index;
|
|
if (pos->num_components == 2) {
|
|
tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
|
|
} else {
|
|
assert(pos->num_components == 3);
|
|
tex->src[1].src = nir_src_for_ssa(nir_channel(b, pos, 2));
|
|
}
|
|
|
|
if (mcs) {
|
|
tex->src[2].src_type = nir_tex_src_ms_mcs;
|
|
tex->src[2].src = nir_src_for_ssa(mcs);
|
|
}
|
|
|
|
nir_builder_instr_insert(b, &tex->instr);
|
|
|
|
return &tex->dest.ssa;
|
|
}
|
|
|
|
static nir_ssa_def *
|
|
blorp_nir_txf_ms_mcs(nir_builder *b, struct brw_blorp_blit_vars *v, nir_ssa_def *pos)
|
|
{
|
|
nir_tex_instr *tex =
|
|
blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms_mcs,
|
|
pos, 1, nir_type_int);
|
|
|
|
tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
|
|
|
|
nir_builder_instr_insert(b, &tex->instr);
|
|
|
|
return &tex->dest.ssa;
|
|
}
|
|
|
|
static nir_ssa_def *
|
|
nir_mask_shift_or(struct nir_builder *b, nir_ssa_def *dst, nir_ssa_def *src,
|
|
uint32_t src_mask, int src_left_shift)
|
|
{
|
|
nir_ssa_def *masked = nir_iand(b, src, nir_imm_int(b, src_mask));
|
|
|
|
nir_ssa_def *shifted;
|
|
if (src_left_shift > 0) {
|
|
shifted = nir_ishl(b, masked, nir_imm_int(b, src_left_shift));
|
|
} else if (src_left_shift < 0) {
|
|
shifted = nir_ushr(b, masked, nir_imm_int(b, -src_left_shift));
|
|
} else {
|
|
assert(src_left_shift == 0);
|
|
shifted = masked;
|
|
}
|
|
|
|
return nir_ior(b, dst, shifted);
|
|
}
|
|
|
|
/**
|
|
* Emit code to compensate for the difference between Y and W tiling.
|
|
*
|
|
* This code modifies the X and Y coordinates according to the formula:
|
|
*
|
|
* (X', Y', S') = detile(W-MAJOR, tile(Y-MAJOR, X, Y, S))
|
|
*
|
|
* (See brw_blorp_build_nir_shader).
|
|
*/
|
|
static inline nir_ssa_def *
|
|
blorp_nir_retile_y_to_w(nir_builder *b, nir_ssa_def *pos)
|
|
{
|
|
assert(pos->num_components == 2);
|
|
nir_ssa_def *x_Y = nir_channel(b, pos, 0);
|
|
nir_ssa_def *y_Y = nir_channel(b, pos, 1);
|
|
|
|
/* Given X and Y coordinates that describe an address using Y tiling,
|
|
* translate to the X and Y coordinates that describe the same address
|
|
* using W tiling.
|
|
*
|
|
* If we break down the low order bits of X and Y, using a
|
|
* single letter to represent each low-order bit:
|
|
*
|
|
* X = A << 7 | 0bBCDEFGH
|
|
* Y = J << 5 | 0bKLMNP (1)
|
|
*
|
|
* Then we can apply the Y tiling formula to see the memory offset being
|
|
* addressed:
|
|
*
|
|
* offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2)
|
|
*
|
|
* If we apply the W detiling formula to this memory location, that the
|
|
* corresponding X' and Y' coordinates are:
|
|
*
|
|
* X' = A << 6 | 0bBCDPFH (3)
|
|
* Y' = J << 6 | 0bKLMNEG
|
|
*
|
|
* Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
|
|
* we need to make the following computation:
|
|
*
|
|
* X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4)
|
|
* Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
|
|
*/
|
|
nir_ssa_def *x_W = nir_imm_int(b, 0);
|
|
x_W = nir_mask_shift_or(b, x_W, x_Y, 0xfffffff4, -1);
|
|
x_W = nir_mask_shift_or(b, x_W, y_Y, 0x1, 2);
|
|
x_W = nir_mask_shift_or(b, x_W, x_Y, 0x1, 0);
|
|
|
|
nir_ssa_def *y_W = nir_imm_int(b, 0);
|
|
y_W = nir_mask_shift_or(b, y_W, y_Y, 0xfffffffe, 1);
|
|
y_W = nir_mask_shift_or(b, y_W, x_Y, 0x8, -2);
|
|
y_W = nir_mask_shift_or(b, y_W, x_Y, 0x2, -1);
|
|
|
|
return nir_vec2(b, x_W, y_W);
|
|
}
|
|
|
|
/**
|
|
* Emit code to compensate for the difference between Y and W tiling.
|
|
*
|
|
* This code modifies the X and Y coordinates according to the formula:
|
|
*
|
|
* (X', Y', S') = detile(Y-MAJOR, tile(W-MAJOR, X, Y, S))
|
|
*
|
|
* (See brw_blorp_build_nir_shader).
|
|
*/
|
|
static inline nir_ssa_def *
|
|
blorp_nir_retile_w_to_y(nir_builder *b, nir_ssa_def *pos)
|
|
{
|
|
assert(pos->num_components == 2);
|
|
nir_ssa_def *x_W = nir_channel(b, pos, 0);
|
|
nir_ssa_def *y_W = nir_channel(b, pos, 1);
|
|
|
|
/* Applying the same logic as above, but in reverse, we obtain the
|
|
* formulas:
|
|
*
|
|
* X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
|
|
* Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
|
|
*/
|
|
nir_ssa_def *x_Y = nir_imm_int(b, 0);
|
|
x_Y = nir_mask_shift_or(b, x_Y, x_W, 0xfffffffa, 1);
|
|
x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x2, 2);
|
|
x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x1, 1);
|
|
x_Y = nir_mask_shift_or(b, x_Y, x_W, 0x1, 0);
|
|
|
|
nir_ssa_def *y_Y = nir_imm_int(b, 0);
|
|
y_Y = nir_mask_shift_or(b, y_Y, y_W, 0xfffffffc, -1);
|
|
y_Y = nir_mask_shift_or(b, y_Y, x_W, 0x4, -2);
|
|
|
|
return nir_vec2(b, x_Y, y_Y);
|
|
}
|
|
|
|
/**
|
|
* Emit code to compensate for the difference between MSAA and non-MSAA
|
|
* surfaces.
|
|
*
|
|
* This code modifies the X and Y coordinates according to the formula:
|
|
*
|
|
* (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
|
|
*
|
|
* (See brw_blorp_blit_program).
|
|
*/
|
|
static inline nir_ssa_def *
|
|
blorp_nir_encode_msaa(nir_builder *b, nir_ssa_def *pos,
|
|
unsigned num_samples, enum isl_msaa_layout layout)
|
|
{
|
|
assert(pos->num_components == 2 || pos->num_components == 3);
|
|
|
|
switch (layout) {
|
|
case ISL_MSAA_LAYOUT_NONE:
|
|
assert(pos->num_components == 2);
|
|
return pos;
|
|
case ISL_MSAA_LAYOUT_ARRAY:
|
|
/* No translation needed */
|
|
return pos;
|
|
case ISL_MSAA_LAYOUT_INTERLEAVED: {
|
|
nir_ssa_def *x_in = nir_channel(b, pos, 0);
|
|
nir_ssa_def *y_in = nir_channel(b, pos, 1);
|
|
nir_ssa_def *s_in = pos->num_components == 2 ? nir_imm_int(b, 0) :
|
|
nir_channel(b, pos, 2);
|
|
|
|
nir_ssa_def *x_out = nir_imm_int(b, 0);
|
|
nir_ssa_def *y_out = nir_imm_int(b, 0);
|
|
switch (num_samples) {
|
|
case 2:
|
|
case 4:
|
|
/* encode_msaa(2, IMS, X, Y, S) = (X', Y', 0)
|
|
* where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
|
|
* Y' = Y
|
|
*
|
|
* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
|
|
* where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
|
|
* Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
|
|
*/
|
|
x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 1);
|
|
x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
|
|
x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
|
|
if (num_samples == 2) {
|
|
y_out = y_in;
|
|
} else {
|
|
y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
|
|
y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
|
|
y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
|
|
}
|
|
break;
|
|
|
|
case 8:
|
|
/* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
|
|
* where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
|
|
* | (X & 0b1)
|
|
* Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
|
|
*/
|
|
x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
|
|
x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
|
|
x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
|
|
x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
|
|
y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
|
|
y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
|
|
y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
|
|
break;
|
|
|
|
case 16:
|
|
/* encode_msaa(16, IMS, X, Y, S) = (X', Y', 0)
|
|
* where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
|
|
* | (X & 0b1)
|
|
* Y' = (Y & ~0b1) << 2 | (S & 0b1000) >> 1 (S & 0b10)
|
|
* | (Y & 0b1)
|
|
*/
|
|
x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
|
|
x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
|
|
x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
|
|
x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
|
|
y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 2);
|
|
y_out = nir_mask_shift_or(b, y_out, s_in, 0x8, -1);
|
|
y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
|
|
y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
|
|
break;
|
|
|
|
default:
|
|
unreachable("Invalid number of samples for IMS layout");
|
|
}
|
|
|
|
return nir_vec2(b, x_out, y_out);
|
|
}
|
|
|
|
default:
|
|
unreachable("Invalid MSAA layout");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Emit code to compensate for the difference between MSAA and non-MSAA
|
|
* surfaces.
