mesa/src/panfrost/compiler/bifrost_compile.c
Mary Guillemard b63ef74e73 pan/bi: Stop using V2F32_TO_V2F16 on Valhall
On v11+, V2F32_TO_V2F16 doesn't exist anymore.

This commit ensure we stop using it on every codepath except when a
vectored conversion is prefered. (v9-v10)

Instead, we use FADD.F32 to handle data conversion thanks to the
swizzle defined for the destination.

This also work on older Valhall gens, so let's follow that
logic when we only have one component used.

Signed-off-by: Mary Guillemard <mary.guillemard@collabora.com>
Reviewed-by: Lars-Ivar Hesselberg Simonsen <lars-ivar.simonsen@arm.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/33608>
2025-02-19 20:13:19 +00:00

5996 lines
189 KiB
C

/*
* Copyright (C) 2020 Collabora Ltd.
* Copyright (C) 2022 Alyssa Rosenzweig <alyssa@rosenzweig.io>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors (Collabora):
* Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
*/
#include "compiler/glsl/glsl_to_nir.h"
#include "compiler/glsl_types.h"
#include "compiler/nir/nir_builder.h"
#include "util/u_debug.h"
#include "bifrost/disassemble.h"
#include "panfrost/lib/pan_props.h"
#include "valhall/disassemble.h"
#include "valhall/va_compiler.h"
#include "bi_builder.h"
#include "bi_quirks.h"
#include "bifrost_compile.h"
#include "bifrost_nir.h"
#include "compiler.h"
/* clang-format off */
static const struct debug_named_value bifrost_debug_options[] = {
{"msgs", BIFROST_DBG_MSGS, "Print debug messages"},
{"shaders", BIFROST_DBG_SHADERS, "Dump shaders in NIR and MIR"},
{"shaderdb", BIFROST_DBG_SHADERDB, "Print statistics"},
{"verbose", BIFROST_DBG_VERBOSE, "Disassemble verbosely"},
{"internal", BIFROST_DBG_INTERNAL, "Dump even internal shaders"},
{"nosched", BIFROST_DBG_NOSCHED, "Force trivial bundling"},
{"nopsched", BIFROST_DBG_NOPSCHED, "Disable scheduling for pressure"},
{"inorder", BIFROST_DBG_INORDER, "Force in-order bundling"},
{"novalidate", BIFROST_DBG_NOVALIDATE, "Skip IR validation"},
{"noopt", BIFROST_DBG_NOOPT, "Skip optimization passes"},
{"noidvs", BIFROST_DBG_NOIDVS, "Disable IDVS"},
{"nosb", BIFROST_DBG_NOSB, "Disable scoreboarding"},
{"nopreload", BIFROST_DBG_NOPRELOAD, "Disable message preloading"},
{"spill", BIFROST_DBG_SPILL, "Test register spilling"},
DEBUG_NAMED_VALUE_END
};
/* clang-format on */
DEBUG_GET_ONCE_FLAGS_OPTION(bifrost_debug, "BIFROST_MESA_DEBUG",
bifrost_debug_options, 0)
/* How many bytes are prefetched by the Bifrost shader core. From the final
* clause of the shader, this range must be valid instructions or zero. */
#define BIFROST_SHADER_PREFETCH 128
int bifrost_debug = 0;
#define DBG(fmt, ...) \
do { \
if (bifrost_debug & BIFROST_DBG_MSGS) \
fprintf(stderr, "%s:%d: " fmt, __func__, __LINE__, ##__VA_ARGS__); \
} while (0)
static bi_block *emit_cf_list(bi_context *ctx, struct exec_list *list);
static bi_index
bi_preload(bi_builder *b, unsigned reg)
{
if (bi_is_null(b->shader->preloaded[reg])) {
/* Insert at the beginning of the shader */
bi_builder b_ = *b;
b_.cursor = bi_before_block(bi_start_block(&b->shader->blocks));
/* Cache the result */
b->shader->preloaded[reg] = bi_mov_i32(&b_, bi_register(reg));
}
return b->shader->preloaded[reg];
}
static bi_index
bi_coverage(bi_builder *b)
{
if (bi_is_null(b->shader->coverage))
b->shader->coverage = bi_preload(b, 60);
return b->shader->coverage;
}
/*
* Vertex ID and Instance ID are preloaded registers. Where they are preloaded
* changed from Bifrost to Valhall. Provide helpers that smooth over the
* architectural difference.
*/
static inline bi_index
bi_vertex_id(bi_builder *b)
{
return bi_preload(b, (b->shader->arch >= 9) ? 60 : 61);
}
static inline bi_index
bi_instance_id(bi_builder *b)
{
return bi_preload(b, (b->shader->arch >= 9) ? 61 : 62);
}
static inline bi_index
bi_draw_id(bi_builder *b)
{
assert(b->shader->arch >= 9);
return bi_preload(b, 62);
}
static void
bi_emit_jump(bi_builder *b, nir_jump_instr *instr)
{
bi_instr *branch = bi_jump(b, bi_zero());
switch (instr->type) {
case nir_jump_break:
branch->branch_target = b->shader->break_block;
break;
case nir_jump_continue:
branch->branch_target = b->shader->continue_block;
break;
default:
unreachable("Unhandled jump type");
}
bi_block_add_successor(b->shader->current_block, branch->branch_target);
b->shader->current_block->unconditional_jumps = true;
}
/* Builds a 64-bit hash table key for an index */
static uint64_t
bi_index_to_key(bi_index idx)
{
static_assert(sizeof(idx) <= sizeof(uint64_t), "too much padding");
uint64_t key = 0;
memcpy(&key, &idx, sizeof(idx));
return key;
}
/*
* Extract a single channel out of a vector source. We split vectors with SPLIT
* so we can use the split components directly, without emitting an extract.
* This has advantages of RA, as the split can usually be optimized away.
*/
static bi_index
bi_extract(bi_builder *b, bi_index vec, unsigned channel)
{
bi_index *components = _mesa_hash_table_u64_search(b->shader->allocated_vec,
bi_index_to_key(vec));
/* No extract needed for scalars.
*
* This is a bit imprecise, but actual bugs (missing splits for vectors)
* should be caught by the following assertion. It is too difficult to
* ensure bi_extract is only called for real vectors.
*/
if (components == NULL && channel == 0)
return vec;
assert(components != NULL && "missing bi_cache_collect()");
return components[channel];
}
static void
bi_cache_collect(bi_builder *b, bi_index dst, bi_index *s, unsigned n)
{
/* Lifetime of a hash table entry has to be at least as long as the table */
bi_index *channels = ralloc_array(b->shader, bi_index, n);
memcpy(channels, s, sizeof(bi_index) * n);
_mesa_hash_table_u64_insert(b->shader->allocated_vec, bi_index_to_key(dst),
channels);
}
/*
* Splits an n-component vector (vec) into n scalar destinations (dests) using a
* split pseudo-instruction.
*
* Pre-condition: dests is filled with bi_null().
*/
static void
bi_emit_split_i32(bi_builder *b, bi_index dests[4], bi_index vec, unsigned n)
{
/* Setup the destinations */
for (unsigned i = 0; i < n; ++i) {
dests[i] = bi_temp(b->shader);
}
/* Emit the split */
if (n == 1) {
bi_mov_i32_to(b, dests[0], vec);
} else {
bi_instr *I = bi_split_i32_to(b, n, vec);
bi_foreach_dest(I, j)
I->dest[j] = dests[j];
}
}
static void
bi_emit_cached_split_i32(bi_builder *b, bi_index vec, unsigned n)
{
bi_index dests[4] = {bi_null(), bi_null(), bi_null(), bi_null()};
bi_emit_split_i32(b, dests, vec, n);
bi_cache_collect(b, vec, dests, n);
}
/*
* Emit and cache a split for a vector of a given bitsize. The vector may not be
* composed of 32-bit words, but it will be split at 32-bit word boundaries.
*/
static void
bi_emit_cached_split(bi_builder *b, bi_index vec, unsigned bits)
{
bi_emit_cached_split_i32(b, vec, DIV_ROUND_UP(bits, 32));
}
static void
bi_split_def(bi_builder *b, nir_def *def)
{
bi_emit_cached_split(b, bi_def_index(def),
def->bit_size * def->num_components);
}
static bi_instr *
bi_emit_collect_to(bi_builder *b, bi_index dst, bi_index *chan, unsigned n)
{
/* Special case: COLLECT of a single value is a scalar move */
if (n == 1)
return bi_mov_i32_to(b, dst, chan[0]);
bi_instr *I = bi_collect_i32_to(b, dst, n);
bi_foreach_src(I, i)
I->src[i] = chan[i];
bi_cache_collect(b, dst, chan, n);
return I;
}
static bi_instr *
bi_collect_v2i32_to(bi_builder *b, bi_index dst, bi_index s0, bi_index s1)
{
return bi_emit_collect_to(b, dst, (bi_index[]){s0, s1}, 2);
}
static bi_instr *
bi_collect_v3i32_to(bi_builder *b, bi_index dst, bi_index s0, bi_index s1,
bi_index s2)
{
return bi_emit_collect_to(b, dst, (bi_index[]){s0, s1, s2}, 3);
}
static bi_index
bi_collect_v2i32(bi_builder *b, bi_index s0, bi_index s1)
{
bi_index dst = bi_temp(b->shader);
bi_collect_v2i32_to(b, dst, s0, s1);
return dst;
}
static inline bi_instr *
bi_f32_to_f16_to(bi_builder *b, bi_index dest, bi_index src)
{
/* Use V2F32_TO_V2F16 on Bifrost, FADD otherwise */
if (b->shader->arch < 9)
return bi_v2f32_to_v2f16_to(b, dest, src, src);
assert(dest.swizzle != BI_SWIZZLE_H01);
/* FADD with 0 and force convertion to F16 on Valhall and later */
return bi_fadd_f32_to(b, dest, src, bi_imm_u32(0));
}
static bi_index
bi_varying_src0_for_barycentric(bi_builder *b, nir_intrinsic_instr *intr)
{
switch (intr->intrinsic) {
case nir_intrinsic_load_barycentric_centroid:
case nir_intrinsic_load_barycentric_sample:
return bi_preload(b, 61);
/* Need to put the sample ID in the top 16-bits */
case nir_intrinsic_load_barycentric_at_sample:
return bi_mkvec_v2i16(b, bi_half(bi_dontcare(b), false),
bi_half(bi_src_index(&intr->src[0]), false));
/* Interpret as 8:8 signed fixed point positions in pixels along X and
* Y axes respectively, relative to top-left of pixel. In NIR, (0, 0)
* is the center of the pixel so we first fixup and then convert. For
* fp16 input:
*
* f2i16(((x, y) + (0.5, 0.5)) * 2**8) =
* f2i16((256 * (x, y)) + (128, 128)) =
* V2F16_TO_V2S16(FMA.v2f16((x, y), #256, #128))
*
* For fp32 input, that lacks enough precision for MSAA 16x, but the
* idea is the same. FIXME: still doesn't pass
*/
case nir_intrinsic_load_barycentric_at_offset: {
bi_index offset = bi_src_index(&intr->src[0]);
bi_index f16 = bi_null();
unsigned sz = nir_src_bit_size(intr->src[0]);
if (sz == 16) {
f16 = bi_fma_v2f16(b, offset, bi_imm_f16(256.0), bi_imm_f16(128.0));
} else {
assert(sz == 32);
bi_index f[2];
for (unsigned i = 0; i < 2; ++i) {
f[i] =
bi_fadd_rscale_f32(b, bi_extract(b, offset, i), bi_imm_f32(0.5),
bi_imm_u32(8), BI_SPECIAL_NONE);
}
/* On v11+, V2F32_TO_V2F16 is gone */
if (b->shader->arch >= 11) {
bi_index tmp[2];
for (int i = 0; i < 2; i++) {
tmp[i] = bi_half(bi_temp(b->shader), false);
bi_f32_to_f16_to(b, tmp[i], f[i]);
}
f16 = bi_mkvec_v2i16(b, tmp[0], tmp[1]);
} else {
f16 = bi_v2f32_to_v2f16(b, f[0], f[1]);
}
}
return bi_v2f16_to_v2s16(b, f16);
}
case nir_intrinsic_load_barycentric_pixel:
default:
return b->shader->arch >= 9 ? bi_preload(b, 61) : bi_dontcare(b);
}
}
static enum bi_sample
bi_interp_for_intrinsic(nir_intrinsic_op op)
{
switch (op) {
case nir_intrinsic_load_barycentric_centroid:
return BI_SAMPLE_CENTROID;
case nir_intrinsic_load_barycentric_sample:
case nir_intrinsic_load_barycentric_at_sample:
return BI_SAMPLE_SAMPLE;
case nir_intrinsic_load_barycentric_at_offset:
return BI_SAMPLE_EXPLICIT;
case nir_intrinsic_load_barycentric_pixel:
default:
return BI_SAMPLE_CENTER;
}
}
/* auto, 64-bit omitted */
static enum bi_register_format
bi_reg_fmt_for_nir(nir_alu_type T)
{
switch (T) {
case nir_type_float16:
return BI_REGISTER_FORMAT_F16;
case nir_type_float32:
return BI_REGISTER_FORMAT_F32;
case nir_type_int16:
return BI_REGISTER_FORMAT_S16;
case nir_type_uint16:
return BI_REGISTER_FORMAT_U16;
case nir_type_int32:
return BI_REGISTER_FORMAT_S32;
case nir_type_uint32:
return BI_REGISTER_FORMAT_U32;
default:
unreachable("Invalid type for register format");
}
}
static bool
va_is_valid_const_narrow_index(bi_index idx)
{
if (idx.type != BI_INDEX_CONSTANT)
return false;
unsigned index = pan_res_handle_get_index(idx.value);
unsigned table_index = pan_res_handle_get_table(idx.value);
return index < 1024 && va_is_valid_const_table(table_index);
}
/* Checks if the _IMM variant of an intrinsic can be used, returning in imm the
* immediate to be used (which applies even if _IMM can't be used) */
static bool
bi_is_intr_immediate(nir_intrinsic_instr *instr, unsigned *immediate,
unsigned max)
{
nir_src *offset = nir_get_io_offset_src(instr);
if (!nir_src_is_const(*offset))
return false;
*immediate = nir_intrinsic_base(instr) + nir_src_as_uint(*offset);
return (*immediate) < max;
}
static bool
bi_is_imm_desc_handle(bi_builder *b, nir_intrinsic_instr *instr,
uint32_t *immediate, unsigned max)
{
nir_src *offset = nir_get_io_offset_src(instr);
if (!nir_src_is_const(*offset))
return false;
if (b->shader->arch >= 9) {
uint32_t res_handle =
nir_intrinsic_base(instr) + nir_src_as_uint(*offset);
uint32_t table_index = pan_res_handle_get_table(res_handle);
uint32_t res_index = pan_res_handle_get_index(res_handle);
if (!va_is_valid_const_table(table_index) || res_index >= max)
return false;
*immediate = res_handle;
return true;
}
return bi_is_intr_immediate(instr, immediate, max);
}
static bool
bi_is_imm_var_desc_handle(bi_builder *b, nir_intrinsic_instr *instr,
uint32_t *immediate)
{
unsigned max = b->shader->arch >= 9 ? 256 : 20;
return bi_is_imm_desc_handle(b, instr, immediate, max);
}
static void bi_make_vec_to(bi_builder *b, bi_index final_dst, bi_index *src,
unsigned *channel, unsigned count, unsigned bitsize);
/* Bifrost's load instructions lack a component offset despite operating in
* terms of vec4 slots. Usually I/O vectorization avoids nonzero components,
* but they may be unavoidable with separate shaders in use. To solve this, we
* lower to a larger load and an explicit copy of the desired components. */
static void
bi_copy_component(bi_builder *b, nir_intrinsic_instr *instr, bi_index tmp)
{
unsigned component = nir_intrinsic_component(instr);
unsigned nr = instr->num_components;
unsigned total = nr + component;
unsigned bitsize = instr->def.bit_size;
assert(total <= 4 && "should be vec4");
bi_emit_cached_split(b, tmp, total * bitsize);
if (component == 0)
return;
bi_index srcs[] = {tmp, tmp, tmp};
unsigned channels[] = {component, component + 1, component + 2};
bi_make_vec_to(b, bi_def_index(&instr->def), srcs, channels, nr,
instr->def.bit_size);
}
static void
bi_emit_load_attr(bi_builder *b, nir_intrinsic_instr *instr)
{
bi_index vertex_id =
instr->intrinsic == nir_intrinsic_load_attribute_pan ?
bi_src_index(&instr->src[0]) :
bi_vertex_id(b);
bi_index instance_id =
instr->intrinsic == nir_intrinsic_load_attribute_pan ?
bi_src_index(&instr->src[1]) :
bi_instance_id(b);
/* Disregard the signedness of an integer, since loading 32-bits into a
* 32-bit register should be bit exact so should not incur any clamping.
*
* If we are reading as a u32, then it must be paired with an integer (u32 or
* s32) source, so use .auto32 to disregard.
*/
nir_alu_type T = nir_intrinsic_dest_type(instr);
enum bi_register_format regfmt = BI_REGISTER_FORMAT_AUTO;
switch (T) {
case nir_type_uint32:
case nir_type_int32:
regfmt = BI_REGISTER_FORMAT_AUTO;
break;
case nir_type_float32:
regfmt = BI_REGISTER_FORMAT_F32;
break;
case nir_type_uint16:
regfmt = BI_REGISTER_FORMAT_U16;
break;
case nir_type_int16:
regfmt = BI_REGISTER_FORMAT_S16;
break;
case nir_type_float16:
regfmt = BI_REGISTER_FORMAT_F16;
break;
default:
assert("unsupported attribute type" && false);
}
nir_src *offset = nir_get_io_offset_src(instr);
unsigned component = nir_intrinsic_component(instr);
enum bi_vecsize vecsize = (instr->num_components + component - 1);
unsigned imm_index = 0;
unsigned base = nir_intrinsic_base(instr);
bool constant = nir_src_is_const(*offset);
bool immediate = bi_is_imm_desc_handle(b, instr, &imm_index, 16);
bi_index dest =
(component == 0) ? bi_def_index(&instr->def) : bi_temp(b->shader);
bi_instr *I;
if (immediate) {
I = bi_ld_attr_imm_to(b, dest, vertex_id, instance_id, regfmt,
vecsize, pan_res_handle_get_index(imm_index));
if (b->shader->arch >= 9)
I->table = va_res_fold_table_idx(pan_res_handle_get_table(base));
} else {
bi_index idx = bi_src_index(&instr->src[0]);
if (constant)
idx = bi_imm_u32(imm_index);
else if (base != 0)
idx = bi_iadd_u32(b, idx, bi_imm_u32(base), false);
I = bi_ld_attr_to(b, dest, vertex_id, instance_id, idx, regfmt, vecsize);
}
bi_copy_component(b, instr, dest);
}
/*
* ABI: Special (desktop GL) slots come first, tightly packed. General varyings
* come later, sparsely packed. This handles both linked and separable shaders
* with a common code path, with minimal keying only for desktop GL. Each slot
* consumes 16 bytes (TODO: fp16, partial vectors).
*/
static unsigned
bi_varying_base_bytes(bi_context *ctx, nir_intrinsic_instr *intr)
{
nir_io_semantics sem = nir_intrinsic_io_semantics(intr);
uint32_t mask = ctx->inputs->fixed_varying_mask;
if (sem.location >= VARYING_SLOT_VAR0) {
unsigned nr_special = util_bitcount(mask);
unsigned general_index = (sem.location - VARYING_SLOT_VAR0);
return 16 * (nr_special + general_index);
} else {
return 16 * (util_bitcount(mask & BITFIELD_MASK(sem.location)));
}
}
/*
* Compute the offset in bytes of a varying with an immediate offset, adding the
* offset to the base computed above. Convenience method.
*/
static unsigned
bi_varying_offset(bi_context *ctx, nir_intrinsic_instr *intr)
{
nir_src *src = nir_get_io_offset_src(intr);
assert(nir_src_is_const(*src) && "assumes immediate offset");
return bi_varying_base_bytes(ctx, intr) + (nir_src_as_uint(*src) * 16);
}
static void
bi_emit_load_vary(bi_builder *b, nir_intrinsic_instr *instr)
{
enum bi_sample sample = BI_SAMPLE_CENTER;
enum bi_update update = BI_UPDATE_STORE;
enum bi_register_format regfmt = BI_REGISTER_FORMAT_AUTO;
enum bi_source_format source_format;
bool smooth = instr->intrinsic == nir_intrinsic_load_interpolated_input;
bi_index src0 = bi_null();
unsigned component = nir_intrinsic_component(instr);
enum bi_vecsize vecsize = (instr->num_components + component - 1);
bi_index dest =
(component == 0) ? bi_def_index(&instr->def) : bi_temp(b->shader);
nir_io_semantics sem = nir_intrinsic_io_semantics(instr);
unsigned sz = instr->def.bit_size;
assert(sz == 16 || sz == 32);
/* mediump varyings are always written as 32-bits in the VS, but may be read
* to 16 in the FS. */
unsigned src_sz = sem.medium_precision ? 32 : sz;
if (smooth) {
nir_intrinsic_instr *parent = nir_src_as_intrinsic(instr->src[0]);
assert(parent);
sample = bi_interp_for_intrinsic(parent->intrinsic);
src0 = bi_varying_src0_for_barycentric(b, parent);
regfmt = (sz == 16) ? BI_REGISTER_FORMAT_F16 : BI_REGISTER_FORMAT_F32;
source_format =
(src_sz == 16) ? BI_SOURCE_FORMAT_F16 : BI_SOURCE_FORMAT_F32;
} else {
/* u16 regfmt is not supported by LD_VAR_BUF, but using f16 for integers
* is okay because we use a f16 attribute descriptor for all 16-bit
* varyings regardless of whether they are floats or ints. The
* conversion is a no-op. */
regfmt = (sz == 16) ? BI_REGISTER_FORMAT_F16 : BI_REGISTER_FORMAT_AUTO;
source_format = (src_sz == 16) ?
BI_SOURCE_FORMAT_FLAT16 : BI_SOURCE_FORMAT_FLAT32;
/* Valhall can't have bi_null() here, although the source is
* logically unused for flat varyings
*/
if (b->shader->arch >= 9)
src0 = bi_preload(b, 61);
/* Gather info as we go */
b->shader->info.bifrost->uses_flat_shading = true;
}
nir_src *offset = nir_get_io_offset_src(instr);
unsigned imm_index = 0;
bool immediate = bi_is_imm_var_desc_handle(b, instr, &imm_index);
unsigned base = nir_intrinsic_base(instr);
/* Only use LD_VAR_BUF[_IMM] if explicitly told by the driver
* through a compiler input value, falling back to LD_VAR[_IMM] +
* Attribute Descriptors otherwise. */
bool use_ld_var_buf =
b->shader->malloc_idvs && b->shader->inputs->valhall.use_ld_var_buf;
if (use_ld_var_buf) {
if (immediate) {
/* Immediate index given in bytes. */
bi_ld_var_buf_imm_to(b, sz, dest, src0, regfmt, sample, source_format,
update, vecsize,
bi_varying_offset(b->shader, instr));
} else {
bi_index idx = bi_src_index(offset);
/* Index needs to be in bytes, but NIR gives the index
* in slots. For now assume 16 bytes per element.
