mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-25 00:00:11 +01:00
Acked-by: Frank Binns <frank.binns@imgtec.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/38922>
2006 lines
67 KiB
C
2006 lines
67 KiB
C
/*
|
|
* Copyright © 2022 Imagination Technologies Ltd.
|
|
*
|
|
* based in part on anv driver which is:
|
|
* Copyright © 2015 Intel Corporation
|
|
*
|
|
* based in part on v3dv driver which is:
|
|
* Copyright © 2019 Raspberry Pi
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include "pvr_device.h"
|
|
|
|
#include <assert.h>
|
|
#include <fcntl.h>
|
|
#include <inttypes.h>
|
|
#include <stdbool.h>
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <vulkan/vulkan.h>
|
|
|
|
#include "hwdef/pvr_hw_utils.h"
|
|
#include "hwdef/rogue_hw_utils.h"
|
|
#include "pco_uscgen_programs.h"
|
|
#include "pvr_bo.h"
|
|
#include "pvr_border.h"
|
|
#include "pvr_buffer.h"
|
|
#include "pvr_clear.h"
|
|
#include "pvr_csb.h"
|
|
#include "pvr_csb_enum_helpers.h"
|
|
#include "pvr_debug.h"
|
|
#include "pvr_dump_info.h"
|
|
#include "pvr_entrypoints.h"
|
|
#include "pvr_framebuffer.h"
|
|
#include "pvr_free_list.h"
|
|
#include "pvr_hw_pass.h"
|
|
#include "pvr_image.h"
|
|
#include "pvr_instance.h"
|
|
#include "pvr_job_render.h"
|
|
#include "pvr_limits.h"
|
|
#include "pvr_macros.h"
|
|
#include "pvr_pass.h"
|
|
#include "pvr_pds.h"
|
|
#include "pvr_physical_device.h"
|
|
#include "pvr_query.h"
|
|
#include "pvr_queue.h"
|
|
#include "pvr_robustness.h"
|
|
#include "pvr_rt_dataset.h"
|
|
#include "pvr_tex_state.h"
|
|
#include "pvr_types.h"
|
|
#include "pvr_usc.h"
|
|
#include "pvr_util.h"
|
|
#include "pvr_winsys.h"
|
|
#include "pvr_wsi.h"
|
|
#include "util/disk_cache.h"
|
|
#include "util/log.h"
|
|
#include "util/macros.h"
|
|
#include "util/mesa-sha1.h"
|
|
#include "util/os_misc.h"
|
|
#include "util/u_math.h"
|
|
#include "vk_device_memory.h"
|
|
#include "vk_extensions.h"
|
|
#include "vk_log.h"
|
|
#include "vk_object.h"
|
|
#include "vk_physical_device_features.h"
|
|
#include "vk_physical_device_properties.h"
|
|
#include "vk_sampler.h"
|
|
#include "vk_util.h"
|
|
|
|
#define PVR_GLOBAL_FREE_LIST_INITIAL_SIZE (2U * 1024U * 1024U)
|
|
#define PVR_GLOBAL_FREE_LIST_MAX_SIZE (256U * 1024U * 1024U)
|
|
#define PVR_GLOBAL_FREE_LIST_GROW_SIZE (1U * 1024U * 1024U)
|
|
|
|
/* After PVR_SECONDARY_DEVICE_THRESHOLD devices per instance are created,
|
|
* devices will have a smaller global free list size, as usually this use-case
|
|
* implies smaller amounts of work spread out. The free list can still grow as
|
|
* required.
|
|
*/
|
|
#define PVR_SECONDARY_DEVICE_THRESHOLD (4U)
|
|
#define PVR_SECONDARY_DEVICE_FREE_LIST_INITAL_SIZE (512U * 1024U)
|
|
|
|
/* The grow threshold is a percentage. This is intended to be 12.5%, but has
|
|
* been rounded up since the percentage is treated as an integer.
|
|
*/
|
|
#define PVR_GLOBAL_FREE_LIST_GROW_THRESHOLD 13U
|
|
|
|
/* Amount of padding required for VkBuffers to ensure we don't read beyond
|
|
* a page boundary.
|
|
*/
|
|
#define PVR_BUFFER_MEMORY_PADDING_SIZE 4
|
|
|
|
/* Default size in bytes used by pvr_CreateDevice() for setting up the
|
|
* suballoc_general, suballoc_pds and suballoc_usc suballocators.
|
|
*
|
|
* TODO: Investigate if a different default size can improve the overall
|
|
* performance of internal driver allocations.
|
|
*/
|
|
#define PVR_SUBALLOCATOR_GENERAL_SIZE (128 * 1024)
|
|
#define PVR_SUBALLOCATOR_PDS_SIZE (128 * 1024)
|
|
#define PVR_SUBALLOCATOR_TRANSFER_SIZE (128 * 1024)
|
|
#define PVR_SUBALLOCATOR_USC_SIZE (128 * 1024)
|
|
#define PVR_SUBALLOCATOR_VIS_TEST_SIZE (128 * 1024)
|
|
|
|
static uint32_t pvr_get_simultaneous_num_allocs(
|
|
const struct pvr_device_info *dev_info,
|
|
ASSERTED const struct pvr_device_runtime_info *dev_runtime_info)
|
|
{
|
|
uint32_t min_cluster_per_phantom;
|
|
|
|
if (PVR_HAS_FEATURE(dev_info, s8xe))
|
|
return PVR_GET_FEATURE_VALUE(dev_info, num_raster_pipes, 0U);
|
|
|
|
assert(dev_runtime_info->num_phantoms == 1);
|
|
min_cluster_per_phantom = PVR_GET_FEATURE_VALUE(dev_info, num_clusters, 1U);
|
|
|
|
if (min_cluster_per_phantom >= 4)
|
|
return 1;
|
|
else if (min_cluster_per_phantom == 2)
|
|
return 2;
|
|
else
|
|
return 4;
|
|
}
|
|
|
|
uint32_t pvr_calc_fscommon_size_and_tiles_in_flight(
|
|
const struct pvr_device_info *dev_info,
|
|
const struct pvr_device_runtime_info *dev_runtime_info,
|
|
uint32_t fs_common_size,
|
|
uint32_t min_tiles_in_flight)
|
|
{
|
|
const uint32_t available_shareds =
|
|
dev_runtime_info->reserved_shared_size - dev_runtime_info->max_coeffs;
|
|
const uint32_t max_tiles_in_flight =
|
|
PVR_GET_FEATURE_VALUE(dev_info, isp_max_tiles_in_flight, 1U);
|
|
uint32_t num_tile_in_flight;
|
|
uint32_t num_allocs;
|
|
|
|
if (fs_common_size == 0)
|
|
return max_tiles_in_flight;
|
|
|
|
num_allocs = pvr_get_simultaneous_num_allocs(dev_info, dev_runtime_info);
|
|
|
|
if (fs_common_size == UINT32_MAX) {
|
|
uint32_t max_common_size = available_shareds;
|
|
|
|
num_allocs *= MIN2(min_tiles_in_flight, max_tiles_in_flight);
|
|
|
|
if (!PVR_HAS_ERN(dev_info, 38748)) {
|
|
/* Hardware needs space for one extra shared allocation. */
|
|
num_allocs += 1;
|
|
}
|
|
|
|
/* Double resource requirements to deal with fragmentation. */
|
|
max_common_size /= num_allocs * 2;
|
|
max_common_size = MIN2(max_common_size, ROGUE_MAX_PIXEL_SHARED_REGISTERS);
|
|
max_common_size =
|
|
ROUND_DOWN_TO(max_common_size,
|
|
ROGUE_TA_STATE_PDS_SIZEINFO2_USC_SHAREDSIZE_UNIT_SIZE);
|
|
|
|
return max_common_size;
|
|
}
|
|
|
|
num_tile_in_flight = available_shareds / (fs_common_size * 2);
|
|
|
|
if (!PVR_HAS_ERN(dev_info, 38748))
|
|
num_tile_in_flight -= 1;
|
|
|
|
num_tile_in_flight /= num_allocs;
|
|
|
|
#if MESA_DEBUG
|
|
/* Validate the above result. */
|
|
|
|
assert(num_tile_in_flight >= MIN2(num_tile_in_flight, max_tiles_in_flight));
|
|
num_allocs *= num_tile_in_flight;
|
|
|
|
if (!PVR_HAS_ERN(dev_info, 38748)) {
|
|
/* Hardware needs space for one extra shared allocation. */
|
|
num_allocs += 1;
|
|
}
|
|
|
|
assert(fs_common_size <= available_shareds / (num_allocs * 2));
|
|
#endif
|
|
|
|
return MIN2(num_tile_in_flight, max_tiles_in_flight);
|
|
}
|
|
|
|
VkResult pvr_pds_compute_shader_create_and_upload(
|
|
struct pvr_device *device,
|
|
struct pvr_pds_compute_shader_program *program,
|
|
struct pvr_pds_upload *const pds_upload_out)
|
|
{
|
|
const struct pvr_device_info *dev_info = &device->pdevice->dev_info;
|
|
const uint32_t cache_line_size = pvr_get_slc_cache_line_size(dev_info);
|
|
size_t staging_buffer_size;
|
|
uint32_t *staging_buffer;
|
|
uint32_t *data_buffer;
|
|
uint32_t *code_buffer;
|
|
VkResult result;
|
|
|
|
/* Calculate how much space we'll need for the compute shader PDS program.
