mesa/src/compiler/nir/nir_lower_double_ops.c
Jason Ekstrand e02959f442 nir/lower_doubles: Inline functions directly in lower_doubles
Instead of trusting the caller to already have created a softfp64
function shader and added all its functions to our shader, we simply
take the softfp64 shader as an argument and do the function inlining
ouselves.  This means that there's no more nasty functions lying around
that the caller needs to worry about cleaning up.

Reviewed-by: Matt Turner <mattst88@gmail.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2019-03-06 17:24:57 +00:00

736 lines
23 KiB
C

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "nir.h"
#include "nir_builder.h"
#include "c99_math.h"
/*
* Lowers some unsupported double operations, using only:
*
* - pack/unpackDouble2x32
* - conversion to/from single-precision
* - double add, mul, and fma
* - conditional select
* - 32-bit integer and floating point arithmetic
*/
/* Creates a double with the exponent bits set to a given integer value */
static nir_ssa_def *
set_exponent(nir_builder *b, nir_ssa_def *src, nir_ssa_def *exp)
{
/* Split into bits 0-31 and 32-63 */
nir_ssa_def *lo = nir_unpack_64_2x32_split_x(b, src);
nir_ssa_def *hi = nir_unpack_64_2x32_split_y(b, src);
/* The exponent is bits 52-62, or 20-30 of the high word, so set the exponent
* to 1023
*/
nir_ssa_def *new_hi = nir_bfi(b, nir_imm_int(b, 0x7ff00000), exp, hi);
/* recombine */
return nir_pack_64_2x32_split(b, lo, new_hi);
}
static nir_ssa_def *
get_exponent(nir_builder *b, nir_ssa_def *src)
{
/* get bits 32-63 */
nir_ssa_def *hi = nir_unpack_64_2x32_split_y(b, src);
/* extract bits 20-30 of the high word */
return nir_ubitfield_extract(b, hi, nir_imm_int(b, 20), nir_imm_int(b, 11));
}
/* Return infinity with the sign of the given source which is +/-0 */
static nir_ssa_def *
get_signed_inf(nir_builder *b, nir_ssa_def *zero)
{
nir_ssa_def *zero_hi = nir_unpack_64_2x32_split_y(b, zero);
/* The bit pattern for infinity is 0x7ff0000000000000, where the sign bit
* is the highest bit. Only the sign bit can be non-zero in the passed in
* source. So we essentially need to OR the infinity and the zero, except
* the low 32 bits are always 0 so we can construct the correct high 32
* bits and then pack it together with zero low 32 bits.
*/
nir_ssa_def *inf_hi = nir_ior(b, nir_imm_int(b, 0x7ff00000), zero_hi);
return nir_pack_64_2x32_split(b, nir_imm_int(b, 0), inf_hi);
}
/*
* Generates the correctly-signed infinity if the source was zero, and flushes
* the result to 0 if the source was infinity or the calculated exponent was
* too small to be representable.
*/
static nir_ssa_def *
fix_inv_result(nir_builder *b, nir_ssa_def *res, nir_ssa_def *src,
nir_ssa_def *exp)
{
/* If the exponent is too small or the original input was infinity/NaN,
* force the result to 0 (flush denorms) to avoid the work of handling
* denorms properly. Note that this doesn't preserve positive/negative
* zeros, but GLSL doesn't require it.
*/
res = nir_bcsel(b, nir_ior(b, nir_ige(b, nir_imm_int(b, 0), exp),
nir_feq(b, nir_fabs(b, src),
nir_imm_double(b, INFINITY))),
nir_imm_double(b, 0.0f), res);
/* If the original input was 0, generate the correctly-signed infinity */
res = nir_bcsel(b, nir_fne(b, src, nir_imm_double(b, 0.0f)),
res, get_signed_inf(b, src));
return res;
}
static nir_ssa_def *
lower_rcp(nir_builder *b, nir_ssa_def *src)
{
/* normalize the input to avoid range issues */
nir_ssa_def *src_norm = set_exponent(b, src, nir_imm_int(b, 1023));
/* cast to float, do an rcp, and then cast back to get an approximate
* result
*/
nir_ssa_def *ra = nir_f2f64(b, nir_frcp(b, nir_f2f32(b, src_norm)));
/* Fixup the exponent of the result - note that we check if this is too
* small below.