*/
bi_index idx_bytes = bi_lshift_or_i32(b, idx, bi_zero(), bi_imm_u8(4));
unsigned vbase = bi_varying_base_bytes(b->shader, instr);
if (vbase != 0)
idx_bytes = bi_iadd_u32(b, idx, bi_imm_u32(vbase), false);
bi_ld_var_buf_to(b, sz, dest, src0, idx_bytes, regfmt, sample,
source_format, update, vecsize);
}
} else {
/* On Valhall, ensure the table and index are valid for usage with
* immediate form when IDVS isn't used */
if (b->shader->arch >= 9)
immediate &= va_is_valid_const_table(pan_res_handle_get_table(base)) &&
pan_res_handle_get_index(base) < 256;
if (immediate) {
bi_instr *I;
if (smooth) {
I = bi_ld_var_imm_to(b, dest, src0, regfmt, sample, update, vecsize,
pan_res_handle_get_index(imm_index));
} else {
I =
bi_ld_var_flat_imm_to(b, dest, BI_FUNCTION_NONE, regfmt, vecsize,
pan_res_handle_get_index(imm_index));
}
/* Valhall usually uses LD_VAR_BUF. If this is disabled, use a simple
* Midgard-style ABI. */
if (b->shader->arch >= 9)
I->table = va_res_fold_table_idx(pan_res_handle_get_table(base));
} else {
bi_index idx = bi_src_index(offset);
if (base != 0)
idx = bi_iadd_u32(b, idx, bi_imm_u32(base), false);
if (smooth)
bi_ld_var_to(b, dest, src0, idx, regfmt, sample, update, vecsize);
else
bi_ld_var_flat_to(b, dest, idx, BI_FUNCTION_NONE, regfmt, vecsize);
}
}
bi_copy_component(b, instr, dest);
}
static bi_index
bi_make_vec8_helper(bi_builder *b, bi_index *src, unsigned *channel,
unsigned count)
{
assert(1 <= count && count <= 4);
bi_index bytes[4] = {bi_imm_u8(0), bi_imm_u8(0), bi_imm_u8(0), bi_imm_u8(0)};
for (unsigned i = 0; i < count; ++i) {
unsigned chan = channel ? channel[i] : 0;
unsigned lane = chan & 3;
bi_index raw_data = bi_extract(b, src[i], chan >> 2);
/* On Bifrost, MKVEC.v4i8 cannot select b1 or b3 */
if (b->shader->arch < 9 && lane != 0 && lane != 2) {
bytes[i] = bi_byte(bi_rshift_or(b, 32, raw_data, bi_zero(),
bi_imm_u8(lane * 8), false),
0);
} else {
bytes[i] = bi_byte(raw_data, lane);
}
assert(b->shader->arch >= 9 || bytes[i].swizzle == BI_SWIZZLE_B0000 ||
bytes[i].swizzle == BI_SWIZZLE_B2222);
}
if (b->shader->arch >= 9) {
bi_index vec = bi_zero();
if (count >= 3)
vec = bi_mkvec_v2i8(b, bytes[2], bytes[3], vec);
return bi_mkvec_v2i8(b, bytes[0], bytes[1], vec);
} else {
return bi_mkvec_v4i8(b, bytes[0], bytes[1], bytes[2], bytes[3]);
}
}
static bi_index
bi_make_vec16_helper(bi_builder *b, bi_index *src, unsigned *channel,
unsigned count)
{
unsigned chan0 = channel ? channel[0] : 0;
bi_index w0 = bi_extract(b, src[0], chan0 >> 1);
bi_index h0 = bi_half(w0, chan0 & 1);
/* Zero extend */
if (count == 1)
return bi_mkvec_v2i16(b, h0, bi_imm_u16(0));
/* Else, create a vector */
assert(count == 2);
unsigned chan1 = channel ? channel[1] : 0;
bi_index w1 = bi_extract(b, src[1], chan1 >> 1);
bi_index h1 = bi_half(w1, chan1 & 1);
if (bi_is_word_equiv(w0, w1) && (chan0 & 1) == 0 && ((chan1 & 1) == 1))
return bi_mov_i32(b, w0);
else if (bi_is_word_equiv(w0, w1))
return bi_swz_v2i16(b, bi_swz_16(w0, chan0 & 1, chan1 & 1));
else
return bi_mkvec_v2i16(b, h0, h1);
}
static void
bi_make_vec_to(bi_builder *b, bi_index dst, bi_index *src, unsigned *channel,
unsigned count, unsigned bitsize)
{
assert(bitsize == 8 || bitsize == 16 || bitsize == 32);
unsigned shift = (bitsize == 32) ? 0 : (bitsize == 16) ? 1 : 2;
unsigned chan_per_word = 1 << shift;
assert(DIV_ROUND_UP(count * bitsize, 32) <= BI_MAX_SRCS &&
"unnecessarily large vector should have been lowered");
bi_index srcs[BI_MAX_VEC];
for (unsigned i = 0; i < count; i += chan_per_word) {
unsigned rem = MIN2(count - i, chan_per_word);
unsigned *channel_offset = channel ? (channel + i) : NULL;
if (bitsize == 32)
srcs[i] = bi_extract(b, src[i], channel_offset ? *channel_offset : 0);
else if (bitsize == 16)
srcs[i >> 1] = bi_make_vec16_helper(b, src + i, channel_offset, rem);
else
srcs[i >> 2] = bi_make_vec8_helper(b, src + i, channel_offset, rem);
}
bi_emit_collect_to(b, dst, srcs, DIV_ROUND_UP(count, chan_per_word));
}
static inline bi_instr *
bi_load_ubo_to(bi_builder *b, unsigned bitsize, bi_index dest0, bi_index src0,
bi_index src1)
{
bi_instr *I;
if (b->shader->arch >= 9) {
I = bi_ld_buffer_to(b, bitsize, dest0, src0, src1);
I->seg = BI_SEG_UBO;
} else {
I = bi_load_to(b, bitsize, dest0, src0, src1, BI_SEG_UBO, 0);
}
bi_emit_cached_split(b, dest0, bitsize);
return I;
}
static void
bi_load_sample_id_to(bi_builder *b, bi_index dst)
{
/* r61[16:23] contains the sampleID, mask it out. Upper bits
* seem to read garbage (despite being architecturally defined
* as zero), so use a 5-bit mask instead of 8-bits */
bi_rshift_and_i32_to(b, dst, bi_preload(b, 61), bi_imm_u32(0x1f),
bi_imm_u8(16), false);
}
static bi_index
bi_load_sample_id(bi_builder *b)
{
bi_index sample_id = bi_temp(b->shader);
bi_load_sample_id_to(b, sample_id);
return sample_id;
}
static bi_index
bi_pixel_indices(bi_builder *b, unsigned rt)
{
/* We want to load the current pixel. */
struct bifrost_pixel_indices pix = {.y = BIFROST_CURRENT_PIXEL, .rt = rt};
uint32_t indices_u32 = 0;
memcpy(&indices_u32, &pix, sizeof(indices_u32));
bi_index indices = bi_imm_u32(indices_u32);
/* Sample index above is left as zero. For multisampling, we need to
* fill in the actual sample ID in the lower byte */
if (b->shader->inputs->blend.nr_samples > 1)
indices = bi_iadd_u32(b, indices, bi_load_sample_id(b), false);
return indices;
}
/* Source color is passed through r0-r3, or r4-r7 for the second source when
* dual-source blending. Preload the corresponding vector.
*/
static void
bi_emit_load_blend_input(bi_builder *b, nir_intrinsic_instr *instr)
{
nir_io_semantics sem = nir_intrinsic_io_semantics(instr);
unsigned base = (sem.location == VARYING_SLOT_VAR0) ? 4 : 0;
unsigned size = nir_alu_type_get_type_size(nir_intrinsic_dest_type(instr));
assert(size == 16 || size == 32);
bi_index srcs[] = {bi_preload(b, base + 0), bi_preload(b, base + 1),
bi_preload(b, base + 2), bi_preload(b, base + 3)};
bi_emit_collect_to(b, bi_def_index(&instr->def), srcs, size == 32 ? 4 : 2);
}
static void
bi_emit_blend_op(bi_builder *b, bi_index rgba, nir_alu_type T, bi_index rgba2,
nir_alu_type T2, unsigned rt)
{
/* Reads 2 or 4 staging registers to cover the input */
unsigned size = nir_alu_type_get_type_size(T);
unsigned size_2 = nir_alu_type_get_type_size(T2);
unsigned sr_count = (size <= 16) ? 2 : 4;
unsigned sr_count_2 = (size_2 <= 16) ? 2 : 4;
const struct panfrost_compile_inputs *inputs = b->shader->inputs;
uint64_t blend_desc = inputs->blend.bifrost_blend_desc;
enum bi_register_format regfmt = bi_reg_fmt_for_nir(T);
/* Workaround for NIR-to-TGSI */
if (b->shader->nir->info.fs.untyped_color_outputs)
regfmt = BI_REGISTER_FORMAT_AUTO;
if (inputs->is_blend && inputs->blend.nr_samples > 1) {
/* Conversion descriptor comes from the compile inputs, pixel
* indices derived at run time based on sample ID */
bi_st_tile(b, rgba, bi_pixel_indices(b, rt), bi_coverage(b),
bi_imm_u32(blend_desc >> 32), regfmt, BI_VECSIZE_V4);
} else if (b->shader->inputs->is_blend) {
uint64_t blend_desc = b->shader->inputs->blend.bifrost_blend_desc;
/* Blend descriptor comes from the compile inputs */
/* Put the result in r0 */
bi_blend_to(b, bi_temp(b->shader), rgba, bi_coverage(b),
bi_imm_u32(blend_desc), bi_imm_u32(blend_desc >> 32),
bi_null(), regfmt, sr_count, 0);
} else {
/* Blend descriptor comes from the FAU RAM. By convention, the
* return address on Bifrost is stored in r48 and will be used
* by the blend shader to jump back to the fragment shader */
bi_blend_to(b, bi_temp(b->shader), rgba, bi_coverage(b),
bi_fau(BIR_FAU_BLEND_0 + rt, false),
bi_fau(BIR_FAU_BLEND_0 + rt, true), rgba2, regfmt, sr_count,
sr_count_2);
}
assert(rt < 8);
b->shader->info.bifrost->blend[rt].type = T;
if (T2)
b->shader->info.bifrost->blend_src1_type = T2;
}
/* Blend shaders do not need to run ATEST since they are dependent on a
* fragment shader that runs it. Blit shaders may not need to run ATEST, since
* ATEST is not needed if early-z is forced, alpha-to-coverage is disabled, and
* there are no writes to the coverage mask. The latter two are satisfied for
* all blit shaders, so we just care about early-z, which blit shaders force
* iff they do not write depth or stencil */
static bool
bi_skip_atest(bi_context *ctx, bool emit_zs)
{
return (ctx->inputs->is_blit && !emit_zs) || ctx->inputs->is_blend;
}
static void
bi_emit_atest(bi_builder *b, bi_index alpha)
{
b->shader->coverage =
bi_atest(b, bi_coverage(b), alpha, bi_fau(BIR_FAU_ATEST_PARAM, false));
b->shader->emitted_atest = true;
}
static bi_index
bi_src_color_vec4(bi_builder *b, nir_src *src, nir_alu_type T)
{
unsigned num_components = nir_src_num_components(*src);
bi_index base = bi_src_index(src);
/* short-circuit the common case */
if (num_components == 4)
return base;
unsigned size = nir_alu_type_get_type_size(T);
assert(size == 16 || size == 32);
bi_index src_vals[4];
unsigned i;
for (i = 0; i < num_components; i++)
src_vals[i] = bi_extract(b, base, i);
for (; i < 3; i++)
src_vals[i] = (size == 16) ? bi_imm_f16(0.0) : bi_imm_f32(0.0);
src_vals[3] = (size == 16) ? bi_imm_f16(1.0) : bi_imm_f32(1.0);
bi_index temp = bi_temp(b->shader);
bi_make_vec_to(b, temp, src_vals, NULL, 4, size);
return temp;
}
static void
bi_emit_fragment_out(bi_builder *b, nir_intrinsic_instr *instr)
{
bool combined = instr->intrinsic == nir_intrinsic_store_combined_output_pan;
unsigned writeout =
combined ? nir_intrinsic_component(instr) : PAN_WRITEOUT_C;
bool emit_blend = writeout & (PAN_WRITEOUT_C);
bool emit_zs = writeout & (PAN_WRITEOUT_Z | PAN_WRITEOUT_S);
unsigned loc = nir_intrinsic_io_semantics(instr).location;
bi_index src0 = bi_src_index(&instr->src[0]);
/* By ISA convention, the coverage mask is stored in R60. The store
* itself will be handled by a subsequent ATEST instruction */
if (loc == FRAG_RESULT_SAMPLE_MASK) {
b->shader->coverage = bi_extract(b, src0, 0);
return;
}
/* Emit ATEST if we have to, note ATEST requires a floating-point alpha
* value, but render target #0 might not be floating point. However the
* alpha value is only used for alpha-to-coverage, a stage which is
* skipped for pure integer framebuffers, so the issue is moot. */
if (!b->shader->emitted_atest && !bi_skip_atest(b->shader, emit_zs)) {
nir_alu_type T = nir_intrinsic_src_type(instr);
bi_index rgba = bi_src_index(&instr->src[0]);
bi_index alpha;
if (nir_src_num_components(instr->src[0]) < 4) {
/* Don't read out-of-bounds */
alpha = bi_imm_f32(1.0);
} else if (T == nir_type_float16) {
alpha = bi_half(bi_extract(b, rgba, 1), true);
} else if (T == nir_type_float32) {
alpha = bi_extract(b, rgba, 3);
} else {
alpha = bi_dontcare(b);
}
bi_emit_atest(b, alpha);
}
if (emit_zs) {
bi_index z = bi_dontcare(b), s = bi_dontcare(b);
if (writeout & PAN_WRITEOUT_Z)
z = bi_src_index(&instr->src[2]);
if (writeout & PAN_WRITEOUT_S)
s = bi_src_index(&instr->src[3]);
b->shader->coverage =
bi_zs_emit(b, z, s, bi_coverage(b), writeout & PAN_WRITEOUT_S,
writeout & PAN_WRITEOUT_Z);
}
if (emit_blend) {
unsigned rt = loc ? (loc - FRAG_RESULT_DATA0) : 0;
bool dual = (writeout & PAN_WRITEOUT_2);
nir_alu_type T = nir_intrinsic_src_type(instr);
nir_alu_type T2 = dual ? nir_intrinsic_dest_type(instr) : 0;
bi_index color = bi_src_color_vec4(b, &instr->src[0], T);
bi_index color2 =
dual ? bi_src_color_vec4(b, &instr->src[4], T2) : bi_null();
if (instr->intrinsic == nir_intrinsic_store_output &&
loc >= FRAG_RESULT_DATA0 && loc <= FRAG_RESULT_DATA7) {
assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
unsigned rt_offs = nir_src_as_uint(instr->src[1]);
assert(rt + rt_offs < 8 && "RT not in the [0-7] range");
rt += rt_offs;
}
/* Explicit copy since BLEND inputs are precoloured to R0-R3,
* TODO: maybe schedule around this or implement in RA as a
* spill */
bool has_mrt =
(b->shader->nir->info.outputs_written >> FRAG_RESULT_DATA1);
if (has_mrt) {
bi_index srcs[4] = {color, color, color, color};
unsigned channels[4] = {0, 1, 2, 3};
color = bi_temp(b->shader);
bi_make_vec_to(
b, color, srcs, channels, nir_src_num_components(instr->src[0]),
nir_alu_type_get_type_size(nir_intrinsic_src_type(instr)));
}
bi_emit_blend_op(b, color, nir_intrinsic_src_type(instr), color2, T2, rt);
}
if (b->shader->inputs->is_blend) {
/* Jump back to the fragment shader, return address is stored
* in r48 (see above). On Valhall, only jump if the address is
* nonzero. The check is free there and it implements the "jump
* to 0 terminates the blend shader" that's automatic on
* Bifrost.
*/
if (b->shader->arch >= 8)
bi_branchzi(b, bi_preload(b, 48), bi_preload(b, 48), BI_CMPF_NE);
else
bi_jump(b, bi_preload(b, 48));
}
}
/**
* In a vertex shader, is the specified variable a position output? These kinds
* of outputs are written from position shaders when IDVS is enabled. All other
* outputs are written from the varying shader.
*/
static bool
bi_should_remove_store(nir_intrinsic_instr *intr, enum bi_idvs_mode idvs)
{
nir_io_semantics sem = nir_intrinsic_io_semantics(intr);
switch (sem.location) {
case VARYING_SLOT_POS:
case VARYING_SLOT_PSIZ:
case VARYING_SLOT_LAYER:
return idvs == BI_IDVS_VARYING;
default:
return idvs == BI_IDVS_POSITION;
}
}
static bool
bifrost_nir_specialize_idvs(nir_builder *b, nir_instr *instr, void *data)
{
enum bi_idvs_mode *idvs = data;
if (instr->type != nir_instr_type_intrinsic)
return false;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
if (intr->intrinsic != nir_intrinsic_store_output &&
intr->intrinsic != nir_intrinsic_store_per_view_output)
return false;
if (bi_should_remove_store(intr, *idvs)) {
nir_instr_remove(instr);
return true;
}
return false;
}
static void
bi_emit_store_vary(bi_builder *b, nir_intrinsic_instr *instr)
{
/* In principle we can do better for 16-bit. At the moment we require
* mediump varyings to be 32-bit to permit the use of .auto, in order to
* force .u32 for flat varyings, to handle internal TGSI shaders that set
* flat in the VS but smooth in the FS.
*
* Explicit 16-bit types are unaffected, and written as 16-bit. */
ASSERTED nir_alu_type T = nir_intrinsic_src_type(instr);
ASSERTED unsigned T_size = nir_alu_type_get_type_size(T);
assert(T_size == 32 || T_size == 16);
/* 16-bit varyings are always written and loaded as F16, regardless of
* whether they are float or int */
enum bi_register_format regfmt =
T_size == 16 ? BI_REGISTER_FORMAT_F16 : BI_REGISTER_FORMAT_AUTO;
unsigned imm_index = 0;
bool immediate = bi_is_intr_immediate(instr, &imm_index, 16);
/* Only look at the total components needed. In effect, we fill in all
* the intermediate "holes" in the write mask, since we can't mask off
* stores. Since nir_lower_io_to_temporaries ensures each varying is
* written at most once, anything that's masked out is undefined, so it
* doesn't matter what we write there. So we may as well do the
* simplest thing possible. */
unsigned nr = util_last_bit(nir_intrinsic_write_mask(instr));
assert(nr > 0 && nr <= nir_intrinsic_src_components(instr, 0));
bi_index data = bi_src_index(&instr->src[0]);
/* To keep the vector dimensions consistent, we need to drop some
* components. This should be coalesced.
*
* TODO: This is ugly and maybe inefficient. Would we rather
* introduce a TRIM.i32 pseudoinstruction?
*/
if (nr < nir_intrinsic_src_components(instr, 0)) {
bi_index chans[4] = {bi_null(), bi_null(), bi_null(), bi_null()};
unsigned comps_per_reg = instr->def.bit_size == 16 ? 2 : 1;
unsigned src_comps =
DIV_ROUND_UP(nir_intrinsic_src_components(instr, 0), comps_per_reg);
unsigned dst_comps = DIV_ROUND_UP(nr, comps_per_reg);
bi_emit_split_i32(b, chans, data, src_comps);
bi_index tmp = bi_temp(b->shader);
bi_instr *collect = bi_collect_i32_to(b, tmp, dst_comps);
bi_foreach_src(collect, w)
collect->src[w] = chans[w];
data = tmp;
}
bool psiz =
(nir_intrinsic_io_semantics(instr).location == VARYING_SLOT_PSIZ);
bool layer =
(nir_intrinsic_io_semantics(instr).location == VARYING_SLOT_LAYER);
bi_index a[4] = {bi_null()};
if (b->shader->arch <= 8 && b->shader->idvs == BI_IDVS_POSITION) {
/* Bifrost position shaders have a fast path */
assert(T == nir_type_float16 || T == nir_type_float32);
unsigned regfmt = (T == nir_type_float16) ? 0 : 1;
unsigned identity = (b->shader->arch == 6) ? 0x688 : 0;
unsigned snap4 = 0x5E;
uint32_t format = identity | (snap4 << 12) | (regfmt << 24);
bi_st_cvt(b, data, bi_preload(b, 58), bi_preload(b, 59),
bi_imm_u32(format), regfmt, nr - 1);
} else if (b->shader->arch >= 9 && b->shader->idvs != BI_IDVS_NONE) {
bi_index index = bi_preload(b, 59);
unsigned index_offset = 0;
unsigned pos_attr_offset = 0;
unsigned src_bit_sz = nir_src_bit_size(instr->src[0]);
if (psiz || layer)
index_offset += 4;
if (layer) {
assert(nr == 1 && src_bit_sz == 32);
src_bit_sz = 8;
pos_attr_offset = 2;
data = bi_byte(data, 0);
}
if (psiz)
assert(T_size == 16 && "should've been lowered");
bool varying = (b->shader->idvs == BI_IDVS_VARYING);
if (instr->intrinsic == nir_intrinsic_store_per_view_output) {
unsigned view_index = nir_src_as_uint(instr->src[1]);
if (varying) {
index_offset += view_index * 4;
} else {
/* We don't patch these offsets in the no_psiz variant, so if
* multiview is enabled we can't switch to the basic format by
* using no_psiz */
bool extended_position_fifo = b->shader->nir->info.outputs_written &
(VARYING_BIT_LAYER | VARYING_BIT_PSIZ);
unsigned position_fifo_stride = extended_position_fifo ? 8 : 4;
index_offset += view_index * position_fifo_stride;
}
}
if (index_offset != 0)
index = bi_iadd_imm_i32(b, index, index_offset);
/* On Valhall, with IDVS varying are stored in a hardware-controlled
* buffer through table 61 at index 0 */
bi_index address = bi_temp(b->shader);
bi_instr *I = bi_lea_buf_imm_to(b, address, index);
I->table = va_res_fold_table_idx(61);
I->index = 0;
bi_emit_split_i32(b, a, address, 2);
bi_store(b, nr * src_bit_sz, data, a[0], a[1],
varying ? BI_SEG_VARY : BI_SEG_POS,
varying ? bi_varying_offset(b->shader, instr) : pos_attr_offset);
} else if (immediate) {
bi_index address = bi_lea_attr_imm(b, bi_vertex_id(b), bi_instance_id(b),
regfmt, imm_index);
bi_emit_split_i32(b, a, address, 3);
bi_st_cvt(b, data, a[0], a[1], a[2], regfmt, nr - 1);
} else {
bi_index idx = bi_iadd_u32(b, bi_src_index(nir_get_io_offset_src(instr)),
bi_imm_u32(nir_intrinsic_base(instr)), false);
bi_index address =
bi_lea_attr(b, bi_vertex_id(b), bi_instance_id(b), idx, regfmt);
bi_emit_split_i32(b, a, address, 3);
bi_st_cvt(b, data, a[0], a[1], a[2], regfmt, nr - 1);
}
}
static void
bi_emit_load_ubo(bi_builder *b, nir_intrinsic_instr *instr)
{
nir_src *offset = nir_get_io_offset_src(instr);
bool offset_is_const = nir_src_is_const(*offset);
bi_index dyn_offset = bi_src_index(offset);
uint32_t const_offset = offset_is_const ? nir_src_as_uint(*offset) : 0;
bi_load_ubo_to(b, instr->num_components * instr->def.bit_size,
bi_def_index(&instr->def),
offset_is_const ? bi_imm_u32(const_offset) : dyn_offset,
bi_src_index(&instr->src[0]));
}
static void
bi_emit_load_push_constant(bi_builder *b, nir_intrinsic_instr *instr)
{
assert(b->shader->inputs->no_ubo_to_push && "can't mix push constant forms");
nir_src *offset = &instr->src[0];
assert(!nir_intrinsic_base(instr) && "base must be zero");
assert(!nir_intrinsic_range(instr) && "range must be zero");
assert(nir_src_is_const(*offset) && "no indirect push constants");
uint32_t base = nir_src_as_uint(*offset);
assert((base & 3) == 0 && "unaligned push constants");
unsigned bits = instr->def.bit_size * instr->def.num_components;
unsigned n = DIV_ROUND_UP(bits, 32);
assert(n <= 4);
bi_index channels[4] = {bi_null()};
for (unsigned i = 0; i < n; ++i) {
unsigned word = (base >> 2) + i;
channels[i] = bi_fau(BIR_FAU_UNIFORM | (word >> 1), word & 1);
}
bi_emit_collect_to(b, bi_def_index(&instr->def), channels, n);
/* Update push->count to report the highest push constant word being accessed
* by this shader.
*/
b->shader->info.push->count =
MAX2((base / 4) + n, b->shader->info.push->count);
}
static bi_index
bi_addr_high(bi_builder *b, nir_src *src)
{
return (nir_src_bit_size(*src) == 64) ? bi_extract(b, bi_src_index(src), 1)
: bi_zero();
}
static void
bi_handle_segment(bi_builder *b, bi_index *addr_lo, bi_index *addr_hi,
enum bi_seg seg, int16_t *offset)
{
/* Not needed on Bifrost or for global accesses */
if (b->shader->arch < 9 || seg == BI_SEG_NONE)
return;
/* There is no segment modifier on Valhall. Instead, we need to
* emit the arithmetic ourselves. We do have an offset
* available, which saves an instruction for constant offsets.
*/
bool wls = (seg == BI_SEG_WLS);
assert(wls || (seg == BI_SEG_TL));
enum bir_fau fau = wls ? BIR_FAU_WLS_PTR : BIR_FAU_TLS_PTR;
bi_index base_lo = bi_fau(fau, false);
if (offset && addr_lo->type == BI_INDEX_CONSTANT &&
addr_lo->value == (int16_t)addr_lo->value) {
*offset = addr_lo->value;
*addr_lo = base_lo;
} else {
*addr_lo = bi_iadd_u32(b, base_lo, *addr_lo, false);
}
/* Do not allow overflow for WLS or TLS */
*addr_hi = bi_fau(fau, true);
}
static void
bi_emit_load(bi_builder *b, nir_intrinsic_instr *instr, enum bi_seg seg)
{
int16_t offset = 0;
unsigned bits = instr->num_components * instr->def.bit_size;
bi_index dest = bi_def_index(&instr->def);
bi_index addr_lo = bi_extract(b, bi_src_index(&instr->src[0]), 0);
bi_index addr_hi = bi_addr_high(b, &instr->src[0]);
bi_handle_segment(b, &addr_lo, &addr_hi, seg, &offset);
bi_load_to(b, bits, dest, addr_lo, addr_hi, seg, offset);
bi_emit_cached_split(b, dest, bits);
}
static void
bi_emit_store(bi_builder *b, nir_intrinsic_instr *instr, enum bi_seg seg)
{
/* Require contiguous masks, gauranteed by nir_lower_wrmasks */
assert(nir_intrinsic_write_mask(instr) ==
BITFIELD_MASK(instr->num_components));
int16_t offset = 0;
bi_index addr_lo = bi_extract(b, bi_src_index(&instr->src[1]), 0);
bi_index addr_hi = bi_addr_high(b, &instr->src[1]);
bi_handle_segment(b, &addr_lo, &addr_hi, seg, &offset);
bi_store(b, instr->num_components * nir_src_bit_size(instr->src[0]),
bi_src_index(&instr->src[0]), addr_lo, addr_hi, seg, offset);
}
/* Exchanges the staging register with memory */
static void
bi_emit_axchg_to(bi_builder *b, bi_index dst, bi_index addr, nir_src *arg,
enum bi_seg seg)
{
assert(seg == BI_SEG_NONE || seg == BI_SEG_WLS);
unsigned sz = nir_src_bit_size(*arg);
assert(sz == 32 || sz == 64);
bi_index data = bi_src_index(arg);
bi_index addr_hi = (seg == BI_SEG_WLS) ? bi_zero() : bi_extract(b, addr, 1);
if (b->shader->arch >= 9)
bi_handle_segment(b, &addr, &addr_hi, seg, NULL);
else if (seg == BI_SEG_WLS)
addr_hi = bi_zero();
bi_axchg_to(b, sz, dst, data, bi_extract(b, addr, 0), addr_hi, seg);
}
/* Exchanges the second staging register with memory if comparison with first
* staging register passes */
static void
bi_emit_acmpxchg_to(bi_builder *b, bi_index dst, bi_index addr, nir_src *arg_1,
nir_src *arg_2, enum bi_seg seg)
{
assert(seg == BI_SEG_NONE || seg == BI_SEG_WLS);
/* hardware is swapped from NIR */
bi_index src0 = bi_src_index(arg_2);
bi_index src1 = bi_src_index(arg_1);
unsigned sz = nir_src_bit_size(*arg_1);
assert(sz == 32 || sz == 64);
bi_index data_words[] = {
bi_extract(b, src0, 0),
sz == 32 ? bi_extract(b, src1, 0) : bi_extract(b, src0, 1),
/* 64-bit */
bi_extract(b, src1, 0),
sz == 32 ? bi_extract(b, src1, 0) : bi_extract(b, src1, 1),
};
bi_index in = bi_temp(b->shader);
bi_emit_collect_to(b, in, data_words, 2 * (sz / 32));
bi_index addr_hi = (seg == BI_SEG_WLS) ? bi_zero() : bi_extract(b, addr, 1);
if (b->shader->arch >= 9)
bi_handle_segment(b, &addr, &addr_hi, seg, NULL);
else if (seg == BI_SEG_WLS)
addr_hi = bi_zero();
bi_index out = bi_acmpxchg(b, sz, in, bi_extract(b, addr, 0), addr_hi, seg);
bi_emit_cached_split(b, out, sz);
bi_index inout_words[] = {bi_extract(b, out, 0),
sz == 64 ? bi_extract(b, out, 1) : bi_null()};
bi_make_vec_to(b, dst, inout_words, NULL, sz / 32, 32);
}
static enum bi_atom_opc
bi_atom_opc_for_nir(nir_atomic_op op)
{
/* clang-format off */
switch (op) {
case nir_atomic_op_iadd: return BI_ATOM_OPC_AADD;
case nir_atomic_op_imin: return BI_ATOM_OPC_ASMIN;
case nir_atomic_op_umin: return BI_ATOM_OPC_AUMIN;
case nir_atomic_op_imax: return BI_ATOM_OPC_ASMAX;
case nir_atomic_op_umax: return BI_ATOM_OPC_AUMAX;
case nir_atomic_op_iand: return BI_ATOM_OPC_AAND;
case nir_atomic_op_ior: return BI_ATOM_OPC_AOR;
case nir_atomic_op_ixor: return BI_ATOM_OPC_AXOR;
default: unreachable("Unexpected computational atomic");
}
/* clang-format on */
}
/* Optimized unary atomics are available with an implied #1 argument */
static bool
bi_promote_atom_c1(enum bi_atom_opc op, bi_index arg, enum bi_atom_opc *out)
{
/* Check we have a compatible constant */
if (arg.type != BI_INDEX_CONSTANT)
return false;
if (!(arg.value == 1 || (arg.value == -1 && op == BI_ATOM_OPC_AADD)))
return false;
/* Check for a compatible operation */
switch (op) {
case BI_ATOM_OPC_AADD:
*out = (arg.value == 1) ? BI_ATOM_OPC_AINC : BI_ATOM_OPC_ADEC;
return true;
case BI_ATOM_OPC_ASMAX:
*out = BI_ATOM_OPC_ASMAX1;
return true;
case BI_ATOM_OPC_AUMAX:
*out = BI_ATOM_OPC_AUMAX1;
return true;
case BI_ATOM_OPC_AOR:
*out = BI_ATOM_OPC_AOR1;
return true;
default:
return false;
}
}
/*
* Coordinates are 16-bit integers in Bifrost but 32-bit in NIR. We need to
* translate between these forms (with MKVEC.v2i16).
