mesa/src/util/u_queue.c
Samuel Pitoiset 04c90f292e util/queue: fix a data race detected by TSAN when finishing the queue
Thread sanitizer complains if it detects that the pthread_barrier
is destroyed when a thread might still blocked on the barrier.

Fix this by destroying the barrier only if pthread_barrier_wait
returns PTHREAD_BARRIER_SERIAL_THREAD which is the value for success.

In practice this shouldn't fix anything serious given that this code
is only called when the disk cache is destroyed.

Original patch from Timothy Arceri.

Closes: https://gitlab.freedesktop.org/mesa/mesa/-/issues/4342
Signed-off-by: Samuel Pitoiset <samuel.pitoiset@gmail.com>
Reviewed-by: Timothy Arceri <tarceri@itsqueeze.com>
Reviewed-by: Marek Olšák <marek.olsak@amd.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/13861>
2021-11-19 09:02:23 +01:00

720 lines
20 KiB
C

/*
* Copyright © 2016 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS, AUTHORS
* AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*/
#include "u_queue.h"
#include "c11/threads.h"
#include "util/u_cpu_detect.h"
#include "util/os_time.h"
#include "util/u_string.h"
#include "util/u_thread.h"
#include "u_process.h"
#if defined(__linux__)
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/syscall.h>
#endif
/* Define 256MB */
#define S_256MB (256 * 1024 * 1024)
static void
util_queue_kill_threads(struct util_queue *queue, unsigned keep_num_threads,
bool finish_locked);
/****************************************************************************
* Wait for all queues to assert idle when exit() is called.
*
* Otherwise, C++ static variable destructors can be called while threads
* are using the static variables.
*/
static once_flag atexit_once_flag = ONCE_FLAG_INIT;
static struct list_head queue_list;
static mtx_t exit_mutex = _MTX_INITIALIZER_NP;
static void
atexit_handler(void)
{
struct util_queue *iter;
mtx_lock(&exit_mutex);
/* Wait for all queues to assert idle. */
LIST_FOR_EACH_ENTRY(iter, &queue_list, head) {
util_queue_kill_threads(iter, 0, false);
}
mtx_unlock(&exit_mutex);
}
static void
global_init(void)
{
list_inithead(&queue_list);
atexit(atexit_handler);
}
static void
add_to_atexit_list(struct util_queue *queue)
{
call_once(&atexit_once_flag, global_init);
mtx_lock(&exit_mutex);
list_add(&queue->head, &queue_list);
mtx_unlock(&exit_mutex);
}
static void
remove_from_atexit_list(struct util_queue *queue)
{
struct util_queue *iter, *tmp;
mtx_lock(&exit_mutex);
LIST_FOR_EACH_ENTRY_SAFE(iter, tmp, &queue_list, head) {
if (iter == queue) {
list_del(&iter->head);
break;
}
}
mtx_unlock(&exit_mutex);
}
/****************************************************************************
* util_queue_fence
*/
#ifdef UTIL_QUEUE_FENCE_FUTEX
static bool
do_futex_fence_wait(struct util_queue_fence *fence,
bool timeout, int64_t abs_timeout)
{
uint32_t v = p_atomic_read_relaxed(&fence->val);
struct timespec ts;
ts.tv_sec = abs_timeout / (1000*1000*1000);
ts.tv_nsec = abs_timeout % (1000*1000*1000);
while (v != 0) {
if (v != 2) {
v = p_atomic_cmpxchg(&fence->val, 1, 2);
if (v == 0)
return true;
}
int r = futex_wait(&fence->val, 2, timeout ? &ts : NULL);
if (timeout && r < 0) {
if (errno == ETIMEDOUT)
return false;
}
v = p_atomic_read_relaxed(&fence->val);
}
return true;
}
void
_util_queue_fence_wait(struct util_queue_fence *fence)
{
do_futex_fence_wait(fence, false, 0);
}
bool
_util_queue_fence_wait_timeout(struct util_queue_fence *fence,
int64_t abs_timeout)
{
return do_futex_fence_wait(fence, true, abs_timeout);
}
#endif
#ifdef UTIL_QUEUE_FENCE_STANDARD
void
util_queue_fence_signal(struct util_queue_fence *fence)
{
mtx_lock(&fence->mutex);
fence->signalled = true;
cnd_broadcast(&fence->cond);
mtx_unlock(&fence->mutex);
}
void
_util_queue_fence_wait(struct util_queue_fence *fence)
{
mtx_lock(&fence->mutex);
while (!fence->signalled)
cnd_wait(&fence->cond, &fence->mutex);
mtx_unlock(&fence->mutex);
}
bool
_util_queue_fence_wait_timeout(struct util_queue_fence *fence,
int64_t abs_timeout)
{
/* This terrible hack is made necessary by the fact that we really want an
* internal interface consistent with os_time_*, but cnd_timedwait is spec'd
* to be relative to the TIME_UTC clock.