|
|
*/
|
|
pvr_pds_compute_shader(program, NULL, PDS_GENERATE_SIZES, dev_info);
|
|
|
|
/* FIXME: Fix the below inconsistency of code size being in bytes whereas
|
|
* data size being in dwords.
|
|
*/
|
|
/* Code size is in bytes, data size in dwords. */
|
|
staging_buffer_size =
|
|
PVR_DW_TO_BYTES(program->data_size) + program->code_size;
|
|
|
|
staging_buffer = vk_alloc(&device->vk.alloc,
|
|
staging_buffer_size,
|
|
8U,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
|
|
if (!staging_buffer)
|
|
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
data_buffer = staging_buffer;
|
|
code_buffer = pvr_pds_compute_shader(program,
|
|
data_buffer,
|
|
PDS_GENERATE_DATA_SEGMENT,
|
|
dev_info);
|
|
|
|
pvr_pds_compute_shader(program,
|
|
code_buffer,
|
|
PDS_GENERATE_CODE_SEGMENT,
|
|
dev_info);
|
|
|
|
for (unsigned u = 0; u < PVR_WORKGROUP_DIMENSIONS; ++u) {
|
|
unsigned offset = program->num_workgroups_constant_offset_in_dwords[0];
|
|
if (program->num_work_groups_regs[u] != PVR_PDS_REG_UNUSED)
|
|
data_buffer[offset + u] = 0;
|
|
|
|
offset = program->base_workgroup_constant_offset_in_dwords[0];
|
|
if (program->work_group_input_regs[u] != PVR_PDS_REG_UNUSED)
|
|
data_buffer[offset + u] = 0;
|
|
}
|
|
|
|
result = pvr_gpu_upload_pds(device,
|
|
data_buffer,
|
|
program->data_size,
|
|
ROGUE_CDMCTRL_KERNEL1_DATA_ADDR_ALIGNMENT,
|
|
code_buffer,
|
|
program->code_size / sizeof(uint32_t),
|
|
ROGUE_CDMCTRL_KERNEL2_CODE_ADDR_ALIGNMENT,
|
|
cache_line_size,
|
|
pds_upload_out);
|
|
|
|
vk_free(&device->vk.alloc, staging_buffer);
|
|
|
|
return result;
|
|
}
|
|
|
|
static VkResult pvr_device_init_compute_fence_program(struct pvr_device *device)
|
|
{
|
|
struct pvr_pds_compute_shader_program program;
|
|
|
|
pvr_pds_compute_shader_program_init(&program);
|
|
/* Fence kernel. */
|
|
program.fence = true;
|
|
program.clear_pds_barrier = true;
|
|
|
|
return pvr_pds_compute_shader_create_and_upload(
|
|
device,
|
|
&program,
|
|
&device->pds_compute_fence_program);
|
|
}
|
|
|
|
static VkResult pvr_device_init_compute_empty_program(struct pvr_device *device)
|
|
{
|
|
struct pvr_pds_compute_shader_program program;
|
|
|
|
pvr_pds_compute_shader_program_init(&program);
|
|
program.clear_pds_barrier = true;
|
|
|
|
return pvr_pds_compute_shader_create_and_upload(
|
|
device,
|
|
&program,
|
|
&device->pds_compute_empty_program);
|
|
}
|
|
|
|
static VkResult pvr_pds_idfwdf_programs_create_and_upload(
|
|
struct pvr_device *device,
|
|
pvr_dev_addr_t usc_addr,
|
|
uint32_t shareds,
|
|
uint32_t temps,
|
|
pvr_dev_addr_t shareds_buffer_addr,
|
|
struct pvr_pds_upload *const upload_out,
|
|
struct pvr_pds_upload *const sw_compute_barrier_upload_out)
|
|
{
|
|
const struct pvr_device_info *dev_info = &device->pdevice->dev_info;
|
|
struct pvr_pds_vertex_shader_sa_program program = {
|
|
.kick_usc = true,
|
|
.clear_pds_barrier = PVR_NEED_SW_COMPUTE_PDS_BARRIER(dev_info),
|
|
};
|
|
size_t staging_buffer_size;
|
|
uint32_t *staging_buffer;
|
|
VkResult result;
|
|
|
|
/* We'll need to DMA the shareds into the USC's Common Store. */
|
|
program.num_dma_kicks = pvr_pds_encode_dma_burst(program.dma_control,
|
|
program.dma_address,
|
|
0,
|
|
shareds,
|
|
shareds_buffer_addr.addr,
|
|
false,
|
|
dev_info);
|
|
|
|
/* DMA temp regs. */
|
|
pvr_pds_setup_doutu(&program.usc_task_control,
|
|
usc_addr.addr,
|
|
temps,
|
|
ROGUE_PDSINST_DOUTU_SAMPLE_RATE_INSTANCE,
|
|
false);
|
|
|
|
pvr_pds_vertex_shader_sa(&program, NULL, PDS_GENERATE_SIZES, dev_info);
|
|
|
|
staging_buffer_size = PVR_DW_TO_BYTES(program.code_size + program.data_size);
|
|
|
|
staging_buffer = vk_alloc(&device->vk.alloc,
|
|
staging_buffer_size,
|
|
8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
|
|
if (!staging_buffer)
|
|
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
/* FIXME: Add support for PDS_GENERATE_CODEDATA_SEGMENTS? */
|
|
pvr_pds_vertex_shader_sa(&program,
|
|
staging_buffer,
|
|
PDS_GENERATE_DATA_SEGMENT,
|
|
dev_info);
|
|
pvr_pds_vertex_shader_sa(&program,
|
|
&staging_buffer[program.data_size],
|
|
PDS_GENERATE_CODE_SEGMENT,
|
|
dev_info);
|
|
|
|
/* At the time of writing, the SW_COMPUTE_PDS_BARRIER variant of the program
|
|
* is bigger so we handle it first (if needed) and realloc() for a smaller
|
|
* size.
|
|
*/
|
|
if (PVR_NEED_SW_COMPUTE_PDS_BARRIER(dev_info)) {
|
|
/* FIXME: Figure out the define for alignment of 16. */
|
|
result = pvr_gpu_upload_pds(device,
|
|
&staging_buffer[0],
|
|
program.data_size,
|
|
16,
|
|
&staging_buffer[program.data_size],
|
|
program.code_size,
|
|
16,
|
|
16,
|
|
sw_compute_barrier_upload_out);
|
|
if (result != VK_SUCCESS) {
|
|
vk_free(&device->vk.alloc, staging_buffer);
|
|
return result;
|
|
}
|
|
|
|
program.clear_pds_barrier = false;
|
|
|
|
pvr_pds_vertex_shader_sa(&program, NULL, PDS_GENERATE_SIZES, dev_info);
|
|
|
|
staging_buffer_size =
|
|
PVR_DW_TO_BYTES(program.code_size + program.data_size);
|
|
|
|
staging_buffer = vk_realloc(&device->vk.alloc,
|
|
staging_buffer,
|
|
staging_buffer_size,
|
|
8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
|
|
if (!staging_buffer) {
|
|
pvr_bo_suballoc_free(sw_compute_barrier_upload_out->pvr_bo);
|
|
|
|
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
}
|
|
|
|
/* FIXME: Add support for PDS_GENERATE_CODEDATA_SEGMENTS? */
|
|
pvr_pds_vertex_shader_sa(&program,
|
|
staging_buffer,
|
|
PDS_GENERATE_DATA_SEGMENT,
|
|
dev_info);
|
|
pvr_pds_vertex_shader_sa(&program,
|
|
&staging_buffer[program.data_size],
|
|
PDS_GENERATE_CODE_SEGMENT,
|
|
dev_info);
|
|
} else {
|
|
*sw_compute_barrier_upload_out = (struct pvr_pds_upload){
|
|
.pvr_bo = NULL,
|
|
};
|
|
}
|
|
|
|
/* FIXME: Figure out the define for alignment of 16. */
|
|
result = pvr_gpu_upload_pds(device,
|
|
&staging_buffer[0],
|
|
program.data_size,
|
|
16,
|
|
&staging_buffer[program.data_size],
|
|
program.code_size,
|
|
16,
|
|
16,
|
|
upload_out);
|
|
if (result != VK_SUCCESS) {
|
|
vk_free(&device->vk.alloc, staging_buffer);
|
|
pvr_bo_suballoc_free(sw_compute_barrier_upload_out->pvr_bo);
|
|
|
|
return result;
|
|
}
|
|
|
|
vk_free(&device->vk.alloc, staging_buffer);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
static VkResult pvr_device_init_compute_idfwdf_state(struct pvr_device *device)
|
|
{
|
|
struct pvr_sampler_descriptor sampler_state;
|
|
struct pvr_image_descriptor image_state;
|
|
struct pvr_texture_state_info tex_info;
|
|
const pco_precomp_data *precomp_data;
|
|
uint32_t *dword_ptr;
|
|
VkResult result;
|
|
|
|
precomp_data = (pco_precomp_data *)pco_usclib_common[CS_IDFWDF_COMMON];
|
|
device->idfwdf_state.usc_shareds = _PVR_IDFWDF_DATA_COUNT;
|
|
|
|
/* FIXME: Figure out the define for alignment of 16. */
|
|
result = pvr_gpu_upload_usc(device,
|
|
precomp_data->binary,
|
|
precomp_data->size_dwords * sizeof(uint32_t),
|
|
16,
|
|
&device->idfwdf_state.usc);
|
|
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
|
|
result = pvr_bo_alloc(device,
|
|
device->heaps.general_heap,
|
|
PVR_IDFWDF_TEX_WIDTH * PVR_IDFWDF_TEX_HEIGHT *
|
|
vk_format_get_blocksize(PVR_IDFWDF_TEX_FORMAT),
|
|
4,
|
|
0,
|
|
&device->idfwdf_state.store_bo);
|
|
if (result != VK_SUCCESS)
|
|
goto err_free_usc_program;
|
|
|
|
result = pvr_bo_alloc(device,
|
|
device->heaps.general_heap,
|
|
_PVR_IDFWDF_DATA_COUNT * ROGUE_REG_SIZE_BYTES,
|
|
ROGUE_REG_SIZE_BYTES,
|
|
PVR_BO_ALLOC_FLAG_CPU_MAPPED,
|
|
&device->idfwdf_state.shareds_bo);
|
|
if (result != VK_SUCCESS)
|
|
goto err_free_store_buffer;
|
|
|
|
/* Pack state words. */
|
|
|
|
pvr_csb_pack (&sampler_state.words[0], TEXSTATE_SAMPLER_WORD0, sampler) {
|
|
sampler.dadjust = ROGUE_TEXSTATE_DADJUST_ZERO_UINT;
|
|