*
* Aditionally on Valhall, cube maps in the attribute pipe are treated as 2D
* arrays. For uniform handling, we also treat 3D textures like 2D arrays.
*
* Our indexing needs to reflects this. Since Valhall and Bifrost are quite
* different, we provide separate functions for these.
*/
static bi_index
bi_emit_image_coord(bi_builder *b, bi_index coord, unsigned src_idx,
unsigned coord_comps, bool is_array, bool is_msaa)
{
assert(coord_comps > 0 && coord_comps <= 3);
/* MSAA load store should have been lowered */
assert(!is_msaa);
if (src_idx == 0) {
if (coord_comps == 1 || (coord_comps == 2 && is_array))
return bi_extract(b, coord, 0);
else
return bi_mkvec_v2i16(b, bi_half(bi_extract(b, coord, 0), false),
bi_half(bi_extract(b, coord, 1), false));
} else {
if (coord_comps == 3)
return bi_extract(b, coord, 2);
else if (coord_comps == 2 && is_array)
return bi_extract(b, coord, 1);
else
return bi_zero();
}
}
static bi_index
va_emit_image_coord(bi_builder *b, bi_index coord, bi_index sample_index,
unsigned src_idx, unsigned coord_comps, bool is_array,
bool is_msaa)
{
assert(coord_comps > 0 && coord_comps <= 3);
if (src_idx == 0) {
if (coord_comps == 1 || (coord_comps == 2 && is_array))
return bi_extract(b, coord, 0);
else
return bi_mkvec_v2i16(b, bi_half(bi_extract(b, coord, 0), false),
bi_half(bi_extract(b, coord, 1), false));
} else if (is_msaa) {
bi_index array_idx = bi_extract(b, sample_index, 0);
if (coord_comps == 3)
return bi_mkvec_v2i16(b, bi_half(array_idx, false),
bi_half(bi_extract(b, coord, 2), false));
else if (coord_comps == 2)
return array_idx;
} else if (coord_comps == 3 && is_array) {
return bi_mkvec_v2i16(b, bi_imm_u16(0),
bi_half(bi_extract(b, coord, 2), false));
} else if (coord_comps == 3 && !is_array) {
return bi_mkvec_v2i16(b, bi_half(bi_extract(b, coord, 2), false),
bi_imm_u16(0));
} else if (coord_comps == 2 && is_array) {
return bi_mkvec_v2i16(b, bi_imm_u16(0),
bi_half(bi_extract(b, coord, 1), false));
}
return bi_zero();
}
static void
bi_emit_image_load(bi_builder *b, nir_intrinsic_instr *instr)
{
enum glsl_sampler_dim dim = nir_intrinsic_image_dim(instr);
unsigned coord_comps = nir_image_intrinsic_coord_components(instr);
bool array =
nir_intrinsic_image_array(instr) || dim == GLSL_SAMPLER_DIM_CUBE;
bi_index coords = bi_src_index(&instr->src[1]);
bi_index indexvar = bi_src_index(&instr->src[2]);
bi_index xy, zw;
bool is_ms = (dim == GLSL_SAMPLER_DIM_MS);
if (b->shader->arch < 9) {
xy = bi_emit_image_coord(b, coords, 0, coord_comps, array, is_ms);
zw = bi_emit_image_coord(b, coords, 1, coord_comps, array, is_ms);
} else {
xy =
va_emit_image_coord(b, coords, indexvar, 0, coord_comps, array, is_ms);
zw =
va_emit_image_coord(b, coords, indexvar, 1, coord_comps, array, is_ms);
}
bi_index dest = bi_def_index(&instr->def);
enum bi_register_format regfmt =
bi_reg_fmt_for_nir(nir_intrinsic_dest_type(instr));
enum bi_vecsize vecsize = instr->num_components - 1;
if (b->shader->arch >= 9 && nir_src_is_const(instr->src[0])) {
const unsigned raw_value = nir_src_as_uint(instr->src[0]);
const unsigned table_index = pan_res_handle_get_table(raw_value);
const unsigned texture_index = pan_res_handle_get_index(raw_value);
if (texture_index < 16 && va_is_valid_const_table(table_index)) {
bi_instr *I =
bi_ld_tex_imm_to(b, dest, xy, zw, regfmt, vecsize, texture_index);
I->table = va_res_fold_table_idx(table_index);
} else {
bi_ld_tex_to(b, dest, xy, zw, bi_src_index(&instr->src[0]), regfmt,
vecsize);
}
} else if (b->shader->arch >= 9) {
bi_ld_tex_to(b, dest, xy, zw, bi_src_index(&instr->src[0]), regfmt,
vecsize);
} else {
bi_ld_attr_tex_to(b, dest, xy, zw, bi_src_index(&instr->src[0]), regfmt,
vecsize);
}
bi_split_def(b, &instr->def);
}
static void
bi_emit_lea_image_to(bi_builder *b, bi_index dest, nir_intrinsic_instr *instr)
{
enum glsl_sampler_dim dim = nir_intrinsic_image_dim(instr);
bool array =
nir_intrinsic_image_array(instr) || dim == GLSL_SAMPLER_DIM_CUBE;
unsigned coord_comps = nir_image_intrinsic_coord_components(instr);
enum bi_register_format type =
(instr->intrinsic == nir_intrinsic_image_store)
? bi_reg_fmt_for_nir(nir_intrinsic_src_type(instr))
: BI_REGISTER_FORMAT_AUTO;
bi_index coords = bi_src_index(&instr->src[1]);
bi_index indices = bi_src_index(&instr->src[2]);
bi_index xy, zw;
bool is_ms = dim == GLSL_SAMPLER_DIM_MS;
if (b->shader->arch < 9) {
xy = bi_emit_image_coord(b, coords, 0, coord_comps, array, is_ms);
zw = bi_emit_image_coord(b, coords, 1, coord_comps, array, is_ms);
} else {
xy =
va_emit_image_coord(b, coords, indices, 0, coord_comps, array, is_ms);
zw =
va_emit_image_coord(b, coords, indices, 1, coord_comps, array, is_ms);
}
if (b->shader->arch >= 9 && nir_src_is_const(instr->src[0])) {
const unsigned raw_value = nir_src_as_uint(instr->src[0]);
unsigned table_index = pan_res_handle_get_table(raw_value);
unsigned texture_index = pan_res_handle_get_index(raw_value);
if (texture_index < 16 && va_is_valid_const_table(table_index)) {
bi_instr *I = bi_lea_tex_imm_to(b, dest, xy, zw, false, texture_index);
I->table = va_res_fold_table_idx(table_index);
} else {
bi_lea_tex_to(b, dest, xy, zw, bi_src_index(&instr->src[0]), false);
}
} else if (b->shader->arch >= 9) {
bi_lea_tex_to(b, dest, xy, zw, bi_src_index(&instr->src[0]), false);
} else {
bi_instr *I = bi_lea_attr_tex_to(b, dest, xy, zw,
bi_src_index(&instr->src[0]), type);
/* LEA_ATTR_TEX defaults to the secondary attribute table, but
* our ABI has all images in the primary attribute table
*/
I->table = BI_TABLE_ATTRIBUTE_1;
}
bi_emit_cached_split(b, dest, 3 * 32);
}
static bi_index
bi_emit_lea_image(bi_builder *b, nir_intrinsic_instr *instr)
{
bi_index dest = bi_temp(b->shader);
bi_emit_lea_image_to(b, dest, instr);
return dest;
}
static void
bi_emit_image_store(bi_builder *b, nir_intrinsic_instr *instr)
{
bi_index a[4] = {bi_null()};
bi_emit_split_i32(b, a, bi_emit_lea_image(b, instr), 3);
/* Due to SPIR-V limitations, the source type is not fully reliable: it
* reports uint32 even for write_imagei. This causes an incorrect
* u32->s32->u32 roundtrip which incurs an unwanted clamping. Use auto32
* instead, which will match per the OpenCL spec. Of course this does
* not work for 16-bit stores, but those are not available in OpenCL.
*/
nir_alu_type T = nir_intrinsic_src_type(instr);
assert(nir_alu_type_get_type_size(T) == 32);
bi_st_cvt(b, bi_src_index(&instr->src[3]), a[0], a[1], a[2],
BI_REGISTER_FORMAT_AUTO, instr->num_components - 1);
}
static void
bi_emit_atomic_i32_to(bi_builder *b, bi_index dst, bi_index addr, bi_index arg,
nir_atomic_op op)
{
enum bi_atom_opc opc = bi_atom_opc_for_nir(op);
enum bi_atom_opc post_opc = opc;
bool bifrost = b->shader->arch <= 8;
/* ATOM_C.i32 takes a vector with {arg, coalesced}, ATOM_C1.i32 doesn't
* take any vector but can still output in RETURN mode */
bi_index tmp_dest = bifrost ? bi_temp(b->shader) : dst;
unsigned sr_count = bifrost ? 2 : 1;
/* Generate either ATOM or ATOM1 as required */
if (bi_promote_atom_c1(opc, arg, &opc)) {
bi_atom1_return_i32_to(b, tmp_dest, bi_extract(b, addr, 0),
bi_extract(b, addr, 1), opc, sr_count);
} else {
bi_atom_return_i32_to(b, tmp_dest, arg, bi_extract(b, addr, 0),
bi_extract(b, addr, 1), opc, sr_count);
}
if (bifrost) {
/* Post-process it */
bi_emit_cached_split_i32(b, tmp_dest, 2);
bi_atom_post_i32_to(b, dst, bi_extract(b, tmp_dest, 0),
bi_extract(b, tmp_dest, 1), post_opc);
}
}
static void
bi_emit_load_frag_coord_zw_pan(bi_builder *b, nir_intrinsic_instr *instr)
{
bi_index dst = bi_def_index(&instr->def);
unsigned channel = nir_intrinsic_component(instr);
nir_intrinsic_instr *bary = nir_src_as_intrinsic(instr->src[0]);
enum bi_sample sample = bi_interp_for_intrinsic(bary->intrinsic);
bi_index src0 = bi_varying_src0_for_barycentric(b, bary);
/* .explicit is not supported with frag_z */
if (channel == 2)
assert(sample != BI_SAMPLE_EXPLICIT);
bi_ld_var_special_to(
b, dst, src0, BI_REGISTER_FORMAT_F32, sample, BI_UPDATE_CLOBBER,
(channel == 2) ? BI_VARYING_NAME_FRAG_Z : BI_VARYING_NAME_FRAG_W,
BI_VECSIZE_NONE);
}
static void
bi_emit_ld_tile(bi_builder *b, nir_intrinsic_instr *instr)
{
bi_index dest = bi_def_index(&instr->def);
nir_alu_type T = nir_intrinsic_dest_type(instr);
enum bi_register_format regfmt = bi_reg_fmt_for_nir(T);
unsigned size = instr->def.bit_size;
unsigned nr = instr->num_components;
/* Get the render target */
nir_io_semantics sem = nir_intrinsic_io_semantics(instr);
unsigned loc = sem.location;
assert(loc >= FRAG_RESULT_DATA0);
unsigned rt = (loc - FRAG_RESULT_DATA0);
bi_ld_tile_to(b, dest, bi_pixel_indices(b, rt), bi_coverage(b),
bi_src_index(&instr->src[0]), regfmt, nr - 1);
bi_emit_cached_split(b, dest, size * nr);
}
/*
* Older Bifrost hardware has a limited CLPER instruction. Add a safe helper
* that uses the hardware functionality if available and lowers otherwise.
*/
static bi_index
bi_clper(bi_builder *b, bi_index s0, bi_index s1, enum bi_lane_op lop)
{
if (b->shader->quirks & BIFROST_LIMITED_CLPER) {
if (lop == BI_LANE_OP_XOR) {
bi_index lane_id = bi_fau(BIR_FAU_LANE_ID, false);
s1 = bi_lshift_xor_i32(b, lane_id, s1, bi_imm_u8(0));
} else {
assert(lop == BI_LANE_OP_NONE);
}
return bi_clper_old_i32(b, s0, s1);
} else {
return bi_clper_i32(b, s0, s1, BI_INACTIVE_RESULT_ZERO, lop,
BI_SUBGROUP_SUBGROUP4);
}
}
static void
bi_emit_derivative(bi_builder *b, bi_index dst, nir_intrinsic_instr *instr,
unsigned axis, bool coarse)
{
bi_index left, right;
bi_index s0 = bi_src_index(&instr->src[0]);
unsigned sz = instr->def.bit_size;
/* If all uses are fabs, the sign of the derivative doesn't matter. This is
* inherently based on fine derivatives so we can't do it for coarse.
*/
if (nir_def_all_uses_ignore_sign_bit(&instr->def) && !coarse) {
left = s0;
right = bi_clper(b, s0, bi_imm_u8(axis), BI_LANE_OP_XOR);
} else {
bi_index lane1, lane2;
if (coarse) {
lane1 = bi_imm_u32(0);
lane2 = bi_imm_u32(axis);
} else {
lane1 = bi_lshift_and_i32(b, bi_fau(BIR_FAU_LANE_ID, false),
bi_imm_u32(0x3 & ~axis), bi_imm_u8(0));
lane2 = bi_iadd_u32(b, lane1, bi_imm_u32(axis), false);
}
left = bi_clper(b, s0, bi_byte(lane1, 0), BI_LANE_OP_NONE);
right = bi_clper(b, s0, bi_byte(lane2, 0), BI_LANE_OP_NONE);
}
bi_fadd_to(b, sz, dst, right, bi_neg(left));
}
static enum bi_subgroup
bi_subgroup_from_cluster_size(unsigned cluster_size)
{
switch (cluster_size) {
case 2: return BI_SUBGROUP_SUBGROUP2;
case 4: return BI_SUBGROUP_SUBGROUP4;
case 8: return BI_SUBGROUP_SUBGROUP8;
case 16: return BI_SUBGROUP_SUBGROUP16;
default: unreachable("Unsupported cluster size");
}
}
static void
bi_emit_intrinsic(bi_builder *b, nir_intrinsic_instr *instr)
{
bi_index dst = nir_intrinsic_infos[instr->intrinsic].has_dest
? bi_def_index(&instr->def)
: bi_null();
gl_shader_stage stage = b->shader->stage;
switch (instr->intrinsic) {
case nir_intrinsic_load_barycentric_pixel:
case nir_intrinsic_load_barycentric_centroid:
case nir_intrinsic_load_barycentric_sample:
case nir_intrinsic_load_barycentric_at_sample:
case nir_intrinsic_load_barycentric_at_offset:
/* handled later via load_vary */
break;
case nir_intrinsic_load_attribute_pan:
assert(stage == MESA_SHADER_VERTEX);
bi_emit_load_attr(b, instr);
break;
case nir_intrinsic_load_interpolated_input:
case nir_intrinsic_load_input:
if (b->shader->inputs->is_blend)
bi_emit_load_blend_input(b, instr);
else if (stage == MESA_SHADER_FRAGMENT)
bi_emit_load_vary(b, instr);
else if (stage == MESA_SHADER_VERTEX)
bi_emit_load_attr(b, instr);
else
unreachable("Unsupported shader stage");
break;
case nir_intrinsic_store_output:
case nir_intrinsic_store_per_view_output:
if (stage == MESA_SHADER_FRAGMENT)
bi_emit_fragment_out(b, instr);
else if (stage == MESA_SHADER_VERTEX)
bi_emit_store_vary(b, instr);
else
unreachable("Unsupported shader stage");
break;
case nir_intrinsic_store_combined_output_pan:
assert(stage == MESA_SHADER_FRAGMENT);
bi_emit_fragment_out(b, instr);
break;
case nir_intrinsic_load_ubo:
bi_emit_load_ubo(b, instr);
break;
case nir_intrinsic_load_push_constant:
bi_emit_load_push_constant(b, instr);
break;
case nir_intrinsic_load_global:
case nir_intrinsic_load_global_constant:
bi_emit_load(b, instr, BI_SEG_NONE);
break;
case nir_intrinsic_store_global:
bi_emit_store(b, instr, BI_SEG_NONE);
break;
case nir_intrinsic_load_scratch:
bi_emit_load(b, instr, BI_SEG_TL);
break;
case nir_intrinsic_store_scratch:
bi_emit_store(b, instr, BI_SEG_TL);
break;
case nir_intrinsic_load_shared:
bi_emit_load(b, instr, BI_SEG_WLS);
break;
case nir_intrinsic_store_shared:
bi_emit_store(b, instr, BI_SEG_WLS);
break;
case nir_intrinsic_barrier:
switch (nir_intrinsic_execution_scope(instr)) {
case SCOPE_NONE:
/*
* No execution barrier, and we don't have to do anything for memory
* barriers (see SCOPE_WORKGROUP case.)
*/
break;
case SCOPE_SUBGROUP:
/*
* To implement a subgroup barrier, we only need to prevent the
* scheduler from reordering memory operations around the barrier.
* Avail and vis are trivially established.
*/
bi_memory_barrier(b);
break;
case SCOPE_WORKGROUP:
assert(b->shader->stage == MESA_SHADER_COMPUTE);
bi_barrier(b);
/*
* Blob doesn't seem to do anything for memory barriers, so no need to
* check nir_intrinsic_memory_scope().
*/
break;
default:
unreachable("Unsupported barrier scope");
}
break;
case nir_intrinsic_shared_atomic: {
nir_atomic_op op = nir_intrinsic_atomic_op(instr);
if (op == nir_atomic_op_xchg) {
bi_emit_axchg_to(b, dst, bi_src_index(&instr->src[0]), &instr->src[1],
BI_SEG_WLS);
} else {
assert(nir_src_bit_size(instr->src[1]) == 32);
bi_index addr = bi_src_index(&instr->src[0]);
bi_index addr_hi;
if (b->shader->arch >= 9) {
bi_handle_segment(b, &addr, &addr_hi, BI_SEG_WLS, NULL);
addr = bi_collect_v2i32(b, addr, addr_hi);
} else {
addr = bi_seg_add_i64(b, addr, bi_zero(), false, BI_SEG_WLS);
bi_emit_cached_split(b, addr, 64);
}
bi_emit_atomic_i32_to(b, dst, addr, bi_src_index(&instr->src[1]), op);
}
bi_split_def(b, &instr->def);
break;
}
case nir_intrinsic_global_atomic: {
nir_atomic_op op = nir_intrinsic_atomic_op(instr);
if (op == nir_atomic_op_xchg) {
bi_emit_axchg_to(b, dst, bi_src_index(&instr->src[0]), &instr->src[1],
BI_SEG_NONE);
} else {
assert(nir_src_bit_size(instr->src[1]) == 32);
bi_emit_atomic_i32_to(b, dst, bi_src_index(&instr->src[0]),
bi_src_index(&instr->src[1]), op);
}
bi_split_def(b, &instr->def);
break;
}
case nir_intrinsic_image_texel_address:
bi_emit_lea_image_to(b, dst, instr);
break;
case nir_intrinsic_image_load:
bi_emit_image_load(b, instr);
break;
case nir_intrinsic_image_store:
bi_emit_image_store(b, instr);
break;
case nir_intrinsic_global_atomic_swap:
bi_emit_acmpxchg_to(b, dst, bi_src_index(&instr->src[0]), &instr->src[1],
&instr->src[2], BI_SEG_NONE);
bi_split_def(b, &instr->def);
break;
case nir_intrinsic_shared_atomic_swap:
bi_emit_acmpxchg_to(b, dst, bi_src_index(&instr->src[0]), &instr->src[1],
&instr->src[2], BI_SEG_WLS);
bi_split_def(b, &instr->def);
break;
case nir_intrinsic_load_pixel_coord:
/* Vectorized load of the preloaded i16vec2 */
bi_mov_i32_to(b, dst, bi_preload(b, 59));
break;
case nir_intrinsic_load_frag_coord_zw_pan:
bi_emit_load_frag_coord_zw_pan(b, instr);
break;
case nir_intrinsic_load_converted_output_pan:
bi_emit_ld_tile(b, instr);
break;
case nir_intrinsic_terminate_if:
bi_discard_b32(b, bi_src_index(&instr->src[0]));
break;
case nir_intrinsic_terminate:
bi_discard_f32(b, bi_zero(), bi_zero(), BI_CMPF_EQ);
break;
case nir_intrinsic_load_sample_positions_pan:
bi_collect_v2i32_to(b, dst, bi_fau(BIR_FAU_SAMPLE_POS_ARRAY, false),
bi_fau(BIR_FAU_SAMPLE_POS_ARRAY, true));
break;
case nir_intrinsic_load_sample_mask_in:
/* r61[0:15] contains the coverage bitmap */
bi_u16_to_u32_to(b, dst, bi_half(bi_preload(b, 61), false));
break;
case nir_intrinsic_load_sample_mask:
bi_mov_i32_to(b, dst, bi_coverage(b));
break;
case nir_intrinsic_load_sample_id:
bi_load_sample_id_to(b, dst);
break;
case nir_intrinsic_load_front_face:
/* r58 == 0 means primitive is front facing */
bi_icmp_i32_to(b, dst, bi_preload(b, 58), bi_zero(), BI_CMPF_EQ,
BI_RESULT_TYPE_M1);
break;
case nir_intrinsic_load_point_coord:
bi_ld_var_special_to(b, dst, bi_zero(), BI_REGISTER_FORMAT_F32,
BI_SAMPLE_CENTER, BI_UPDATE_CLOBBER,
BI_VARYING_NAME_POINT, BI_VECSIZE_V2);
bi_emit_cached_split_i32(b, dst, 2);
break;
/* It appears vertex_id is zero-based with Bifrost geometry flows, but
* not with Valhall's memory-allocation IDVS geometry flow. We only support
* the new flow on Valhall so this is lowered in NIR.
*/
case nir_intrinsic_load_vertex_id:
assert(b->shader->malloc_idvs);
bi_mov_i32_to(b, dst, bi_vertex_id(b));
break;
case nir_intrinsic_load_raw_vertex_id_pan:
assert(!b->shader->malloc_idvs);
bi_mov_i32_to(b, dst, bi_vertex_id(b));
break;
case nir_intrinsic_load_instance_id:
bi_mov_i32_to(b, dst, bi_instance_id(b));
break;
case nir_intrinsic_load_draw_id:
bi_mov_i32_to(b, dst, bi_draw_id(b));
break;
case nir_intrinsic_load_subgroup_invocation:
bi_mov_i32_to(b, dst, bi_fau(BIR_FAU_LANE_ID, false));
break;
case nir_intrinsic_ballot:
case nir_intrinsic_ballot_relaxed: {
enum bi_subgroup subgroup =
bi_subgroup_from_cluster_size(pan_subgroup_size(b->shader->arch));
bi_wmask_to(b, dst, bi_src_index(&instr->src[0]), subgroup, 0);
break;
}
case nir_intrinsic_read_invocation: {
enum bi_inactive_result inactive_result = BI_INACTIVE_RESULT_ZERO;
enum bi_lane_op lane_op = BI_LANE_OP_NONE;
enum bi_subgroup subgroup =
bi_subgroup_from_cluster_size(pan_subgroup_size(b->shader->arch));
bi_clper_i32_to(b, dst,
bi_src_index(&instr->src[0]),
bi_byte(bi_src_index(&instr->src[1]), 0),
inactive_result, lane_op, subgroup);
break;
}
case nir_intrinsic_load_local_invocation_id:
bi_collect_v3i32_to(b, dst,
bi_u16_to_u32(b, bi_half(bi_preload(b, 55), 0)),
bi_u16_to_u32(b, bi_half(bi_preload(b, 55), 1)),
bi_u16_to_u32(b, bi_half(bi_preload(b, 56), 0)));
break;
case nir_intrinsic_load_workgroup_id:
bi_collect_v3i32_to(b, dst, bi_preload(b, 57), bi_preload(b, 58),
bi_preload(b, 59));
break;
case nir_intrinsic_load_global_invocation_id:
bi_collect_v3i32_to(b, dst, bi_preload(b, 60), bi_preload(b, 61),
bi_preload(b, 62));
break;
case nir_intrinsic_shader_clock:
bi_ld_gclk_u64_to(b, dst, BI_SOURCE_CYCLE_COUNTER);
bi_split_def(b, &instr->def);
break;
case nir_intrinsic_ddx:
case nir_intrinsic_ddx_fine:
bi_emit_derivative(b, dst, instr, 1, false);
break;
case nir_intrinsic_ddx_coarse:
bi_emit_derivative(b, dst, instr, 1, true);
break;
case nir_intrinsic_ddy:
case nir_intrinsic_ddy_fine:
bi_emit_derivative(b, dst, instr, 2, false);
break;
case nir_intrinsic_ddy_coarse:
bi_emit_derivative(b, dst, instr, 2, true);
break;
case nir_intrinsic_load_view_index:
case nir_intrinsic_load_layer_id:
assert(b->shader->arch >= 9);
bi_mov_i32_to(b, dst, bi_u8_to_u32(b, bi_byte(bi_preload(b, 62), 0)));
break;
case nir_intrinsic_load_ssbo_address:
assert(b->shader->arch >= 9);
bi_lea_buffer_to(b, dst, bi_src_index(&instr->src[1]),
bi_src_index(&instr->src[0]));
bi_emit_cached_split(b, dst, 64);
break;
case nir_intrinsic_load_ssbo: {
assert(b->shader->arch >= 9);
unsigned dst_bits = instr->num_components * instr->def.bit_size;
bi_ld_buffer_to(b, dst_bits, dst, bi_src_index(&instr->src[1]),
bi_src_index(&instr->src[0]));
bi_emit_cached_split(b, dst, dst_bits);
break;
}
case nir_intrinsic_as_uniform:
/*
* We don't have uniform registers (registers shared by all threads in the
* warp) like some other hardware does so this is just a simple mov for
* us.