*/
int64_t rel = abs_timeout - os_time_get_nano();
if (rel > 0) {
struct timespec ts;
#if defined(HAVE_TIMESPEC_GET) || defined(_WIN32)
timespec_get(&ts, TIME_UTC);
#else
clock_gettime(CLOCK_REALTIME, &ts);
#endif
ts.tv_sec += abs_timeout / (1000*1000*1000);
ts.tv_nsec += abs_timeout % (1000*1000*1000);
if (ts.tv_nsec >= (1000*1000*1000)) {
ts.tv_sec++;
ts.tv_nsec -= (1000*1000*1000);
}
mtx_lock(&fence->mutex);
while (!fence->signalled) {
if (cnd_timedwait(&fence->cond, &fence->mutex, &ts) != thrd_success)
break;
}
mtx_unlock(&fence->mutex);
}
return fence->signalled;
}
void
util_queue_fence_init(struct util_queue_fence *fence)
{
memset(fence, 0, sizeof(*fence));
(void) mtx_init(&fence->mutex, mtx_plain);
cnd_init(&fence->cond);
fence->signalled = true;
}
void
util_queue_fence_destroy(struct util_queue_fence *fence)
{
assert(fence->signalled);
/* Ensure that another thread is not in the middle of
* util_queue_fence_signal (having set the fence to signalled but still
* holding the fence mutex).
*
* A common contract between threads is that as soon as a fence is signalled
* by thread A, thread B is allowed to destroy it. Since
* util_queue_fence_is_signalled does not lock the fence mutex (for
* performance reasons), we must do so here.
*/
mtx_lock(&fence->mutex);
mtx_unlock(&fence->mutex);
cnd_destroy(&fence->cond);
mtx_destroy(&fence->mutex);
}
#endif
/****************************************************************************
* util_queue implementation
*/
struct thread_input {
struct util_queue *queue;
int thread_index;
};
static int
util_queue_thread_func(void *input)
{
struct util_queue *queue = ((struct thread_input*)input)->queue;
int thread_index = ((struct thread_input*)input)->thread_index;
free(input);
if (queue->flags & UTIL_QUEUE_INIT_SET_FULL_THREAD_AFFINITY) {
/* Don't inherit the thread affinity from the parent thread.
* Set the full mask.