|
|
*
|
|
* This code modifies the X and Y coordinates according to the formula:
|
|
*
|
|
* (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
|
|
*
|
|
* (See brw_blorp_blit_program).
|
|
*/
|
|
static inline nir_ssa_def *
|
|
blorp_nir_decode_msaa(nir_builder *b, nir_ssa_def *pos,
|
|
unsigned num_samples, enum isl_msaa_layout layout)
|
|
{
|
|
assert(pos->num_components == 2 || pos->num_components == 3);
|
|
|
|
switch (layout) {
|
|
case ISL_MSAA_LAYOUT_NONE:
|
|
/* No translation necessary, and S should already be zero. */
|
|
assert(pos->num_components == 2);
|
|
return pos;
|
|
case ISL_MSAA_LAYOUT_ARRAY:
|
|
/* No translation necessary. */
|
|
return pos;
|
|
case ISL_MSAA_LAYOUT_INTERLEAVED: {
|
|
assert(pos->num_components == 2);
|
|
|
|
nir_ssa_def *x_in = nir_channel(b, pos, 0);
|
|
nir_ssa_def *y_in = nir_channel(b, pos, 1);
|
|
|
|
nir_ssa_def *x_out = nir_imm_int(b, 0);
|
|
nir_ssa_def *y_out = nir_imm_int(b, 0);
|
|
nir_ssa_def *s_out = nir_imm_int(b, 0);
|
|
switch (num_samples) {
|
|
case 2:
|
|
case 4:
|
|
/* decode_msaa(2, IMS, X, Y, 0) = (X', Y', S)
|
|
* where X' = (X & ~0b11) >> 1 | (X & 0b1)
|
|
* S = (X & 0b10) >> 1
|
|
*
|
|
* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
|
|
* where X' = (X & ~0b11) >> 1 | (X & 0b1)
|
|
* Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
|
|
* S = (Y & 0b10) | (X & 0b10) >> 1
|
|
*/
|
|
x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffc, -1);
|
|
x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
|
|
if (num_samples == 2) {
|
|
y_out = y_in;
|
|
s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
|
|
} else {
|
|
y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
|
|
y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
|
|
s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
|
|
s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
|
|
}
|
|
break;
|
|
|
|
case 8:
|
|
/* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
|
|
* where X' = (X & ~0b111) >> 2 | (X & 0b1)
|
|
* Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
|
|
* S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
|
|
*/
|
|
x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
|
|
x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
|
|
y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
|
|
y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
|
|
s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
|
|
s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
|
|
s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
|
|
break;
|
|
|
|
case 16:
|
|
/* decode_msaa(16, IMS, X, Y, 0) = (X', Y', S)
|
|
* where X' = (X & ~0b111) >> 2 | (X & 0b1)
|
|
* Y' = (Y & ~0b111) >> 2 | (Y & 0b1)
|
|
* S = (Y & 0b100) << 1 | (X & 0b100) |
|
|
* (Y & 0b10) | (X & 0b10) >> 1
|
|
*/
|
|
x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
|
|
x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
|
|
y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffff8, -2);
|
|
y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
|
|
s_out = nir_mask_shift_or(b, s_out, y_in, 0x4, 1);
|
|
s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
|
|
s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
|
|
s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
|
|
break;
|
|
|
|
default:
|
|
unreachable("Invalid number of samples for IMS layout");
|
|
}
|
|
|
|
return nir_vec3(b, x_out, y_out, s_out);
|
|
}
|
|
|
|
default:
|
|
unreachable("Invalid MSAA layout");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Count the number of trailing 1 bits in the given value. For example:
|
|
*
|
|
* count_trailing_one_bits(0) == 0
|
|
* count_trailing_one_bits(7) == 3
|
|
* count_trailing_one_bits(11) == 2
|
|
*/
|
|
static inline int count_trailing_one_bits(unsigned value)
|
|
{
|
|
#ifdef HAVE___BUILTIN_CTZ
|
|
return __builtin_ctz(~value);
|
|
#else
|
|
return _mesa_bitcount(value & ~(value + 1));
|
|
#endif
|
|
}
|
|
|
|
static nir_ssa_def *
|
|
blorp_nir_manual_blend_average(nir_builder *b, struct brw_blorp_blit_vars *v,
|
|
nir_ssa_def *pos, unsigned tex_samples,
|
|
enum isl_aux_usage tex_aux_usage,
|
|
nir_alu_type dst_type)
|
|
{
|
|
/* If non-null, this is the outer-most if statement */
|
|
nir_if *outer_if = NULL;
|
|
|
|
nir_variable *color =
|
|
nir_local_variable_create(b->impl, glsl_vec4_type(), "color");
|
|
|
|
nir_ssa_def *mcs = NULL;
|
|
if (tex_aux_usage == ISL_AUX_USAGE_MCS)
|
|
mcs = blorp_nir_txf_ms_mcs(b, v, pos);
|
|
|
|
/* We add together samples using a binary tree structure, e.g. for 4x MSAA:
|
|
*
|
|
* result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
|
|
*
|
|
* This ensures that when all samples have the same value, no numerical
|
|
* precision is lost, since each addition operation always adds two equal
|
|
* values, and summing two equal floating point values does not lose
|
|
* precision.
|
|
*
|
|
* We perform this computation by treating the texture_data array as a
|
|
* stack and performing the following operations:
|
|
*
|
|
* - push sample 0 onto stack
|
|
* - push sample 1 onto stack
|
|
* - add top two stack entries
|
|
* - push sample 2 onto stack
|
|
* - push sample 3 onto stack
|
|
* - add top two stack entries
|
|
* - add top two stack entries
|
|
* - divide top stack entry by 4
|
|
*
|
|
* Note that after pushing sample i onto the stack, the number of add
|
|
* operations we do is equal to the number of trailing 1 bits in i. This
|
|
* works provided the total number of samples is a power of two, which it
|
|
* always is for i965.
|
|
*
|
|
* For integer formats, we replace the add operations with average
|
|
* operations and skip the final division.
|
|
*/
|
|
nir_ssa_def *texture_data[5];
|
|
unsigned stack_depth = 0;
|
|
for (unsigned i = 0; i < tex_samples; ++i) {
|
|
assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
|
|
|
|
/* Push sample i onto the stack */
|
|
assert(stack_depth < ARRAY_SIZE(texture_data));
|
|
|
|
nir_ssa_def *ms_pos = nir_vec3(b, nir_channel(b, pos, 0),
|
|
nir_channel(b, pos, 1),
|
|
nir_imm_int(b, i));
|
|
texture_data[stack_depth++] = blorp_nir_txf_ms(b, v, ms_pos, mcs, dst_type);
|
|
|
|
if (i == 0 && tex_aux_usage == ISL_AUX_USAGE_MCS) {
|
|
/* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
|
|
* suggests an optimization:
|
|
*
|
|
* "A simple optimization with probable large return in
|
|
* performance is to compare the MCS value to zero (indicating
|
|
* all samples are on sample slice 0), and sample only from
|
|
* sample slice 0 using ld2dss if MCS is zero."