*/
bi_mov_i32_to(b, dst, bi_src_index(&instr->src[0]));
break;
default:
fprintf(stderr, "Unhandled intrinsic %s\n",
nir_intrinsic_infos[instr->intrinsic].name);
assert(0);
}
}
static void
bi_emit_load_const(bi_builder *b, nir_load_const_instr *instr)
{
/* Make sure we've been lowered */
assert(instr->def.num_components <= (32 / instr->def.bit_size));
/* Accumulate all the channels of the constant, as if we did an
* implicit SEL over them */
uint32_t acc = 0;
for (unsigned i = 0; i < instr->def.num_components; ++i) {
unsigned v =
nir_const_value_as_uint(instr->value[i], instr->def.bit_size);
acc |= (v << (i * instr->def.bit_size));
}
bi_mov_i32_to(b, bi_get_index(instr->def.index), bi_imm_u32(acc));
}
static bi_index
bi_alu_src_index(bi_builder *b, nir_alu_src src, unsigned comps)
{
unsigned bitsize = nir_src_bit_size(src.src);
/* the bi_index carries the 32-bit (word) offset separate from the
* subword swizzle, first handle the offset */
unsigned offset = 0;
assert(bitsize == 8 || bitsize == 16 || bitsize == 32);
unsigned subword_shift = (bitsize == 32) ? 0 : (bitsize == 16) ? 1 : 2;
for (unsigned i = 0; i < comps; ++i) {
unsigned new_offset = (src.swizzle[i] >> subword_shift);
if (i > 0)
assert(offset == new_offset && "wrong vectorization");
offset = new_offset;
}
bi_index idx = bi_extract(b, bi_src_index(&src.src), offset);
/* Compose the subword swizzle with existing (identity) swizzle */
assert(idx.swizzle == BI_SWIZZLE_H01);
/* Bigger vectors should have been lowered */
assert(comps <= (1 << subword_shift));
if (bitsize == 16) {
unsigned c0 = src.swizzle[0] & 1;
unsigned c1 = (comps > 1) ? src.swizzle[1] & 1 : c0;
idx.swizzle = BI_SWIZZLE_H00 + c1 + (c0 << 1);
} else if (bitsize == 8 && comps == 1) {
idx.swizzle = BI_SWIZZLE_B0000 + (src.swizzle[0] & 3);
} else if (bitsize == 8) {
/* XXX: Use optimized swizzle when posisble */
bi_index unoffset_srcs[NIR_MAX_VEC_COMPONENTS] = {bi_null()};
unsigned channels[NIR_MAX_VEC_COMPONENTS] = {0};
for (unsigned i = 0; i < comps; ++i) {
unoffset_srcs[i] = bi_src_index(&src.src);
channels[i] = src.swizzle[i];
}
bi_index temp = bi_temp(b->shader);
bi_make_vec_to(b, temp, unoffset_srcs, channels, comps, bitsize);
static const enum bi_swizzle swizzle_lut[] = {
BI_SWIZZLE_B0000, BI_SWIZZLE_B0011, BI_SWIZZLE_H01, BI_SWIZZLE_H01};
assert(comps - 1 < ARRAY_SIZE(swizzle_lut));
/* Assign a coherent swizzle for the vector */
temp.swizzle = swizzle_lut[comps - 1];
return temp;
}
return idx;
}
static enum bi_round
bi_nir_round(nir_op op)
{
switch (op) {
case nir_op_fround_even:
return BI_ROUND_NONE;
case nir_op_ftrunc:
return BI_ROUND_RTZ;
case nir_op_fceil:
return BI_ROUND_RTP;
case nir_op_ffloor:
return BI_ROUND_RTN;
default:
unreachable("invalid nir round op");
}
}
/* Convenience for lowered transcendentals */
static bi_index
bi_fmul_f32(bi_builder *b, bi_index s0, bi_index s1)
{
return bi_fma_f32(b, s0, s1, bi_imm_f32(-0.0f));
}
/* Approximate with FRCP_APPROX.f32 and apply a single iteration of
* Newton-Raphson to improve precision */
static void
bi_lower_frcp_32(bi_builder *b, bi_index dst, bi_index s0)
{
bi_index x1 = bi_frcp_approx_f32(b, s0);
bi_index m = bi_frexpm_f32(b, s0, false, false);
bi_index e = bi_frexpe_f32(b, bi_neg(s0), false, false);
bi_index t1 = bi_fma_rscale_f32(b, m, bi_neg(x1), bi_imm_f32(1.0), bi_zero(),
BI_SPECIAL_N);
bi_fma_rscale_f32_to(b, dst, t1, x1, x1, e, BI_SPECIAL_NONE);
}
static void
bi_lower_frsq_32(bi_builder *b, bi_index dst, bi_index s0)
{
bi_index x1 = bi_frsq_approx_f32(b, s0);
bi_index m = bi_frexpm_f32(b, s0, false, true);
bi_index e = bi_frexpe_f32(b, bi_neg(s0), false, true);
bi_index t1 = bi_fmul_f32(b, x1, x1);
bi_index t2 = bi_fma_rscale_f32(b, m, bi_neg(t1), bi_imm_f32(1.0),
bi_imm_u32(-1), BI_SPECIAL_N);
bi_fma_rscale_f32_to(b, dst, t2, x1, x1, e, BI_SPECIAL_N);
}
/* More complex transcendentals, see
* https://gitlab.freedesktop.org/panfrost/mali-isa-docs/-/blob/master/Bifrost.adoc
* for documentation */
static void
bi_lower_fexp2_32(bi_builder *b, bi_index dst, bi_index s0)
{
bi_index t1 = bi_temp(b->shader);
bi_instr *t1_instr = bi_fadd_f32_to(b, t1, s0, bi_imm_u32(0x49400000));
t1_instr->clamp = BI_CLAMP_CLAMP_0_INF;
bi_index t2 = bi_fadd_f32(b, t1, bi_imm_u32(0xc9400000));
bi_instr *a2 = bi_fadd_f32_to(b, bi_temp(b->shader), s0, bi_neg(t2));
a2->clamp = BI_CLAMP_CLAMP_M1_1;
bi_index a1t = bi_fexp_table_u4(b, t1, BI_ADJ_NONE);
bi_index t3 = bi_isub_u32(b, t1, bi_imm_u32(0x49400000), false);
bi_index a1i = bi_arshift_i32(b, t3, bi_null(), bi_imm_u8(4));
bi_index p1 = bi_fma_f32(b, a2->dest[0], bi_imm_u32(0x3d635635),
bi_imm_u32(0x3e75fffa));
bi_index p2 = bi_fma_f32(b, p1, a2->dest[0], bi_imm_u32(0x3f317218));
bi_index p3 = bi_fmul_f32(b, a2->dest[0], p2);
bi_instr *x = bi_fma_rscale_f32_to(b, bi_temp(b->shader), p3, a1t, a1t, a1i,
BI_SPECIAL_NONE);
x->clamp = BI_CLAMP_CLAMP_0_INF;
bi_instr *max = bi_fmax_f32_to(b, dst, x->dest[0], s0);
max->sem = BI_SEM_NAN_PROPAGATE;
}
static void
bi_fexp_32(bi_builder *b, bi_index dst, bi_index s0, bi_index log2_base)
{
/* Scale by base, Multiply by 2*24 and convert to integer to get a 8:24
* fixed-point input */
bi_index scale = bi_fma_rscale_f32(b, s0, log2_base, bi_negzero(),
bi_imm_u32(24), BI_SPECIAL_NONE);
bi_instr *fixed_pt = bi_f32_to_s32_to(b, bi_temp(b->shader), scale);
fixed_pt->round = BI_ROUND_NONE; // XXX
/* Compute the result for the fixed-point input, but pass along
* the floating-point scale for correct NaN propagation */
bi_fexp_f32_to(b, dst, fixed_pt->dest[0], scale);
}
static void
bi_lower_flog2_32(bi_builder *b, bi_index dst, bi_index s0)
{
/* s0 = a1 * 2^e, with a1 in [0.75, 1.5) */
bi_index a1 = bi_frexpm_f32(b, s0, true, false);
bi_index ei = bi_frexpe_f32(b, s0, true, false);
bi_index ef = bi_s32_to_f32(b, ei);
/* xt estimates -log(r1), a coarse approximation of log(a1) */
bi_index r1 = bi_flog_table_f32(b, s0, BI_MODE_RED, BI_PRECISION_NONE);
bi_index xt = bi_flog_table_f32(b, s0, BI_MODE_BASE2, BI_PRECISION_NONE);
/* log(s0) = log(a1 * 2^e) = e + log(a1) = e + log(a1 * r1) -
* log(r1), so let x1 = e - log(r1) ~= e + xt and x2 = log(a1 * r1),
* and then log(s0) = x1 + x2 */
bi_index x1 = bi_fadd_f32(b, ef, xt);
/* Since a1 * r1 is close to 1, x2 = log(a1 * r1) may be computed by
* polynomial approximation around 1. The series is expressed around
* 1, so set y = (a1 * r1) - 1.0 */
bi_index y = bi_fma_f32(b, a1, r1, bi_imm_f32(-1.0));
/* x2 = log_2(1 + y) = log_e(1 + y) * (1/log_e(2)), so approximate
* log_e(1 + y) by the Taylor series (lower precision than the blob):
* y - y^2/2 + O(y^3) = y(1 - y/2) + O(y^3) */
bi_index loge =
bi_fmul_f32(b, y, bi_fma_f32(b, y, bi_imm_f32(-0.5), bi_imm_f32(1.0)));
bi_index x2 = bi_fmul_f32(b, loge, bi_imm_f32(1.0 / logf(2.0)));
/* log(s0) = x1 + x2 */
bi_fadd_f32_to(b, dst, x1, x2);
}
static void
bi_flog2_32(bi_builder *b, bi_index dst, bi_index s0)
{
bi_index frexp = bi_frexpe_f32(b, s0, true, false);
bi_index frexpi = bi_s32_to_f32(b, frexp);
bi_index add = bi_fadd_lscale_f32(b, bi_imm_f32(-1.0f), s0);
bi_fma_f32_to(b, dst, bi_flogd_f32(b, s0), add, frexpi);
}
static void
bi_lower_fpow_32(bi_builder *b, bi_index dst, bi_index base, bi_index exp)
{
bi_index log2_base = bi_null();
if (base.type == BI_INDEX_CONSTANT) {
log2_base = bi_imm_f32(log2f(uif(base.value)));
} else {
log2_base = bi_temp(b->shader);
bi_lower_flog2_32(b, log2_base, base);
}
return bi_lower_fexp2_32(b, dst, bi_fmul_f32(b, exp, log2_base));
}
static void
bi_fpow_32(bi_builder *b, bi_index dst, bi_index base, bi_index exp)
{
bi_index log2_base = bi_null();
if (base.type == BI_INDEX_CONSTANT) {
log2_base = bi_imm_f32(log2f(uif(base.value)));
} else {
log2_base = bi_temp(b->shader);
bi_flog2_32(b, log2_base, base);
}
return bi_fexp_32(b, dst, exp, log2_base);
}
/* Bifrost has extremely coarse tables for approximating sin/cos, accessible as
* FSIN/COS_TABLE.u6, which multiplies the bottom 6-bits by pi/32 and
* calculates the results. We use them to calculate sin/cos via a Taylor
* approximation:
*
* f(x + e) = f(x) + e f'(x) + (e^2)/2 f''(x)
* sin(x + e) = sin(x) + e cos(x) - (e^2)/2 sin(x)
* cos(x + e) = cos(x) - e sin(x) - (e^2)/2 cos(x)
*/
#define TWO_OVER_PI bi_imm_f32(2.0f / 3.14159f)
#define MPI_OVER_TWO bi_imm_f32(-3.14159f / 2.0)
#define SINCOS_BIAS bi_imm_u32(0x49400000)
static void
bi_lower_fsincos_32(bi_builder *b, bi_index dst, bi_index s0, bool cos)
{
/* bottom 6-bits of result times pi/32 approximately s0 mod 2pi */
bi_index x_u6 = bi_fma_f32(b, s0, TWO_OVER_PI, SINCOS_BIAS);
/* Approximate domain error (small) */
bi_index e = bi_fma_f32(b, bi_fadd_f32(b, x_u6, bi_neg(SINCOS_BIAS)),
MPI_OVER_TWO, s0);
/* Lookup sin(x), cos(x) */
bi_index sinx = bi_fsin_table_u6(b, x_u6, false);
bi_index cosx = bi_fcos_table_u6(b, x_u6, false);
/* e^2 / 2 */
bi_index e2_over_2 =
bi_fma_rscale_f32(b, e, e, bi_negzero(), bi_imm_u32(-1), BI_SPECIAL_NONE);
/* (-e^2)/2 f''(x) */
bi_index quadratic =
bi_fma_f32(b, bi_neg(e2_over_2), cos ? cosx : sinx, bi_negzero());
/* e f'(x) - (e^2/2) f''(x) */
bi_instr *I = bi_fma_f32_to(b, bi_temp(b->shader), e,
cos ? bi_neg(sinx) : cosx, quadratic);
I->clamp = BI_CLAMP_CLAMP_M1_1;
/* f(x) + e f'(x) - (e^2/2) f''(x) */
bi_fadd_f32_to(b, dst, I->dest[0], cos ? cosx : sinx);
}
static enum bi_cmpf
bi_translate_cmpf(nir_op op)
{
switch (op) {
case nir_op_ieq8:
case nir_op_ieq16:
case nir_op_ieq32:
case nir_op_feq16:
case nir_op_feq32:
return BI_CMPF_EQ;
case nir_op_ine8:
case nir_op_ine16:
case nir_op_ine32:
case nir_op_fneu16:
case nir_op_fneu32:
return BI_CMPF_NE;
case nir_op_ilt8:
case nir_op_ilt16:
case nir_op_ilt32:
case nir_op_flt16:
case nir_op_flt32:
case nir_op_ult8:
case nir_op_ult16:
case nir_op_ult32:
return BI_CMPF_LT;
case nir_op_ige8:
case nir_op_ige16:
case nir_op_ige32:
case nir_op_fge16:
case nir_op_fge32:
case nir_op_uge8:
case nir_op_uge16:
case nir_op_uge32:
return BI_CMPF_GE;
default:
unreachable("invalid comparison");
}
}
static bool
bi_nir_is_replicated(nir_alu_src *src)
{
for (unsigned i = 1; i < nir_src_num_components(src->src); ++i) {
if (src->swizzle[0] == src->swizzle[i])
return false;
}
return true;
}
static void
bi_emit_alu(bi_builder *b, nir_alu_instr *instr)
{
bi_index dst = bi_def_index(&instr->def);
unsigned srcs = nir_op_infos[instr->op].num_inputs;
unsigned sz = instr->def.bit_size;
unsigned comps = instr->def.num_components;
unsigned src_sz = srcs > 0 ? nir_src_bit_size(instr->src[0].src) : 0;
/* Indicate scalarness */
if (sz == 16 && comps == 1)
dst.swizzle = BI_SWIZZLE_H00;
/* First, match against the various moves in NIR. These are
* special-cased because they can operate on vectors even after
* lowering ALU to scalar. For Bifrost, bi_alu_src_index assumes the
* instruction is no "bigger" than SIMD-within-a-register. These moves
* are the exceptions that need to handle swizzles specially. */
switch (instr->op) {
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4:
case nir_op_vec8:
case nir_op_vec16: {
bi_index unoffset_srcs[16] = {bi_null()};
unsigned channels[16] = {0};
for (unsigned i = 0; i < srcs; ++i) {
unoffset_srcs[i] = bi_src_index(&instr->src[i].src);
channels[i] = instr->src[i].swizzle[0];
}
bi_make_vec_to(b, dst, unoffset_srcs, channels, srcs, sz);
return;
}
case nir_op_unpack_32_2x16: {
/* Should have been scalarized */
assert(comps == 2 && sz == 16);
bi_index vec = bi_src_index(&instr->src[0].src);
unsigned chan = instr->src[0].swizzle[0];
bi_mov_i32_to(b, dst, bi_extract(b, vec, chan));
return;
}
case nir_op_unpack_64_2x32_split_x: {
unsigned chan = (instr->src[0].swizzle[0] * 2) + 0;
bi_mov_i32_to(b, dst,
bi_extract(b, bi_src_index(&instr->src[0].src), chan));
return;
}
case nir_op_unpack_64_2x32_split_y: {
unsigned chan = (instr->src[0].swizzle[0] * 2) + 1;
bi_mov_i32_to(b, dst,
bi_extract(b, bi_src_index(&instr->src[0].src), chan));
return;
}
case nir_op_pack_64_2x32_split:
bi_collect_v2i32_to(b, dst,
bi_extract(b, bi_src_index(&instr->src[0].src),
instr->src[0].swizzle[0]),
bi_extract(b, bi_src_index(&instr->src[1].src),
instr->src[1].swizzle[0]));
return;
case nir_op_pack_64_2x32:
bi_collect_v2i32_to(b, dst,
bi_extract(b, bi_src_index(&instr->src[0].src),
instr->src[0].swizzle[0]),
bi_extract(b, bi_src_index(&instr->src[0].src),
instr->src[0].swizzle[1]));
return;
case nir_op_pack_uvec2_to_uint: {
bi_index src = bi_src_index(&instr->src[0].src);
assert(sz == 32 && src_sz == 32);
bi_mkvec_v2i16_to(
b, dst, bi_half(bi_extract(b, src, instr->src[0].swizzle[0]), false),
bi_half(bi_extract(b, src, instr->src[0].swizzle[1]), false));
return;
}
case nir_op_pack_uvec4_to_uint: {
bi_index src = bi_src_index(&instr->src[0].src);
assert(sz == 32 && src_sz == 32);
bi_index srcs[4] = {
bi_extract(b, src, instr->src[0].swizzle[0]),
bi_extract(b, src, instr->src[0].swizzle[1]),
bi_extract(b, src, instr->src[0].swizzle[2]),
bi_extract(b, src, instr->src[0].swizzle[3]),
};
unsigned channels[4] = {0};
bi_make_vec_to(b, dst, srcs, channels, 4, 8);
return;
}
case nir_op_mov: {
bi_index idx = bi_src_index(&instr->src[0].src);
bi_index unoffset_srcs[4] = {idx, idx, idx, idx};
unsigned channels[4] = {
comps > 0 ? instr->src[0].swizzle[0] : 0,
comps > 1 ? instr->src[0].swizzle[1] : 0,
comps > 2 ? instr->src[0].swizzle[2] : 0,
comps > 3 ? instr->src[0].swizzle[3] : 0,
};
bi_make_vec_to(b, dst, unoffset_srcs, channels, comps, src_sz);
return;
}
case nir_op_pack_32_2x16: {
assert(comps == 1);
bi_index idx = bi_src_index(&instr->src[0].src);
bi_index unoffset_srcs[4] = {idx, idx, idx, idx};
unsigned channels[2] = {instr->src[0].swizzle[0],
instr->src[0].swizzle[1]};
bi_make_vec_to(b, dst, unoffset_srcs, channels, 2, 16);
return;
}
case nir_op_f2f16:
case nir_op_f2f16_rtz:
case nir_op_f2f16_rtne: {
/* Starting with v11, we don't have V2XXX_TO_V2F16, this should have been
* lowered before if there is more than one components */
assert(b->shader->arch < 11 || comps == 1);
assert(src_sz == 32);
bi_index idx = bi_src_index(&instr->src[0].src);
bi_index s0 = bi_extract(b, idx, instr->src[0].swizzle[0]);
bi_instr *I;
/* Use V2F32_TO_V2F16 if vectorized */
if (comps == 2) {
/* Starting with v11, we don't have V2F32_TO_V2F16, this should have
* been lowered before if there is more than one components */
assert(b->shader->arch < 11);
bi_index s1 = bi_extract(b, idx, instr->src[0].swizzle[1]);
I = bi_v2f32_to_v2f16_to(b, dst, s0, s1);
} else {
assert(comps == 1);
I = bi_f32_to_f16_to(b, dst, s0);
}
/* Override rounding if explicitly requested. Otherwise, the
* default rounding mode is selected by the builder. Depending
* on the float controls required by the shader, the default
* mode may not be nearest-even.
*/
if (instr->op == nir_op_f2f16_rtz)
I->round = BI_ROUND_RTZ;
else if (instr->op == nir_op_f2f16_rtne)
I->round = BI_ROUND_NONE; /* Nearest even */
return;
}
/* Vectorized downcasts */
case nir_op_u2u16:
case nir_op_i2i16: {
if (!(src_sz == 32 && comps == 2))
break;
bi_index idx = bi_src_index(&instr->src[0].src);
bi_index s0 = bi_extract(b, idx, instr->src[0].swizzle[0]);
bi_index s1 = bi_extract(b, idx, instr->src[0].swizzle[1]);
bi_mkvec_v2i16_to(b, dst, bi_half(s0, false), bi_half(s1, false));
return;
}
/* While we do not have a direct V2U32_TO_V2F16 instruction, lowering to
* MKVEC.v2i16 + V2U16_TO_V2F16 is more efficient on Bifrost than
* scalarizing due to scheduling (equal cost on Valhall). Additionally
* if the source is replicated the MKVEC.v2i16 can be optimized out.
*/
case nir_op_u2f16:
case nir_op_i2f16: {
if (!(src_sz == 32 && comps == 2))
break;
nir_alu_src *src = &instr->src[0];
bi_index idx = bi_src_index(&src->src);
bi_index s0 = bi_extract(b, idx, src->swizzle[0]);
bi_index s1 = bi_extract(b, idx, src->swizzle[1]);
bi_index t =
(src->swizzle[0] == src->swizzle[1])
? bi_half(s0, false)
: bi_mkvec_v2i16(b, bi_half(s0, false), bi_half(s1, false));
if (instr->op == nir_op_u2f16)
bi_v2u16_to_v2f16_to(b, dst, t);
else
bi_v2s16_to_v2f16_to(b, dst, t);
return;
}
case nir_op_i2i8:
case nir_op_u2u8: {
/* Acts like an 8-bit swizzle */
bi_index idx = bi_src_index(&instr->src[0].src);
unsigned factor = src_sz / 8;
unsigned chan[4] = {0};
for (unsigned i = 0; i < comps; ++i)
chan[i] = instr->src[0].swizzle[i] * factor;
bi_make_vec_to(b, dst, &idx, chan, comps, 8);
return;
}
case nir_op_b32csel: {
if (sz != 16)
break;
/* We allow vectorizing b32csel(cond, A, B) which can be
* translated as MUX.v2i16, even though cond is a 32-bit vector.
*
* If the source condition vector is replicated, we can use
* MUX.v2i16 directly, letting each component use the
* corresponding half of the 32-bit source. NIR uses 0/~0
* booleans so that's guaranteed to work (that is, 32-bit NIR
* booleans are 16-bit replicated).
*
* If we're not replicated, we use the same trick but must
* insert a MKVEC.v2i16 first to convert down to 16-bit.