sampler.magfilter = ROGUE_TEXSTATE_FILTER_POINT;
|
|
sampler.addrmode_u = ROGUE_TEXSTATE_ADDRMODE_CLAMP_TO_EDGE;
|
|
sampler.addrmode_v = ROGUE_TEXSTATE_ADDRMODE_CLAMP_TO_EDGE;
|
|
}
|
|
|
|
/* clang-format off */
|
|
pvr_csb_pack (&sampler_state.words[1], TEXSTATE_SAMPLER_WORD1, sampler_word1) {}
|
|
/* clang-format on */
|
|
|
|
tex_info = (struct pvr_texture_state_info){
|
|
.format = PVR_IDFWDF_TEX_FORMAT,
|
|
.mem_layout = PVR_MEMLAYOUT_LINEAR,
|
|
.flags = PVR_TEXFLAGS_INDEX_LOOKUP,
|
|
.type = VK_IMAGE_VIEW_TYPE_2D,
|
|
.extent = { .width = PVR_IDFWDF_TEX_WIDTH,
|
|
.height = PVR_IDFWDF_TEX_HEIGHT },
|
|
.mip_levels = 1,
|
|
.sample_count = 1,
|
|
.stride = PVR_IDFWDF_TEX_STRIDE,
|
|
.swizzle = { PIPE_SWIZZLE_X,
|
|
PIPE_SWIZZLE_Y,
|
|
PIPE_SWIZZLE_Z,
|
|
PIPE_SWIZZLE_W },
|
|
.addr = device->idfwdf_state.store_bo->vma->dev_addr,
|
|
};
|
|
|
|
result = pvr_pack_tex_state(device, &tex_info, &image_state);
|
|
if (result != VK_SUCCESS)
|
|
goto err_free_shareds_buffer;
|
|
|
|
/* Fill the shareds buffer. */
|
|
dword_ptr = (uint32_t *)device->idfwdf_state.shareds_bo->bo->map;
|
|
|
|
memcpy(&dword_ptr[PVR_IDFWDF_DATA_TEX],
|
|
image_state.words,
|
|
sizeof(image_state.words));
|
|
memcpy(&dword_ptr[PVR_IDFWDF_DATA_SMP],
|
|
sampler_state.words,
|
|
sizeof(sampler_state.words));
|
|
|
|
dword_ptr[PVR_IDFWDF_DATA_ADDR_LO] =
|
|
device->idfwdf_state.store_bo->vma->dev_addr.addr & 0xffffffff;
|
|
dword_ptr[PVR_IDFWDF_DATA_ADDR_HI] =
|
|
device->idfwdf_state.store_bo->vma->dev_addr.addr >> 32;
|
|
|
|
pvr_bo_cpu_unmap(device, device->idfwdf_state.shareds_bo);
|
|
dword_ptr = NULL;
|
|
|
|
/* Generate and upload PDS programs. */
|
|
result = pvr_pds_idfwdf_programs_create_and_upload(
|
|
device,
|
|
device->idfwdf_state.usc->dev_addr,
|
|
_PVR_IDFWDF_DATA_COUNT,
|
|
precomp_data->temps,
|
|
device->idfwdf_state.shareds_bo->vma->dev_addr,
|
|
&device->idfwdf_state.pds,
|
|
&device->idfwdf_state.sw_compute_barrier_pds);
|
|
|
|
if (result != VK_SUCCESS)
|
|
goto err_free_shareds_buffer;
|
|
|
|
return VK_SUCCESS;
|
|
|
|
err_free_shareds_buffer:
|
|
pvr_bo_free(device, device->idfwdf_state.shareds_bo);
|
|
|
|
err_free_store_buffer:
|
|
pvr_bo_free(device, device->idfwdf_state.store_bo);
|
|
|
|
err_free_usc_program:
|
|
pvr_bo_suballoc_free(device->idfwdf_state.usc);
|
|
|
|
return result;
|
|
}
|
|
|
|
static void pvr_device_finish_compute_idfwdf_state(struct pvr_device *device)
|
|
{
|
|
pvr_bo_suballoc_free(device->idfwdf_state.pds.pvr_bo);
|
|
pvr_bo_suballoc_free(device->idfwdf_state.sw_compute_barrier_pds.pvr_bo);
|
|
pvr_bo_free(device, device->idfwdf_state.shareds_bo);
|
|
pvr_bo_free(device, device->idfwdf_state.store_bo);
|
|
pvr_bo_suballoc_free(device->idfwdf_state.usc);
|
|
}
|
|
|
|
/* FIXME: We should be calculating the size when we upload the code in
|
|
* pvr_srv_setup_static_pixel_event_program().
|
|
*/
|
|
static void pvr_device_get_pixel_event_pds_program_data_size(
|
|
const struct pvr_device_info *dev_info,
|
|
uint32_t *const data_size_in_dwords_out)
|
|
{
|
|
struct pvr_pds_event_program program = {
|
|
/* No data to DMA, just a DOUTU needed. */
|
|
.num_emit_word_pairs = 0,
|
|
};
|
|
|
|
pvr_pds_set_sizes_pixel_event(&program, dev_info);
|
|
|
|
*data_size_in_dwords_out = program.data_size;
|
|
}
|
|
|
|
static VkResult pvr_device_init_nop_program(struct pvr_device *device)
|
|
{
|
|
const uint32_t cache_line_size =
|
|
pvr_get_slc_cache_line_size(&device->pdevice->dev_info);
|
|
struct pvr_pds_kickusc_program program = { 0 };
|
|
const pco_precomp_data *precomp_data;
|
|
uint32_t staging_buffer_size;
|
|
uint32_t *staging_buffer;
|
|
VkResult result;
|
|
|
|
precomp_data = (pco_precomp_data *)pco_usclib_common[FS_NOP_COMMON];
|
|
result = pvr_gpu_upload_usc(device,
|
|
precomp_data->binary,
|
|
precomp_data->size_dwords * sizeof(uint32_t),
|
|
cache_line_size,
|
|
&device->nop_program.usc);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
|
|
/* Setup a PDS program that kicks the static USC program. */
|
|
pvr_pds_setup_doutu(&program.usc_task_control,
|
|
device->nop_program.usc->dev_addr.addr,
|
|
precomp_data->temps,
|
|
ROGUE_PDSINST_DOUTU_SAMPLE_RATE_INSTANCE,
|
|
false);
|
|
|
|
pvr_pds_set_sizes_pixel_shader(&program);
|
|
|
|
staging_buffer_size = PVR_DW_TO_BYTES(program.code_size + program.data_size);
|
|
|
|
staging_buffer = vk_alloc(&device->vk.alloc,
|
|
staging_buffer_size,
|
|
8U,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
|
|
if (!staging_buffer) {
|
|
result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
goto err_free_nop_usc_bo;
|
|
}
|
|
|
|
pvr_pds_generate_pixel_shader_program(&program, staging_buffer);
|
|
|
|
/* FIXME: Figure out the define for alignment of 16. */
|
|
result = pvr_gpu_upload_pds(device,
|
|
staging_buffer,
|
|
program.data_size,
|
|
16U,
|
|
&staging_buffer[program.data_size],
|
|
program.code_size,
|
|
16U,
|
|
16U,
|
|
&device->nop_program.pds);
|
|
if (result != VK_SUCCESS)
|
|
goto err_free_staging_buffer;
|
|
|
|
vk_free(&device->vk.alloc, staging_buffer);
|
|
|
|
return VK_SUCCESS;
|
|
|
|
err_free_staging_buffer:
|
|
vk_free(&device->vk.alloc, staging_buffer);
|
|
|
|
err_free_nop_usc_bo:
|
|
pvr_bo_suballoc_free(device->nop_program.usc);
|
|
|
|
return result;
|
|
}
|
|
|
|
static VkResult
|
|
pvr_device_init_view_index_init_programs(struct pvr_device *device)
|
|
{
|
|
uint32_t staging_buffer_size = 0;
|
|
uint32_t *staging_buffer = NULL;
|
|
VkResult result;
|
|
unsigned i;
|
|
|
|
for (i = 0; i < PVR_MAX_MULTIVIEW; ++i) {
|
|
struct pvr_pds_view_index_init_program *program =
|
|
&device->view_index_init_info[i];
|
|
|
|
program->view_index = i;
|
|
|
|
pvr_pds_generate_view_index_init_program(program,
|
|
NULL,
|
|
PDS_GENERATE_SIZES);
|
|
|
|
if (program->data_size + program->code_size > staging_buffer_size) {
|
|
staging_buffer_size = program->data_size + program->code_size;
|
|
|
|
staging_buffer = vk_realloc(&device->vk.alloc,
|
|
staging_buffer,
|
|
staging_buffer_size,
|
|
8U,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
|
|
|
|
if (!staging_buffer) {
|
|
result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
break;
|
|
}
|
|
}
|
|
|
|
pvr_pds_generate_view_index_init_program(program,
|
|
staging_buffer,
|
|
PDS_GENERATE_DATA_SEGMENT);
|
|
pvr_pds_generate_view_index_init_program(
|
|
program,
|
|
&staging_buffer[program->data_size],
|
|
PDS_GENERATE_CODE_SEGMENT);
|
|
|
|
result =
|
|
pvr_gpu_upload_pds(device,
|
|
(program->data_size == 0 ? NULL : staging_buffer),
|
|
program->data_size / sizeof(uint32_t),
|
|
16U,
|
|
&staging_buffer[program->data_size],
|
|
program->code_size / sizeof(uint32_t),
|
|
16U,
|
|
16U,
|
|
&device->view_index_init_programs[i]);
|
|
|
|
if (result != VK_SUCCESS)
|
|
break;
|
|
}
|
|
|
|
vk_free(&device->vk.alloc, staging_buffer);
|
|
|
|
if (result != VK_SUCCESS)
|
|
for (uint32_t u = 0; u < i; ++u)
|
|
pvr_bo_suballoc_free(device->view_index_init_programs[u].pvr_bo);
|
|
|
|
return result;
|
|
}
|
|
|
|
static void pvr_device_init_tile_buffer_state(struct pvr_device *device)
|
|
{
|
|
simple_mtx_init(&device->tile_buffer_state.mtx, mtx_plain);
|
|
|
|
for (uint32_t i = 0; i < ARRAY_SIZE(device->tile_buffer_state.buffers); i++)
|
|
device->tile_buffer_state.buffers[i] = NULL;
|
|
|
|
device->tile_buffer_state.buffer_count = 0;
|
|
}
|
|
|
|
static void pvr_device_finish_tile_buffer_state(struct pvr_device *device)
|
|
{
|
|
/* Destroy the mutex first to trigger asserts in case it's still locked so
|
|
* that we don't put things in an inconsistent state by freeing buffers that
|
|
* might be in use or attempt to free buffers while new buffers are being
|
|
* allocated.