|
|
*
|
|
* Note that in the case where the MCS value is zero, sampling from
|
|
* sample slice 0 using ld2dss and sampling from sample 0 using
|
|
* ld2dms are equivalent (since all samples are on sample slice 0).
|
|
* Since we have already sampled from sample 0, all we need to do is
|
|
* skip the remaining fetches and averaging if MCS is zero.
|
|
*/
|
|
nir_ssa_def *mcs_zero =
|
|
nir_ieq(b, nir_channel(b, mcs, 0), nir_imm_int(b, 0));
|
|
if (tex_samples == 16) {
|
|
mcs_zero = nir_iand(b, mcs_zero,
|
|
nir_ieq(b, nir_channel(b, mcs, 1), nir_imm_int(b, 0)));
|
|
}
|
|
|
|
nir_if *if_stmt = nir_if_create(b->shader);
|
|
if_stmt->condition = nir_src_for_ssa(mcs_zero);
|
|
nir_cf_node_insert(b->cursor, &if_stmt->cf_node);
|
|
|
|
b->cursor = nir_after_cf_list(&if_stmt->then_list);
|
|
nir_store_var(b, color, texture_data[0], 0xf);
|
|
|
|
b->cursor = nir_after_cf_list(&if_stmt->else_list);
|
|
outer_if = if_stmt;
|
|
}
|
|
|
|
for (int j = 0; j < count_trailing_one_bits(i); j++) {
|
|
assert(stack_depth >= 2);
|
|
--stack_depth;
|
|
|
|
assert(dst_type == nir_type_float);
|
|
texture_data[stack_depth - 1] =
|
|
nir_fadd(b, texture_data[stack_depth - 1],
|
|
texture_data[stack_depth]);
|
|
}
|
|
}
|
|
|
|
/* We should have just 1 sample on the stack now. */
|
|
assert(stack_depth == 1);
|
|
|
|
texture_data[0] = nir_fmul(b, texture_data[0],
|
|
nir_imm_float(b, 1.0 / tex_samples));
|
|
|
|
nir_store_var(b, color, texture_data[0], 0xf);
|
|
|
|
if (outer_if)
|
|
b->cursor = nir_after_cf_node(&outer_if->cf_node);
|
|
|
|
return nir_load_var(b, color);
|
|
}
|
|
|
|
static inline nir_ssa_def *
|
|
nir_imm_vec2(nir_builder *build, float x, float y)
|
|
{
|
|
nir_const_value v;
|
|
|
|
memset(&v, 0, sizeof(v));
|
|
v.f32[0] = x;
|
|
v.f32[1] = y;
|
|
|
|
return nir_build_imm(build, 4, 32, v);
|
|
}
|
|
|
|
static nir_ssa_def *
|
|
blorp_nir_manual_blend_bilinear(nir_builder *b, nir_ssa_def *pos,
|
|
unsigned tex_samples,
|
|
const struct brw_blorp_blit_prog_key *key,
|
|
struct brw_blorp_blit_vars *v)
|
|
{
|
|
nir_ssa_def *pos_xy = nir_channels(b, pos, 0x3);
|
|
nir_ssa_def *rect_grid = nir_load_var(b, v->v_rect_grid);
|
|
nir_ssa_def *scale = nir_imm_vec2(b, key->x_scale, key->y_scale);
|
|
|
|
/* Translate coordinates to lay out the samples in a rectangular grid
|
|
* roughly corresponding to sample locations.
|
|
*/
|
|
pos_xy = nir_fmul(b, pos_xy, scale);
|
|
/* Adjust coordinates so that integers represent pixel centers rather
|
|
* than pixel edges.
|
|
*/
|
|
pos_xy = nir_fadd(b, pos_xy, nir_imm_float(b, -0.5));
|
|
/* Clamp the X, Y texture coordinates to properly handle the sampling of
|
|
* texels on texture edges.
|
|
*/
|
|
pos_xy = nir_fmin(b, nir_fmax(b, pos_xy, nir_imm_float(b, 0.0)),
|
|
nir_vec2(b, nir_channel(b, rect_grid, 0),
|
|
nir_channel(b, rect_grid, 1)));
|
|
|
|
/* Store the fractional parts to be used as bilinear interpolation
|
|
* coefficients.
|
|
*/
|
|
nir_ssa_def *frac_xy = nir_ffract(b, pos_xy);
|
|
/* Round the float coordinates down to nearest integer */
|
|
pos_xy = nir_fdiv(b, nir_ftrunc(b, pos_xy), scale);
|
|
|
|
nir_ssa_def *tex_data[4];
|
|
for (unsigned i = 0; i < 4; ++i) {
|
|
float sample_off_x = (float)(i & 0x1) / key->x_scale;
|
|
float sample_off_y = (float)((i >> 1) & 0x1) / key->y_scale;
|
|
nir_ssa_def *sample_off = nir_imm_vec2(b, sample_off_x, sample_off_y);
|
|
|
|
nir_ssa_def *sample_coords = nir_fadd(b, pos_xy, sample_off);
|
|
nir_ssa_def *sample_coords_int = nir_f2i(b, sample_coords);
|
|
|
|
/* The MCS value we fetch has to match up with the pixel that we're
|
|
* sampling from. Since we sample from different pixels in each
|
|
* iteration of this "for" loop, the call to mcs_fetch() should be
|
|
* here inside the loop after computing the pixel coordinates.
|
|
*/
|
|
nir_ssa_def *mcs = NULL;
|
|
if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
|
|
mcs = blorp_nir_txf_ms_mcs(b, v, sample_coords_int);
|
|
|
|
/* Compute sample index and map the sample index to a sample number.
|
|
* Sample index layout shows the numbering of slots in a rectangular
|
|
* grid of samples with in a pixel. Sample number layout shows the
|
|
* rectangular grid of samples roughly corresponding to the real sample
|
|
* locations with in a pixel.
|
|
* In case of 4x MSAA, layout of sample indices matches the layout of
|
|
* sample numbers:
|
|
* ---------
|
|
* | 0 | 1 |
|
|
* ---------
|
|
* | 2 | 3 |
|
|
* ---------
|
|
*
|
|
* In case of 8x MSAA the two layouts don't match.
|
|
* sample index layout : --------- sample number layout : ---------
|
|
* | 0 | 1 | | 3 | 7 |
|
|
* --------- ---------
|
|
* | 2 | 3 | | 5 | 0 |
|
|
* --------- ---------
|
|
* | 4 | 5 | | 1 | 2 |
|
|
* --------- ---------
|
|
* | 6 | 7 | | 4 | 6 |
|
|
* --------- ---------
|
|
*
|
|
* Fortunately, this can be done fairly easily as:
|
|
* S' = (0x17306425 >> (S * 4)) & 0xf
|
|
*
|
|
* In the case of 16x MSAA the two layouts don't match.