*/
bi_index idx = bi_src_index(&instr->src[0].src);
bi_index s0 = bi_extract(b, idx, instr->src[0].swizzle[0]);
bi_index s1 = bi_alu_src_index(b, instr->src[1], comps);
bi_index s2 = bi_alu_src_index(b, instr->src[2], comps);
if (!bi_nir_is_replicated(&instr->src[0])) {
s0 = bi_mkvec_v2i16(
b, bi_half(s0, false),
bi_half(bi_extract(b, idx, instr->src[0].swizzle[1]), false));
}
bi_mux_v2i16_to(b, dst, s2, s1, s0, BI_MUX_INT_ZERO);
return;
}
default:
break;
}
bi_index s0 =
srcs > 0 ? bi_alu_src_index(b, instr->src[0], comps) : bi_null();
bi_index s1 =
srcs > 1 ? bi_alu_src_index(b, instr->src[1], comps) : bi_null();
bi_index s2 =
srcs > 2 ? bi_alu_src_index(b, instr->src[2], comps) : bi_null();
switch (instr->op) {
case nir_op_ffma:
bi_fma_to(b, sz, dst, s0, s1, s2);
break;
case nir_op_fmul:
bi_fma_to(b, sz, dst, s0, s1, bi_negzero());
break;
case nir_op_fadd:
bi_fadd_to(b, sz, dst, s0, s1);
break;
case nir_op_fsat: {
bi_instr *I = bi_fclamp_to(b, sz, dst, s0);
I->clamp = BI_CLAMP_CLAMP_0_1;
break;
}
case nir_op_fsat_signed: {
bi_instr *I = bi_fclamp_to(b, sz, dst, s0);
I->clamp = BI_CLAMP_CLAMP_M1_1;
break;
}
case nir_op_fclamp_pos: {
bi_instr *I = bi_fclamp_to(b, sz, dst, s0);
I->clamp = BI_CLAMP_CLAMP_0_INF;
break;
}
case nir_op_fneg:
bi_fabsneg_to(b, sz, dst, bi_neg(s0));
break;
case nir_op_fabs:
bi_fabsneg_to(b, sz, dst, bi_abs(s0));
break;
case nir_op_fsin:
bi_lower_fsincos_32(b, dst, s0, false);
break;
case nir_op_fcos:
bi_lower_fsincos_32(b, dst, s0, true);
break;
case nir_op_fexp2:
assert(sz == 32); /* should've been lowered */
if (b->shader->quirks & BIFROST_NO_FP32_TRANSCENDENTALS)
bi_lower_fexp2_32(b, dst, s0);
else
bi_fexp_32(b, dst, s0, bi_imm_f32(1.0f));
break;
case nir_op_flog2:
assert(sz == 32); /* should've been lowered */
if (b->shader->quirks & BIFROST_NO_FP32_TRANSCENDENTALS)
bi_lower_flog2_32(b, dst, s0);
else
bi_flog2_32(b, dst, s0);
break;
case nir_op_fpow:
assert(sz == 32); /* should've been lowered */
if (b->shader->quirks & BIFROST_NO_FP32_TRANSCENDENTALS)
bi_lower_fpow_32(b, dst, s0, s1);
else
bi_fpow_32(b, dst, s0, s1);
break;
case nir_op_frexp_exp:
bi_frexpe_to(b, sz, dst, s0, false, false);
break;
case nir_op_frexp_sig:
bi_frexpm_to(b, sz, dst, s0, false, false);
break;
case nir_op_ldexp:
bi_ldexp_to(b, sz, dst, s0, s1);
break;
case nir_op_b8csel:
bi_mux_v4i8_to(b, dst, s2, s1, s0, BI_MUX_INT_ZERO);
break;
case nir_op_b16csel:
bi_mux_v2i16_to(b, dst, s2, s1, s0, BI_MUX_INT_ZERO);
break;
case nir_op_b32csel:
bi_mux_i32_to(b, dst, s2, s1, s0, BI_MUX_INT_ZERO);
break;
case nir_op_extract_u8:
case nir_op_extract_i8: {
assert(comps == 1 && "should be scalarized");
assert((src_sz == 16 || src_sz == 32) && "should be lowered");
unsigned byte = nir_alu_src_as_uint(instr->src[1]);
if (s0.swizzle == BI_SWIZZLE_H11) {
assert(byte < 2);
byte += 2;
} else if (s0.swizzle != BI_SWIZZLE_H01) {
assert(s0.swizzle == BI_SWIZZLE_H00);
}
assert(byte < 4);
s0.swizzle = BI_SWIZZLE_H01;
if (instr->op == nir_op_extract_i8)
bi_s8_to_s32_to(b, dst, bi_byte(s0, byte));
else
bi_u8_to_u32_to(b, dst, bi_byte(s0, byte));
break;
}
case nir_op_extract_u16:
case nir_op_extract_i16: {
assert(comps == 1 && "should be scalarized");
assert(src_sz == 32 && "should be lowered");
unsigned half = nir_alu_src_as_uint(instr->src[1]);
assert(half == 0 || half == 1);
if (instr->op == nir_op_extract_i16)
bi_s16_to_s32_to(b, dst, bi_half(s0, half));
else
bi_u16_to_u32_to(b, dst, bi_half(s0, half));
break;
}
case nir_op_insert_u16: {
assert(comps == 1 && "should be scalarized");
unsigned half = nir_alu_src_as_uint(instr->src[1]);
assert(half == 0 || half == 1);
if (half == 0)
bi_u16_to_u32_to(b, dst, bi_half(s0, 0));
else
bi_mkvec_v2i16_to(b, dst, bi_imm_u16(0), bi_half(s0, 0));
break;
}
case nir_op_ishl:
bi_lshift_or_to(b, sz, dst, s0, bi_zero(), bi_byte(s1, 0));
break;
case nir_op_ushr:
bi_rshift_or_to(b, sz, dst, s0, bi_zero(), bi_byte(s1, 0), false);
break;
case nir_op_ishr:
if (b->shader->arch >= 9)
bi_rshift_or_to(b, sz, dst, s0, bi_zero(), bi_byte(s1, 0), true);
else
bi_arshift_to(b, sz, dst, s0, bi_null(), bi_byte(s1, 0));
break;
case nir_op_imin:
case nir_op_umin:
bi_csel_to(b, nir_op_infos[instr->op].input_types[0], sz, dst, s0, s1, s0,
s1, BI_CMPF_LT);
break;
case nir_op_imax:
case nir_op_umax:
bi_csel_to(b, nir_op_infos[instr->op].input_types[0], sz, dst, s0, s1, s0,
s1, BI_CMPF_GT);
break;
case nir_op_f2f32:
bi_f16_to_f32_to(b, dst, s0);
break;
case nir_op_fquantize2f16: {
bi_instr *f16 =
bi_f32_to_f16_to(b, bi_half(bi_temp(b->shader), false), s0);
if (b->shader->arch < 9) {
/* Bifrost has psuedo-ftz on conversions, that is lowered to an ftz
* flag in the clause header */
f16->ftz = true;
} else {
/* Valhall doesn't have clauses, and uses a separate flush
* instruction */
f16 = bi_flush_to(b, 16, bi_half(bi_temp(b->shader), false), f16->dest[0]);
f16->ftz = true;
}
bi_instr *f32 = bi_f16_to_f32_to(b, dst, f16->dest[0]);
if (b->shader->arch < 9)
f32->ftz = true;
break;
}
case nir_op_f2i32:
if (src_sz == 32)
bi_f32_to_s32_to(b, dst, s0);
else
bi_f16_to_s32_to(b, dst, s0);
break;
/* Note 32-bit sources => no vectorization, so 32-bit works */
case nir_op_f2u16:
if (src_sz == 32)
bi_f32_to_u32_to(b, dst, s0);
else
bi_v2f16_to_v2u16_to(b, dst, s0);
break;
case nir_op_f2i16:
if (src_sz == 32)
bi_f32_to_s32_to(b, dst, s0);
else
bi_v2f16_to_v2s16_to(b, dst, s0);
break;
case nir_op_f2u32:
if (src_sz == 32)
bi_f32_to_u32_to(b, dst, s0);
else
bi_f16_to_u32_to(b, dst, s0);
break;
case nir_op_u2f16:
if (src_sz == 32)
bi_v2u16_to_v2f16_to(b, dst, bi_half(s0, false));
else if (src_sz == 16)
bi_v2u16_to_v2f16_to(b, dst, s0);
else if (src_sz == 8)
bi_v2u8_to_v2f16_to(b, dst, s0);
break;
case nir_op_u2f32:
if (src_sz == 32)
bi_u32_to_f32_to(b, dst, s0);
else if (src_sz == 16)
bi_u16_to_f32_to(b, dst, s0);
else
bi_u8_to_f32_to(b, dst, s0);
break;
case nir_op_i2f16:
if (src_sz == 32)
bi_v2s16_to_v2f16_to(b, dst, bi_half(s0, false));
else if (src_sz == 16)
bi_v2s16_to_v2f16_to(b, dst, s0);
else if (src_sz == 8)
bi_v2s8_to_v2f16_to(b, dst, s0);
break;
case nir_op_i2f32:
assert(src_sz == 32 || src_sz == 16 || src_sz == 8);
if (src_sz == 32)
bi_s32_to_f32_to(b, dst, s0);
else if (src_sz == 16)
bi_s16_to_f32_to(b, dst, s0);
else if (src_sz == 8)
bi_s8_to_f32_to(b, dst, s0);
break;
case nir_op_i2i32:
assert(src_sz == 32 || src_sz == 16 || src_sz == 8);
if (src_sz == 32)
bi_mov_i32_to(b, dst, s0);
else if (src_sz == 16)
bi_s16_to_s32_to(b, dst, s0);
else if (src_sz == 8)
bi_s8_to_s32_to(b, dst, s0);
break;
case nir_op_u2u32:
assert(src_sz == 32 || src_sz == 16 || src_sz == 8);
if (src_sz == 32)
bi_mov_i32_to(b, dst, s0);
else if (src_sz == 16)
bi_u16_to_u32_to(b, dst, s0);
else if (src_sz == 8)
bi_u8_to_u32_to(b, dst, s0);
break;
case nir_op_i2i16:
assert(src_sz == 8 || src_sz == 32);
if (src_sz == 8)
bi_v2s8_to_v2s16_to(b, dst, s0);
else
bi_mov_i32_to(b, dst, s0);
break;
case nir_op_u2u16:
assert(src_sz == 8 || src_sz == 32);
if (src_sz == 8)
bi_v2u8_to_v2u16_to(b, dst, s0);
else
bi_mov_i32_to(b, dst, s0);
break;
case nir_op_b2i8:
case nir_op_b2i16:
case nir_op_b2i32:
bi_mux_to(b, sz, dst, bi_imm_u8(0), bi_imm_uintN(1, sz), s0,
BI_MUX_INT_ZERO);
break;
case nir_op_ieq8:
case nir_op_ine8:
case nir_op_ilt8:
case nir_op_ige8:
case nir_op_ieq16:
case nir_op_ine16:
case nir_op_ilt16:
case nir_op_ige16:
case nir_op_ieq32:
case nir_op_ine32:
case nir_op_ilt32:
case nir_op_ige32:
bi_icmp_to(b, nir_type_int, sz, dst, s0, s1, bi_translate_cmpf(instr->op),
BI_RESULT_TYPE_M1);
break;
case nir_op_ult8:
case nir_op_uge8:
case nir_op_ult16:
case nir_op_uge16:
case nir_op_ult32:
case nir_op_uge32:
bi_icmp_to(b, nir_type_uint, sz, dst, s0, s1,
bi_translate_cmpf(instr->op), BI_RESULT_TYPE_M1);
break;
case nir_op_feq32:
case nir_op_feq16:
case nir_op_flt32:
case nir_op_flt16:
case nir_op_fge32:
case nir_op_fge16:
case nir_op_fneu32:
case nir_op_fneu16:
bi_fcmp_to(b, sz, dst, s0, s1, bi_translate_cmpf(instr->op),
BI_RESULT_TYPE_M1);
break;
case nir_op_fround_even:
case nir_op_fceil:
case nir_op_ffloor:
case nir_op_ftrunc:
bi_fround_to(b, sz, dst, s0, bi_nir_round(instr->op));
break;
case nir_op_fmin:
bi_fmin_to(b, sz, dst, s0, s1);
break;
case nir_op_fmax:
bi_fmax_to(b, sz, dst, s0, s1);
break;
case nir_op_iadd:
bi_iadd_to(b, nir_type_int, sz, dst, s0, s1, false);
break;
case nir_op_iadd_sat:
bi_iadd_to(b, nir_type_int, sz, dst, s0, s1, true);
break;
case nir_op_uadd_sat:
bi_iadd_to(b, nir_type_uint, sz, dst, s0, s1, true);
break;
case nir_op_ihadd:
bi_hadd_to(b, nir_type_int, sz, dst, s0, s1, BI_ROUND_RTN);
break;
case nir_op_irhadd:
bi_hadd_to(b, nir_type_int, sz, dst, s0, s1, BI_ROUND_RTP);
break;
case nir_op_uhadd:
bi_hadd_to(b, nir_type_uint, sz, dst, s0, s1, BI_ROUND_RTN);
break;
case nir_op_urhadd:
bi_hadd_to(b, nir_type_uint, sz, dst, s0, s1, BI_ROUND_RTP);
break;
case nir_op_ineg:
bi_isub_to(b, nir_type_int, sz, dst, bi_zero(), s0, false);
break;
case nir_op_isub:
bi_isub_to(b, nir_type_int, sz, dst, s0, s1, false);
break;
case nir_op_isub_sat:
bi_isub_to(b, nir_type_int, sz, dst, s0, s1, true);
break;
case nir_op_usub_sat:
bi_isub_to(b, nir_type_uint, sz, dst, s0, s1, true);
break;
case nir_op_imul:
bi_imul_to(b, sz, dst, s0, s1);
break;
case nir_op_iabs:
bi_iabs_to(b, sz, dst, s0);
break;
case nir_op_iand:
bi_lshift_and_to(b, sz, dst, s0, s1, bi_imm_u8(0));
break;
case nir_op_ior:
bi_lshift_or_to(b, sz, dst, s0, s1, bi_imm_u8(0));
break;
case nir_op_ixor:
bi_lshift_xor_to(b, sz, dst, s0, s1, bi_imm_u8(0));
break;
case nir_op_inot:
bi_lshift_or_to(b, sz, dst, bi_zero(), bi_not(s0), bi_imm_u8(0));
break;
case nir_op_frsq:
if (sz == 32 && b->shader->quirks & BIFROST_NO_FP32_TRANSCENDENTALS)
bi_lower_frsq_32(b, dst, s0);
else
bi_frsq_to(b, sz, dst, s0);
break;
case nir_op_frcp:
if (sz == 32 && b->shader->quirks & BIFROST_NO_FP32_TRANSCENDENTALS)
bi_lower_frcp_32(b, dst, s0);
else
bi_frcp_to(b, sz, dst, s0);
break;
case nir_op_uclz:
bi_clz_to(b, sz, dst, s0, false);
break;
case nir_op_bit_count:
assert(sz == 32 && src_sz == 32 && "should've been lowered");
bi_popcount_i32_to(b, dst, s0);
break;
case nir_op_bitfield_reverse:
assert(sz == 32 && src_sz == 32 && "should've been lowered");
bi_bitrev_i32_to(b, dst, s0);
break;
case nir_op_ufind_msb: {
bi_index clz = bi_clz(b, src_sz, s0, false);
if (sz == 8)
clz = bi_byte(clz, 0);
else if (sz == 16)
clz = bi_half(clz, false);
bi_isub_u32_to(b, dst, bi_imm_u32(src_sz - 1), clz, false);
break;
}
default:
fprintf(stderr, "Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
unreachable("Unknown ALU op");
}
}
/* Returns dimension with 0 special casing cubemaps. Shamelessly copied from
* Midgard */
static unsigned
bifrost_tex_format(enum glsl_sampler_dim dim)
{
switch (dim) {
case GLSL_SAMPLER_DIM_1D:
case GLSL_SAMPLER_DIM_BUF:
return 1;
case GLSL_SAMPLER_DIM_2D:
case GLSL_SAMPLER_DIM_MS:
case GLSL_SAMPLER_DIM_EXTERNAL:
case GLSL_SAMPLER_DIM_RECT:
case GLSL_SAMPLER_DIM_SUBPASS:
case GLSL_SAMPLER_DIM_SUBPASS_MS:
return 2;
case GLSL_SAMPLER_DIM_3D:
return 3;
case GLSL_SAMPLER_DIM_CUBE:
return 0;
default:
DBG("Unknown sampler dim type\n");
assert(0);
return 0;
}
}
static enum bi_dimension
valhall_tex_dimension(enum glsl_sampler_dim dim)
{
switch (dim) {
case GLSL_SAMPLER_DIM_1D:
case GLSL_SAMPLER_DIM_BUF:
return BI_DIMENSION_1D;
case GLSL_SAMPLER_DIM_2D:
case GLSL_SAMPLER_DIM_MS:
case GLSL_SAMPLER_DIM_EXTERNAL:
case GLSL_SAMPLER_DIM_RECT:
case GLSL_SAMPLER_DIM_SUBPASS:
case GLSL_SAMPLER_DIM_SUBPASS_MS:
return BI_DIMENSION_2D;
case GLSL_SAMPLER_DIM_3D:
return BI_DIMENSION_3D;
case GLSL_SAMPLER_DIM_CUBE:
return BI_DIMENSION_CUBE;
default:
unreachable("Unknown sampler dim type");
}
}
static enum bifrost_texture_format_full
bi_texture_format(nir_alu_type T, enum bi_clamp clamp)
{
switch (T) {
case nir_type_float16:
return BIFROST_TEXTURE_FORMAT_F16 + clamp;
case nir_type_float32:
return BIFROST_TEXTURE_FORMAT_F32 + clamp;
case nir_type_uint16:
return BIFROST_TEXTURE_FORMAT_U16;
case nir_type_int16:
return BIFROST_TEXTURE_FORMAT_S16;
case nir_type_uint32:
return BIFROST_TEXTURE_FORMAT_U32;
case nir_type_int32:
return BIFROST_TEXTURE_FORMAT_S32;
default:
unreachable("Invalid type for texturing");
}
}
/* Array indices are specified as 32-bit uints, need to convert. In .z component
* from NIR */
static bi_index
bi_emit_texc_array_index(bi_builder *b, bi_index idx, nir_alu_type T)
{
/* For (u)int we can just passthrough */
nir_alu_type base = nir_alu_type_get_base_type(T);
if (base == nir_type_int || base == nir_type_uint)
return idx;
/* Otherwise we convert */
assert(T == nir_type_float32);
/* OpenGL ES 3.2 specification section 8.14.2 ("Coordinate Wrapping and
* Texel Selection") defines the layer to be taken from clamp(RNE(r),
* 0, dt - 1). So we use round RTE, clamping is handled at the data
* structure level */
bi_instr *I = bi_f32_to_u32_to(b, bi_temp(b->shader), idx);
I->round = BI_ROUND_NONE;
return I->dest[0];
}
/* TEXC's explicit and bias LOD modes requires the LOD to be transformed to a
* 16-bit 8:8 fixed-point format. We lower as:
*
* F32_TO_S32(clamp(x, -16.0, +16.0) * 256.0) & 0xFFFF =
* MKVEC(F32_TO_S32(clamp(x * 1.0/16.0, -1.0, 1.0) * (16.0 * 256.0)), #0)
*/
static bi_index
bi_emit_texc_lod_88(bi_builder *b, bi_index lod, bool fp16)
{
/* Precompute for constant LODs to avoid general constant folding */
if (lod.type == BI_INDEX_CONSTANT) {
uint32_t raw = lod.value;
float x = fp16 ? _mesa_half_to_float(raw) : uif(raw);
int32_t s32 = CLAMP(x, -16.0f, 16.0f) * 256.0f;
return bi_imm_u32(s32 & 0xFFFF);
}
/* Sort of arbitrary. Must be less than 128.0, greater than or equal to
* the max LOD (16 since we cap at 2^16 texture dimensions), and
* preferably small to minimize precision loss */
const float max_lod = 16.0;
bi_instr *fsat =
bi_fma_f32_to(b, bi_temp(b->shader), fp16 ? bi_half(lod, false) : lod,
bi_imm_f32(1.0f / max_lod), bi_negzero());
fsat->clamp = BI_CLAMP_CLAMP_M1_1;
bi_index fmul =
bi_fma_f32(b, fsat->dest[0], bi_imm_f32(max_lod * 256.0f), bi_negzero());
return bi_mkvec_v2i16(b, bi_half(bi_f32_to_s32(b, fmul), false),
bi_imm_u16(0));
}
/* FETCH takes a 32-bit staging register containing the LOD as an integer in
* the bottom 16-bits and (if present) the cube face index in the top 16-bits.
* TODO: Cube face.
*/
static bi_index
bi_emit_texc_lod_cube(bi_builder *b, bi_index lod)
{
return bi_lshift_or_i32(b, lod, bi_zero(), bi_imm_u8(8));
}
/* The hardware specifies texel offsets and multisample indices together as a
* u8vec4 <offset, ms index>. By default all are zero, so if have either a
* nonzero texel offset or a nonzero multisample index, we build a u8vec4 with
* the bits we need and return that to be passed as a staging register. Else we
* return 0 to avoid allocating a data register when everything is zero. */
static bi_index
bi_emit_texc_offset_ms_index(bi_builder *b, nir_tex_instr *instr)
{
bi_index dest = bi_zero();
int offs_idx = nir_tex_instr_src_index(instr, nir_tex_src_offset);
if (offs_idx >= 0 && (!nir_src_is_const(instr->src[offs_idx].src) ||
nir_src_as_uint(instr->src[offs_idx].src) != 0)) {
unsigned nr = nir_src_num_components(instr->src[offs_idx].src);
bi_index idx = bi_src_index(&instr->src[offs_idx].src);
dest = bi_mkvec_v4i8(
b, (nr > 0) ? bi_byte(bi_extract(b, idx, 0), 0) : bi_imm_u8(0),
(nr > 1) ? bi_byte(bi_extract(b, idx, 1), 0) : bi_imm_u8(0),
(nr > 2) ? bi_byte(bi_extract(b, idx, 2), 0) : bi_imm_u8(0),
bi_imm_u8(0));
}
int ms_idx = nir_tex_instr_src_index(instr, nir_tex_src_ms_index);
if (ms_idx >= 0 && (!nir_src_is_const(instr->src[ms_idx].src) ||
nir_src_as_uint(instr->src[ms_idx].src) != 0)) {
dest = bi_lshift_or_i32(b, bi_src_index(&instr->src[ms_idx].src), dest,
bi_imm_u8(24));
}
return dest;
}
/*
* Valhall specifies specifies texel offsets, multisample indices, and (for
* fetches) LOD together as a u8vec4 <offset.xyz, LOD>, where the third
* component is either offset.z or multisample index depending on context. Build
* this register.
*/
static bi_index
bi_emit_valhall_offsets(bi_builder *b, nir_tex_instr *instr)
{
bi_index dest = bi_zero();
int offs_idx = nir_tex_instr_src_index(instr, nir_tex_src_offset);
int ms_idx = nir_tex_instr_src_index(instr, nir_tex_src_ms_index);
int lod_idx = nir_tex_instr_src_index(instr, nir_tex_src_lod);
/* Components 0-2: offsets */
if (offs_idx >= 0 && (!nir_src_is_const(instr->src[offs_idx].src) ||
nir_src_as_uint(instr->src[offs_idx].src) != 0)) {
unsigned nr = nir_src_num_components(instr->src[offs_idx].src);
bi_index idx = bi_src_index(&instr->src[offs_idx].src);
/* No multisample index with 3D */
assert((nr <= 2) || (ms_idx < 0));
/* Zero extend the Z byte so we can use it with MKVEC.v2i8 */
bi_index z = (nr > 2)
? bi_mkvec_v2i8(b, bi_byte(bi_extract(b, idx, 2), 0),
bi_imm_u8(0), bi_zero())
: bi_zero();
dest = bi_mkvec_v2i8(
b, (nr > 0) ? bi_byte(bi_extract(b, idx, 0), 0) : bi_imm_u8(0),
(nr > 1) ? bi_byte(bi_extract(b, idx, 1), 0) : bi_imm_u8(0), z);
}
/* Component 2: multisample index */
if (ms_idx >= 0 && (!nir_src_is_const(instr->src[ms_idx].src) ||
nir_src_as_uint(instr->src[ms_idx].src) != 0)) {
dest = bi_mkvec_v2i16(b, dest, bi_src_index(&instr->src[ms_idx].src));
}
/* Component 3: 8-bit LOD */
if (lod_idx >= 0 &&
(!nir_src_is_const(instr->src[lod_idx].src) ||
nir_src_as_uint(instr->src[lod_idx].src) != 0) &&
nir_tex_instr_src_type(instr, lod_idx) != nir_type_float) {
dest = bi_lshift_or_i32(b, bi_src_index(&instr->src[lod_idx].src), dest,
bi_imm_u8(24));
}
return dest;
}
static void
bi_emit_cube_coord(bi_builder *b, bi_index coord, bi_index *face, bi_index *s,
bi_index *t)
{
/* Compute max { |x|, |y|, |z| } */
bi_index maxxyz = bi_temp(b->shader);
*face = bi_temp(b->shader);
bi_index cx = bi_extract(b, coord, 0), cy = bi_extract(b, coord, 1),
cz = bi_extract(b, coord, 2);
/* Use a pseudo op on Bifrost due to tuple restrictions */
if (b->shader->arch <= 8) {
bi_cubeface_to(b, maxxyz, *face, cx, cy, cz);
} else {
bi_cubeface1_to(b, maxxyz, cx, cy, cz);
bi_cubeface2_v9_to(b, *face, cx, cy, cz);
}
/* Select coordinates */
bi_index ssel =
bi_cube_ssel(b, bi_extract(b, coord, 2), bi_extract(b, coord, 0), *face);
bi_index tsel =
bi_cube_tsel(b, bi_extract(b, coord, 1), bi_extract(b, coord, 2), *face);
/* The OpenGL ES specification requires us to transform an input vector
* (x, y, z) to the coordinate, given the selected S/T:
*
* (1/2 ((s / max{x,y,z}) + 1), 1/2 ((t / max{x, y, z}) + 1))
*
* We implement (s shown, t similar) in a form friendlier to FMA
* instructions, and clamp coordinates at the end for correct
* NaN/infinity handling:
*
* fsat(s * (0.5 * (1 / max{x, y, z})) + 0.5)
*
* Take the reciprocal of max{x, y, z}
*/
bi_index rcp = bi_frcp_f32(b, maxxyz);
/* Calculate 0.5 * (1.0 / max{x, y, z}) */
bi_index fma1 = bi_fma_f32(b, rcp, bi_imm_f32(0.5f), bi_negzero());
/* Transform the coordinates */
*s = bi_temp(b->shader);
*t = bi_temp(b->shader);
bi_instr *S = bi_fma_f32_to(b, *s, fma1, ssel, bi_imm_f32(0.5f));
bi_instr *T = bi_fma_f32_to(b, *t, fma1, tsel, bi_imm_f32(0.5f));
S->clamp = BI_CLAMP_CLAMP_0_1;
T->clamp = BI_CLAMP_CLAMP_0_1;
}
/* Emits a cube map descriptor, returning lower 32-bits and putting upper
* 32-bits in passed pointer t. The packing of the face with the S coordinate
* exploits the redundancy of floating points with the range restriction of
* CUBEFACE output.
*
* struct cube_map_descriptor {
* float s : 29;
* unsigned face : 3;
* float t : 32;
* }
*
* Since the cube face index is preshifted, this is easy to pack with a bitwise
* MUX.i32 and a fixed mask, selecting the lower bits 29 from s and the upper 3
* bits from face.
*/
static bi_index
bi_emit_texc_cube_coord(bi_builder *b, bi_index coord, bi_index *t)
{
bi_index face, s;
bi_emit_cube_coord(b, coord, &face, &s, t);
bi_index mask = bi_imm_u32(BITFIELD_MASK(29));
return bi_mux_i32(b, s, face, mask, BI_MUX_BIT);
}
/* Map to the main texture op used. Some of these (txd in particular) will
* lower to multiple texture ops with different opcodes (GRDESC_DER + TEX in
* sequence). We assume that lowering is handled elsewhere.
*/
static enum bifrost_tex_op
bi_tex_op(nir_texop op)
{
switch (op) {
case nir_texop_tex:
case nir_texop_txb:
case nir_texop_txl:
case nir_texop_txd:
return BIFROST_TEX_OP_TEX;
case nir_texop_txf:
case nir_texop_txf_ms:
case nir_texop_tg4:
return BIFROST_TEX_OP_FETCH;
case nir_texop_lod:
return BIFROST_TEX_OP_GRDESC;
case nir_texop_txs:
case nir_texop_query_levels:
case nir_texop_texture_samples:
case nir_texop_samples_identical:
unreachable("should've been lowered");
default:
unreachable("unsupported tex op");
}
}
/* Data registers required by texturing in the order they appear. All are
* optional, the texture operation descriptor determines which are present.