*/
nir_ssa_def *new_exp = nir_isub(b, get_exponent(b, ra),
nir_isub(b, get_exponent(b, src),
nir_imm_int(b, 1023)));
ra = set_exponent(b, ra, new_exp);
/* Do a few Newton-Raphson steps to improve precision.
*
* Each step doubles the precision, and we started off with around 24 bits,
* so we only need to do 2 steps to get to full precision. The step is:
*
* x_new = x * (2 - x*src)
*
* But we can re-arrange this to improve precision by using another fused
* multiply-add:
*
* x_new = x + x * (1 - x*src)
*
* See https://en.wikipedia.org/wiki/Division_algorithm for more details.
*/
ra = nir_ffma(b, ra, nir_ffma(b, ra, src, nir_imm_double(b, -1)), ra);
ra = nir_ffma(b, ra, nir_ffma(b, ra, src, nir_imm_double(b, -1)), ra);
return fix_inv_result(b, ra, src, new_exp);
}
static nir_ssa_def *
lower_sqrt_rsq(nir_builder *b, nir_ssa_def *src, bool sqrt)
{
/* We want to compute:
*
* 1/sqrt(m * 2^e)
*
* When the exponent is even, this is equivalent to:
*
* 1/sqrt(m) * 2^(-e/2)
*
* and then the exponent is odd, this is equal to:
*
* 1/sqrt(m * 2) * 2^(-(e - 1)/2)
*
* where the m * 2 is absorbed into the exponent. So we want the exponent
* inside the square root to be 1 if e is odd and 0 if e is even, and we
* want to subtract off e/2 from the final exponent, rounded to negative
* infinity. We can do the former by first computing the unbiased exponent,
* and then AND'ing it with 1 to get 0 or 1, and we can do the latter by
* shifting right by 1.
*/
nir_ssa_def *unbiased_exp = nir_isub(b, get_exponent(b, src),
nir_imm_int(b, 1023));
nir_ssa_def *even = nir_iand(b, unbiased_exp, nir_imm_int(b, 1));
nir_ssa_def *half = nir_ishr(b, unbiased_exp, nir_imm_int(b, 1));
nir_ssa_def *src_norm = set_exponent(b, src,
nir_iadd(b, nir_imm_int(b, 1023),
even));
nir_ssa_def *ra = nir_f2f64(b, nir_frsq(b, nir_f2f32(b, src_norm)));
nir_ssa_def *new_exp = nir_isub(b, get_exponent(b, ra), half);
ra = set_exponent(b, ra, new_exp);
/*
* The following implements an iterative algorithm that's very similar
* between sqrt and rsqrt. We start with an iteration of Goldschmit's
* algorithm, which looks like:
*
* a = the source
* y_0 = initial (single-precision) rsqrt estimate
*
* h_0 = .5 * y_0
* g_0 = a * y_0
* r_0 = .5 - h_0 * g_0
* g_1 = g_0 * r_0 + g_0
* h_1 = h_0 * r_0 + h_0
*
* Now g_1 ~= sqrt(a), and h_1 ~= 1/(2 * sqrt(a)). We could continue
* applying another round of Goldschmit, but since we would never refer
* back to a (the original source), we would add too much rounding error.
* So instead, we do one last round of Newton-Raphson, which has better
* rounding characteristics, to get the final rounding correct. This is
* split into two cases:
*
* 1. sqrt
*
* Normally, doing a round of Newton-Raphson for sqrt involves taking a
* reciprocal of the original estimate, which is slow since it isn't
* supported in HW. But we can take advantage of the fact that we already
* computed a good estimate of 1/(2 * g_1) by rearranging it like so:
*
* g_2 = .5 * (g_1 + a / g_1)
* = g_1 + .5 * (a / g_1 - g_1)
* = g_1 + (.5 / g_1) * (a - g_1^2)
* = g_1 + h_1 * (a - g_1^2)
*
* The second term represents the error, and by splitting it out we can get
* better precision by computing it as part of a fused multiply-add. Since
* both Newton-Raphson and Goldschmit approximately double the precision of
* the result, these two steps should be enough.