|
|
* Sample index layout: Sample number layout:
|
|
* --------------------- ---------------------
|
|
* | 0 | 1 | 2 | 3 | | 15 | 10 | 9 | 7 |
|
|
* --------------------- ---------------------
|
|
* | 4 | 5 | 6 | 7 | | 4 | 1 | 3 | 13 |
|
|
* --------------------- ---------------------
|
|
* | 8 | 9 | 10 | 11 | | 12 | 2 | 0 | 6 |
|
|
* --------------------- ---------------------
|
|
* | 12 | 13 | 14 | 15 | | 11 | 8 | 5 | 14 |
|
|
* --------------------- ---------------------
|
|
*
|
|
* This is equivalent to
|
|
* S' = (0xe58b602cd31479af >> (S * 4)) & 0xf
|
|
*/
|
|
nir_ssa_def *frac = nir_ffract(b, sample_coords);
|
|
nir_ssa_def *sample =
|
|
nir_fdot2(b, frac, nir_imm_vec2(b, key->x_scale,
|
|
key->x_scale * key->y_scale));
|
|
sample = nir_f2i(b, sample);
|
|
|
|
if (tex_samples == 8) {
|
|
sample = nir_iand(b, nir_ishr(b, nir_imm_int(b, 0x64210573),
|
|
nir_ishl(b, sample, nir_imm_int(b, 2))),
|
|
nir_imm_int(b, 0xf));
|
|
} else if (tex_samples == 16) {
|
|
nir_ssa_def *sample_low =
|
|
nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xd31479af),
|
|
nir_ishl(b, sample, nir_imm_int(b, 2))),
|
|
nir_imm_int(b, 0xf));
|
|
nir_ssa_def *sample_high =
|
|
nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xe58b602c),
|
|
nir_ishl(b, nir_iadd(b, sample,
|
|
nir_imm_int(b, -8)),
|
|
nir_imm_int(b, 2))),
|
|
nir_imm_int(b, 0xf));
|
|
|
|
sample = nir_bcsel(b, nir_ilt(b, sample, nir_imm_int(b, 8)),
|
|
sample_low, sample_high);
|
|
}
|
|
nir_ssa_def *pos_ms = nir_vec3(b, nir_channel(b, sample_coords_int, 0),
|
|
nir_channel(b, sample_coords_int, 1),
|
|
sample);
|
|
tex_data[i] = blorp_nir_txf_ms(b, v, pos_ms, mcs, key->texture_data_type);
|
|
}
|
|
|
|
nir_ssa_def *frac_x = nir_channel(b, frac_xy, 0);
|
|
nir_ssa_def *frac_y = nir_channel(b, frac_xy, 1);
|
|
return nir_flrp(b, nir_flrp(b, tex_data[0], tex_data[1], frac_x),
|
|
nir_flrp(b, tex_data[2], tex_data[3], frac_x),
|
|
frac_y);
|
|
}
|
|
|
|
/**
|
|
* Generator for WM programs used in BLORP blits.
|
|
*
|
|
* The bulk of the work done by the WM program is to wrap and unwrap the
|
|
* coordinate transformations used by the hardware to store surfaces in
|
|
* memory. The hardware transforms a pixel location (X, Y, S) (where S is the
|
|
* sample index for a multisampled surface) to a memory offset by the
|
|
* following formulas:
|
|
*
|
|
* offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
|
|
* (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
|
|
*
|
|
* For a single-sampled surface, or for a multisampled surface using
|
|
* INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
|
|
* function:
|
|
*
|
|
* encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
|
|
* decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
|
|
* encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
|
|
* decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
|
|
*
|
|
* For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
|
|
* embeds the sample number into bit 1 of the X and Y coordinates:
|
|
*
|
|
* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
|
|
* where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
|
|
* Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
|
|
* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
|
|
* where X' = (X & ~0b11) >> 1 | (X & 0b1)
|
|
* Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
|
|
* S = (Y & 0b10) | (X & 0b10) >> 1
|
|
*
|
|
* For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
|
|
* embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
|
|
* the Y coordinate:
|
|
*
|
|
* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
|
|
* where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
|
|
* Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
|
|
* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
|
|
* where X' = (X & ~0b111) >> 2 | (X & 0b1)
|
|
* Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
|
|
* S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
|
|
*
|
|
* For X tiling, tile() combines together the low-order bits of the X and Y
|
|
* coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
|
|
* bytes wide and 8 rows high:
|
|
*
|
|
* tile(x_tiled, X, Y, S) = A
|
|
* where A = tile_num << 12 | offset
|
|
* tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
|
|
* offset = (Y' & 0b111) << 9
|
|
* | (X & 0b111111111)
|
|
* X' = X * cpp
|
|
* Y' = Y + S * qpitch
|
|
* detile(x_tiled, A) = (X, Y, S)
|
|
* where X = X' / cpp
|
|
* Y = Y' % qpitch
|
|
* S = Y' / qpitch
|
|
* Y' = (tile_num / tile_pitch) << 3
|
|
* | (A & 0b111000000000) >> 9
|
|
* X' = (tile_num % tile_pitch) << 9
|
|
* | (A & 0b111111111)
|
|
*
|
|
* (In all tiling formulas, cpp is the number of bytes occupied by a single
|
|
* sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
|
|
* to fill the width of the surface, and qpitch is the spacing (in rows)
|
|
* between array slices).
|
|
*
|
|
* For Y tiling, tile() combines together the low-order bits of the X and Y
|
|
* coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
|
|
* bytes wide and 32 rows high:
|
|
*
|
|
* tile(y_tiled, X, Y, S) = A
|
|
* where A = tile_num << 12 | offset
|
|
* tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
|
|
* offset = (X' & 0b1110000) << 5
|
|
* | (Y' & 0b11111) << 4
|
|
* | (X' & 0b1111)
|
|
* X' = X * cpp
|
|
* Y' = Y + S * qpitch
|
|
* detile(y_tiled, A) = (X, Y, S)
|
|
* where X = X' / cpp
|
|
* Y = Y' % qpitch
|
|
* S = Y' / qpitch
|
|
* Y' = (tile_num / tile_pitch) << 5
|
|
* | (A & 0b111110000) >> 4
|
|
* X' = (tile_num % tile_pitch) << 7
|
|
* | (A & 0b111000000000) >> 5
|
|
* | (A & 0b1111)
|
|
*
|
|
* For W tiling, tile() combines together the low-order bits of the X and Y
|
|
* coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
|
|
* bytes wide and 64 rows high (note that W tiling is only used for stencil
|
|
* buffers, which always have cpp = 1 and S=0):
|
|
*
|
|
* tile(w_tiled, X, Y, S) = A
|
|
* where A = tile_num << 12 | offset
|
|
* tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
|
|
* offset = (X' & 0b111000) << 6
|
|
* | (Y' & 0b111100) << 3
|
|
* | (X' & 0b100) << 2
|
|
* | (Y' & 0b10) << 2
|
|
* | (X' & 0b10) << 1
|
|
* | (Y' & 0b1) << 1
|
|
* | (X' & 0b1)
|
|
* X' = X * cpp = X
|
|
* Y' = Y + S * qpitch
|
|
* detile(w_tiled, A) = (X, Y, S)
|
|
* where X = X' / cpp = X'
|
|
* Y = Y' % qpitch = Y'
|
|
* S = Y / qpitch = 0
|
|
* Y' = (tile_num / tile_pitch) << 6
|
|
* | (A & 0b111100000) >> 3
|
|
* | (A & 0b1000) >> 2
|
|
* | (A & 0b10) >> 1
|
|
* X' = (tile_num % tile_pitch) << 6
|
|
* | (A & 0b111000000000) >> 6
|
|
* | (A & 0b10000) >> 2
|
|
* | (A & 0b100) >> 1
|
|
* | (A & 0b1)
|
|
*
|
|
* Finally, for a non-tiled surface, tile() simply combines together the X and
|
|
* Y coordinates in the natural way:
|
|
*
|
|
* tile(untiled, X, Y, S) = A
|
|
* where A = Y * pitch + X'
|
|
* X' = X * cpp
|
|
* Y' = Y + S * qpitch
|
|
* detile(untiled, A) = (X, Y, S)
|
|
* where X = X' / cpp
|
|
* Y = Y' % qpitch
|
|
* S = Y' / qpitch
|
|
* X' = A % pitch
|
|
* Y' = A / pitch
|
|
*
|
|
* (In these formulas, pitch is the number of bytes occupied by a single row
|
|
* of samples).
|
|
*/
|
|
static nir_shader *
|
|
brw_blorp_build_nir_shader(struct blorp_context *blorp,
|
|
const struct brw_blorp_blit_prog_key *key)
|
|
{
|
|
const struct gen_device_info *devinfo = blorp->isl_dev->info;
|
|
nir_ssa_def *src_pos, *dst_pos, *color;
|
|
|
|
/* Sanity checks */
|
|
if (key->dst_tiled_w && key->rt_samples > 1) {
|
|
/* If the destination image is W tiled and multisampled, then the thread
|
|
* must be dispatched once per sample, not once per pixel. This is
|
|
* necessary because after conversion between W and Y tiling, there's no
|
|
* guarantee that all samples corresponding to a single pixel will still
|
|
* be together.