* Note since 3D arrays are not permitted at an API level, Z_COORD and
* ARRAY/SHADOW are exlusive, so TEXC in practice reads at most 8 registers */
enum bifrost_tex_dreg {
BIFROST_TEX_DREG_Z_COORD = 0,
BIFROST_TEX_DREG_Y_DELTAS = 1,
BIFROST_TEX_DREG_LOD = 2,
BIFROST_TEX_DREG_GRDESC_HI = 3,
BIFROST_TEX_DREG_SHADOW = 4,
BIFROST_TEX_DREG_ARRAY = 5,
BIFROST_TEX_DREG_OFFSETMS = 6,
BIFROST_TEX_DREG_SAMPLER = 7,
BIFROST_TEX_DREG_TEXTURE = 8,
BIFROST_TEX_DREG_COUNT,
};
static void
bi_emit_texc(bi_builder *b, nir_tex_instr *instr)
{
struct bifrost_texture_operation desc = {
.op = bi_tex_op(instr->op),
.offset_or_bias_disable = false, /* TODO */
.shadow_or_clamp_disable = instr->is_shadow,
.array = instr->is_array && instr->op != nir_texop_lod,
.dimension = bifrost_tex_format(instr->sampler_dim),
.format = bi_texture_format(instr->dest_type | instr->def.bit_size,
BI_CLAMP_NONE), /* TODO */
.mask = 0xF,
};
switch (desc.op) {
case BIFROST_TEX_OP_TEX:
desc.lod_or_fetch = BIFROST_LOD_MODE_COMPUTE;
break;
case BIFROST_TEX_OP_FETCH:
desc.lod_or_fetch = (enum bifrost_lod_mode)(
instr->op == nir_texop_tg4
? BIFROST_TEXTURE_FETCH_GATHER4_R + instr->component
: BIFROST_TEXTURE_FETCH_TEXEL);
break;
case BIFROST_TEX_OP_GRDESC:
break;
default:
unreachable("texture op unsupported");
}
/* 32-bit indices to be allocated as consecutive staging registers */
bi_index dregs[BIFROST_TEX_DREG_COUNT] = {};
bi_index cx = bi_null(), cy = bi_null();
bi_index ddx = bi_null();
bi_index ddy = bi_null();
for (unsigned i = 0; i < instr->num_srcs; ++i) {
bi_index index = bi_src_index(&instr->src[i].src);
unsigned sz = nir_src_bit_size(instr->src[i].src);
unsigned components = nir_src_num_components(instr->src[i].src);
ASSERTED nir_alu_type base = nir_tex_instr_src_type(instr, i);
nir_alu_type T = base | sz;
switch (instr->src[i].src_type) {
case nir_tex_src_coord:
if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
cx = bi_emit_texc_cube_coord(b, index, &cy);
} else {
/* Copy XY (for 2D+) or XX (for 1D) */
cx = bi_extract(b, index, 0);
cy = bi_extract(b, index, MIN2(1, components - 1));
assert(components >= 1 && components <= 3);
if (components == 3 && !desc.array) {
/* 3D */
dregs[BIFROST_TEX_DREG_Z_COORD] = bi_extract(b, index, 2);
}
}
if (desc.array) {
dregs[BIFROST_TEX_DREG_ARRAY] = bi_emit_texc_array_index(
b, bi_extract(b, index, components - 1), T);
}
break;
case nir_tex_src_lod:
if (desc.op == BIFROST_TEX_OP_TEX &&
nir_src_is_const(instr->src[i].src) &&
nir_src_as_uint(instr->src[i].src) == 0) {
desc.lod_or_fetch = BIFROST_LOD_MODE_ZERO;
} else if (desc.op == BIFROST_TEX_OP_TEX) {
assert(base == nir_type_float);
assert(sz == 16 || sz == 32);
dregs[BIFROST_TEX_DREG_LOD] =
bi_emit_texc_lod_88(b, index, sz == 16);
desc.lod_or_fetch = BIFROST_LOD_MODE_EXPLICIT;
} else {
assert(desc.op == BIFROST_TEX_OP_FETCH);
assert(base == nir_type_uint || base == nir_type_int);
assert(sz == 16 || sz == 32);
dregs[BIFROST_TEX_DREG_LOD] = bi_emit_texc_lod_cube(b, index);
}
break;
case nir_tex_src_ddx:
ddx = index;
break;
case nir_tex_src_ddy:
ddy = index;
break;
case nir_tex_src_bias:
/* Upper 16-bits interpreted as a clamp, leave zero */
assert(desc.op == BIFROST_TEX_OP_TEX);
assert(base == nir_type_float);
assert(sz == 16 || sz == 32);
dregs[BIFROST_TEX_DREG_LOD] = bi_emit_texc_lod_88(b, index, sz == 16);
desc.lod_or_fetch = BIFROST_LOD_MODE_BIAS;
break;
case nir_tex_src_ms_index:
case nir_tex_src_offset:
if (desc.offset_or_bias_disable)
break;
dregs[BIFROST_TEX_DREG_OFFSETMS] =
bi_emit_texc_offset_ms_index(b, instr);
if (!bi_is_equiv(dregs[BIFROST_TEX_DREG_OFFSETMS], bi_zero()))
desc.offset_or_bias_disable = true;
break;
case nir_tex_src_comparator:
dregs[BIFROST_TEX_DREG_SHADOW] = index;
break;
case nir_tex_src_texture_offset:
dregs[BIFROST_TEX_DREG_TEXTURE] = index;
break;
case nir_tex_src_sampler_offset:
dregs[BIFROST_TEX_DREG_SAMPLER] = index;
break;
default:
unreachable("Unhandled src type in texc emit");
}
}
if (desc.op == BIFROST_TEX_OP_FETCH &&
bi_is_null(dregs[BIFROST_TEX_DREG_LOD])) {
dregs[BIFROST_TEX_DREG_LOD] = bi_emit_texc_lod_cube(b, bi_zero());
}
/* Choose an index mode */
bool direct_tex = bi_is_null(dregs[BIFROST_TEX_DREG_TEXTURE]);
bool direct_samp = bi_is_null(dregs[BIFROST_TEX_DREG_SAMPLER]);
bool direct = direct_tex && direct_samp;
desc.immediate_indices =
direct && (instr->sampler_index < 16 && instr->texture_index < 128);
if (desc.immediate_indices) {
desc.sampler_index_or_mode = instr->sampler_index;
desc.index = instr->texture_index;
} else {
unsigned mode = 0;
if (direct && instr->sampler_index == instr->texture_index &&
instr->sampler_index < 128) {
mode = BIFROST_INDEX_IMMEDIATE_SHARED;
desc.index = instr->texture_index;
} else if (direct && instr->sampler_index < 128) {
mode = BIFROST_INDEX_IMMEDIATE_SAMPLER;
desc.index = instr->sampler_index;
dregs[BIFROST_TEX_DREG_TEXTURE] =
bi_mov_i32(b, bi_imm_u32(instr->texture_index));
} else if (direct_tex && instr->texture_index < 128) {
mode = BIFROST_INDEX_IMMEDIATE_TEXTURE;
desc.index = instr->texture_index;
if (direct_samp) {
dregs[BIFROST_TEX_DREG_SAMPLER] =
bi_mov_i32(b, bi_imm_u32(instr->sampler_index));
}
} else if (direct_samp && instr->sampler_index < 128) {
mode = BIFROST_INDEX_IMMEDIATE_SAMPLER;
desc.index = instr->sampler_index;
if (direct_tex) {
dregs[BIFROST_TEX_DREG_TEXTURE] =
bi_mov_i32(b, bi_imm_u32(instr->texture_index));
}
} else {
mode = BIFROST_INDEX_REGISTER;
if (direct_tex) {
dregs[BIFROST_TEX_DREG_TEXTURE] =
bi_mov_i32(b, bi_imm_u32(instr->texture_index));
}
if (direct_samp) {
dregs[BIFROST_TEX_DREG_SAMPLER] =
bi_mov_i32(b, bi_imm_u32(instr->sampler_index));
}
}
mode |= (BIFROST_TEXTURE_OPERATION_SINGLE << 2);
desc.sampler_index_or_mode = mode;
}
if (!bi_is_null(ddx) || !bi_is_null(ddy)) {
assert(!bi_is_null(ddx) && !bi_is_null(ddy));
struct bifrost_texture_operation gropdesc = {
.sampler_index_or_mode = desc.sampler_index_or_mode,
.index = desc.index,
.immediate_indices = desc.immediate_indices,
.op = BIFROST_TEX_OP_GRDESC_DER,
.offset_or_bias_disable = true,
.shadow_or_clamp_disable = true,
.array = false,
.dimension = desc.dimension,
.format = desc.format,
.mask = desc.mask,
};
unsigned coords_comp_count =
instr->coord_components -
(instr->is_array || instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE);
bi_index derivs[4];
unsigned sr_count = 0;
if (coords_comp_count > 2)
derivs[sr_count++] = bi_extract(b, ddx, 2);
derivs[sr_count++] = bi_extract(b, ddy, 0);
if (coords_comp_count > 1)
derivs[sr_count++] = bi_extract(b, ddy, 1);
if (coords_comp_count > 2)
derivs[sr_count++] = bi_extract(b, ddy, 2);
bi_index derivs_packed = bi_temp(b->shader);
bi_make_vec_to(b, derivs_packed, derivs, NULL, sr_count, 32);
bi_index grdesc = bi_temp(b->shader);
bi_instr *I =
bi_texc_to(b, grdesc, derivs_packed, bi_extract(b, ddx, 0),
coords_comp_count > 1 ? bi_extract(b, ddx, 1) : bi_zero(),
bi_imm_u32(gropdesc.packed), true, sr_count, 0);
I->register_format = BI_REGISTER_FORMAT_U32;
bi_emit_cached_split_i32(b, grdesc, 4);
dregs[BIFROST_TEX_DREG_LOD] = bi_extract(b, grdesc, 0);
desc.lod_or_fetch = BIFROST_LOD_MODE_EXPLICIT;
}
/* Allocate staging registers contiguously by compacting the array. */
unsigned sr_count = 0;
for (unsigned i = 0; i < ARRAY_SIZE(dregs); ++i) {
if (!bi_is_null(dregs[i]))
dregs[sr_count++] = dregs[i];
}
unsigned res_size = instr->def.bit_size == 16 ? 2 : 4;
bi_index sr = sr_count ? bi_temp(b->shader) : bi_null();
if (sr_count)
bi_emit_collect_to(b, sr, dregs, sr_count);
if (instr->op == nir_texop_lod) {
assert(instr->def.num_components == 2 && instr->def.bit_size == 32);
bi_index res[2];
for (unsigned i = 0; i < 2; i++) {
desc.shadow_or_clamp_disable = i != 0;
bi_index grdesc = bi_temp(b->shader);
bi_instr *I = bi_texc_to(b, grdesc, sr, cx, cy,
bi_imm_u32(desc.packed), false, sr_count, 0);
I->register_format = BI_REGISTER_FORMAT_U32;
bi_emit_cached_split_i32(b, grdesc, 4);
bi_index lod = bi_s16_to_f32(b, bi_half(bi_extract(b, grdesc, 0), 0));
lod = bi_fmul_f32(b, lod, bi_imm_f32(1.0f / 256));
if (i == 0)
lod = bi_fround_f32(b, lod, BI_ROUND_NONE);
res[i] = lod;
}
bi_make_vec_to(b, bi_def_index(&instr->def), res, NULL, 2, 32);
return;
}
bi_index dst = bi_temp(b->shader);
bi_instr *I =
bi_texc_to(b, dst, sr, cx, cy, bi_imm_u32(desc.packed),
!nir_tex_instr_has_implicit_derivative(instr), sr_count, 0);
I->register_format = bi_reg_fmt_for_nir(instr->dest_type);
bi_index w[4] = {bi_null(), bi_null(), bi_null(), bi_null()};
bi_emit_split_i32(b, w, dst, res_size);
bi_emit_collect_to(b, bi_def_index(&instr->def), w,
DIV_ROUND_UP(instr->def.num_components * res_size, 4));
}
/* Staging registers required by texturing in the order they appear (Valhall) */
enum valhall_tex_sreg {
VALHALL_TEX_SREG_X_COORD = 0,
VALHALL_TEX_SREG_Y_COORD = 1,
VALHALL_TEX_SREG_Z_COORD = 2,
VALHALL_TEX_SREG_Y_DELTAS = 3,
VALHALL_TEX_SREG_ARRAY = 4,
VALHALL_TEX_SREG_SHADOW = 5,
VALHALL_TEX_SREG_OFFSETMS = 6,
VALHALL_TEX_SREG_LOD = 7,
VALHALL_TEX_SREG_GRDESC0 = 8,
VALHALL_TEX_SREG_GRDESC1 = 9,
VALHALL_TEX_SREG_COUNT,
};
static void
bi_emit_tex_valhall(bi_builder *b, nir_tex_instr *instr)
{
bool explicit_offset = false;
enum bi_va_lod_mode lod_mode = BI_VA_LOD_MODE_COMPUTED_LOD;
bool has_lod_mode = (instr->op == nir_texop_tex) ||
(instr->op == nir_texop_txl) ||
(instr->op == nir_texop_txd) ||
(instr->op == nir_texop_txb);
/* 32-bit indices to be allocated as consecutive staging registers */
bi_index sregs[VALHALL_TEX_SREG_COUNT] = {};
bi_index sampler = bi_imm_u32(instr->sampler_index);
bi_index texture = bi_imm_u32(instr->texture_index);
bi_index ddx = bi_null();
bi_index ddy = bi_null();
for (unsigned i = 0; i < instr->num_srcs; ++i) {
bi_index index = bi_src_index(&instr->src[i].src);
unsigned sz = nir_src_bit_size(instr->src[i].src);
switch (instr->src[i].src_type) {
case nir_tex_src_coord: {
bool is_array = instr->is_array && instr->op != nir_texop_lod;
unsigned components = nir_tex_instr_src_size(instr, i) - is_array;
if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
sregs[VALHALL_TEX_SREG_X_COORD] = bi_emit_texc_cube_coord(
b, index, &sregs[VALHALL_TEX_SREG_Y_COORD]);
} else {
assert(components >= 1 && components <= 3);
/* Copy XY (for 2D+) or XX (for 1D) */
sregs[VALHALL_TEX_SREG_X_COORD] = index;
if (components >= 2)
sregs[VALHALL_TEX_SREG_Y_COORD] = bi_extract(b, index, 1);
if (components == 3)
sregs[VALHALL_TEX_SREG_Z_COORD] = bi_extract(b, index, 2);
}
if (is_array)
sregs[VALHALL_TEX_SREG_ARRAY] = bi_extract(b, index, components);
break;
}
case nir_tex_src_lod:
if (nir_src_is_const(instr->src[i].src) &&
nir_src_as_uint(instr->src[i].src) == 0) {
lod_mode = BI_VA_LOD_MODE_ZERO_LOD;
} else if (has_lod_mode) {
lod_mode = BI_VA_LOD_MODE_EXPLICIT;
assert(sz == 16 || sz == 32);
sregs[VALHALL_TEX_SREG_LOD] =
bi_emit_texc_lod_88(b, index, sz == 16);
}
break;
case nir_tex_src_ddx:
ddx = index;
break;
case nir_tex_src_ddy:
ddy = index;
break;
case nir_tex_src_bias:
/* Upper 16-bits interpreted as a clamp, leave zero */
assert(sz == 16 || sz == 32);
sregs[VALHALL_TEX_SREG_LOD] = bi_emit_texc_lod_88(b, index, sz == 16);
lod_mode = BI_VA_LOD_MODE_COMPUTED_BIAS;
break;
case nir_tex_src_ms_index:
case nir_tex_src_offset:
/* Handled below */
break;
case nir_tex_src_comparator:
sregs[VALHALL_TEX_SREG_SHADOW] = index;
break;
case nir_tex_src_texture_offset:
/* This should always be 0 as lower_index_to_offset is expected to be
* set */
assert(instr->texture_index == 0);
texture = index;
break;
case nir_tex_src_sampler_offset:
/* This should always be 0 as lower_index_to_offset is expected to be
* set */
assert(instr->sampler_index == 0);
sampler = index;
break;
default:
unreachable("Unhandled src type in tex emit");
}
}
/* Generate packed offset + ms index + LOD register. These default to
* zero so we only need to encode if these features are actually in use.
*/
bi_index offsets = bi_emit_valhall_offsets(b, instr);
if (!bi_is_equiv(offsets, bi_zero())) {
sregs[VALHALL_TEX_SREG_OFFSETMS] = offsets;
explicit_offset = true;
}
bool narrow_indices = va_is_valid_const_narrow_index(texture) &&
va_is_valid_const_narrow_index(sampler);
bi_index src0;
bi_index src1;
if (narrow_indices) {
unsigned tex_set =
va_res_fold_table_idx(pan_res_handle_get_table(texture.value));
unsigned sampler_set =
va_res_fold_table_idx(pan_res_handle_get_table(sampler.value));
unsigned texture_index = pan_res_handle_get_index(texture.value);
unsigned sampler_index = pan_res_handle_get_index(sampler.value);
unsigned packed_handle = (tex_set << 27) | (texture_index << 16) |
(sampler_set << 11) | sampler_index;
src0 = bi_imm_u32(packed_handle);
/* TODO: narrow offsetms */
src1 = bi_zero();
} else {
src0 = sampler;
src1 = texture;
}
enum bi_dimension dim = valhall_tex_dimension(instr->sampler_dim);
if (!bi_is_null(ddx) || !bi_is_null(ddy)) {
unsigned coords_comp_count =
instr->coord_components -
(instr->is_array || instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE);
assert(!bi_is_null(ddx) && !bi_is_null(ddy));
lod_mode = BI_VA_LOD_MODE_GRDESC;
bi_index derivs[6] = {
bi_extract(b, ddx, 0),
bi_extract(b, ddy, 0),
coords_comp_count > 1 ? bi_extract(b, ddx, 1) : bi_null(),
coords_comp_count > 1 ? bi_extract(b, ddy, 1) : bi_null(),
coords_comp_count > 2 ? bi_extract(b, ddx, 2) : bi_null(),
coords_comp_count > 2 ? bi_extract(b, ddy, 2) : bi_null(),
};
bi_index derivs_packed = bi_temp(b->shader);
bi_make_vec_to(b, derivs_packed, derivs, NULL, coords_comp_count * 2, 32);
bi_index grdesc = bi_temp(b->shader);
bi_instr *I = bi_tex_gradient_to(b, grdesc, derivs_packed, src0, src1, dim,
!narrow_indices, 3, coords_comp_count * 2);
I->derivative_enable = true;
I->force_delta_enable = false;
I->lod_clamp_disable = true;
I->lod_bias_disable = true;
I->register_format = BI_REGISTER_FORMAT_U32;
bi_emit_cached_split_i32(b, grdesc, 2);
sregs[VALHALL_TEX_SREG_GRDESC0] = bi_extract(b, grdesc, 0);
sregs[VALHALL_TEX_SREG_GRDESC1] = bi_extract(b, grdesc, 1);
}
/* Allocate staging registers contiguously by compacting the array. */
unsigned sr_count = 0;
for (unsigned i = 0; i < ARRAY_SIZE(sregs); ++i) {
if (!bi_is_null(sregs[i]))
sregs[sr_count++] = sregs[i];
}
bi_index idx = sr_count ? bi_temp(b->shader) : bi_null();
if (sr_count)
bi_make_vec_to(b, idx, sregs, NULL, sr_count, 32);
if (instr->op == nir_texop_lod) {
assert(instr->def.num_components == 2 && instr->def.bit_size == 32);
bi_index res[2];
for (unsigned i = 0; i < 2; i++) {
bi_index grdesc = bi_temp(b->shader);
bi_instr *I = bi_tex_gradient_to(b, grdesc, idx, src0, src1, dim,
!narrow_indices, 1, sr_count);
I->derivative_enable = false;
I->force_delta_enable = true;
I->lod_clamp_disable = i != 0;
I->register_format = BI_REGISTER_FORMAT_U32;
bi_index lod = bi_s16_to_f32(b, bi_half(grdesc, 0));
lod = bi_fmul_f32(b, lod, bi_imm_f32(1.0f / 256));
if (i == 0)
lod = bi_fround_f32(b, lod, BI_ROUND_NONE);
res[i] = lod;
}
bi_make_vec_to(b, bi_def_index(&instr->def), res, NULL, 2, 32);
return;
}
/* Only write the components that we actually read */
unsigned mask = nir_def_components_read(&instr->def);
unsigned comps_per_reg = instr->def.bit_size == 16 ? 2 : 1;
unsigned res_size = DIV_ROUND_UP(util_bitcount(mask), comps_per_reg);
enum bi_register_format regfmt = bi_reg_fmt_for_nir(instr->dest_type);
bi_index dest = bi_temp(b->shader);
switch (instr->op) {
case nir_texop_tex:
case nir_texop_txb:
case nir_texop_txl:
case nir_texop_txd:
bi_tex_single_to(b, dest, idx, src0, src1, instr->is_array, dim, regfmt,
instr->is_shadow, explicit_offset, lod_mode,
!narrow_indices, mask, sr_count);
break;
case nir_texop_txf:
case nir_texop_txf_ms: {
/* On Valhall, TEX_FETCH doesn't have CUBE support. This is not a problem
* as a cube is just a 2D array in any cases. */
if (dim == BI_DIMENSION_CUBE)
dim = BI_DIMENSION_2D;
bi_tex_fetch_to(b, dest, idx, src0, src1, instr->is_array, dim, regfmt,
explicit_offset, !narrow_indices, mask, sr_count);
break;
}
case nir_texop_tg4:
bi_tex_gather_to(b, dest, idx, src0, src1, instr->is_array, dim,
instr->component, false, regfmt, instr->is_shadow,
explicit_offset, !narrow_indices, mask, sr_count);
break;
default:
unreachable("Unhandled Valhall texture op");
}
/* The hardware will write only what we read, and it will into
* contiguous registers without gaps (different from Bifrost). NIR
* expects the gaps, so fill in the holes (they'll be copypropped and
* DCE'd away later).
*/
bi_index unpacked[4] = {bi_null(), bi_null(), bi_null(), bi_null()};
bi_emit_cached_split_i32(b, dest, res_size);
/* Index into the packed component array */
unsigned j = 0;
unsigned comps[4] = {0};
unsigned nr_components = instr->def.num_components;
for (unsigned i = 0; i < nr_components; ++i) {
if (mask & BITFIELD_BIT(i)) {
unpacked[i] = dest;
comps[i] = j++;
} else {
unpacked[i] = bi_zero();
}
}
bi_make_vec_to(b, bi_def_index(&instr->def), unpacked, comps,
instr->def.num_components, instr->def.bit_size);
}
/* Simple textures ops correspond to NIR tex or txl with LOD = 0 on 2D/cube
* textures with sufficiently small immediate indices. Anything else
* needs a complete texture op. */
static void
bi_emit_texs(bi_builder *b, nir_tex_instr *instr)
{
int coord_idx = nir_tex_instr_src_index(instr, nir_tex_src_coord);
assert(coord_idx >= 0);
bi_index coords = bi_src_index(&instr->src[coord_idx].src);
if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
bi_index face, s, t;
bi_emit_cube_coord(b, coords, &face, &s, &t);
bi_texs_cube_to(b, instr->def.bit_size, bi_def_index(&instr->def), s, t,
face, instr->sampler_index, instr->texture_index);
} else {
bi_texs_2d_to(b, instr->def.bit_size, bi_def_index(&instr->def),
bi_extract(b, coords, 0), bi_extract(b, coords, 1),
instr->op != nir_texop_tex, /* zero LOD */
instr->sampler_index, instr->texture_index);
}
bi_split_def(b, &instr->def);
}
static bool
bi_is_simple_tex(nir_tex_instr *instr)
{
if (instr->op != nir_texop_tex && instr->op != nir_texop_txl)
return false;
if (instr->dest_type != nir_type_float32 &&
instr->dest_type != nir_type_float16)
return false;
if (instr->is_shadow || instr->is_array)
return false;
switch (instr->sampler_dim) {
case GLSL_SAMPLER_DIM_2D:
case GLSL_SAMPLER_DIM_EXTERNAL:
case GLSL_SAMPLER_DIM_RECT:
break;
case GLSL_SAMPLER_DIM_CUBE:
/* LOD can't be specified with TEXS_CUBE */
if (instr->op == nir_texop_txl)
return false;
break;
default:
return false;
}
for (unsigned i = 0; i < instr->num_srcs; ++i) {
if (instr->src[i].src_type != nir_tex_src_lod &&
instr->src[i].src_type != nir_tex_src_coord)
return false;
}
/* Indices need to fit in provided bits */
unsigned idx_bits = instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE ? 2 : 3;
if (MAX2(instr->sampler_index, instr->texture_index) >= (1 << idx_bits))
return false;
int lod_idx = nir_tex_instr_src_index(instr, nir_tex_src_lod);
if (lod_idx < 0)
return true;
nir_src lod = instr->src[lod_idx].src;
return nir_src_is_const(lod) && nir_src_as_uint(lod) == 0;
}
static void
bi_emit_tex(bi_builder *b, nir_tex_instr *instr)
{
/* If txf is used, we assume there is a valid sampler bound at index 0. Use
* it for txf operations, since there may be no other valid samplers. This is
* a workaround: txf does not require a sampler in NIR (so sampler_index is
* undefined) but we need one in the hardware. This is ABI with the driver.
*
* On Valhall, as the descriptor table is encoded in the index, this should
* be handled by the driver.
*/
if (!nir_tex_instr_need_sampler(instr) && b->shader->arch < 9)
instr->sampler_index = 0;
if (b->shader->arch >= 9)
bi_emit_tex_valhall(b, instr);
else if (bi_is_simple_tex(instr))
bi_emit_texs(b, instr);
else
bi_emit_texc(b, instr);
}
static void
bi_emit_phi(bi_builder *b, nir_phi_instr *instr)
{
unsigned nr_srcs = exec_list_length(&instr->srcs);
bi_instr *I = bi_phi_to(b, bi_def_index(&instr->def), nr_srcs);
/* Deferred */
I->phi = instr;
}
/* Look up the AGX block corresponding to a given NIR block. Used when
* translating phi nodes after emitting all blocks.