*/
uint32_t mask[UTIL_MAX_CPUS / 32];
memset(mask, 0xff, sizeof(mask));
/* Ensure util_cpu_caps.num_cpu_mask_bits is initialized: */
util_cpu_detect();
util_set_current_thread_affinity(mask, NULL,
util_get_cpu_caps()->num_cpu_mask_bits);
}
#if defined(__linux__)
if (queue->flags & UTIL_QUEUE_INIT_USE_MINIMUM_PRIORITY) {
/* The nice() function can only set a maximum of 19. */
setpriority(PRIO_PROCESS, syscall(SYS_gettid), 19);
}
#endif
if (strlen(queue->name) > 0) {
char name[16];
snprintf(name, sizeof(name), "%s%i", queue->name, thread_index);
u_thread_setname(name);
}
while (1) {
struct util_queue_job job;
mtx_lock(&queue->lock);
assert(queue->num_queued >= 0 && queue->num_queued <= queue->max_jobs);
/* wait if the queue is empty */
while (thread_index < queue->num_threads && queue->num_queued == 0)
cnd_wait(&queue->has_queued_cond, &queue->lock);
/* only kill threads that are above "num_threads" */
if (thread_index >= queue->num_threads) {
mtx_unlock(&queue->lock);
break;
}
job = queue->jobs[queue->read_idx];
memset(&queue->jobs[queue->read_idx], 0, sizeof(struct util_queue_job));
queue->read_idx = (queue->read_idx + 1) % queue->max_jobs;
queue->num_queued--;
cnd_signal(&queue->has_space_cond);
if (job.job)
queue->total_jobs_size -= job.job_size;
mtx_unlock(&queue->lock);
if (job.job) {
job.execute(job.job, job.global_data, thread_index);
if (job.fence)
util_queue_fence_signal(job.fence);
if (job.cleanup)
job.cleanup(job.job, job.global_data, thread_index);
}
}
/* signal remaining jobs if all threads are being terminated */
mtx_lock(&queue->lock);
if (queue->num_threads == 0) {
for (unsigned i = queue->read_idx; i != queue->write_idx;
i = (i + 1) % queue->max_jobs) {
if (queue->jobs[i].job) {
if (queue->jobs[i].fence)
util_queue_fence_signal(queue->jobs[i].fence);
queue->jobs[i].job = NULL;
}
}
queue->read_idx = queue->write_idx;
queue->num_queued = 0;
}
mtx_unlock(&queue->lock);
return 0;
}
static bool
util_queue_create_thread(struct util_queue *queue, unsigned index)
{
struct thread_input *input =
(struct thread_input *) malloc(sizeof(struct thread_input));
input->queue = queue;
input->thread_index = index;
queue->threads[index] = u_thread_create(util_queue_thread_func, input);
if (!queue->threads[index]) {
free(input);
return false;
}
if (queue->flags & UTIL_QUEUE_INIT_USE_MINIMUM_PRIORITY) {
#if defined(__linux__) && defined(SCHED_BATCH)
struct sched_param sched_param = {0};
/* The nice() function can only set a maximum of 19.
* SCHED_BATCH gives the scheduler a hint that this is a latency
* insensitive thread.
*
* Note that Linux only allows decreasing the priority. The original
* priority can't be restored.
*/
pthread_setschedparam(queue->threads[index], SCHED_BATCH, &sched_param);
#endif
}
return true;
}
void
util_queue_adjust_num_threads(struct util_queue *queue, unsigned num_threads)
{
num_threads = MIN2(num_threads, queue->max_threads);
num_threads = MAX2(num_threads, 1);
simple_mtx_lock(&queue->finish_lock);
unsigned old_num_threads = queue->num_threads;
if (num_threads == old_num_threads) {
simple_mtx_unlock(&queue->finish_lock);
return;
}
if (num_threads < old_num_threads) {
util_queue_kill_threads(queue, num_threads, true);
simple_mtx_unlock(&queue->finish_lock);
return;
}
/* Create threads.
*
* We need to update num_threads first, because threads terminate
* when thread_index < num_threads.
*/
queue->num_threads = num_threads;
for (unsigned i = old_num_threads; i < num_threads; i++) {
if (!util_queue_create_thread(queue, i))
break;
}
simple_mtx_unlock(&queue->finish_lock);
}
bool
util_queue_init(struct util_queue *queue,
const char *name,
unsigned max_jobs,
unsigned num_threads,
unsigned flags,
void *global_data)
{
unsigned i;
/* Form the thread name from process_name and name, limited to 13
* characters. Characters 14-15 are reserved for the thread number.
* Character 16 should be 0. Final form: "process:name12"
*
* If name is too long, it's truncated. If any space is left, the process
* name fills it.