|
|
*/
|
|
assert(key->persample_msaa_dispatch);
|
|
}
|
|
|
|
if (key->blend) {
|
|
/* We are blending, which means we won't have an opportunity to
|
|
* translate the tiling and sample count for the texture surface. So
|
|
* the surface state for the texture must be configured with the correct
|
|
* tiling and sample count.
|
|
*/
|
|
assert(!key->src_tiled_w);
|
|
assert(key->tex_samples == key->src_samples);
|
|
assert(key->tex_layout == key->src_layout);
|
|
assert(key->tex_samples > 0);
|
|
}
|
|
|
|
if (key->persample_msaa_dispatch) {
|
|
/* It only makes sense to do persample dispatch if the render target is
|
|
* configured as multisampled.
|
|
*/
|
|
assert(key->rt_samples > 0);
|
|
}
|
|
|
|
/* Make sure layout is consistent with sample count */
|
|
assert((key->tex_layout == ISL_MSAA_LAYOUT_NONE) ==
|
|
(key->tex_samples <= 1));
|
|
assert((key->rt_layout == ISL_MSAA_LAYOUT_NONE) ==
|
|
(key->rt_samples <= 1));
|
|
assert((key->src_layout == ISL_MSAA_LAYOUT_NONE) ==
|
|
(key->src_samples <= 1));
|
|
assert((key->dst_layout == ISL_MSAA_LAYOUT_NONE) ==
|
|
(key->dst_samples <= 1));
|
|
|
|
nir_builder b;
|
|
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
|
|
|
|
struct brw_blorp_blit_vars v;
|
|
brw_blorp_blit_vars_init(&b, &v, key);
|
|
|
|
dst_pos = blorp_blit_get_frag_coords(&b, key, &v);
|
|
|
|
/* Render target and texture hardware don't support W tiling until Gen8. */
|
|
const bool rt_tiled_w = false;
|
|
const bool tex_tiled_w = devinfo->gen >= 8 && key->src_tiled_w;
|
|
|
|
/* The address that data will be written to is determined by the
|
|
* coordinates supplied to the WM thread and the tiling and sample count of
|
|
* the render target, according to the formula:
|
|
*
|
|
* (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
|
|
*
|
|
* If the actual tiling and sample count of the destination surface are not
|
|
* the same as the configuration of the render target, then these
|
|
* coordinates are wrong and we have to adjust them to compensate for the
|
|
* difference.
|
|
*/
|
|
if (rt_tiled_w != key->dst_tiled_w ||
|
|
key->rt_samples != key->dst_samples ||
|
|
key->rt_layout != key->dst_layout) {
|
|
dst_pos = blorp_nir_encode_msaa(&b, dst_pos, key->rt_samples,
|
|
key->rt_layout);
|
|
/* Now (X, Y, S) = detile(rt_tiling, offset) */
|
|
if (rt_tiled_w != key->dst_tiled_w)
|
|
dst_pos = blorp_nir_retile_y_to_w(&b, dst_pos);
|
|
/* Now (X, Y, S) = detile(rt_tiling, offset) */
|
|
dst_pos = blorp_nir_decode_msaa(&b, dst_pos, key->dst_samples,
|
|
key->dst_layout);
|
|
}
|
|
|
|
/* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
|
|
*
|
|
* That is: X, Y and S now contain the true coordinates and sample index of
|
|
* the data that the WM thread should output.
|
|
*
|
|
* If we need to kill pixels that are outside the destination rectangle,
|
|
* now is the time to do it.
|
|
*/
|
|
if (key->use_kill) {
|
|
assert(!(key->blend && key->blit_scaled));
|
|
blorp_nir_discard_if_outside_rect(&b, dst_pos, &v);
|
|
}
|
|
|
|
src_pos = blorp_blit_apply_transform(&b, nir_i2f(&b, dst_pos), &v);
|
|
if (dst_pos->num_components == 3) {
|
|
/* The sample coordinate is an integer that we want left alone but
|
|
* blorp_blit_apply_transform() blindly applies the transform to all
|
|
* three coordinates. Grab the original sample index.
|
|
*/
|
|
src_pos = nir_vec3(&b, nir_channel(&b, src_pos, 0),
|
|
nir_channel(&b, src_pos, 1),
|
|
nir_channel(&b, dst_pos, 2));
|
|
}
|
|
|
|
/* If the source image is not multisampled, then we want to fetch sample
|
|
* number 0, because that's the only sample there is.
|
|
*/
|
|
if (key->src_samples == 1)
|
|
src_pos = nir_channels(&b, src_pos, 0x3);
|
|
|
|
/* X, Y, and S are now the coordinates of the pixel in the source image
|
|
* that we want to texture from. Exception: if we are blending, then S is
|
|
* irrelevant, because we are going to fetch all samples.
|
|
*/
|
|
if (key->blend && !key->blit_scaled) {
|
|
/* Resolves (effecively) use texelFetch, so we need integers and we
|
|
* don't care about the sample index if we got one.
|
|
*/
|
|
src_pos = nir_f2i(&b, nir_channels(&b, src_pos, 0x3));
|
|
|
|
if (devinfo->gen == 6) {
|
|
/* Because gen6 only supports 4x interleved MSAA, we can do all the
|
|
* blending we need with a single linear-interpolated texture lookup
|
|
* at the center of the sample. The texture coordinates to be odd
|
|
* integers so that they correspond to the center of a 2x2 block
|
|
* representing the four samples that maxe up a pixel. So we need
|
|
* to multiply our X and Y coordinates each by 2 and then add 1.
|
|
*/
|
|
src_pos = nir_ishl(&b, src_pos, nir_imm_int(&b, 1));
|
|
src_pos = nir_iadd(&b, src_pos, nir_imm_int(&b, 1));
|
|
src_pos = nir_i2f(&b, src_pos);
|
|
color = blorp_nir_tex(&b, &v, src_pos, key->texture_data_type);
|
|
} else {
|
|
/* Gen7+ hardware doesn't automaticaly blend. */
|
|
color = blorp_nir_manual_blend_average(&b, &v, src_pos, key->src_samples,
|
|
key->tex_aux_usage,
|
|
key->texture_data_type);
|
|
}
|
|
} else if (key->blend && key->blit_scaled) {
|
|
assert(!key->use_kill);
|
|
color = blorp_nir_manual_blend_bilinear(&b, src_pos, key->src_samples, key, &v);
|
|
} else {
|
|
if (key->bilinear_filter) {
|
|
color = blorp_nir_tex(&b, &v, src_pos, key->texture_data_type);
|
|
} else {
|
|
/* We're going to use texelFetch, so we need integers */
|
|
if (src_pos->num_components == 2) {
|
|
src_pos = nir_f2i(&b, src_pos);
|
|
} else {
|
|
assert(src_pos->num_components == 3);
|
|
src_pos = nir_vec3(&b, nir_channel(&b, nir_f2i(&b, src_pos), 0),
|
|
nir_channel(&b, nir_f2i(&b, src_pos), 1),
|
|
nir_channel(&b, src_pos, 2));
|
|
}
|
|
|
|
/* We aren't blending, which means we just want to fetch a single
|
|
* sample from the source surface. The address that we want to fetch
|
|
* from is related to the X, Y and S values according to the formula:
|
|
*
|
|
* (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
|
|
*
|
|
* If the actual tiling and sample count of the source surface are
|
|
* not the same as the configuration of the texture, then we need to
|
|
* adjust the coordinates to compensate for the difference.