|
|
*/
|
|
simple_mtx_destroy(&device->tile_buffer_state.mtx);
|
|
pvr_device_free_tile_buffer_state(device);
|
|
}
|
|
|
|
/** Gets the amount of memory to allocate per-core for a tile buffer. */
|
|
static uint32_t
|
|
pvr_get_tile_buffer_size_per_core(const struct pvr_device *device)
|
|
{
|
|
uint32_t clusters =
|
|
PVR_GET_FEATURE_VALUE(&device->pdevice->dev_info, num_clusters, 1U);
|
|
|
|
/* Round the number of clusters up to the next power of two. */
|
|
if (!PVR_HAS_FEATURE(&device->pdevice->dev_info, tile_per_usc))
|
|
clusters = util_next_power_of_two(clusters);
|
|
|
|
/* Tile buffer is (total number of partitions across all clusters) * 16 * 16
|
|
* (quadrant size in pixels).
|
|
*/
|
|
return device->pdevice->dev_runtime_info.total_reserved_partition_size *
|
|
clusters * sizeof(uint32_t);
|
|
}
|
|
|
|
/**
|
|
* Gets the amount of memory to allocate for a tile buffer on the current BVNC.
|
|
*/
|
|
static uint32_t pvr_get_tile_buffer_size(const struct pvr_device *device)
|
|
{
|
|
/* On a multicore system duplicate the buffer for each core. */
|
|
/* TODO: Optimise tile buffer size to use core_count, not max_num_cores. */
|
|
return pvr_get_tile_buffer_size_per_core(device) *
|
|
rogue_get_max_num_cores(&device->pdevice->dev_info);
|
|
}
|
|
|
|
/**
|
|
* \brief Ensures that a certain amount of tile buffers are allocated.
|
|
*
|
|
* Make sure that \p capacity amount of tile buffers are allocated. If less were
|
|
* present, append new tile buffers of \p size_in_bytes each to reach the quota.
|
|
*/
|
|
VkResult pvr_device_tile_buffer_ensure_cap(struct pvr_device *device,
|
|
uint32_t capacity)
|
|
{
|
|
uint32_t size_in_bytes = pvr_get_tile_buffer_size(device);
|
|
struct pvr_device_tile_buffer_state *tile_buffer_state =
|
|
&device->tile_buffer_state;
|
|
const uint32_t cache_line_size =
|
|
pvr_get_slc_cache_line_size(&device->pdevice->dev_info);
|
|
VkResult result;
|
|
|
|
simple_mtx_lock(&tile_buffer_state->mtx);
|
|
|
|
/* Clamping in release and asserting in debug. */
|
|
assert(capacity <= ARRAY_SIZE(tile_buffer_state->buffers));
|
|
capacity = CLAMP(capacity,
|
|
tile_buffer_state->buffer_count,
|
|
ARRAY_SIZE(tile_buffer_state->buffers));
|
|
|
|
/* TODO: Implement bo multialloc? To reduce the amount of syscalls and
|
|
* allocations.
|
|
*/
|
|
for (uint32_t i = tile_buffer_state->buffer_count; i < capacity; i++) {
|
|
result = pvr_bo_alloc(device,
|
|
device->heaps.general_heap,
|
|
size_in_bytes,
|
|
cache_line_size,
|
|
0,
|
|
&tile_buffer_state->buffers[i]);
|
|
if (result != VK_SUCCESS) {
|
|
for (uint32_t j = tile_buffer_state->buffer_count; j < i; j++)
|
|
pvr_bo_free(device, tile_buffer_state->buffers[j]);
|
|
|
|
goto err_release_lock;
|
|
}
|
|
}
|
|
|
|
tile_buffer_state->buffer_count = capacity;
|
|
|
|
simple_mtx_unlock(&tile_buffer_state->mtx);
|
|
|
|
return VK_SUCCESS;
|
|
|
|
err_release_lock:
|
|
simple_mtx_unlock(&tile_buffer_state->mtx);
|
|
|
|
return result;
|
|
}
|
|
|
|
static void pvr_device_init_default_sampler_state(struct pvr_device *device)
|
|
{
|
|
pvr_csb_pack (&device->input_attachment_sampler,
|
|
TEXSTATE_SAMPLER_WORD0,
|
|
sampler) {
|
|
sampler.addrmode_u = ROGUE_TEXSTATE_ADDRMODE_CLAMP_TO_EDGE;
|
|
sampler.addrmode_v = ROGUE_TEXSTATE_ADDRMODE_CLAMP_TO_EDGE;
|
|
sampler.addrmode_w = ROGUE_TEXSTATE_ADDRMODE_CLAMP_TO_EDGE;
|
|
sampler.dadjust = ROGUE_TEXSTATE_DADJUST_ZERO_UINT;
|
|
sampler.magfilter = ROGUE_TEXSTATE_FILTER_POINT;
|
|
sampler.minfilter = ROGUE_TEXSTATE_FILTER_POINT;
|
|
sampler.anisoctl = ROGUE_TEXSTATE_ANISOCTL_DISABLED;
|
|
sampler.non_normalized_coords = true;
|
|
}
|
|
}
|
|
|
|
VkResult pvr_create_device(struct pvr_physical_device *pdevice,
|
|
const VkDeviceCreateInfo *pCreateInfo,
|
|
const VkAllocationCallbacks *pAllocator,
|
|
VkDevice *pDevice)
|
|
{
|
|
uint32_t initial_free_list_size = PVR_GLOBAL_FREE_LIST_INITIAL_SIZE;
|
|
struct pvr_instance *instance = pdevice->instance;
|
|
struct vk_device_dispatch_table dispatch_table;
|
|
struct pvr_device *device;
|
|
struct pvr_winsys *ws;
|
|
VkResult result;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
|
|
|
|
result = pvr_winsys_create(pdevice->render_path,
|
|
pdevice->display_path,
|
|
pAllocator ? pAllocator : &instance->vk.alloc,
|
|
&ws);
|
|
if (result != VK_SUCCESS)
|
|
goto err_out;
|
|
|
|
device = vk_alloc2(&instance->vk.alloc,
|
|
pAllocator,
|
|
sizeof(*device),
|
|
8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
|
|
if (!device) {
|
|
result = vk_error(instance, VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
goto err_pvr_winsys_destroy;
|
|
}
|
|
|
|
vk_device_dispatch_table_from_entrypoints(&dispatch_table,
|
|
&pvr_device_entrypoints,
|
|
true);
|
|
|
|
vk_device_dispatch_table_from_entrypoints(&dispatch_table,
|
|
&wsi_device_entrypoints,
|
|
false);
|
|
|
|
result = vk_device_init(&device->vk,
|
|
&pdevice->vk,
|
|
&dispatch_table,
|
|
pCreateInfo,
|
|
pAllocator);
|
|
if (result != VK_SUCCESS)
|
|
goto err_free_device;
|
|
|
|
device->instance = instance;
|
|
device->pdevice = pdevice;
|
|
device->ws = ws;
|
|
|
|
vk_device_set_drm_fd(&device->vk, ws->render_fd);
|
|
|
|
if (ws->features.supports_threaded_submit) {
|
|
/* Queue submission can be blocked if the kernel CCBs become full,
|
|
* so enable threaded submit to not block the submitter.