*
* 2. rsqrt
*
* First off, note that the first round of the Goldschmit algorithm is
* really just a Newton-Raphson step in disguise:
*
* h_1 = h_0 * (.5 - h_0 * g_0) + h_0
* = h_0 * (1.5 - h_0 * g_0)
* = h_0 * (1.5 - .5 * a * y_0^2)
* = (.5 * y_0) * (1.5 - .5 * a * y_0^2)
*
* which is the standard formula multiplied by .5. Unlike in the sqrt case,
* we don't need the inverse to do a Newton-Raphson step; we just need h_1,
* so we can skip the calculation of g_1. Instead, we simply do another
* Newton-Raphson step:
*
* y_1 = 2 * h_1
* r_1 = .5 - h_1 * y_1 * a
* y_2 = y_1 * r_1 + y_1
*
* Where the difference from Goldschmit is that we calculate y_1 * a
* instead of using g_1. Doing it this way should be as fast as computing
* y_1 up front instead of h_1, and it lets us share the code for the
* initial Goldschmit step with the sqrt case.
*
* Putting it together, the computations are:
*
* h_0 = .5 * y_0
* g_0 = a * y_0
* r_0 = .5 - h_0 * g_0
* h_1 = h_0 * r_0 + h_0
* if sqrt:
* g_1 = g_0 * r_0 + g_0
* r_1 = a - g_1 * g_1
* g_2 = h_1 * r_1 + g_1
* else:
* y_1 = 2 * h_1
* r_1 = .5 - y_1 * (h_1 * a)
* y_2 = y_1 * r_1 + y_1
*
* For more on the ideas behind this, see "Software Division and Square
* Root Using Goldschmit's Algorithms" by Markstein and the Wikipedia page
* on square roots
* (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots).
*/
nir_ssa_def *one_half = nir_imm_double(b, 0.5);
nir_ssa_def *h_0 = nir_fmul(b, one_half, ra);
nir_ssa_def *g_0 = nir_fmul(b, src, ra);
nir_ssa_def *r_0 = nir_ffma(b, nir_fneg(b, h_0), g_0, one_half);
nir_ssa_def *h_1 = nir_ffma(b, h_0, r_0, h_0);
nir_ssa_def *res;
if (sqrt) {
nir_ssa_def *g_1 = nir_ffma(b, g_0, r_0, g_0);
nir_ssa_def *r_1 = nir_ffma(b, nir_fneg(b, g_1), g_1, src);
res = nir_ffma(b, h_1, r_1, g_1);
} else {
nir_ssa_def *y_1 = nir_fmul(b, nir_imm_double(b, 2.0), h_1);
nir_ssa_def *r_1 = nir_ffma(b, nir_fneg(b, y_1), nir_fmul(b, h_1, src),
one_half);
res = nir_ffma(b, y_1, r_1, y_1);
}
if (sqrt) {
/* Here, the special cases we need to handle are
* 0 -> 0 and
* +inf -> +inf
*/
res = nir_bcsel(b, nir_ior(b, nir_feq(b, src, nir_imm_double(b, 0.0)),
nir_feq(b, src, nir_imm_double(b, INFINITY))),
src, res);
} else {
res = fix_inv_result(b, res, src, new_exp);
}
return res;
}
static nir_ssa_def *
lower_trunc(nir_builder *b, nir_ssa_def *src)
{
nir_ssa_def *unbiased_exp = nir_isub(b, get_exponent(b, src),
nir_imm_int(b, 1023));
nir_ssa_def *frac_bits = nir_isub(b, nir_imm_int(b, 52), unbiased_exp);
/*
* Decide the operation to apply depending on the unbiased exponent:
*
* if (unbiased_exp < 0)
* return 0
* else if (unbiased_exp > 52)
* return src
* else
* return src & (~0 << frac_bits)
*
* Notice that the else branch is a 64-bit integer operation that we need
* to implement in terms of 32-bit integer arithmetics (at least until we
* support 64-bit integer arithmetics).