|
|
*/
|
|
if (tex_tiled_w != key->src_tiled_w ||
|
|
key->tex_samples != key->src_samples ||
|
|
key->tex_layout != key->src_layout) {
|
|
src_pos = blorp_nir_encode_msaa(&b, src_pos, key->src_samples,
|
|
key->src_layout);
|
|
/* Now (X, Y, S) = detile(src_tiling, offset) */
|
|
if (tex_tiled_w != key->src_tiled_w)
|
|
src_pos = blorp_nir_retile_w_to_y(&b, src_pos);
|
|
/* Now (X, Y, S) = detile(tex_tiling, offset) */
|
|
src_pos = blorp_nir_decode_msaa(&b, src_pos, key->tex_samples,
|
|
key->tex_layout);
|
|
}
|
|
|
|
/* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
|
|
*
|
|
* In other words: X, Y, and S now contain values which, when passed to
|
|
* the texturing unit, will cause data to be read from the correct
|
|
* memory location. So we can fetch the texel now.
|
|
*/
|
|
if (key->src_samples == 1) {
|
|
color = blorp_nir_txf(&b, &v, src_pos, key->texture_data_type);
|
|
} else {
|
|
nir_ssa_def *mcs = NULL;
|
|
if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
|
|
mcs = blorp_nir_txf_ms_mcs(&b, &v, src_pos);
|
|
|
|
color = blorp_nir_txf_ms(&b, &v, src_pos, mcs, key->texture_data_type);
|
|
}
|
|
}
|
|
}
|
|
|
|
nir_store_var(&b, v.color_out, color, 0xf);
|
|
|
|
return b.shader;
|
|
}
|
|
|
|
static void
|
|
brw_blorp_get_blit_kernel(struct blorp_context *blorp,
|
|
struct blorp_params *params,
|
|
const struct brw_blorp_blit_prog_key *prog_key)
|
|
{
|
|
if (blorp->lookup_shader(blorp, prog_key, sizeof(*prog_key),
|
|
¶ms->wm_prog_kernel, ¶ms->wm_prog_data))
|
|
return;
|
|
|
|
const unsigned *program;
|
|
unsigned program_size;
|
|
struct brw_blorp_prog_data prog_data;
|
|
|
|
/* Try and compile with NIR first. If that fails, fall back to the old
|
|
* method of building shaders manually.
|
|
*/
|
|
nir_shader *nir = brw_blorp_build_nir_shader(blorp, prog_key);
|
|
struct brw_wm_prog_key wm_key;
|
|
brw_blorp_init_wm_prog_key(&wm_key);
|
|
wm_key.tex.compressed_multisample_layout_mask =
|
|
prog_key->tex_aux_usage == ISL_AUX_USAGE_MCS;
|
|
wm_key.tex.msaa_16 = prog_key->tex_samples == 16;
|
|
wm_key.multisample_fbo = prog_key->rt_samples > 1;
|
|
|
|
program = brw_blorp_compile_nir_shader(blorp, nir, &wm_key, false,
|
|
&prog_data, &program_size);
|
|
|
|
blorp->upload_shader(blorp, prog_key, sizeof(*prog_key),
|
|
program, program_size,
|
|
&prog_data, sizeof(prog_data),
|
|
¶ms->wm_prog_kernel, ¶ms->wm_prog_data);
|
|
}
|
|
|
|
static void
|
|
brw_blorp_setup_coord_transform(struct brw_blorp_coord_transform *xform,
|
|
GLfloat src0, GLfloat src1,
|
|
GLfloat dst0, GLfloat dst1,
|
|
bool mirror)
|
|
{
|
|
float scale = (src1 - src0) / (dst1 - dst0);
|
|
if (!mirror) {
|
|
/* When not mirroring a coordinate (say, X), we need:
|
|
* src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale
|
|
* Therefore:
|
|
* src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale
|
|
*
|
|
* blorp program uses "round toward zero" to convert the
|
|
* transformed floating point coordinates to integer coordinates,
|
|
* whereas the behaviour we actually want is "round to nearest",
|
|
* so 0.5 provides the necessary correction.
|
|
*/
|
|
xform->multiplier = scale;
|
|
xform->offset = src0 + (-dst0 + 0.5f) * scale;
|
|
} else {
|
|
/* When mirroring X we need:
|
|
* src_x - src_x0 = dst_x1 - dst_x - 0.5
|
|
* Therefore:
|
|
* src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale
|
|
*/
|
|
xform->multiplier = -scale;
|
|
xform->offset = src0 + (dst1 - 0.5f) * scale;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Convert an swizzle enumeration (i.e. SWIZZLE_X) to one of the Gen7.5+
|
|
* "Shader Channel Select" enumerations (i.e. HSW_SCS_RED). The mappings are
|
|
*
|
|
* SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W, SWIZZLE_ZERO, SWIZZLE_ONE
|
|
* 0 1 2 3 4 5
|
|
* 4 5 6 7 0 1
|
|
* SCS_RED, SCS_GREEN, SCS_BLUE, SCS_ALPHA, SCS_ZERO, SCS_ONE
|
|
*
|
|
* which is simply adding 4 then modding by 8 (or anding with 7).
|
|
*
|
|
* We then may need to apply workarounds for textureGather hardware bugs.
|
|
*/
|
|
static enum isl_channel_select
|
|
swizzle_to_scs(GLenum swizzle)
|
|
{
|
|
return (enum isl_channel_select)((swizzle + 4) & 7);
|
|
}
|
|
|
|
static void
|
|
surf_convert_to_single_slice(const struct isl_device *isl_dev,
|
|
struct brw_blorp_surface_info *info)
|
|
{
|
|
/* Just bail if we have nothing to do. */
|
|
if (info->surf.dim == ISL_SURF_DIM_2D &&
|
|
info->view.base_level == 0 && info->view.base_array_layer == 0 &&
|
|
info->surf.levels == 0 && info->surf.logical_level0_px.array_len == 0)
|
|
return;
|
|
|
|
uint32_t x_offset_sa, y_offset_sa;
|
|
isl_surf_get_image_offset_sa(&info->surf, info->view.base_level,
|
|
info->view.base_array_layer, 0,
|
|
&x_offset_sa, &y_offset_sa);
|
|
|
|
uint32_t byte_offset;
|
|
isl_tiling_get_intratile_offset_sa(isl_dev, info->surf.tiling,
|
|
info->view.format, info->surf.row_pitch,
|
|
x_offset_sa, y_offset_sa,
|
|
&byte_offset,
|
|
&info->tile_x_sa, &info->tile_y_sa);
|
|
info->addr.offset += byte_offset;
|
|
|
|
/* TODO: Once this file gets converted to C, we shouls just use designated
|
|
* initializers.
|
|
*/
|
|
struct isl_surf_init_info init_info = { 0, };
|
|
|
|
init_info.dim = ISL_SURF_DIM_2D;
|
|
init_info.format = ISL_FORMAT_R8_UINT;
|
|
init_info.width =
|
|
minify(info->surf.logical_level0_px.width, info->view.base_level);
|
|
init_info.height =
|
|
minify(info->surf.logical_level0_px.height, info->view.base_level);
|
|
init_info.depth = 1;
|
|
init_info.levels = 1;
|
|
init_info.array_len = 1;
|
|
init_info.samples = info->surf.samples;
|
|
init_info.min_pitch = info->surf.row_pitch;
|
|
init_info.usage = info->surf.usage;
|
|
init_info.tiling_flags = 1 << info->surf.tiling;
|
|
|
|
isl_surf_init_s(isl_dev, &info->surf, &init_info);
|
|
assert(info->surf.row_pitch == init_info.min_pitch);
|
|
|
|
/* The view is also different now. */
|
|
info->view.base_level = 0;
|
|
info->view.levels = 1;
|
|
info->view.base_array_layer = 0;
|
|
info->view.array_len = 1;
|
|
}
|
|
|
|
static void
|
|
surf_fake_interleaved_msaa(const struct isl_device *isl_dev,
|
|
struct brw_blorp_surface_info *info)
|
|
{
|
|
assert(info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
|
|
|
|
/* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
|
|
surf_convert_to_single_slice(isl_dev, info);
|
|
|
|
info->surf.logical_level0_px = info->surf.phys_level0_sa;
|
|
info->surf.samples = 1;
|
|
info->surf.msaa_layout = ISL_MSAA_LAYOUT_NONE;
|
|
}
|
|
|
|
static void
|
|
surf_retile_w_to_y(const struct isl_device *isl_dev,
|
|
struct brw_blorp_surface_info *info)
|
|
{
|
|
assert(info->surf.tiling == ISL_TILING_W);
|
|
|
|
/* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
|
|
surf_convert_to_single_slice(isl_dev, info);
|
|
|
|
/* On gen7+, we don't have interleaved multisampling for color render
|
|
* targets so we have to fake it.