|
|
*/
|
|
vk_device_enable_threaded_submit(&device->vk);
|
|
}
|
|
|
|
ws->ops->get_heaps_info(ws, &device->heaps);
|
|
|
|
result = pvr_bo_store_create(device);
|
|
if (result != VK_SUCCESS)
|
|
goto err_vk_device_finish;
|
|
|
|
pvr_bo_suballocator_init(&device->suballoc_general,
|
|
device->heaps.general_heap,
|
|
device,
|
|
PVR_SUBALLOCATOR_GENERAL_SIZE);
|
|
pvr_bo_suballocator_init(&device->suballoc_pds,
|
|
device->heaps.pds_heap,
|
|
device,
|
|
PVR_SUBALLOCATOR_PDS_SIZE);
|
|
pvr_bo_suballocator_init(&device->suballoc_transfer,
|
|
device->heaps.transfer_frag_heap,
|
|
device,
|
|
PVR_SUBALLOCATOR_TRANSFER_SIZE);
|
|
pvr_bo_suballocator_init(&device->suballoc_usc,
|
|
device->heaps.usc_heap,
|
|
device,
|
|
PVR_SUBALLOCATOR_USC_SIZE);
|
|
pvr_bo_suballocator_init(&device->suballoc_vis_test,
|
|
device->heaps.vis_test_heap,
|
|
device,
|
|
PVR_SUBALLOCATOR_VIS_TEST_SIZE);
|
|
|
|
if (p_atomic_inc_return(&instance->active_device_count) >
|
|
PVR_SECONDARY_DEVICE_THRESHOLD) {
|
|
initial_free_list_size = PVR_SECONDARY_DEVICE_FREE_LIST_INITAL_SIZE;
|
|
}
|
|
|
|
result = pvr_free_list_create(device,
|
|
initial_free_list_size,
|
|
PVR_GLOBAL_FREE_LIST_MAX_SIZE,
|
|
PVR_GLOBAL_FREE_LIST_GROW_SIZE,
|
|
PVR_GLOBAL_FREE_LIST_GROW_THRESHOLD,
|
|
NULL /* parent_free_list */,
|
|
&device->global_free_list);
|
|
if (result != VK_SUCCESS)
|
|
goto err_dec_device_count;
|
|
|
|
result = pvr_device_init_nop_program(device);
|
|
if (result != VK_SUCCESS)
|
|
goto err_pvr_free_list_destroy;
|
|
|
|
result = pvr_device_init_compute_fence_program(device);
|
|
if (result != VK_SUCCESS)
|
|
goto err_pvr_free_nop_program;
|
|
|
|
result = pvr_device_init_compute_empty_program(device);
|
|
if (result != VK_SUCCESS)
|
|
goto err_pvr_free_compute_fence;
|
|
|
|
result = pvr_device_init_view_index_init_programs(device);
|
|
if (result != VK_SUCCESS)
|
|
goto err_pvr_free_compute_empty;
|
|
|
|
result = pvr_device_create_compute_query_programs(device);
|
|
if (result != VK_SUCCESS)
|
|
goto err_pvr_free_view_index;
|
|
|
|
result = pvr_device_init_compute_idfwdf_state(device);
|
|
if (result != VK_SUCCESS)
|
|
goto err_pvr_destroy_compute_query_programs;
|
|
|
|
result = pvr_device_init_graphics_static_clear_state(device);
|
|
if (result != VK_SUCCESS)
|
|
goto err_pvr_finish_compute_idfwdf;
|
|
|
|
result = pvr_device_init_spm_load_state(device);
|
|
if (result != VK_SUCCESS)
|
|
goto err_pvr_finish_graphics_static_clear_state;
|
|
|
|
pvr_device_init_tile_buffer_state(device);
|
|
|
|
result = pvr_queues_create(device, pCreateInfo);
|
|
if (result != VK_SUCCESS)
|
|
goto err_pvr_finish_tile_buffer_state;
|
|
|
|
pvr_device_init_default_sampler_state(device);
|
|
|
|
pvr_spm_init_scratch_buffer_store(device);
|
|
|
|
result = pvr_init_robustness_buffer(device);
|
|
if (result != VK_SUCCESS)
|
|
goto err_pvr_spm_finish_scratch_buffer_store;
|
|
|
|
result = pvr_border_color_table_init(device);
|
|
if (result != VK_SUCCESS)
|
|
goto err_pvr_robustness_buffer_finish;
|
|
|
|
/* FIXME: Move this to a later stage and possibly somewhere other than
|
|
* pvr_device. The purpose of this is so that we don't have to get the size
|
|
* on each kick.
|
|
*/
|
|
pvr_device_get_pixel_event_pds_program_data_size(
|
|
&pdevice->dev_info,
|
|
&device->pixel_event_data_size_in_dwords);
|
|
|
|
device->global_cmd_buffer_submit_count = 0;
|
|
device->global_queue_present_count = 0;
|
|
|
|
simple_mtx_init(&device->rs_mtx, mtx_plain);
|
|
list_inithead(&device->render_states);
|
|
|
|
*pDevice = pvr_device_to_handle(device);
|
|
|
|
return VK_SUCCESS;
|
|
|
|
err_pvr_robustness_buffer_finish:
|
|
pvr_robustness_buffer_finish(device);
|
|
|
|
err_pvr_spm_finish_scratch_buffer_store:
|
|
pvr_spm_finish_scratch_buffer_store(device);
|
|
|
|
pvr_queues_destroy(device);
|
|
|
|
err_pvr_finish_tile_buffer_state:
|
|
pvr_device_finish_tile_buffer_state(device);
|
|
pvr_device_finish_spm_load_state(device);
|
|
|
|
err_pvr_finish_graphics_static_clear_state:
|
|
pvr_device_finish_graphics_static_clear_state(device);
|
|
|
|
err_pvr_finish_compute_idfwdf:
|
|
pvr_device_finish_compute_idfwdf_state(device);
|
|
|
|
err_pvr_destroy_compute_query_programs:
|
|
pvr_device_destroy_compute_query_programs(device);
|
|
|
|
err_pvr_free_view_index:
|
|
for (uint32_t u = 0; u < PVR_MAX_MULTIVIEW; ++u)
|
|
pvr_bo_suballoc_free(device->view_index_init_programs[u].pvr_bo);
|
|
|
|
err_pvr_free_compute_empty:
|
|
pvr_bo_suballoc_free(device->pds_compute_empty_program.pvr_bo);
|
|
|
|
err_pvr_free_compute_fence:
|
|
pvr_bo_suballoc_free(device->pds_compute_fence_program.pvr_bo);
|
|
|
|
err_pvr_free_nop_program:
|
|
pvr_bo_suballoc_free(device->nop_program.pds.pvr_bo);
|
|
pvr_bo_suballoc_free(device->nop_program.usc);
|
|
|
|
err_pvr_free_list_destroy:
|
|
pvr_free_list_destroy(device->global_free_list);
|
|
|
|
err_dec_device_count:
|
|
p_atomic_dec(&device->instance->active_device_count);
|
|
|
|
pvr_bo_suballocator_fini(&device->suballoc_vis_test);
|
|
pvr_bo_suballocator_fini(&device->suballoc_usc);
|
|
pvr_bo_suballocator_fini(&device->suballoc_transfer);
|
|
pvr_bo_suballocator_fini(&device->suballoc_pds);
|
|
pvr_bo_suballocator_fini(&device->suballoc_general);
|
|
|
|
pvr_bo_store_destroy(device);
|
|
|
|
err_vk_device_finish:
|
|
vk_device_finish(&device->vk);
|
|
|
|
err_free_device:
|
|
vk_free(&device->vk.alloc, device);
|
|
|
|
err_pvr_winsys_destroy:
|
|
pvr_winsys_destroy(ws);
|
|
|
|
err_out:
|
|
return result;
|
|
}
|
|
|
|
void pvr_rstate_entry_add(struct pvr_device *device,
|
|
struct pvr_render_state *rstate)
|
|
{
|
|
simple_mtx_lock(&device->rs_mtx);
|
|
list_addtail(&rstate->link, &device->render_states);
|
|
simple_mtx_unlock(&device->rs_mtx);
|
|
}
|
|
|
|
void pvr_rstate_entry_remove(struct pvr_device *device,
|
|
const struct pvr_render_state *rstate)
|
|
{
|
|
simple_mtx_lock(&device->rs_mtx);
|
|
assert(rstate);
|
|
|
|
list_for_each_entry_safe (struct pvr_render_state,
|
|
entry,
|
|
&device->render_states,
|
|
link) {
|
|
if (entry != rstate)
|
|
continue;
|
|
|
|
pvr_render_state_cleanup(device, rstate);
|
|
list_del(&entry->link);
|
|
|
|
vk_free(&device->vk.alloc, entry);
|
|
}
|
|
|
|
simple_mtx_unlock(&device->rs_mtx);
|
|
}
|
|
|
|
void pvr_destroy_device(struct pvr_device *device,
|
|
const VkAllocationCallbacks *pAllocator)
|
|
{
|
|
if (!device)
|
|
return;
|
|
|
|
simple_mtx_lock(&device->rs_mtx);
|
|
list_for_each_entry_safe (struct pvr_render_state,
|
|
rstate,
|
|
&device->render_states,
|
|
link) {
|
|
pvr_render_state_cleanup(device, rstate);
|
|
list_del(&rstate->link);
|
|
|
|
vk_free(&device->vk.alloc, rstate);
|
|
}
|
|
simple_mtx_unlock(&device->rs_mtx);
|
|
simple_mtx_destroy(&device->rs_mtx);
|
|
|
|
pvr_border_color_table_finish(device);
|
|
pvr_robustness_buffer_finish(device);
|
|
pvr_spm_finish_scratch_buffer_store(device);
|
|
pvr_queues_destroy(device);
|
|