*/
/* Compute "~0 << frac_bits" in terms of hi/lo 32-bit integer math */
nir_ssa_def *mask_lo =
nir_bcsel(b,
nir_ige(b, frac_bits, nir_imm_int(b, 32)),
nir_imm_int(b, 0),
nir_ishl(b, nir_imm_int(b, ~0), frac_bits));
nir_ssa_def *mask_hi =
nir_bcsel(b,
nir_ilt(b, frac_bits, nir_imm_int(b, 33)),
nir_imm_int(b, ~0),
nir_ishl(b,
nir_imm_int(b, ~0),
nir_isub(b, frac_bits, nir_imm_int(b, 32))));
nir_ssa_def *src_lo = nir_unpack_64_2x32_split_x(b, src);
nir_ssa_def *src_hi = nir_unpack_64_2x32_split_y(b, src);
return
nir_bcsel(b,
nir_ilt(b, unbiased_exp, nir_imm_int(b, 0)),
nir_imm_double(b, 0.0),
nir_bcsel(b, nir_ige(b, unbiased_exp, nir_imm_int(b, 53)),
src,
nir_pack_64_2x32_split(b,
nir_iand(b, mask_lo, src_lo),
nir_iand(b, mask_hi, src_hi))));
}
static nir_ssa_def *
lower_floor(nir_builder *b, nir_ssa_def *src)
{
/*
* For x >= 0, floor(x) = trunc(x)
* For x < 0,
* - if x is integer, floor(x) = x
* - otherwise, floor(x) = trunc(x) - 1
*/
nir_ssa_def *tr = nir_ftrunc(b, src);
nir_ssa_def *positive = nir_fge(b, src, nir_imm_double(b, 0.0));
return nir_bcsel(b,
nir_ior(b, positive, nir_feq(b, src, tr)),
tr,
nir_fsub(b, tr, nir_imm_double(b, 1.0)));
}
static nir_ssa_def *
lower_ceil(nir_builder *b, nir_ssa_def *src)
{
/* if x < 0, ceil(x) = trunc(x)
* else if (x - trunc(x) == 0), ceil(x) = x
* else, ceil(x) = trunc(x) + 1
*/
nir_ssa_def *tr = nir_ftrunc(b, src);
nir_ssa_def *negative = nir_flt(b, src, nir_imm_double(b, 0.0));
return nir_bcsel(b,
nir_ior(b, negative, nir_feq(b, src, tr)),
tr,
nir_fadd(b, tr, nir_imm_double(b, 1.0)));
}
static nir_ssa_def *
lower_fract(nir_builder *b, nir_ssa_def *src)
{
return nir_fsub(b, src, nir_ffloor(b, src));
}
static nir_ssa_def *
lower_round_even(nir_builder *b, nir_ssa_def *src)
{
/* Add and subtract 2**52 to round off any fractional bits. */
nir_ssa_def *two52 = nir_imm_double(b, (double)(1ull << 52));
nir_ssa_def *sign = nir_iand(b, nir_unpack_64_2x32_split_y(b, src),
nir_imm_int(b, 1ull << 31));
b->exact = true;
nir_ssa_def *res = nir_fsub(b, nir_fadd(b, nir_fabs(b, src), two52), two52);
b->exact = false;
return nir_bcsel(b, nir_flt(b, nir_fabs(b, src), two52),
nir_pack_64_2x32_split(b, nir_unpack_64_2x32_split_x(b, res),
nir_ior(b, nir_unpack_64_2x32_split_y(b, res), sign)), src);
}
static nir_ssa_def *
lower_mod(nir_builder *b, nir_ssa_def *src0, nir_ssa_def *src1)
{
/* mod(x,y) = x - y * floor(x/y)
*
* If the division is lowered, it could add some rounding errors that make
* floor() to return the quotient minus one when x = N * y. If this is the
* case, we return zero because mod(x, y) output value is [0, y).