|
|
*
|
|
* TODO: Are we sure we don't also need to fake it on gen6?
|
|
*/
|
|
if (isl_dev->info->gen > 6 &&
|
|
info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
|
|
info->surf.logical_level0_px = info->surf.phys_level0_sa;
|
|
info->surf.samples = 1;
|
|
info->surf.msaa_layout = ISL_MSAA_LAYOUT_NONE;
|
|
}
|
|
|
|
if (isl_dev->info->gen == 6) {
|
|
/* Gen6 stencil buffers have a very large alignment coming in from the
|
|
* miptree. It's out-of-bounds for what the surface state can handle.
|
|
* Since we have a single layer and level, it doesn't really matter as
|
|
* long as we don't pass a bogus value into isl_surf_fill_state().
|
|
*/
|
|
info->surf.image_alignment_el = isl_extent3d(4, 2, 1);
|
|
}
|
|
|
|
/* Now that we've converted everything to a simple 2-D surface with only
|
|
* one miplevel, we can go about retiling it.
|
|
*/
|
|
const unsigned x_align = 8, y_align = info->surf.samples != 0 ? 8 : 4;
|
|
info->surf.tiling = ISL_TILING_Y0;
|
|
info->surf.logical_level0_px.width =
|
|
ALIGN(info->surf.logical_level0_px.width, x_align) * 2;
|
|
info->surf.logical_level0_px.height =
|
|
ALIGN(info->surf.logical_level0_px.height, y_align) / 2;
|
|
info->tile_x_sa *= 2;
|
|
info->tile_y_sa /= 2;
|
|
}
|
|
|
|
void
|
|
blorp_blit(struct blorp_batch *batch,
|
|
const struct blorp_surf *src_surf,
|
|
unsigned src_level, unsigned src_layer,
|
|
enum isl_format src_format, int src_swizzle,
|
|
const struct blorp_surf *dst_surf,
|
|
unsigned dst_level, unsigned dst_layer,
|
|
enum isl_format dst_format,
|
|
float src_x0, float src_y0,
|
|
float src_x1, float src_y1,
|
|
float dst_x0, float dst_y0,
|
|
float dst_x1, float dst_y1,
|
|
GLenum filter, bool mirror_x, bool mirror_y)
|
|
{
|
|
const struct gen_device_info *devinfo = batch->blorp->isl_dev->info;
|
|
|
|
struct blorp_params params;
|
|
blorp_params_init(¶ms);
|
|
|
|
brw_blorp_surface_info_init(batch->blorp, ¶ms.src, src_surf, src_level,
|
|
src_layer, src_format, false);
|
|
brw_blorp_surface_info_init(batch->blorp, ¶ms.dst, dst_surf, dst_level,
|
|
dst_layer, dst_format, true);
|
|
|
|
struct brw_blorp_blit_prog_key wm_prog_key;
|
|
memset(&wm_prog_key, 0, sizeof(wm_prog_key));
|
|
|
|
if (isl_format_has_sint_channel(params.src.view.format)) {
|
|
wm_prog_key.texture_data_type = nir_type_int;
|
|
} else if (isl_format_has_uint_channel(params.src.view.format)) {
|
|
wm_prog_key.texture_data_type = nir_type_uint;
|
|
} else {
|
|
wm_prog_key.texture_data_type = nir_type_float;
|
|
}
|
|
|
|
/* Scaled blitting or not. */
|
|
wm_prog_key.blit_scaled =
|
|
((dst_x1 - dst_x0) == (src_x1 - src_x0) &&
|
|
(dst_y1 - dst_y0) == (src_y1 - src_y0)) ? false : true;
|
|
|
|
/* Scaling factors used for bilinear filtering in multisample scaled
|
|
* blits.
|
|
*/
|
|
if (params.src.surf.samples == 16)
|
|
wm_prog_key.x_scale = 4.0f;
|
|
else
|
|
wm_prog_key.x_scale = 2.0f;
|
|
wm_prog_key.y_scale = params.src.surf.samples / wm_prog_key.x_scale;
|
|
|
|
if (filter == GL_LINEAR &&
|
|
params.src.surf.samples <= 1 && params.dst.surf.samples <= 1)
|
|
wm_prog_key.bilinear_filter = true;
|
|
|
|
if ((params.src.surf.usage & ISL_SURF_USAGE_DEPTH_BIT) == 0 &&
|
|
(params.src.surf.usage & ISL_SURF_USAGE_STENCIL_BIT) == 0 &&
|
|
!isl_format_has_int_channel(params.src.surf.format) &&
|
|
params.src.surf.samples > 1 && params.dst.surf.samples <= 1) {
|
|
/* We are downsampling a non-integer color buffer, so blend.
|
|
*
|
|
* Regarding integer color buffers, the OpenGL ES 3.2 spec says:
|
|
*
|
|
* "If the source formats are integer types or stencil values, a
|
|
* single sample's value is selected for each pixel."
|
|
*
|
|
* This implies we should not blend in that case.
|
|
*/
|
|
wm_prog_key.blend = true;
|
|
}
|
|
|
|
/* src_samples and dst_samples are the true sample counts */
|
|
wm_prog_key.src_samples = params.src.surf.samples;
|
|
wm_prog_key.dst_samples = params.dst.surf.samples;
|
|
|
|
wm_prog_key.tex_aux_usage = params.src.aux_usage;
|
|
|
|
/* src_layout and dst_layout indicate the true MSAA layout used by src and
|
|
* dst.
|
|
*/
|
|
wm_prog_key.src_layout = params.src.surf.msaa_layout;
|
|
wm_prog_key.dst_layout = params.dst.surf.msaa_layout;
|
|
|
|
/* Round floating point values to nearest integer to avoid "off by one texel"
|
|
* kind of errors when blitting.
|
|
*/
|
|
params.x0 = params.wm_inputs.discard_rect.x0 = roundf(dst_x0);
|
|
params.y0 = params.wm_inputs.discard_rect.y0 = roundf(dst_y0);
|
|
params.x1 = params.wm_inputs.discard_rect.x1 = roundf(dst_x1);
|
|
params.y1 = params.wm_inputs.discard_rect.y1 = roundf(dst_y1);
|
|
|
|
params.wm_inputs.rect_grid.x1 =
|
|
minify(params.src.surf.logical_level0_px.width, src_level) *
|
|
wm_prog_key.x_scale - 1.0f;
|
|
params.wm_inputs.rect_grid.y1 =
|
|
minify(params.src.surf.logical_level0_px.height, src_level) *
|
|
wm_prog_key.y_scale - 1.0f;
|
|
|
|
brw_blorp_setup_coord_transform(¶ms.wm_inputs.coord_transform[0],
|
|
src_x0, src_x1, dst_x0, dst_x1, mirror_x);
|
|
brw_blorp_setup_coord_transform(¶ms.wm_inputs.coord_transform[1],
|
|
src_y0, src_y1, dst_y0, dst_y1, mirror_y);
|
|
|
|
/* For some texture types, we need to pass the layer through the sampler. */
|
|
params.wm_inputs.src_z = params.src.z_offset;
|
|
|
|
if (devinfo->gen > 6 &&
|
|
params.dst.surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
|
|
assert(params.dst.surf.samples > 1);
|
|
|
|
/* We must expand the rectangle we send through the rendering pipeline,
|
|
* to account for the fact that we are mapping the destination region as
|
|
* single-sampled when it is in fact multisampled. We must also align
|
|
* it to a multiple of the multisampling pattern, because the
|
|
* differences between multisampled and single-sampled surface formats
|
|
* will mean that pixels are scrambled within the multisampling pattern.