pvr_device_finish_tile_buffer_state(device);
|
|
pvr_device_finish_spm_load_state(device);
|
|
pvr_device_finish_graphics_static_clear_state(device);
|
|
pvr_device_finish_compute_idfwdf_state(device);
|
|
pvr_device_destroy_compute_query_programs(device);
|
|
pvr_bo_suballoc_free(device->pds_compute_empty_program.pvr_bo);
|
|
|
|
for (uint32_t u = 0; u < PVR_MAX_MULTIVIEW; ++u)
|
|
pvr_bo_suballoc_free(device->view_index_init_programs[u].pvr_bo);
|
|
|
|
pvr_bo_suballoc_free(device->pds_compute_fence_program.pvr_bo);
|
|
pvr_bo_suballoc_free(device->nop_program.pds.pvr_bo);
|
|
pvr_bo_suballoc_free(device->nop_program.usc);
|
|
pvr_free_list_destroy(device->global_free_list);
|
|
pvr_bo_suballocator_fini(&device->suballoc_vis_test);
|
|
pvr_bo_suballocator_fini(&device->suballoc_usc);
|
|
pvr_bo_suballocator_fini(&device->suballoc_transfer);
|
|
pvr_bo_suballocator_fini(&device->suballoc_pds);
|
|
pvr_bo_suballocator_fini(&device->suballoc_general);
|
|
pvr_bo_store_destroy(device);
|
|
pvr_winsys_destroy(device->ws);
|
|
p_atomic_dec(&device->instance->active_device_count);
|
|
vk_device_finish(&device->vk);
|
|
vk_free(&device->vk.alloc, device);
|
|
}
|
|
|
|
VkResult pvr_AllocateMemory(VkDevice _device,
|
|
const VkMemoryAllocateInfo *pAllocateInfo,
|
|
const VkAllocationCallbacks *pAllocator,
|
|
VkDeviceMemory *pMem)
|
|
{
|
|
const VkImportMemoryFdInfoKHR *fd_info = NULL;
|
|
VK_FROM_HANDLE(pvr_device, device, _device);
|
|
enum pvr_winsys_bo_type type = PVR_WINSYS_BO_TYPE_GPU;
|
|
struct pvr_device_memory *mem;
|
|
VkResult result;
|
|
|
|
assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
|
|
assert(pAllocateInfo->allocationSize > 0);
|
|
|
|
const VkMemoryType *mem_type =
|
|
&device->pdevice->memory.memoryTypes[pAllocateInfo->memoryTypeIndex];
|
|
const VkMemoryHeap *mem_heap =
|
|
&device->pdevice->memory.memoryHeaps[mem_type->heapIndex];
|
|
|
|
VkDeviceSize aligned_alloc_size =
|
|
ALIGN_POT(pAllocateInfo->allocationSize, device->ws->page_size);
|
|
|
|
if (aligned_alloc_size > mem_heap->size)
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
|
|
mem = vk_device_memory_create(&device->vk,
|
|
pAllocateInfo,
|
|
pAllocator,
|
|
sizeof(*mem));
|
|
if (!mem)
|
|
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
vk_foreach_struct_const (ext, pAllocateInfo->pNext) {
|
|
switch ((unsigned)ext->sType) {
|
|
case VK_STRUCTURE_TYPE_WSI_MEMORY_ALLOCATE_INFO_MESA:
|
|
if (device->ws->display_fd >= 0)
|
|
type = PVR_WINSYS_BO_TYPE_DISPLAY;
|
|
break;
|
|
case VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR:
|
|
fd_info = (void *)ext;
|
|
break;
|
|
case VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO:
|
|
break;
|
|
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO:
|
|
/* We don't have particular optimizations associated with memory
|
|
* allocations that won't be suballocated to multiple resources.
|
|
*/
|
|
break;
|
|
case VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO:
|
|
/* We're not yet using any of the flags provided. */
|
|
break;
|
|
default:
|
|
vk_debug_ignored_stype(ext->sType);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (fd_info && fd_info->handleType) {
|
|
assert(
|
|
fd_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
|
|
fd_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
|
|
|
|
result = device->ws->ops->buffer_create_from_fd(device->ws,
|
|
fd_info->fd,
|
|
&mem->bo);
|
|
if (result != VK_SUCCESS)
|
|
goto err_vk_device_memory_destroy;
|
|
|
|
/* For security purposes, we reject importing the bo if it's smaller
|
|
* than the requested allocation size. This prevents a malicious client
|
|
* from passing a buffer to a trusted client, lying about the size, and
|
|
* telling the trusted client to try and texture from an image that goes
|
|
* out-of-bounds. This sort of thing could lead to GPU hangs or worse
|
|
* in the trusted client. The trusted client can protect itself against
|
|
* this sort of attack but only if it can trust the buffer size.
|
|
*/
|
|
if (aligned_alloc_size > mem->bo->size) {
|
|
result = vk_errorf(device,
|
|
VK_ERROR_INVALID_EXTERNAL_HANDLE,
|
|
"Aligned requested size too large for the given fd "
|
|
"%" PRIu64 "B > %" PRIu64 "B",
|
|
pAllocateInfo->allocationSize,
|
|
mem->bo->size);
|
|
device->ws->ops->buffer_destroy(mem->bo);
|
|
goto err_vk_device_memory_destroy;
|
|
}
|
|
|
|
/* From the Vulkan spec:
|
|
*
|
|
* "Importing memory from a file descriptor transfers ownership of
|
|
* the file descriptor from the application to the Vulkan
|
|
* implementation. The application must not perform any operations on
|
|
* the file descriptor after a successful import."
|
|
*
|
|
* If the import fails, we leave the file descriptor open.
|
|
*/
|
|
close(fd_info->fd);
|
|
} else {
|
|
/* Align physical allocations to the page size of the heap that will be
|
|
* used when binding device memory (see pvr_bind_memory()) to ensure the
|
|
* entire allocation can be mapped.
|
|
*/
|
|
const uint64_t alignment = device->heaps.general_heap->page_size;
|
|
|
|
/* FIXME: Need to determine the flags based on
|
|
* device->pdevice->memory.memoryTypes[pAllocateInfo->memoryTypeIndex].propertyFlags.
|
|
*
|
|
* The alternative would be to store the flags alongside the memory
|
|
* types as an array that's indexed by pAllocateInfo->memoryTypeIndex so
|
|
* that they can be looked up.
|
|
*/
|
|
result = device->ws->ops->buffer_create(device->ws,
|
|
pAllocateInfo->allocationSize,
|
|
alignment,
|
|
type,
|
|
PVR_WINSYS_BO_FLAG_CPU_ACCESS,
|
|
&mem->bo);
|
|
if (result != VK_SUCCESS)
|
|
goto err_vk_device_memory_destroy;
|
|
}
|
|
|
|
*pMem = pvr_device_memory_to_handle(mem);
|
|
|
|
return VK_SUCCESS;
|
|
|
|
err_vk_device_memory_destroy:
|
|
vk_device_memory_destroy(&device->vk, pAllocator, &mem->vk);
|
|
|
|
return result;
|
|
}
|
|
|
|
VkResult pvr_GetMemoryFdKHR(VkDevice _device,
|
|
const VkMemoryGetFdInfoKHR *pGetFdInfo,
|
|
int *pFd)
|
|
{
|
|
VK_FROM_HANDLE(pvr_device, device, _device);
|
|
VK_FROM_HANDLE(pvr_device_memory, mem, pGetFdInfo->memory);
|
|
|
|
assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
|
|
|
|
assert(
|
|
pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
|
|
pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
|
|
|
|
return device->ws->ops->buffer_get_fd(mem->bo, pFd);
|
|
}
|
|
|
|
VkResult
|
|
pvr_GetMemoryFdPropertiesKHR(VkDevice _device,
|
|
VkExternalMemoryHandleTypeFlagBits handleType,
|
|
int fd,
|
|
VkMemoryFdPropertiesKHR *pMemoryFdProperties)
|
|
{
|
|
VK_FROM_HANDLE(pvr_device, device, _device);
|
|
|
|
switch (handleType) {
|
|
case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
|
|
/* FIXME: This should only allow memory types having
|
|
* VK_MEMORY_PROPERTY_HOST_CACHED_BIT flag set, as
|
|
* dma-buf should be imported using cacheable memory types,
|
|
* given exporter's mmap will always map it as cacheable.