*/
const char *process_name = util_get_process_name();
int process_len = process_name ? strlen(process_name) : 0;
int name_len = strlen(name);
const int max_chars = sizeof(queue->name) - 1;
name_len = MIN2(name_len, max_chars);
/* See if there is any space left for the process name, reserve 1 for
* the colon. */
process_len = MIN2(process_len, max_chars - name_len - 1);
process_len = MAX2(process_len, 0);
memset(queue, 0, sizeof(*queue));
if (process_len) {
snprintf(queue->name, sizeof(queue->name), "%.*s:%s",
process_len, process_name, name);
} else {
snprintf(queue->name, sizeof(queue->name), "%s", name);
}
queue->flags = flags;
queue->max_threads = num_threads;
queue->num_threads = (flags & UTIL_QUEUE_INIT_SCALE_THREADS) ? 1 : num_threads;
queue->max_jobs = max_jobs;
queue->global_data = global_data;
(void) mtx_init(&queue->lock, mtx_plain);
(void) simple_mtx_init(&queue->finish_lock, mtx_plain);
queue->num_queued = 0;
cnd_init(&queue->has_queued_cond);
cnd_init(&queue->has_space_cond);
queue->jobs = (struct util_queue_job*)
calloc(max_jobs, sizeof(struct util_queue_job));
if (!queue->jobs)
goto fail;
queue->threads = (thrd_t*) calloc(queue->max_threads, sizeof(thrd_t));
if (!queue->threads)
goto fail;
/* start threads */
for (i = 0; i < queue->num_threads; i++) {
if (!util_queue_create_thread(queue, i)) {
if (i == 0) {
/* no threads created, fail */
goto fail;
} else {
/* at least one thread created, so use it */
queue->num_threads = i;
break;
}
}
}
add_to_atexit_list(queue);
return true;
fail:
free(queue->threads);
if (queue->jobs) {
cnd_destroy(&queue->has_space_cond);
cnd_destroy(&queue->has_queued_cond);
mtx_destroy(&queue->lock);
free(queue->jobs);
}
/* also util_queue_is_initialized can be used to check for success */
memset(queue, 0, sizeof(*queue));
return false;
}
static void
util_queue_kill_threads(struct util_queue *queue, unsigned keep_num_threads,
bool finish_locked)
{
unsigned i;
/* Signal all threads to terminate. */
if (!finish_locked)
simple_mtx_lock(&queue->finish_lock);
if (keep_num_threads >= queue->num_threads) {
simple_mtx_unlock(&queue->finish_lock);
return;
}
mtx_lock(&queue->lock);
unsigned old_num_threads = queue->num_threads;
/* Setting num_threads is what causes the threads to terminate.
* Then cnd_broadcast wakes them up and they will exit their function.
*/
queue->num_threads = keep_num_threads;
cnd_broadcast(&queue->has_queued_cond);
mtx_unlock(&queue->lock);
for (i = keep_num_threads; i < old_num_threads; i++)
thrd_join(queue->threads[i], NULL);
if (!finish_locked)
simple_mtx_unlock(&queue->finish_lock);
}
static void
util_queue_finish_execute(void *data, void *gdata, int num_thread)
{
util_barrier *barrier = data;
if (util_barrier_wait(barrier))
util_barrier_destroy(barrier);
}
void
util_queue_destroy(struct util_queue *queue)
{
util_queue_kill_threads(queue, 0, false);
/* This makes it safe to call on a queue that failedutil_queue_init. */
if (queue->head.next != NULL)
remove_from_atexit_list(queue);
cnd_destroy(&queue->has_space_cond);
cnd_destroy(&queue->has_queued_cond);
simple_mtx_destroy(&queue->finish_lock);
mtx_destroy(&queue->lock);
free(queue->jobs);
free(queue->threads);
}
void
util_queue_add_job(struct util_queue *queue,
void *job,
struct util_queue_fence *fence,
util_queue_execute_func execute,
util_queue_execute_func cleanup,
const size_t job_size)
{
struct util_queue_job *ptr;
mtx_lock(&queue->lock);
if (queue->num_threads == 0) {
mtx_unlock(&queue->lock);
/* well no good option here, but any leaks will be
* short-lived as things are shutting down..
*/
return;
}
if (fence)
util_queue_fence_reset(fence);
assert(queue->num_queued >= 0 && queue->num_queued <= queue->max_jobs);
if (queue->num_queued == queue->max_jobs) {
if ((queue->flags & UTIL_QUEUE_INIT_SCALE_THREADS) &&
execute != util_queue_finish_execute &&
queue->num_threads < queue->max_threads) {
util_queue_adjust_num_threads(queue, queue->num_threads + 1);
}
if (queue->flags & UTIL_QUEUE_INIT_RESIZE_IF_FULL &&
queue->total_jobs_size + job_size < S_256MB) {
/* If the queue is full, make it larger to avoid waiting for a free
* slot.