|
|
* TODO: what if this makes the coordinates too large?
|
|
*
|
|
* Note: this only works if the destination surface uses the IMS layout.
|
|
* If it's UMS, then we have no choice but to set up the rendering
|
|
* pipeline as multisampled.
|
|
*/
|
|
switch (params.dst.surf.samples) {
|
|
case 2:
|
|
params.x0 = ROUND_DOWN_TO(params.x0 * 2, 4);
|
|
params.y0 = ROUND_DOWN_TO(params.y0, 4);
|
|
params.x1 = ALIGN(params.x1 * 2, 4);
|
|
params.y1 = ALIGN(params.y1, 4);
|
|
break;
|
|
case 4:
|
|
params.x0 = ROUND_DOWN_TO(params.x0 * 2, 4);
|
|
params.y0 = ROUND_DOWN_TO(params.y0 * 2, 4);
|
|
params.x1 = ALIGN(params.x1 * 2, 4);
|
|
params.y1 = ALIGN(params.y1 * 2, 4);
|
|
break;
|
|
case 8:
|
|
params.x0 = ROUND_DOWN_TO(params.x0 * 4, 8);
|
|
params.y0 = ROUND_DOWN_TO(params.y0 * 2, 4);
|
|
params.x1 = ALIGN(params.x1 * 4, 8);
|
|
params.y1 = ALIGN(params.y1 * 2, 4);
|
|
break;
|
|
case 16:
|
|
params.x0 = ROUND_DOWN_TO(params.x0 * 4, 8);
|
|
params.y0 = ROUND_DOWN_TO(params.y0 * 4, 8);
|
|
params.x1 = ALIGN(params.x1 * 4, 8);
|
|
params.y1 = ALIGN(params.y1 * 4, 8);
|
|
break;
|
|
default:
|
|
unreachable("Unrecognized sample count in brw_blorp_blit_params ctor");
|
|
}
|
|
|
|
surf_fake_interleaved_msaa(batch->blorp->isl_dev, ¶ms.dst);
|
|
|
|
wm_prog_key.use_kill = true;
|
|
}
|
|
|
|
if (params.dst.surf.tiling == ISL_TILING_W) {
|
|
/* We must modify the rectangle we send through the rendering pipeline
|
|
* (and the size and x/y offset of the destination surface), to account
|
|
* for the fact that we are mapping it as Y-tiled when it is in fact
|
|
* W-tiled.
|
|
*
|
|
* Both Y tiling and W tiling can be understood as organizations of
|
|
* 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
|
|
* is different, but the layout of the 32-byte sub-tiles within the 4k
|
|
* tile is the same (8 sub-tiles across by 16 sub-tiles down, in
|
|
* column-major order). In Y tiling, the sub-tiles are 16 bytes wide
|
|
* and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
|
|
*
|
|
* Therefore, to account for the layout differences within the 32-byte
|
|
* sub-tiles, we must expand the rectangle so the X coordinates of its
|
|
* edges are multiples of 8 (the W sub-tile width), and its Y
|
|
* coordinates of its edges are multiples of 4 (the W sub-tile height).
|
|
* Then we need to scale the X and Y coordinates of the rectangle to
|
|
* account for the differences in aspect ratio between the Y and W
|
|
* sub-tiles. We need to modify the layer width and height similarly.
|
|
*
|
|
* A correction needs to be applied when MSAA is in use: since
|
|
* INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
|
|
* we need to align the Y coordinates to multiples of 8, so that when
|
|
* they are divided by two they are still multiples of 4.
|
|
*
|
|
* Note: Since the x/y offset of the surface will be applied using the
|
|
* SURFACE_STATE command packet, it will be invisible to the swizzling
|
|
* code in the shader; therefore it needs to be in a multiple of the
|
|
* 32-byte sub-tile size. Fortunately it is, since the sub-tile is 8
|
|
* pixels wide and 4 pixels high (when viewed as a W-tiled stencil
|
|
* buffer), and the miplevel alignment used for stencil buffers is 8
|
|
* pixels horizontally and either 4 or 8 pixels vertically (see
|
|
* intel_horizontal_texture_alignment_unit() and
|
|
* intel_vertical_texture_alignment_unit()).
|
|
*
|
|
* Note: Also, since the SURFACE_STATE command packet can only apply
|
|
* offsets that are multiples of 4 pixels horizontally and 2 pixels
|
|
* vertically, it is important that the offsets will be multiples of
|
|
* these sizes after they are converted into Y-tiled coordinates.
|
|
* Fortunately they will be, since we know from above that the offsets
|
|
* are a multiple of the 32-byte sub-tile size, and in Y-tiled
|
|
* coordinates the sub-tile is 16 pixels wide and 2 pixels high.
|
|
*
|
|
* TODO: what if this makes the coordinates (or the texture size) too
|
|
* large?
|
|
*/
|
|
const unsigned x_align = 8, y_align = params.dst.surf.samples != 0 ? 8 : 4;
|
|
params.x0 = ROUND_DOWN_TO(params.x0, x_align) * 2;
|
|
params.y0 = ROUND_DOWN_TO(params.y0, y_align) / 2;
|
|
params.x1 = ALIGN(params.x1, x_align) * 2;
|
|
params.y1 = ALIGN(params.y1, y_align) / 2;
|
|
|
|
/* Retile the surface to Y-tiled */
|
|
surf_retile_w_to_y(batch->blorp->isl_dev, ¶ms.dst);
|
|
|
|
wm_prog_key.dst_tiled_w = true;
|
|
wm_prog_key.use_kill = true;
|
|
|
|
if (params.dst.surf.samples > 1) {
|
|
/* If the destination surface is a W-tiled multisampled stencil
|
|
* buffer that we're mapping as Y tiled, then we need to arrange for
|
|
* the WM program to run once per sample rather than once per pixel,
|
|
* because the memory layout of related samples doesn't match between
|
|
* W and Y tiling.
|
|
*/
|
|
wm_prog_key.persample_msaa_dispatch = true;
|
|
}
|
|
}
|
|
|
|
if (devinfo->gen < 8 && params.src.surf.tiling == ISL_TILING_W) {
|
|
/* On Haswell and earlier, we have to fake W-tiled sources as Y-tiled.
|
|
* Broadwell adds support for sampling from stencil.
|
|
*
|
|
* See the comments above concerning x/y offset alignment for the
|
|
* destination surface.
|
|
*
|
|
* TODO: what if this makes the texture size too large?
|
|
*/
|
|
surf_retile_w_to_y(batch->blorp->isl_dev, ¶ms.src);
|
|
|
|
wm_prog_key.src_tiled_w = true;
|
|
}
|
|
|
|
/* tex_samples and rt_samples are the sample counts that are set up in
|
|
* SURFACE_STATE.
|
|
*/
|
|
wm_prog_key.tex_samples = params.src.surf.samples;
|
|
wm_prog_key.rt_samples = params.dst.surf.samples;
|
|
|
|
/* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
|
|
* use to access the source and destination surfaces.
|
|
*/
|
|
wm_prog_key.tex_layout = params.src.surf.msaa_layout;
|
|
wm_prog_key.rt_layout = params.dst.surf.msaa_layout;
|
|
|
|
if (params.src.surf.samples > 0 && params.dst.surf.samples > 1) {
|
|
/* We are blitting from a multisample buffer to a multisample buffer, so
|
|
* we must preserve samples within a pixel. This means we have to
|
|
* arrange for the WM program to run once per sample rather than once
|
|
* per pixel.
|
|
*/
|
|
wm_prog_key.persample_msaa_dispatch = true;
|
|
}
|
|
|
|
brw_blorp_get_blit_kernel(batch->blorp, ¶ms, &wm_prog_key);
|
|
|
|
for (unsigned i = 0; i < 4; i++) {
|
|
params.src.view.channel_select[i] =
|
|
swizzle_to_scs(GET_SWZ(src_swizzle, i));
|
|
}
|
|
|
|
batch->blorp->exec(batch, ¶ms);
|
|
}
|