|
|
* Ref:
|
|
* https://www.kernel.org/doc/html/latest/driver-api/dma-buf.html#c.dma_buf_ops
|
|
*/
|
|
pMemoryFdProperties->memoryTypeBits =
|
|
(1 << device->pdevice->memory.memoryTypeCount) - 1;
|
|
return VK_SUCCESS;
|
|
default:
|
|
return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
|
|
}
|
|
}
|
|
|
|
void pvr_FreeMemory(VkDevice _device,
|
|
VkDeviceMemory _mem,
|
|
const VkAllocationCallbacks *pAllocator)
|
|
{
|
|
VK_FROM_HANDLE(pvr_device, device, _device);
|
|
VK_FROM_HANDLE(pvr_device_memory, mem, _mem);
|
|
|
|
if (!mem)
|
|
return;
|
|
|
|
/* From the Vulkan spec (§11.2.13. Freeing Device Memory):
|
|
* If a memory object is mapped at the time it is freed, it is implicitly
|
|
* unmapped.
|
|
*/
|
|
if (mem->bo->map)
|
|
device->ws->ops->buffer_unmap(mem->bo, false);
|
|
|
|
device->ws->ops->buffer_destroy(mem->bo);
|
|
|
|
vk_device_memory_destroy(&device->vk, pAllocator, &mem->vk);
|
|
}
|
|
|
|
VkResult pvr_MapMemory2(VkDevice _device,
|
|
const VkMemoryMapInfo *pMemoryMapInfo,
|
|
void **ppData)
|
|
{
|
|
VK_FROM_HANDLE(pvr_device, device, _device);
|
|
VK_FROM_HANDLE(pvr_device_memory, mem, pMemoryMapInfo->memory);
|
|
VkDeviceSize offset;
|
|
VkDeviceSize size;
|
|
VkResult result;
|
|
|
|
if (!mem) {
|
|
*ppData = NULL;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
offset = pMemoryMapInfo->offset;
|
|
size = vk_device_memory_range(&mem->vk, offset, pMemoryMapInfo->size);
|
|
|
|
void *addr = NULL;
|
|
if (pMemoryMapInfo->flags & VK_MEMORY_MAP_PLACED_BIT_EXT) {
|
|
const VkMemoryMapPlacedInfoEXT *placed_info =
|
|
vk_find_struct_const(pMemoryMapInfo->pNext,
|
|
MEMORY_MAP_PLACED_INFO_EXT);
|
|
addr = placed_info->pPlacedAddress;
|
|
}
|
|
|
|
/* From the Vulkan spec version 1.0.32 docs for MapMemory:
|
|
*
|
|
* * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
|
|
* assert(size != 0);
|
|
* * If size is not equal to VK_WHOLE_SIZE, size must be less than or
|
|
* equal to the size of the memory minus offset
|
|
*/
|
|
|
|
assert(size > 0);
|
|
assert(offset + size <= mem->bo->size);
|
|
|
|
/* From the Vulkan 1.2.194 spec:
|
|
*
|
|
* "memory must not be currently host mapped"
|
|
*/
|
|
if (mem->bo->map != NULL) {
|
|
return vk_errorf(device,
|
|
VK_ERROR_MEMORY_MAP_FAILED,
|
|
"Memory object already mapped.");
|
|
}
|
|
|
|
vk_foreach_struct_const (ext, pMemoryMapInfo->pNext) {
|
|
vk_debug_ignored_stype(ext->sType);
|
|
}
|
|
|
|
/* Map it all at once */
|
|
result = device->ws->ops->buffer_map(mem->bo, addr);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
|
|
*ppData = (uint8_t *)mem->bo->map + offset;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult pvr_UnmapMemory2(VkDevice _device,
|
|
const VkMemoryUnmapInfo *pMemoryUnmapInfo)
|
|
{
|
|
VK_FROM_HANDLE(pvr_device, device, _device);
|
|
VK_FROM_HANDLE(pvr_device_memory, mem, pMemoryUnmapInfo->memory);
|
|
|
|
if (mem && mem->bo->map) {
|
|
bool reserve =
|
|
!!(pMemoryUnmapInfo->flags & VK_MEMORY_UNMAP_RESERVE_BIT_EXT);
|
|
return device->ws->ops->buffer_unmap(mem->bo, reserve);
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult pvr_FlushMappedMemoryRanges(VkDevice _device,
|
|
uint32_t memoryRangeCount,
|
|
const VkMappedMemoryRange *pMemoryRanges)
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult
|
|
pvr_InvalidateMappedMemoryRanges(VkDevice _device,
|
|
uint32_t memoryRangeCount,
|
|
const VkMappedMemoryRange *pMemoryRanges)
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void pvr_GetImageSparseMemoryRequirements2(
|
|
VkDevice device,
|
|
const VkImageSparseMemoryRequirementsInfo2 *pInfo,
|
|
uint32_t *pSparseMemoryRequirementCount,
|
|
VkSparseImageMemoryRequirements2 *pSparseMemoryRequirements)
|
|
{
|
|
*pSparseMemoryRequirementCount = 0;
|
|
}
|
|
|
|
void pvr_GetDeviceMemoryCommitment(VkDevice device,
|
|
VkDeviceMemory memory,
|
|
VkDeviceSize *pCommittedMemoryInBytes)
|
|
{
|
|
*pCommittedMemoryInBytes = 0;
|
|
}
|
|
|
|
VkResult pvr_bind_memory(struct pvr_device *device,
|
|
struct pvr_device_memory *mem,
|
|
VkDeviceSize offset,
|
|
VkDeviceSize size,
|
|
VkDeviceSize alignment,
|
|
struct pvr_winsys_vma **const vma_out,
|
|
pvr_dev_addr_t *const dev_addr_out)
|
|
{
|
|
VkDeviceSize virt_size =
|
|
size + (offset & (device->heaps.general_heap->page_size - 1));
|
|
struct pvr_winsys_vma *vma;
|
|
pvr_dev_addr_t dev_addr;
|
|
VkResult result;
|
|
|
|
/* Valid usage:
|
|
*
|
|
* "memoryOffset must be an integer multiple of the alignment member of
|
|
* the VkMemoryRequirements structure returned from a call to
|
|
* vkGetBufferMemoryRequirements with buffer"
|
|
*
|
|
* "memoryOffset must be an integer multiple of the alignment member of
|
|
* the VkMemoryRequirements structure returned from a call to
|
|
* vkGetImageMemoryRequirements with image"
|
|
*/
|
|
assert(offset % alignment == 0);
|
|
assert(offset < mem->bo->size);
|
|
|
|
result = device->ws->ops->heap_alloc(device->heaps.general_heap,
|
|
virt_size,
|
|
alignment,
|
|
&vma);
|
|
if (result != VK_SUCCESS)
|
|
goto err_out;
|
|
|
|
result = device->ws->ops->vma_map(vma, mem->bo, offset, size, &dev_addr);
|
|
if (result != VK_SUCCESS)
|
|
goto err_free_vma;
|
|
|
|
*dev_addr_out = dev_addr;
|
|
*vma_out = vma;
|
|
|
|
return VK_SUCCESS;
|
|
|
|
err_free_vma:
|
|
device->ws->ops->heap_free(vma);
|
|
|
|
err_out:
|
|
return result;
|
|
}
|
|
|
|
void pvr_unbind_memory(struct pvr_device *device, struct pvr_winsys_vma *vma)
|
|
{
|
|
device->ws->ops->vma_unmap(vma);
|
|
device->ws->ops->heap_free(vma);
|
|
}
|
|
|
|
VkResult pvr_BindBufferMemory2(VkDevice _device,
|
|
uint32_t bindInfoCount,
|
|
const VkBindBufferMemoryInfo *pBindInfos)
|
|
{
|
|
VK_FROM_HANDLE(pvr_device, device, _device);
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < bindInfoCount; i++) {
|
|
VK_FROM_HANDLE(pvr_device_memory, mem, pBindInfos[i].memory);
|
|
VK_FROM_HANDLE(pvr_buffer, buffer, pBindInfos[i].buffer);
|
|
|
|
VkResult result = pvr_bind_memory(device,
|
|
mem,
|
|
pBindInfos[i].memoryOffset,
|
|
buffer->vk.size,
|
|
buffer->alignment,
|
|
&buffer->vma,
|
|
&buffer->dev_addr);
|
|
if (result != VK_SUCCESS) {
|
|
while (i--) {
|
|
VK_FROM_HANDLE(pvr_buffer, buffer, pBindInfos[i].buffer);
|
|
pvr_unbind_memory(device, buffer->vma);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
/* Event functions. */
|
|
|
|
VkResult pvr_CreateEvent(VkDevice _device,
|
|
const VkEventCreateInfo *pCreateInfo,
|
|
const VkAllocationCallbacks *pAllocator,
|
|
VkEvent *pEvent)
|
|
{
|
|
VK_FROM_HANDLE(pvr_device, device, _device);
|
|
|
|
struct pvr_event *event = vk_object_alloc(&device->vk,
|
|
pAllocator,
|
|
sizeof(*event),
|
|
VK_OBJECT_TYPE_EVENT);
|
|
if (!event)
|
|
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
event->sync = NULL;
|
|
event->state = PVR_EVENT_STATE_RESET_BY_HOST;
|
|
|
|
*pEvent = pvr_event_to_handle(event);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void pvr_DestroyEvent(VkDevice _device,
|
|
VkEvent _event,
|
|
const VkAllocationCallbacks *pAllocator)
|
|
{
|
|
VK_FROM_HANDLE(pvr_device, device, _device);
|
|
VK_FROM_HANDLE(pvr_event, event, _event);
|
|
|
|
if (!event)
|
|
return;
|
|
|
|
if (event->sync)
|
|