*/
nir_ssa_def *floor = nir_ffloor(b, nir_fdiv(b, src0, src1));
nir_ssa_def *mod = nir_fsub(b, src0, nir_fmul(b, src1, floor));
return nir_bcsel(b,
nir_fne(b, mod, src1),
mod,
nir_imm_double(b, 0.0));
}
static bool
lower_doubles_instr_to_soft(nir_builder *b, nir_alu_instr *instr,
const nir_shader *softfp64,
nir_lower_doubles_options options)
{
if (!(options & nir_lower_fp64_full_software))
return false;
assert(instr->dest.dest.is_ssa);
const char *name;
const struct glsl_type *return_type = glsl_uint64_t_type();
switch (instr->op) {
case nir_op_f2i64:
if (instr->src[0].src.ssa->bit_size == 64)
name = "__fp64_to_int64";
else
name = "__fp32_to_int64";
return_type = glsl_int64_t_type();
break;
case nir_op_f2u64:
if (instr->src[0].src.ssa->bit_size == 64)
name = "__fp64_to_uint64";
else
name = "__fp32_to_uint64";
break;
case nir_op_f2f64:
name = "__fp32_to_fp64";
break;
case nir_op_f2f32:
name = "__fp64_to_fp32";
return_type = glsl_float_type();
break;
case nir_op_f2i32:
name = "__fp64_to_int";
return_type = glsl_int_type();
break;
case nir_op_f2u32:
name = "__fp64_to_uint";
return_type = glsl_uint_type();
break;
case nir_op_f2b1:
case nir_op_f2b32:
name = "__fp64_to_bool";
return_type = glsl_bool_type();
break;
case nir_op_b2f64:
name = "__bool_to_fp64";
break;
case nir_op_i2f32:
if (instr->src[0].src.ssa->bit_size != 64)
return false;
name = "__int64_to_fp32";
return_type = glsl_float_type();
break;
case nir_op_u2f32:
if (instr->src[0].src.ssa->bit_size != 64)
return false;
name = "__uint64_to_fp32";
return_type = glsl_float_type();
break;
case nir_op_i2f64:
if (instr->src[0].src.ssa->bit_size == 64)
name = "__int64_to_fp64";
else
name = "__int_to_fp64";
break;
case nir_op_u2f64:
if (instr->src[0].src.ssa->bit_size == 64)
name = "__uint64_to_fp64";
else
name = "__uint_to_fp64";
break;
case nir_op_fabs:
name = "__fabs64";
break;
case nir_op_fneg:
name = "__fneg64";
break;
case nir_op_fround_even:
name = "__fround64";
break;
case nir_op_ftrunc:
name = "__ftrunc64";
break;
case nir_op_ffloor:
name = "__ffloor64";
break;
case nir_op_ffract:
name = "__ffract64";
break;
case nir_op_fsign:
name = "__fsign64";
break;
case nir_op_feq:
name = "__feq64";
return_type = glsl_bool_type();
break;
case nir_op_fne:
name = "__fne64";
return_type = glsl_bool_type();
break;
case nir_op_flt:
name = "__flt64";
return_type = glsl_bool_type();
break;
case nir_op_fge:
name = "__fge64";
return_type = glsl_bool_type();
break;
case nir_op_fmin:
name = "__fmin64";
break;
case nir_op_fmax:
name = "__fmax64";
break;
case nir_op_fadd:
name = "__fadd64";
break;
case nir_op_fmul:
name = "__fmul64";
break;
case nir_op_ffma:
name = "__ffma64";
break;
default:
return false;
}
nir_function *func = NULL;
nir_foreach_function(function, softfp64) {
if (strcmp(function->name, name) == 0) {
func = function;
break;
}
}
if (!func || !func->impl) {
fprintf(stderr, "Cannot find function \"%s\"\n", name);
assert(func);
}
b->cursor = nir_before_instr(&instr->instr);
nir_ssa_def *params[4] = { NULL, };
nir_variable *ret_tmp =
nir_local_variable_create(b->impl, return_type, "return_tmp");
nir_deref_instr *ret_deref = nir_build_deref_var(b, ret_tmp);
params[0] = &ret_deref->dest.ssa;
assert(nir_op_infos[instr->op].num_inputs + 1 == func->num_params);
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
assert(i + 1 < ARRAY_SIZE(params));
params[i + 1] = nir_imov_alu(b, instr->src[i], 1);
}