*/
static bi_block *
bi_from_nir_block(bi_context *ctx, nir_block *block)
{
return ctx->indexed_nir_blocks[block->index];
}
static void
bi_emit_phi_deferred(bi_context *ctx, bi_block *block, bi_instr *I)
{
nir_phi_instr *phi = I->phi;
/* Guaranteed by lower_phis_to_scalar */
assert(phi->def.num_components == 1);
nir_foreach_phi_src(src, phi) {
bi_block *pred = bi_from_nir_block(ctx, src->pred);
unsigned i = bi_predecessor_index(block, pred);
assert(i < I->nr_srcs);
I->src[i] = bi_src_index(&src->src);
}
I->phi = NULL;
}
static void
bi_emit_phis_deferred(bi_context *ctx)
{
bi_foreach_block(ctx, block) {
bi_foreach_instr_in_block(block, I) {
if (I->op == BI_OPCODE_PHI)
bi_emit_phi_deferred(ctx, block, I);
}
}
}
static void
bi_emit_instr(bi_builder *b, struct nir_instr *instr)
{
switch (instr->type) {
case nir_instr_type_load_const:
bi_emit_load_const(b, nir_instr_as_load_const(instr));
break;
case nir_instr_type_intrinsic:
bi_emit_intrinsic(b, nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_alu:
bi_emit_alu(b, nir_instr_as_alu(instr));
break;
case nir_instr_type_tex:
bi_emit_tex(b, nir_instr_as_tex(instr));
break;
case nir_instr_type_jump:
bi_emit_jump(b, nir_instr_as_jump(instr));
break;
case nir_instr_type_phi:
bi_emit_phi(b, nir_instr_as_phi(instr));
break;
default:
unreachable("should've been lowered");
}
}
static bi_block *
create_empty_block(bi_context *ctx)
{
bi_block *blk = rzalloc(ctx, bi_block);
util_dynarray_init(&blk->predecessors, blk);
return blk;
}
static bi_block *
emit_block(bi_context *ctx, nir_block *block)
{
if (ctx->after_block) {
ctx->current_block = ctx->after_block;
ctx->after_block = NULL;
} else {
ctx->current_block = create_empty_block(ctx);
}
list_addtail(&ctx->current_block->link, &ctx->blocks);
list_inithead(&ctx->current_block->instructions);
bi_builder _b = bi_init_builder(ctx, bi_after_block(ctx->current_block));
ctx->indexed_nir_blocks[block->index] = ctx->current_block;
nir_foreach_instr(instr, block) {
bi_emit_instr(&_b, instr);
}
return ctx->current_block;
}
static void
emit_if(bi_context *ctx, nir_if *nif)
{
bi_block *before_block = ctx->current_block;
/* Speculatively emit the branch, but we can't fill it in until later */
bi_builder _b = bi_init_builder(ctx, bi_after_block(ctx->current_block));
bi_instr *then_branch =
bi_branchz_i16(&_b, bi_half(bi_src_index(&nif->condition), false),
bi_zero(), BI_CMPF_EQ);
/* Emit the two subblocks. */
bi_block *then_block = emit_cf_list(ctx, &nif->then_list);
bi_block *end_then_block = ctx->current_block;
/* Emit second block */
bi_block *else_block = emit_cf_list(ctx, &nif->else_list);
bi_block *end_else_block = ctx->current_block;
ctx->after_block = create_empty_block(ctx);
/* Now that we have the subblocks emitted, fix up the branches */
assert(then_block);
assert(else_block);
then_branch->branch_target = else_block;
/* Emit a jump from the end of the then block to the end of the else */
_b.cursor = bi_after_block(end_then_block);
bi_instr *then_exit = bi_jump(&_b, bi_zero());
then_exit->branch_target = ctx->after_block;
bi_block_add_successor(end_then_block, then_exit->branch_target);
bi_block_add_successor(end_else_block, ctx->after_block); /* fallthrough */
bi_block_add_successor(before_block,
then_branch->branch_target); /* then_branch */
bi_block_add_successor(before_block, then_block); /* fallthrough */
}
static void
emit_loop(bi_context *ctx, nir_loop *nloop)
{
assert(!nir_loop_has_continue_construct(nloop));
/* Remember where we are */
bi_block *start_block = ctx->current_block;
bi_block *saved_break = ctx->break_block;
bi_block *saved_continue = ctx->continue_block;
ctx->continue_block = create_empty_block(ctx);
ctx->break_block = create_empty_block(ctx);
ctx->after_block = ctx->continue_block;
ctx->after_block->loop_header = true;
/* Emit the body itself */
emit_cf_list(ctx, &nloop->body);
/* Branch back to loop back */
bi_builder _b = bi_init_builder(ctx, bi_after_block(ctx->current_block));
bi_instr *I = bi_jump(&_b, bi_zero());
I->branch_target = ctx->continue_block;
bi_block_add_successor(start_block, ctx->continue_block);
bi_block_add_successor(ctx->current_block, ctx->continue_block);
ctx->after_block = ctx->break_block;
/* Pop off */
ctx->break_block = saved_break;
ctx->continue_block = saved_continue;
++ctx->loop_count;
}
static bi_block *
emit_cf_list(bi_context *ctx, struct exec_list *list)
{
bi_block *start_block = NULL;
foreach_list_typed(nir_cf_node, node, node, list) {
switch (node->type) {
case nir_cf_node_block: {
bi_block *block = emit_block(ctx, nir_cf_node_as_block(node));
if (!start_block)
start_block = block;
break;
}
case nir_cf_node_if:
emit_if(ctx, nir_cf_node_as_if(node));
break;
case nir_cf_node_loop:
emit_loop(ctx, nir_cf_node_as_loop(node));
break;
default:
unreachable("Unknown control flow");
}
}
return start_block;
}
/* shader-db stuff */
struct bi_stats {
unsigned nr_clauses, nr_tuples, nr_ins;
unsigned nr_arith, nr_texture, nr_varying, nr_ldst;
};
static void
bi_count_tuple_stats(bi_clause *clause, bi_tuple *tuple, struct bi_stats *stats)
{
/* Count instructions */
stats->nr_ins += (tuple->fma ? 1 : 0) + (tuple->add ? 1 : 0);
/* Non-message passing tuples are always arithmetic */
if (tuple->add != clause->message) {
stats->nr_arith++;
return;
}
/* Message + FMA we'll count as arithmetic _and_ message */
if (tuple->fma)
stats->nr_arith++;
switch (clause->message_type) {
case BIFROST_MESSAGE_VARYING:
/* Check components interpolated */
stats->nr_varying +=
(clause->message->vecsize + 1) *
(bi_is_regfmt_16(clause->message->register_format) ? 1 : 2);
break;
case BIFROST_MESSAGE_VARTEX:
/* 2 coordinates, fp32 each */
stats->nr_varying += (2 * 2);
FALLTHROUGH;
case BIFROST_MESSAGE_TEX:
stats->nr_texture++;
break;
case BIFROST_MESSAGE_ATTRIBUTE:
case BIFROST_MESSAGE_LOAD:
case BIFROST_MESSAGE_STORE:
case BIFROST_MESSAGE_ATOMIC:
stats->nr_ldst++;
break;
case BIFROST_MESSAGE_NONE:
case BIFROST_MESSAGE_BARRIER:
case BIFROST_MESSAGE_BLEND:
case BIFROST_MESSAGE_TILE:
case BIFROST_MESSAGE_Z_STENCIL:
case BIFROST_MESSAGE_ATEST:
case BIFROST_MESSAGE_JOB:
case BIFROST_MESSAGE_64BIT:
/* Nothing to do */
break;
};
}
/*
* v7 allows preloading LD_VAR or VAR_TEX messages that must complete before the
* shader completes. These costs are not accounted for in the general cycle
* counts, so this function calculates the effective cost of these messages, as
* if they were executed by shader code.
*/
static unsigned
bi_count_preload_cost(bi_context *ctx)
{
/* Units: 1/16 of a normalized cycle, assuming that we may interpolate
* 16 fp16 varying components per cycle or fetch two texels per cycle.
*/
unsigned cost = 0;
for (unsigned i = 0; i < ARRAY_SIZE(ctx->info.bifrost->messages); ++i) {
struct bifrost_message_preload msg = ctx->info.bifrost->messages[i];
if (msg.enabled && msg.texture) {
/* 2 coordinate, 2 half-words each, plus texture */
cost += 12;
} else if (msg.enabled) {
cost += (msg.num_components * (msg.fp16 ? 1 : 2));
}
}
return cost;
}
static const char *
bi_shader_stage_name(bi_context *ctx)
{
if (ctx->idvs == BI_IDVS_VARYING)
return "MESA_SHADER_VARYING";
else if (ctx->idvs == BI_IDVS_POSITION)
return "MESA_SHADER_POSITION";
else if (ctx->inputs->is_blend)
return "MESA_SHADER_BLEND";
else
return gl_shader_stage_name(ctx->stage);
}
static char *
bi_print_stats(bi_context *ctx, unsigned size)
{
struct bi_stats stats = {0};
/* Count instructions, clauses, and tuples. Also attempt to construct
* normalized execution engine cycle counts, using the following ratio:
*
* 24 arith tuples/cycle
* 2 texture messages/cycle
* 16 x 16-bit varying channels interpolated/cycle
* 1 load store message/cycle
*
* These numbers seem to match Arm Mobile Studio's heuristic. The real
* cycle counts are surely more complicated.
*/
bi_foreach_block(ctx, block) {
bi_foreach_clause_in_block(block, clause) {
stats.nr_clauses++;
stats.nr_tuples += clause->tuple_count;
for (unsigned i = 0; i < clause->tuple_count; ++i)
bi_count_tuple_stats(clause, &clause->tuples[i], &stats);
}
}
float cycles_arith = ((float)stats.nr_arith) / 24.0;
float cycles_texture = ((float)stats.nr_texture) / 2.0;
float cycles_varying = ((float)stats.nr_varying) / 16.0;
float cycles_ldst = ((float)stats.nr_ldst) / 1.0;
float cycles_message = MAX3(cycles_texture, cycles_varying, cycles_ldst);
float cycles_bound = MAX2(cycles_arith, cycles_message);
/* Thread count and register pressure are traded off only on v7 */
bool full_threads = (ctx->arch == 7 && ctx->info.work_reg_count <= 32);
unsigned nr_threads = full_threads ? 2 : 1;
/* Dump stats */
char *str = ralloc_asprintf(
NULL,
"%s shader: "
"%u inst, %u tuples, %u clauses, "
"%f cycles, %f arith, %f texture, %f vary, %f ldst, "
"%u quadwords, %u threads",
bi_shader_stage_name(ctx), stats.nr_ins, stats.nr_tuples,
stats.nr_clauses, cycles_bound, cycles_arith, cycles_texture,
cycles_varying, cycles_ldst, size / 16, nr_threads);
if (ctx->arch == 7) {
ralloc_asprintf_append(&str, ", %u preloads", bi_count_preload_cost(ctx));
}
ralloc_asprintf_append(&str, ", %u loops, %u:%u spills:fills",
ctx->loop_count, ctx->spills, ctx->fills);
return str;
}
static char *
va_print_stats(bi_context *ctx, unsigned size)
{
unsigned nr_ins = 0;
struct va_stats stats = {0};
/* Count instructions */
bi_foreach_instr_global(ctx, I) {
nr_ins++;
va_count_instr_stats(I, &stats);
}
/* Mali G78 peak performance:
*
* 64 FMA instructions per cycle
* 64 CVT instructions per cycle
* 16 SFU instructions per cycle
* 8 x 32-bit varying channels interpolated per cycle
* 4 texture instructions per cycle
* 1 load/store operation per cycle
*/
float cycles_fma = ((float)stats.fma) / 64.0;
float cycles_cvt = ((float)stats.cvt) / 64.0;
float cycles_sfu = ((float)stats.sfu) / 16.0;
float cycles_v = ((float)stats.v) / 16.0;
float cycles_t = ((float)stats.t) / 4.0;
float cycles_ls = ((float)stats.ls) / 1.0;
/* Calculate the bound */
float cycles = MAX2(MAX3(cycles_fma, cycles_cvt, cycles_sfu),
MAX3(cycles_v, cycles_t, cycles_ls));
/* Thread count and register pressure are traded off */
unsigned nr_threads = (ctx->info.work_reg_count <= 32) ? 2 : 1;
/* Dump stats */
return ralloc_asprintf(NULL,
"%s shader: "
"%u inst, %f cycles, %f fma, %f cvt, %f sfu, %f v, "
"%f t, %f ls, %u quadwords, %u threads, %u loops, "
"%u:%u spills:fills",
bi_shader_stage_name(ctx), nr_ins, cycles, cycles_fma,
cycles_cvt, cycles_sfu, cycles_v, cycles_t, cycles_ls,
size / 16, nr_threads, ctx->loop_count, ctx->spills,
ctx->fills);
}
static int
glsl_type_size(const struct glsl_type *type, bool bindless)
{
return glsl_count_attribute_slots(type, false);
}
/* Split stores to memory. We don't split stores to vertex outputs, since
* nir_lower_io_to_temporaries will ensure there's only a single write.
*/
static bool
should_split_wrmask(const nir_instr *instr, UNUSED const void *data)
{
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
switch (intr->intrinsic) {
case nir_intrinsic_store_ssbo:
case nir_intrinsic_store_shared:
case nir_intrinsic_store_global:
case nir_intrinsic_store_scratch:
return true;
default:
return false;
}
}
/*
* Some operations are only available as 32-bit instructions. 64-bit floats are
* unsupported and ints are lowered with nir_lower_int64. Certain 8-bit and
* 16-bit instructions, however, are lowered here.
*/
static unsigned
bi_lower_bit_size(const nir_instr *instr, UNUSED void *data)
{
if (instr->type != nir_instr_type_alu)
return 0;
nir_alu_instr *alu = nir_instr_as_alu(instr);
switch (alu->op) {
case nir_op_fexp2:
case nir_op_flog2:
case nir_op_fpow:
case nir_op_fsin:
case nir_op_fcos:
case nir_op_bit_count:
case nir_op_bitfield_reverse:
return (nir_src_bit_size(alu->src[0].src) == 32) ? 0 : 32;
default:
return 0;
}
}
/* Although Bifrost generally supports packed 16-bit vec2 and 8-bit vec4,
* transcendentals are an exception. Also shifts because of lane size mismatch
* (8-bit in Bifrost, 32-bit in NIR TODO - workaround!). Some conversions need
* to be scalarized due to type size. */
static uint8_t
bi_vectorize_filter(const nir_instr *instr, const void *data)
{
unsigned gpu_id = *((unsigned *)data);
/* Defaults work for everything else */
if (instr->type != nir_instr_type_alu)
return 0;
const nir_alu_instr *alu = nir_instr_as_alu(instr);
switch (alu->op) {
case nir_op_frcp:
case nir_op_frsq:
case nir_op_ishl:
case nir_op_ishr:
case nir_op_ushr:
case nir_op_f2i16:
case nir_op_f2u16:
case nir_op_extract_u8:
case nir_op_extract_i8:
case nir_op_extract_u16:
case nir_op_extract_i16:
case nir_op_insert_u16:
return 1;
/* On v11+, we lost all packed F16 conversions */
case nir_op_f2f16:
case nir_op_f2f16_rtz:
case nir_op_f2f16_rtne:
if (pan_arch(gpu_id) >= 11)
return 1;
break;
default:
break;
}
/* Vectorized instructions cannot write more than 32-bit */
int dst_bit_size = alu->def.bit_size;
if (dst_bit_size == 16)
return 2;
else
return 1;
}
static bool
bi_scalarize_filter(const nir_instr *instr, const void *data)
{
if (instr->type != nir_instr_type_alu)
return false;
const nir_alu_instr *alu = nir_instr_as_alu(instr);
switch (alu->op) {
case nir_op_pack_uvec2_to_uint:
case nir_op_pack_uvec4_to_uint:
return false;
default:
return true;
}
}
/* Ensure we write exactly 4 components */
static nir_def *
bifrost_nir_valid_channel(nir_builder *b, nir_def *in, unsigned channel,
unsigned first, unsigned mask)
{
if (!(mask & BITFIELD_BIT(channel)))
channel = first;
return nir_channel(b, in, channel);
}
/* Lower fragment store_output instructions to always write 4 components,
* matching the hardware semantic. This may require additional moves. Skipping
* these moves is possible in theory, but invokes undefined behaviour in the
* compiler. The DDK inserts these moves, so we will as well. */
static bool
bifrost_nir_lower_blend_components(struct nir_builder *b,
nir_intrinsic_instr *intr, void *data)
{
if (intr->intrinsic != nir_intrinsic_store_output)
return false;
nir_def *in = intr->src[0].ssa;
unsigned first = nir_intrinsic_component(intr);
unsigned mask = nir_intrinsic_write_mask(intr);
assert(first == 0 && "shouldn't get nonzero components");
/* Nothing to do */
if (mask == BITFIELD_MASK(4))
return false;
b->cursor = nir_before_instr(&intr->instr);
/* Replicate the first valid component instead */
nir_def *replicated =
nir_vec4(b, bifrost_nir_valid_channel(b, in, 0, first, mask),
bifrost_nir_valid_channel(b, in, 1, first, mask),
bifrost_nir_valid_channel(b, in, 2, first, mask),
bifrost_nir_valid_channel(b, in, 3, first, mask));
/* Rewrite to use our replicated version */
nir_src_rewrite(&intr->src[0], replicated);
nir_intrinsic_set_component(intr, 0);
nir_intrinsic_set_write_mask(intr, 0xF);
intr->num_components = 4;
return true;
}
static nir_mem_access_size_align
mem_access_size_align_cb(nir_intrinsic_op intrin, uint8_t bytes,
uint8_t bit_size, uint32_t align_mul,
uint32_t align_offset, bool offset_is_const,
enum gl_access_qualifier access, const void *cb_data)
{
uint32_t align = nir_combined_align(align_mul, align_offset);
assert(util_is_power_of_two_nonzero(align));
/* No more than 16 bytes at a time. */
bytes = MIN2(bytes, 16);
/* If the number of bytes is a multiple of 4, use 32-bit loads. Else if it's
* a multiple of 2, use 16-bit loads. Else use 8-bit loads.
*
* But if we're only aligned to 1 byte, use 8-bit loads. If we're only
* aligned to 2 bytes, use 16-bit loads, unless we needed 8-bit loads due to
* the size.
*/
if ((bytes & 1) || (align == 1))
bit_size = 8;
else if ((bytes & 2) || (align == 2))
bit_size = 16;
else if (bit_size >= 32)
bit_size = 32;
unsigned num_comps = MIN2(bytes / (bit_size / 8), 4);
/* Push constants require 32-bit loads. */
if (intrin == nir_intrinsic_load_push_constant) {
if (align_mul >= 4) {
/* If align_mul is bigger than 4 we can use align_offset to find
* the exact number of words we need to read.
*/
num_comps = DIV_ROUND_UP((align_offset % 4) + bytes, 4);
} else {
/* If bytes is aligned on 32-bit, the access might still cross one
* word at the beginning, and one word at the end. If bytes is not
* aligned on 32-bit, the extra two words should cover for both the
* size and offset mis-alignment.
*/
num_comps = (bytes / 4) + 2;
}
bit_size = MAX2(bit_size, 32);
align = 4;
} else {
align = bit_size / 8;
}
return (nir_mem_access_size_align){
.num_components = num_comps,
.bit_size = bit_size,
.align = align,
.shift = nir_mem_access_shift_method_scalar,
};
}
static bool
mem_vectorize_cb(unsigned align_mul, unsigned align_offset, unsigned bit_size,
unsigned num_components, int64_t hole_size,
nir_intrinsic_instr *low, nir_intrinsic_instr *high,
void *data)
{
if (hole_size > 0)
return false;
/* Must be aligned to the size of the load */
unsigned align = nir_combined_align(align_mul, align_offset);
if ((bit_size / 8) > align)
return false;
if (num_components > 4)
return false;
if (bit_size > 32)
return false;
return true;
}
static void
bi_optimize_nir(nir_shader *nir, unsigned gpu_id, bool is_blend)
{
NIR_PASS(_, nir, nir_opt_shrink_stores, true);
bool progress;
do {
progress = false;
NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
NIR_PASS(progress, nir, nir_lower_wrmasks, should_split_wrmask, NULL);
NIR_PASS(progress, nir, nir_copy_prop);
NIR_PASS(progress, nir, nir_opt_remove_phis);
NIR_PASS(progress, nir, nir_opt_dce);
NIR_PASS(progress, nir, nir_opt_dead_cf);
NIR_PASS(progress, nir, nir_opt_cse);
NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
NIR_PASS(progress, nir, nir_opt_algebraic);
NIR_PASS(progress, nir, nir_opt_constant_folding);
NIR_PASS(progress, nir, nir_opt_undef);
NIR_PASS(progress, nir, nir_lower_undef_to_zero);
NIR_PASS(progress, nir, nir_opt_shrink_vectors, false);
NIR_PASS(progress, nir, nir_opt_loop_unroll);
} while (progress);
NIR_PASS(
progress, nir, nir_opt_load_store_vectorize,
&(const nir_load_store_vectorize_options){
.modes = nir_var_mem_global | nir_var_mem_shared | nir_var_shader_temp,
.callback = mem_vectorize_cb,
});
NIR_PASS(progress, nir, nir_lower_pack);
/* nir_lower_pack can generate split operations, execute algebraic again to
* handle them */
NIR_PASS(progress, nir, nir_opt_algebraic);
/* TODO: Why is 64-bit getting rematerialized?
* KHR-GLES31.core.shader_image_load_store.basic-allTargets-atomicFS */
NIR_PASS(progress, nir, nir_lower_int64);
/* We need to cleanup after each iteration of late algebraic
* optimizations, since otherwise NIR can produce weird edge cases
* (like fneg of a constant) which we don't handle */
bool late_algebraic = true;
while (late_algebraic) {
late_algebraic = false;
NIR_PASS(late_algebraic, nir, nir_opt_algebraic_late);
NIR_PASS(progress, nir, nir_opt_constant_folding);
NIR_PASS(progress, nir, nir_copy_prop);
NIR_PASS(progress, nir, nir_opt_dce);
NIR_PASS(progress, nir, nir_opt_cse);
}
/* This opt currently helps on Bifrost but not Valhall */
if (gpu_id < 0x9000)
NIR_PASS(progress, nir, bifrost_nir_opt_boolean_bitwise);
NIR_PASS(progress, nir, nir_lower_alu_to_scalar, bi_scalarize_filter, NULL);
NIR_PASS(progress, nir, nir_opt_vectorize, bi_vectorize_filter, &gpu_id);
NIR_PASS(progress, nir, nir_lower_bool_to_bitsize);
/* Prepass to simplify instruction selection */
late_algebraic = false;
NIR_PASS(late_algebraic, nir, bifrost_nir_lower_algebraic_late);
while (late_algebraic) {
late_algebraic = false;
NIR_PASS(late_algebraic, nir, nir_opt_algebraic_late);
NIR_PASS(progress, nir, nir_opt_constant_folding);
NIR_PASS(progress, nir, nir_copy_prop);
NIR_PASS(progress, nir, nir_opt_dce);
NIR_PASS(progress, nir, nir_opt_cse);
}
NIR_PASS(progress, nir, nir_lower_load_const_to_scalar);
NIR_PASS(progress, nir, nir_opt_dce);
if (nir->info.stage == MESA_SHADER_FRAGMENT) {
NIR_PASS(_, nir, nir_shader_intrinsics_pass,
bifrost_nir_lower_blend_components, nir_metadata_control_flow,
NULL);
}
/* Backend scheduler is purely local, so do some global optimizations
* to reduce register pressure. */
nir_move_options move_all = nir_move_const_undef | nir_move_load_ubo |
nir_move_load_input | nir_move_comparisons |
nir_move_copies | nir_move_load_ssbo;
NIR_PASS(_, nir, nir_opt_sink, move_all);
NIR_PASS(_, nir, nir_opt_move, move_all);
/* We might lower attribute, varying, and image indirects. Use the
* gathered info to skip the extra analysis in the happy path. */
bool any_indirects = nir->info.inputs_read_indirectly ||
nir->info.outputs_accessed_indirectly ||
nir->info.patch_inputs_read_indirectly ||
nir->info.patch_outputs_accessed_indirectly ||
nir->info.images_used[0];
if (any_indirects) {
nir_divergence_analysis(nir);
NIR_PASS(_, nir, bi_lower_divergent_indirects,
pan_subgroup_size(pan_arch(gpu_id)));
}
}
static void
bi_opt_post_ra(bi_context *ctx)
{
bi_foreach_instr_global_safe(ctx, ins) {
if (ins->op == BI_OPCODE_MOV_I32 &&
bi_is_equiv(ins->dest[0], ins->src[0]))
bi_remove_instruction(ins);
}
}
/* Dead code elimination for branches at the end of a block - only one branch
* per block is legal semantically, but unreachable jumps can be generated.
* Likewise on Bifrost we can generate jumps to the terminal block which need
* to be lowered away to a jump to #0x0, which induces successful termination.
* That trick doesn't work on Valhall, which needs a NOP inserted in the
* terminal block instead.
*/
static void
bi_lower_branch(bi_context *ctx, bi_block *block)
{
bool cull_terminal = (ctx->arch <= 8);
bool branched = false;
bi_foreach_instr_in_block_safe(block, ins) {
if (!ins->branch_target)
continue;
if (branched) {
bi_remove_instruction(ins);
continue;
}
branched = true;
if (!bi_is_terminal_block(ins->branch_target))
continue;
if (cull_terminal)
ins->branch_target = NULL;
else if (ins->branch_target)
ins->branch_target->needs_nop = true;
}
}
static void
bi_pack_clauses(bi_context *ctx, struct util_dynarray *binary, unsigned offset)
{
unsigned final_clause = bi_pack(ctx, binary);
/* If we need to wait for ATEST or BLEND in the first clause, pass the
* corresponding bits through to the renderer state descriptor */
bi_block *first_block = list_first_entry(&ctx->blocks, bi_block, link);
bi_clause *first_clause = bi_next_clause(ctx, first_block, NULL);
unsigned first_deps = first_clause ? first_clause->dependencies : 0;
ctx->info.bifrost->wait_6 = (first_deps & (1 << 6));
ctx->info.bifrost->wait_7 = (first_deps & (1 << 7));
/* Pad the shader with enough zero bytes to trick the prefetcher,
* unless we're compiling an empty shader (in which case we don't pad
* so the size remains 0) */
unsigned prefetch_size = BIFROST_SHADER_PREFETCH - final_clause;
if (binary->size - offset) {
memset(util_dynarray_grow(binary, uint8_t, prefetch_size), 0,
prefetch_size);
}
}
/*
* Build a bit mask of varyings (by location) that are flatshaded. This
* information is needed by lower_mediump_io, as we don't yet support 16-bit
* flat varyings.
*
* Also varyings that are used as texture coordinates should be kept at fp32 so
* the texture instruction may be promoted to VAR_TEX. In general this is a good
* idea, as fp16 texture coordinates are not supported by the hardware and are
* usually inappropriate. (There are both relevant CTS bugs here, even.)
*
* TODO: If we compacted the varyings with some fixup code in the vertex shader,
* we could implement 16-bit flat varyings. Consider if this case matters.
*
* TODO: The texture coordinate handling could be less heavyhanded.