*/
unsigned new_max_jobs = queue->max_jobs + 8;
struct util_queue_job *jobs =
(struct util_queue_job*)calloc(new_max_jobs,
sizeof(struct util_queue_job));
assert(jobs);
/* Copy all queued jobs into the new list. */
unsigned num_jobs = 0;
unsigned i = queue->read_idx;
do {
jobs[num_jobs++] = queue->jobs[i];
i = (i + 1) % queue->max_jobs;
} while (i != queue->write_idx);
assert(num_jobs == queue->num_queued);
free(queue->jobs);
queue->jobs = jobs;
queue->read_idx = 0;
queue->write_idx = num_jobs;
queue->max_jobs = new_max_jobs;
} else {
/* Wait until there is a free slot. */
while (queue->num_queued == queue->max_jobs)
cnd_wait(&queue->has_space_cond, &queue->lock);
}
}
ptr = &queue->jobs[queue->write_idx];
assert(ptr->job == NULL);
ptr->job = job;
ptr->global_data = queue->global_data;
ptr->fence = fence;
ptr->execute = execute;
ptr->cleanup = cleanup;
ptr->job_size = job_size;
queue->write_idx = (queue->write_idx + 1) % queue->max_jobs;
queue->total_jobs_size += ptr->job_size;
queue->num_queued++;
cnd_signal(&queue->has_queued_cond);
mtx_unlock(&queue->lock);
}
/**
* Remove a queued job. If the job hasn't started execution, it's removed from
* the queue. If the job has started execution, the function waits for it to
* complete.
*
* In all cases, the fence is signalled when the function returns.
*
* The function can be used when destroying an object associated with the job
* when you don't care about the job completion state.
*/
void
util_queue_drop_job(struct util_queue *queue, struct util_queue_fence *fence)
{
bool removed = false;
if (util_queue_fence_is_signalled(fence))
return;
mtx_lock(&queue->lock);
for (unsigned i = queue->read_idx; i != queue->write_idx;
i = (i + 1) % queue->max_jobs) {
if (queue->jobs[i].fence == fence) {
if (queue->jobs[i].cleanup)
queue->jobs[i].cleanup(queue->jobs[i].job, queue->global_data, -1);
/* Just clear it. The threads will treat as a no-op job. */
memset(&queue->jobs[i], 0, sizeof(queue->jobs[i]));
removed = true;
break;
}
}
mtx_unlock(&queue->lock);
if (removed)
util_queue_fence_signal(fence);
else
util_queue_fence_wait(fence);
}
/**
* Wait until all previously added jobs have completed.
*/
void
util_queue_finish(struct util_queue *queue)
{
util_barrier barrier;
struct util_queue_fence *fences;
/* If 2 threads were adding jobs for 2 different barries at the same time,
* a deadlock would happen, because 1 barrier requires that all threads
* wait for it exclusively.
*/
simple_mtx_lock(&queue->finish_lock);
/* The number of threads can be changed to 0, e.g. by the atexit handler. */
if (!queue->num_threads) {
simple_mtx_unlock(&queue->finish_lock);
return;
}
fences = malloc(queue->num_threads * sizeof(*fences));
util_barrier_init(&barrier, queue->num_threads);
for (unsigned i = 0; i < queue->num_threads; ++i) {
util_queue_fence_init(&fences[i]);
util_queue_add_job(queue, &barrier, &fences[i],
util_queue_finish_execute, NULL, 0);
}
for (unsigned i = 0; i < queue->num_threads; ++i) {
util_queue_fence_wait(&fences[i]);
util_queue_fence_destroy(&fences[i]);
}
simple_mtx_unlock(&queue->finish_lock);
free(fences);
}
int64_t
util_queue_get_thread_time_nano(struct util_queue *queue, unsigned thread_index)
{
/* Allow some flexibility by not raising an error. */
if (thread_index >= queue->num_threads)
return 0;
return util_thread_get_time_nano(queue->threads[thread_index]);
}