nir_inline_function_impl(b, func->impl, params);
nir_ssa_def_rewrite_uses(&instr->dest.dest.ssa,
nir_src_for_ssa(nir_load_deref(b, ret_deref)));
nir_instr_remove(&instr->instr);
return true;
}
nir_lower_doubles_options
nir_lower_doubles_op_to_options_mask(nir_op opcode)
{
switch (opcode) {
case nir_op_frcp: return nir_lower_drcp;
case nir_op_fsqrt: return nir_lower_dsqrt;
case nir_op_frsq: return nir_lower_drsq;
case nir_op_ftrunc: return nir_lower_dtrunc;
case nir_op_ffloor: return nir_lower_dfloor;
case nir_op_fceil: return nir_lower_dceil;
case nir_op_ffract: return nir_lower_dfract;
case nir_op_fround_even: return nir_lower_dround_even;
case nir_op_fmod: return nir_lower_dmod;
default: return 0;
}
}
static bool
lower_doubles_instr(nir_builder *b, nir_alu_instr *instr,
const nir_shader *softfp64,
nir_lower_doubles_options options)
{
assert(instr->dest.dest.is_ssa);
bool is_64 = instr->dest.dest.ssa.bit_size == 64;
unsigned num_srcs = nir_op_infos[instr->op].num_inputs;
for (unsigned i = 0; i < num_srcs; i++) {
is_64 |= (nir_src_bit_size(instr->src[i].src) == 64);
}
if (!is_64)
return false;
if (lower_doubles_instr_to_soft(b, instr, softfp64, options))
return true;
if (!(options & nir_lower_doubles_op_to_options_mask(instr->op)))
return false;
b->cursor = nir_before_instr(&instr->instr);
nir_ssa_def *src = nir_fmov_alu(b, instr->src[0],
instr->dest.dest.ssa.num_components);
nir_ssa_def *result;
switch (instr->op) {
case nir_op_frcp:
result = lower_rcp(b, src);
break;
case nir_op_fsqrt:
result = lower_sqrt_rsq(b, src, true);
break;
case nir_op_frsq:
result = lower_sqrt_rsq(b, src, false);
break;
case nir_op_ftrunc:
result = lower_trunc(b, src);
break;
case nir_op_ffloor:
result = lower_floor(b, src);
break;
case nir_op_fceil:
result = lower_ceil(b, src);
break;
case nir_op_ffract:
result = lower_fract(b, src);
break;
case nir_op_fround_even:
result = lower_round_even(b, src);
break;
case nir_op_fmod: {
nir_ssa_def *src1 = nir_fmov_alu(b, instr->src[1],
instr->dest.dest.ssa.num_components);
result = lower_mod(b, src, src1);
}
break;
default:
unreachable("unhandled opcode");
}
nir_ssa_def_rewrite_uses(&instr->dest.dest.ssa, nir_src_for_ssa(result));
nir_instr_remove(&instr->instr);
return true;
}
static bool
nir_lower_doubles_impl(nir_function_impl *impl,
const nir_shader *softfp64,
nir_lower_doubles_options options)
{
bool progress = false;
nir_builder b;
nir_builder_init(&b, impl);
nir_foreach_block_safe(block, impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type == nir_instr_type_alu)
progress |= lower_doubles_instr(&b, nir_instr_as_alu(instr),
softfp64, options);
}
}
if (progress) {
if (options & nir_lower_fp64_full_software) {
/* SSA and register indices are completely messed up now */
nir_index_ssa_defs(impl);
nir_index_local_regs(impl);
nir_metadata_preserve(impl, nir_metadata_none);
/* And we have deref casts we need to clean up thanks to function
* inlining.
*/
nir_opt_deref_impl(impl);
} else {
nir_metadata_preserve(impl, nir_metadata_block_index |
nir_metadata_dominance);
}
} else {
#ifndef NDEBUG
impl->valid_metadata &= ~nir_metadata_not_properly_reset;
#endif
}
return progress;
}
bool
nir_lower_doubles(nir_shader *shader,
const nir_shader *softfp64,
nir_lower_doubles_options options)
{
bool progress = false;
nir_foreach_function(function, shader) {
if (function->impl) {
progress |= nir_lower_doubles_impl(function->impl, softfp64, options);
}
}
return progress;
}