*/
static bool
bi_gather_texcoords(nir_builder *b, nir_instr *instr, void *data)
{
uint64_t *mask = data;
if (instr->type != nir_instr_type_tex)
return false;
nir_tex_instr *tex = nir_instr_as_tex(instr);
int coord_idx = nir_tex_instr_src_index(tex, nir_tex_src_coord);
if (coord_idx < 0)
return false;
nir_src src = tex->src[coord_idx].src;
nir_scalar x = nir_scalar_resolved(src.ssa, 0);
nir_scalar y = nir_scalar_resolved(src.ssa, 1);
if (x.def != y.def)
return false;
nir_instr *parent = x.def->parent_instr;
if (parent->type != nir_instr_type_intrinsic)
return false;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(parent);
if (intr->intrinsic != nir_intrinsic_load_interpolated_input)
return false;
nir_io_semantics sem = nir_intrinsic_io_semantics(intr);
*mask |= BITFIELD64_BIT(sem.location);
return false;
}
static uint64_t
bi_fp32_varying_mask(nir_shader *nir)
{
uint64_t mask = 0;
assert(nir->info.stage == MESA_SHADER_FRAGMENT);
nir_foreach_shader_in_variable(var, nir) {
if (var->data.interpolation == INTERP_MODE_FLAT)
mask |= BITFIELD64_BIT(var->data.location);
}
nir_shader_instructions_pass(nir, bi_gather_texcoords, nir_metadata_all,
&mask);
return mask;
}
static bool
bi_lower_sample_mask_writes(nir_builder *b, nir_intrinsic_instr *intr,
void *data)
{
if (intr->intrinsic != nir_intrinsic_store_output)
return false;
assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
if (nir_intrinsic_io_semantics(intr).location != FRAG_RESULT_SAMPLE_MASK)
return false;
b->cursor = nir_before_instr(&intr->instr);
nir_def *orig = nir_load_sample_mask(b);
nir_src_rewrite(&intr->src[0], nir_iand(b, orig, intr->src[0].ssa));
return true;
}
static bool
bi_lower_load_output(nir_builder *b, nir_intrinsic_instr *intr,
UNUSED void *data)
{
if (intr->intrinsic != nir_intrinsic_load_output)
return false;
unsigned loc = nir_intrinsic_io_semantics(intr).location;
assert(loc >= FRAG_RESULT_DATA0);
unsigned rt = loc - FRAG_RESULT_DATA0;
b->cursor = nir_before_instr(&intr->instr);
nir_def *conversion = nir_load_rt_conversion_pan(
b, .base = rt, .src_type = nir_intrinsic_dest_type(intr));
nir_def *lowered = nir_load_converted_output_pan(
b, intr->def.num_components, intr->def.bit_size, conversion,
.dest_type = nir_intrinsic_dest_type(intr),
.io_semantics = nir_intrinsic_io_semantics(intr));
nir_def_rewrite_uses(&intr->def, lowered);
return true;
}
static bool
bi_lower_subgroups(nir_builder *b, nir_intrinsic_instr *intr, void *data)
{
unsigned int gpu_id = *(unsigned int *)data;
unsigned int arch = pan_arch(gpu_id);
b->cursor = nir_before_instr(&intr->instr);
nir_def *val = NULL;
switch (intr->intrinsic) {
case nir_intrinsic_vote_any:
val = nir_ine_imm(b, nir_ballot(b, 1, 32, intr->src[0].ssa), 0);
break;
case nir_intrinsic_vote_all:
val = nir_ieq_imm(b, nir_ballot(b, 1, 32, nir_inot(b, intr->src[0].ssa)), 0);
break;
case nir_intrinsic_load_subgroup_id: {
nir_def *local_id = nir_load_local_invocation_id(b);
nir_def *local_size = nir_load_workgroup_size(b);
/* local_id.x + local_size.x * (local_id.y + local_size.y * local_id.z) */
nir_def *flat_local_id =
nir_iadd(b,
nir_channel(b, local_id, 0),
nir_imul(b,
nir_channel(b, local_size, 0),
nir_iadd(b,
nir_channel(b, local_id, 1),
nir_imul(b,
nir_channel(b, local_size, 1),
nir_channel(b, local_id, 2)))));
/*
* nir_udiv_imm with a power of two divisor, which pan_subgroup_size is,
* will construct a right shift instead of an udiv.
*/
val = nir_udiv_imm(b, flat_local_id, pan_subgroup_size(arch));
break;
}
case nir_intrinsic_load_subgroup_size:
val = nir_imm_int(b, pan_subgroup_size(arch));
break;
case nir_intrinsic_load_num_subgroups: {
uint32_t subgroup_size = pan_subgroup_size(arch);
assert(!b->shader->info.workgroup_size_variable);
uint32_t workgroup_size =
b->shader->info.workgroup_size[0] *
b->shader->info.workgroup_size[1] *
b->shader->info.workgroup_size[2];
uint32_t num_subgroups = DIV_ROUND_UP(workgroup_size, subgroup_size);
val = nir_imm_int(b, num_subgroups);
break;
}
default:
return false;
}
nir_def_rewrite_uses(&intr->def, val);
return true;
}
bool
bifrost_nir_lower_load_output(nir_shader *nir)
{
assert(nir->info.stage == MESA_SHADER_FRAGMENT);
return nir_shader_intrinsics_pass(
nir, bi_lower_load_output,
nir_metadata_control_flow, NULL);
}
static bool
bi_lower_halt_to_return(nir_builder *b, nir_instr *instr, UNUSED void *_data)
{
if (instr->type != nir_instr_type_jump)
return false;
nir_jump_instr *jump = nir_instr_as_jump(instr);
if (jump->type != nir_jump_halt)
return false;
assert(b->impl == nir_shader_get_entrypoint(b->shader));
jump->type = nir_jump_return;
return true;
}
void
bifrost_preprocess_nir(nir_shader *nir, unsigned gpu_id)
{
/* Ensure that halt are translated to returns and get ride of them */
NIR_PASS(_, nir, nir_shader_instructions_pass, bi_lower_halt_to_return,
nir_metadata_all, NULL);
NIR_PASS(_, nir, nir_lower_returns);
/* Lower gl_Position pre-optimisation, but after lowering vars to ssa
* (so we don't accidentally duplicate the epilogue since mesa/st has
* messed with our I/O quite a bit already) */
NIR_PASS(_, nir, nir_lower_vars_to_ssa);
if (nir->info.stage == MESA_SHADER_VERTEX) {
if (pan_arch(gpu_id) <= 7)
NIR_PASS(_, nir, pan_nir_lower_vertex_id);
NIR_PASS(_, nir, nir_lower_viewport_transform);
NIR_PASS(_, nir, nir_lower_point_size, 1.0, 0.0);
nir_variable *psiz = nir_find_variable_with_location(
nir, nir_var_shader_out, VARYING_SLOT_PSIZ);
if (psiz != NULL)
psiz->data.precision = GLSL_PRECISION_MEDIUM;
}
/* Get rid of any global vars before we lower to scratch. */
NIR_PASS(_, nir, nir_lower_global_vars_to_local);
/* Valhall introduces packed thread local storage, which improves cache
* locality of TLS access. However, access to packed TLS cannot
* straddle 16-byte boundaries. As such, when packed TLS is in use
* (currently unconditional for Valhall), we force vec4 alignment for
* scratch access.
*/
glsl_type_size_align_func vars_to_scratch_size_align_func =
(gpu_id >= 0x9000) ? glsl_get_vec4_size_align_bytes
: glsl_get_natural_size_align_bytes;
/* Lower large arrays to scratch and small arrays to bcsel */
NIR_PASS(_, nir, nir_lower_scratch_to_var);
NIR_PASS(_, nir, nir_lower_vars_to_scratch, nir_var_function_temp, 256,
vars_to_scratch_size_align_func, vars_to_scratch_size_align_func);
NIR_PASS(_, nir, nir_lower_indirect_derefs, nir_var_function_temp, ~0);
NIR_PASS(_, nir, nir_split_var_copies);
NIR_PASS(_, nir, nir_lower_var_copies);
NIR_PASS(_, nir, nir_lower_vars_to_ssa);
NIR_PASS(_, nir, nir_lower_io, nir_var_shader_in | nir_var_shader_out,
glsl_type_size, nir_lower_io_use_interpolated_input_intrinsics);
if (nir->info.stage == MESA_SHADER_VERTEX)
NIR_PASS_V(nir, pan_nir_lower_noperspective_vs);
if (nir->info.stage == MESA_SHADER_FRAGMENT)
NIR_PASS_V(nir, pan_nir_lower_noperspective_fs);
/* nir_lower[_explicit]_io is lazy and emits mul+add chains even for
* offsets it could figure out are constant. Do some constant folding
* before bifrost_nir_lower_store_component below.
*/
NIR_PASS(_, nir, nir_opt_constant_folding);
if (nir->info.stage == MESA_SHADER_FRAGMENT) {
NIR_PASS(_, nir, nir_lower_mediump_io,
nir_var_shader_in | nir_var_shader_out,
~bi_fp32_varying_mask(nir), false);
NIR_PASS(_, nir, nir_shader_intrinsics_pass, bi_lower_sample_mask_writes,
nir_metadata_control_flow, NULL);
NIR_PASS(_, nir, bifrost_nir_lower_load_output);
} else if (nir->info.stage == MESA_SHADER_VERTEX) {
if (gpu_id >= 0x9000) {
NIR_PASS(_, nir, nir_lower_mediump_io, nir_var_shader_out,
BITFIELD64_BIT(VARYING_SLOT_PSIZ), false);
}
NIR_PASS(_, nir, pan_nir_lower_store_component);
}
nir_lower_mem_access_bit_sizes_options mem_size_options = {
.modes = nir_var_mem_ubo | nir_var_mem_push_const | nir_var_mem_ssbo |
nir_var_mem_constant | nir_var_mem_task_payload |
nir_var_shader_temp | nir_var_function_temp |
nir_var_mem_global | nir_var_mem_shared,
.callback = mem_access_size_align_cb,
};
NIR_PASS(_, nir, nir_lower_mem_access_bit_sizes, &mem_size_options);
nir_lower_ssbo_options ssbo_opts = {
.native_loads = pan_arch(gpu_id) >= 9,
.native_offset = pan_arch(gpu_id) >= 9,
};
NIR_PASS(_, nir, nir_lower_ssbo, &ssbo_opts);
NIR_PASS(_, nir, pan_lower_sample_pos);
NIR_PASS(_, nir, nir_lower_bit_size, bi_lower_bit_size, NULL);
NIR_PASS(_, nir, nir_lower_64bit_phis);
NIR_PASS(_, nir, pan_lower_helper_invocation);
NIR_PASS(_, nir, nir_lower_int64);
NIR_PASS(_, nir, nir_opt_idiv_const, 8);
NIR_PASS(_, nir, nir_lower_idiv,
&(nir_lower_idiv_options){.allow_fp16 = true});
NIR_PASS(_, nir, nir_lower_tex,
&(nir_lower_tex_options){
.lower_txs_lod = true,
.lower_txp = ~0,
.lower_tg4_broadcom_swizzle = true,
.lower_txd_cube_map = true,
.lower_invalid_implicit_lod = true,
.lower_index_to_offset = true,
});
NIR_PASS(_, nir, nir_lower_image_atomics_to_global, NULL, NULL);
/* on bifrost, lower MSAA load/stores to 3D load/stores */
if (pan_arch(gpu_id) < 9)
NIR_PASS(_, nir, pan_nir_lower_image_ms);
/*
* TODO: we can implement certain operations (notably reductions, scans,
* certain shuffles, etc) more efficiently than nir_lower_subgroups. Moreover
* we can implement reductions and scans on f16vec2 values without splitting
* to scalar first.
*/
bool lower_subgroups_progress = false;
NIR_PASS(lower_subgroups_progress, nir, nir_lower_subgroups,
&(nir_lower_subgroups_options) {
.subgroup_size = pan_subgroup_size(pan_arch(gpu_id)),
.ballot_bit_size = 32,
.ballot_components = 1,
.lower_to_scalar = true,
.lower_vote_eq = true,
.lower_vote_bool_eq = true,
.lower_first_invocation_to_ballot = true,
.lower_read_first_invocation = true,
.lower_subgroup_masks = true,
.lower_relative_shuffle = true,
.lower_shuffle = true,
.lower_quad = true,
.lower_quad_broadcast_dynamic = true,
.lower_quad_vote = true,
.lower_elect = true,
.lower_rotate_to_shuffle = true,
.lower_rotate_clustered_to_shuffle = true,
.lower_inverse_ballot = true,
.lower_reduce = true,
.lower_boolean_reduce = true,
.lower_boolean_shuffle = true,
});
/* nir_lower_subgroups creates new vars, clean them up. */
if (lower_subgroups_progress)
NIR_PASS(_, nir, nir_lower_vars_to_ssa);
NIR_PASS(_, nir, nir_shader_intrinsics_pass, bi_lower_subgroups,
nir_metadata_control_flow, &gpu_id);
NIR_PASS(_, nir, nir_lower_alu_to_scalar, bi_scalarize_filter, NULL);
NIR_PASS(_, nir, nir_lower_load_const_to_scalar);
NIR_PASS(_, nir, nir_lower_phis_to_scalar, true);
NIR_PASS(_, nir, nir_lower_flrp, 16 | 32 | 64, false /* always_precise */);
NIR_PASS(_, nir, nir_lower_var_copies);
NIR_PASS(_, nir, nir_lower_alu);
NIR_PASS(_, nir, nir_lower_frag_coord_to_pixel_coord);
NIR_PASS(_, nir, pan_nir_lower_frag_coord_zw);
}
static bi_context *
bi_compile_variant_nir(nir_shader *nir,
const struct panfrost_compile_inputs *inputs,
struct util_dynarray *binary, struct bi_shader_info info,
enum bi_idvs_mode idvs)
{
bi_context *ctx = rzalloc(NULL, bi_context);
/* There may be another program in the dynarray, start at the end */
unsigned offset = binary->size;
ctx->inputs = inputs;
ctx->nir = nir;
ctx->stage = nir->info.stage;
ctx->quirks = bifrost_get_quirks(inputs->gpu_id);
ctx->arch = pan_arch(inputs->gpu_id);
ctx->info = info;
ctx->idvs = idvs;
ctx->malloc_idvs = (ctx->arch >= 9) && !inputs->no_idvs;
if (idvs != BI_IDVS_NONE) {
/* Specializing shaders for IDVS is destructive, so we need to
* clone. However, the last (second) IDVS shader does not need
* to be preserved so we can skip cloning that one.
*/
if (offset == 0)
ctx->nir = nir = nir_shader_clone(ctx, nir);
NIR_PASS(_, nir, nir_shader_instructions_pass,
bifrost_nir_specialize_idvs, nir_metadata_control_flow, &idvs);
/* After specializing, clean up the mess */
bool progress = true;
while (progress) {
progress = false;
NIR_PASS(progress, nir, nir_opt_dce);
NIR_PASS(progress, nir, nir_opt_dead_cf);
}
}
/* If nothing is pushed, all UBOs need to be uploaded */
ctx->ubo_mask = ~0;
list_inithead(&ctx->blocks);
bool skip_internal = nir->info.internal;
skip_internal &= !(bifrost_debug & BIFROST_DBG_INTERNAL);
if (bifrost_debug & BIFROST_DBG_SHADERS && !skip_internal) {
nir_print_shader(nir, stdout);
}
ctx->allocated_vec = _mesa_hash_table_u64_create(ctx);
nir_foreach_function_impl(impl, nir) {
nir_index_blocks(impl);
ctx->indexed_nir_blocks =
rzalloc_array(ctx, bi_block *, impl->num_blocks);
ctx->ssa_alloc += impl->ssa_alloc;
emit_cf_list(ctx, &impl->body);
bi_emit_phis_deferred(ctx);
break; /* TODO: Multi-function shaders */
}
/* Index blocks now that we're done emitting */
bi_foreach_block(ctx, block) {
block->index = ctx->num_blocks++;
}
bi_validate(ctx, "NIR -> BIR");
/* If the shader doesn't write any colour or depth outputs, it may
* still need an ATEST at the very end! */
bool need_dummy_atest = (ctx->stage == MESA_SHADER_FRAGMENT) &&
!ctx->emitted_atest && !bi_skip_atest(ctx, false);
if (need_dummy_atest) {
bi_block *end = list_last_entry(&ctx->blocks, bi_block, link);
bi_builder b = bi_init_builder(ctx, bi_after_block(end));
bi_emit_atest(&b, bi_zero());
}
bool optimize = !(bifrost_debug & BIFROST_DBG_NOOPT);
/* Runs before constant folding */
bi_lower_swizzle(ctx);
bi_validate(ctx, "Early lowering");
/* Runs before copy prop */
if (optimize && !ctx->inputs->no_ubo_to_push) {
bi_opt_push_ubo(ctx);
}
if (likely(optimize)) {
bi_opt_copy_prop(ctx);
while (bi_opt_constant_fold(ctx))
bi_opt_copy_prop(ctx);
bi_opt_mod_prop_forward(ctx);
bi_opt_mod_prop_backward(ctx);
/* Push LD_VAR_IMM/VAR_TEX instructions. Must run after
* mod_prop_backward to fuse VAR_TEX */
if (ctx->arch == 7 && ctx->stage == MESA_SHADER_FRAGMENT &&
!(bifrost_debug & BIFROST_DBG_NOPRELOAD)) {
bi_opt_dce(ctx, false);
bi_opt_message_preload(ctx);
bi_opt_copy_prop(ctx);
}
bi_opt_dce(ctx, false);
bi_opt_cse(ctx);
bi_opt_dce(ctx, false);
if (!ctx->inputs->no_ubo_to_push)
bi_opt_reorder_push(ctx);
bi_validate(ctx, "Optimization passes");
}
bi_lower_opt_instructions(ctx);
if (ctx->arch >= 9) {
va_optimize(ctx);
va_lower_isel(ctx);
bi_foreach_instr_global_safe(ctx, I) {
/* Phis become single moves so shouldn't be affected */
if (I->op == BI_OPCODE_PHI)
continue;
va_lower_constants(ctx, I);
bi_builder b = bi_init_builder(ctx, bi_before_instr(I));
va_repair_fau(&b, I);
}
/* We need to clean up after constant lowering */
if (likely(optimize)) {
bi_opt_cse(ctx);
bi_opt_dce(ctx, false);
}
bi_validate(ctx, "Valhall passes");
}
bi_foreach_block(ctx, block) {
bi_lower_branch(ctx, block);
}
if (bifrost_debug & BIFROST_DBG_SHADERS && !skip_internal)
bi_print_shader(ctx, stdout);
/* Analyze before register allocation to avoid false dependencies. The
* skip bit is a function of only the data flow graph and is invariant
* under valid scheduling. Helpers are only defined for fragment
* shaders, so this analysis is only required in fragment shaders.
*/
if (ctx->stage == MESA_SHADER_FRAGMENT) {
bi_opt_dce(ctx, false);
bi_analyze_helper_requirements(ctx);
}
/* Fuse TEXC after analyzing helper requirements so the analysis
* doesn't have to know about dual textures */
if (likely(optimize)) {
bi_opt_fuse_dual_texture(ctx);
}
/* Lower FAU after fusing dual texture, because fusing dual texture
* creates new immediates that themselves may need lowering.
*/
if (ctx->arch <= 8) {
bi_lower_fau(ctx);
}
/* Lowering FAU can create redundant moves. Run CSE+DCE to clean up. */
if (likely(optimize)) {
bi_opt_cse(ctx);
bi_opt_dce(ctx, false);
}
bi_validate(ctx, "Late lowering");
if (likely(!(bifrost_debug & BIFROST_DBG_NOPSCHED))) {
bi_pressure_schedule(ctx);
bi_validate(ctx, "Pre-RA scheduling");
}
bi_register_allocate(ctx);
if (likely(optimize))
bi_opt_post_ra(ctx);
if (bifrost_debug & BIFROST_DBG_SHADERS && !skip_internal)
bi_print_shader(ctx, stdout);
if (ctx->arch >= 9) {
va_assign_slots(ctx);
va_insert_flow_control_nops(ctx);
va_merge_flow(ctx);
va_mark_last(ctx);
} else {
bi_schedule(ctx);
bi_assign_scoreboard(ctx);
/* Analyze after scheduling since we depend on instruction
* order. Valhall calls as part of va_insert_flow_control_nops,
* as the handling for clauses differs from instructions.
*/
bi_analyze_helper_terminate(ctx);
bi_mark_clauses_td(ctx);
}
if (bifrost_debug & BIFROST_DBG_SHADERS && !skip_internal)
bi_print_shader(ctx, stdout);
if (ctx->arch <= 8) {
bi_pack_clauses(ctx, binary, offset);
} else {
bi_pack_valhall(ctx, binary);
}
if (bifrost_debug & BIFROST_DBG_SHADERS && !skip_internal) {
if (ctx->arch <= 8) {
disassemble_bifrost(stdout, binary->data + offset,
binary->size - offset,
bifrost_debug & BIFROST_DBG_VERBOSE);
} else {
disassemble_valhall(stdout, binary->data + offset,
binary->size - offset,
bifrost_debug & BIFROST_DBG_VERBOSE);
}
fflush(stdout);
}
if (!skip_internal &&
((bifrost_debug & BIFROST_DBG_SHADERDB) || inputs->debug)) {
char *shaderdb;
if (ctx->arch >= 9) {
shaderdb = va_print_stats(ctx, binary->size - offset);
} else {
shaderdb = bi_print_stats(ctx, binary->size - offset);
}
if (bifrost_debug & BIFROST_DBG_SHADERDB)
fprintf(stderr, "SHADER-DB: %s\n", shaderdb);
if (inputs->debug)
util_debug_message(inputs->debug, SHADER_INFO, "%s", shaderdb);
ralloc_free(shaderdb);
}
return ctx;
}
static void
bi_compile_variant(nir_shader *nir,
const struct panfrost_compile_inputs *inputs,
struct util_dynarray *binary, struct pan_shader_info *info,
enum bi_idvs_mode idvs)
{
struct bi_shader_info local_info = {
.push = &info->push,
.bifrost = &info->bifrost,
.tls_size = info->tls_size,
.push_offset = info->push.count,
};
unsigned offset = binary->size;
/* If there is no position shader (gl_Position is not written), then
* there is no need to build a varying shader either. This case is hit
* for transform feedback only vertex shaders which only make sense with
* rasterizer discard.
*/
if ((offset == 0) && (idvs == BI_IDVS_VARYING))
return;
/* Software invariant: Only a secondary shader can appear at a nonzero
* offset, to keep the ABI simple. */
assert((offset == 0) ^ (idvs == BI_IDVS_VARYING));
bi_context *ctx =
bi_compile_variant_nir(nir, inputs, binary, local_info, idvs);
/* A register is preloaded <==> it is live before the first block */
bi_block *first_block = list_first_entry(&ctx->blocks, bi_block, link);
uint64_t preload = first_block->reg_live_in;
/* If multisampling is used with a blend shader, the blend shader needs
* to access the sample coverage mask in r60 and the sample ID in r61.
* Blend shaders run in the same context as fragment shaders, so if a
* blend shader could run, we need to preload these registers
* conservatively. There is believed to be little cost to doing so, so
* do so always to avoid variants of the preload descriptor.
*
* We only do this on Valhall, as Bifrost has to update the RSD for
* multisampling w/ blend shader anyway, so this is handled in the
* driver. We could unify the paths if the cost is acceptable.
*/
if (nir->info.stage == MESA_SHADER_FRAGMENT && ctx->arch >= 9)
preload |= BITFIELD64_BIT(60) | BITFIELD64_BIT(61);
info->ubo_mask |= ctx->ubo_mask;
info->tls_size = MAX2(info->tls_size, ctx->info.tls_size);
if (idvs == BI_IDVS_VARYING) {
info->vs.secondary_enable = (binary->size > offset);
info->vs.secondary_offset = offset;
info->vs.secondary_preload = preload;
info->vs.secondary_work_reg_count = ctx->info.work_reg_count;
} else {
info->preload = preload;
info->work_reg_count = ctx->info.work_reg_count;
}
if (idvs == BI_IDVS_POSITION && !nir->info.internal &&
nir->info.outputs_written & BITFIELD_BIT(VARYING_SLOT_PSIZ)) {
/* Find the psiz write */
bi_instr *write = NULL;
bi_foreach_instr_global(ctx, I) {
if (I->op == BI_OPCODE_STORE_I16 && I->seg == BI_SEG_POS) {
write = I;
break;
}
}
assert(write != NULL);
/* NOP it out, preserving its flow control. TODO: maybe DCE */
if (write->flow) {
bi_builder b = bi_init_builder(ctx, bi_before_instr(write));
bi_instr *nop = bi_nop(&b);
nop->flow = write->flow;
}
bi_remove_instruction(write);
info->vs.no_psiz_offset = binary->size;
bi_pack_valhall(ctx, binary);
}
ralloc_free(ctx);
}
/* Decide if Index-Driven Vertex Shading should be used for a given shader */
static bool
bi_should_idvs(nir_shader *nir, const struct panfrost_compile_inputs *inputs)
{
/* Opt-out */
if (inputs->no_idvs || bifrost_debug & BIFROST_DBG_NOIDVS)
return false;
/* IDVS splits up vertex shaders, not defined on other shader stages */
if (nir->info.stage != MESA_SHADER_VERTEX)
return false;
/* Bifrost cannot write gl_PointSize during IDVS */
if ((inputs->gpu_id < 0x9000) &&
nir->info.outputs_written & BITFIELD_BIT(VARYING_SLOT_PSIZ))
return false;
/* Otherwise, IDVS is usually better */
return true;
}
void
bifrost_compile_shader_nir(nir_shader *nir,
const struct panfrost_compile_inputs *inputs,
struct util_dynarray *binary,
struct pan_shader_info *info)
{
bifrost_debug = debug_get_option_bifrost_debug();
/* Combine stores late, to give the driver a chance to lower dual-source
* blending as regular store_output intrinsics.
*/
NIR_PASS(_, nir, pan_nir_lower_zs_store);
bi_optimize_nir(nir, inputs->gpu_id, inputs->is_blend);
info->tls_size = nir->scratch_size;
info->vs.idvs = bi_should_idvs(nir, inputs);
pan_nir_collect_varyings(nir, info, PAN_MEDIUMP_VARY_32BIT);
if (info->vs.idvs) {
bi_compile_variant(nir, inputs, binary, info, BI_IDVS_POSITION);
bi_compile_variant(nir, inputs, binary, info, BI_IDVS_VARYING);
} else {
bi_compile_variant(nir, inputs, binary, info, BI_IDVS_NONE);
}
if (gl_shader_stage_is_compute(nir->info.stage)) {
/* Workgroups may be merged if the structure of the workgroup is
* not software visible. This is true if neither shared memory
* nor barriers are used. The hardware may be able to optimize
* compute shaders that set this flag.
*/
info->cs.allow_merging_workgroups = (nir->info.shared_size == 0) &&
!nir->info.uses_control_barrier &&
!nir->info.uses_memory_barrier;
}
info->ubo_mask &= (1 << nir->info.num_ubos) - 1;
}