vk_sync_destroy(&device->vk, event->sync);
|
|
|
|
vk_object_free(&device->vk, pAllocator, event);
|
|
}
|
|
|
|
VkResult pvr_GetEventStatus(VkDevice _device, VkEvent _event)
|
|
{
|
|
VK_FROM_HANDLE(pvr_device, device, _device);
|
|
VK_FROM_HANDLE(pvr_event, event, _event);
|
|
VkResult result;
|
|
|
|
switch (event->state) {
|
|
case PVR_EVENT_STATE_SET_BY_DEVICE:
|
|
if (!event->sync)
|
|
return VK_EVENT_RESET;
|
|
|
|
result =
|
|
vk_sync_wait(&device->vk, event->sync, 0U, VK_SYNC_WAIT_COMPLETE, 0);
|
|
result = (result == VK_SUCCESS) ? VK_EVENT_SET : VK_EVENT_RESET;
|
|
break;
|
|
|
|
case PVR_EVENT_STATE_RESET_BY_DEVICE:
|
|
if (!event->sync)
|
|
return VK_EVENT_RESET;
|
|
|
|
result =
|
|
vk_sync_wait(&device->vk, event->sync, 0U, VK_SYNC_WAIT_COMPLETE, 0);
|
|
result = (result == VK_SUCCESS) ? VK_EVENT_RESET : VK_EVENT_SET;
|
|
break;
|
|
|
|
case PVR_EVENT_STATE_SET_BY_HOST:
|
|
result = VK_EVENT_SET;
|
|
break;
|
|
|
|
case PVR_EVENT_STATE_RESET_BY_HOST:
|
|
result = VK_EVENT_RESET;
|
|
break;
|
|
|
|
default:
|
|
UNREACHABLE("Event object in unknown state");
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
VkResult pvr_SetEvent(VkDevice _device, VkEvent _event)
|
|
{
|
|
VK_FROM_HANDLE(pvr_event, event, _event);
|
|
|
|
if (event->sync) {
|
|
VK_FROM_HANDLE(pvr_device, device, _device);
|
|
|
|
const VkResult result = vk_sync_signal(&device->vk, event->sync, 0);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
}
|
|
|
|
event->state = PVR_EVENT_STATE_SET_BY_HOST;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult pvr_ResetEvent(VkDevice _device, VkEvent _event)
|
|
{
|
|
VK_FROM_HANDLE(pvr_event, event, _event);
|
|
|
|
if (event->sync) {
|
|
VK_FROM_HANDLE(pvr_device, device, _device);
|
|
|
|
const VkResult result = vk_sync_reset(&device->vk, event->sync);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
}
|
|
|
|
event->state = PVR_EVENT_STATE_RESET_BY_HOST;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
/* Buffer functions. */
|
|
|
|
VkResult pvr_CreateBuffer(VkDevice _device,
|
|
const VkBufferCreateInfo *pCreateInfo,
|
|
const VkAllocationCallbacks *pAllocator,
|
|
VkBuffer *pBuffer)
|
|
{
|
|
VK_FROM_HANDLE(pvr_device, device, _device);
|
|
const uint32_t alignment = 4096;
|
|
struct pvr_buffer *buffer;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
|
|
assert(pCreateInfo->usage != 0);
|
|
|
|
/* We check against (ULONG_MAX - alignment) to prevent overflow issues */
|
|
if (pCreateInfo->size >= ULONG_MAX - alignment)
|
|
return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
|
|
|
|
buffer =
|
|
vk_buffer_create(&device->vk, pCreateInfo, pAllocator, sizeof(*buffer));
|
|
if (!buffer)
|
|
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
buffer->alignment = alignment;
|
|
|
|
*pBuffer = pvr_buffer_to_handle(buffer);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkDeviceAddress
|
|
pvr_GetBufferDeviceAddress(UNUSED VkDevice device,
|
|
const VkBufferDeviceAddressInfo *pInfo)
|
|
{
|
|
VK_FROM_HANDLE(pvr_buffer, buffer, pInfo->buffer);
|
|
|
|
return buffer->dev_addr.addr;
|
|
}
|
|
|
|
uint64_t
|
|
pvr_GetBufferOpaqueCaptureAddress(UNUSED VkDevice device,
|
|
UNUSED const VkBufferDeviceAddressInfo *pInfo)
|
|
{
|
|
pvr_finishme("Missing support for bufferDeviceAddressCaptureReplay");
|
|
return 0;
|
|
}
|
|
|
|
uint64_t pvr_GetDeviceMemoryOpaqueCaptureAddress(
|
|
UNUSED VkDevice device,
|
|
UNUSED const VkDeviceMemoryOpaqueCaptureAddressInfo *pInfo)
|
|
{
|
|
pvr_finishme("Missing support for bufferDeviceAddressCaptureReplay");
|
|
return 0;
|
|
}
|
|
|
|
void pvr_DestroyBuffer(VkDevice _device,
|
|
VkBuffer _buffer,
|
|
const VkAllocationCallbacks *pAllocator)
|
|
{
|
|
VK_FROM_HANDLE(pvr_device, device, _device);
|
|
VK_FROM_HANDLE(pvr_buffer, buffer, _buffer);
|
|
|
|
if (!buffer)
|
|
return;
|
|
|
|
if (buffer->vma)
|
|
pvr_unbind_memory(device, buffer->vma);
|
|
|
|
vk_buffer_destroy(&device->vk, pAllocator, &buffer->vk);
|
|
}
|
|
|
|
VkResult pvr_gpu_upload(struct pvr_device *device,
|
|
struct pvr_winsys_heap *heap,
|
|
const void *data,
|
|
size_t size,
|
|
uint64_t alignment,
|
|
struct pvr_suballoc_bo **const pvr_bo_out)
|
|
{
|
|
struct pvr_suballoc_bo *suballoc_bo = NULL;
|
|
struct pvr_suballocator *allocator;
|
|
VkResult result;
|
|
void *map;
|
|
|
|
assert(size > 0);
|
|
|
|
if (heap == device->heaps.general_heap)
|
|
allocator = &device->suballoc_general;
|
|
else if (heap == device->heaps.pds_heap)
|
|
allocator = &device->suballoc_pds;
|
|
else if (heap == device->heaps.transfer_frag_heap)
|
|
allocator = &device->suballoc_transfer;
|
|
else if (heap == device->heaps.usc_heap)
|
|
allocator = &device->suballoc_usc;
|
|
else
|
|
UNREACHABLE("Unknown heap type");
|
|
|
|
result = pvr_bo_suballoc(allocator, size, alignment, false, &suballoc_bo);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
|
|
map = pvr_bo_suballoc_get_map_addr(suballoc_bo);
|
|
if (data)
|
|
memcpy(map, data, size);
|
|
|
|
*pvr_bo_out = suballoc_bo;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult pvr_gpu_upload_usc(struct pvr_device *device,
|
|
const void *code,
|
|
size_t code_size,
|
|
uint64_t code_alignment,
|
|
struct pvr_suballoc_bo **const pvr_bo_out)
|
|
{
|
|
struct pvr_suballoc_bo *suballoc_bo = NULL;
|
|
VkResult result;
|
|
void *map;
|
|
|
|
assert(code_size > 0);
|
|
|
|
/* The USC will prefetch the next instruction, so over allocate by 1
|
|
* instruction to prevent reading off the end of a page into a potentially
|
|
* unallocated page.
|
|
*/
|
|
result = pvr_bo_suballoc(&device->suballoc_usc,
|
|
code_size + ROGUE_MAX_INSTR_BYTES,
|
|
code_alignment,
|
|
false,
|
|
&suballoc_bo);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
|
|
map = pvr_bo_suballoc_get_map_addr(suballoc_bo);
|
|
memcpy(map, code, code_size);
|
|
|
|
*pvr_bo_out = suballoc_bo;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* \brief Upload PDS program data and code segments from host memory to device
|
|
* memory.
|
|
*
|
|
* \param[in] device Logical device pointer.
|
|
* \param[in] data Pointer to PDS data segment to upload.
|
|
* \param[in] data_size_dwords Size of PDS data segment in dwords.
|
|
* \param[in] data_alignment Required alignment of the PDS data segment in
|
|
* bytes. Must be a power of two.
|
|
* \param[in] code Pointer to PDS code segment to upload.
|
|
* \param[in] code_size_dwords Size of PDS code segment in dwords.
|
|
* \param[in] code_alignment Required alignment of the PDS code segment in
|
|
* bytes. Must be a power of two.
|
|
* \param[in] min_alignment Minimum alignment of the bo holding the PDS
|
|
* program in bytes.
|
|
* \param[out] pds_upload_out On success will be initialized based on the
|
|
* uploaded PDS program.
|
|
* \return VK_SUCCESS on success, or error code otherwise.
|
|
*/
|
|
VkResult pvr_gpu_upload_pds(struct pvr_device *device,
|
|
const uint32_t *data,
|
|
uint32_t data_size_dwords,
|
|
uint32_t data_alignment,
|
|
const uint32_t *code,
|
|
uint32_t code_size_dwords,
|
|
uint32_t code_alignment,
|
|
uint64_t min_alignment,
|
|
struct pvr_pds_upload *const pds_upload_out)
|
|
{
|
|
/* All alignment and sizes below are in bytes. */
|
|
const size_t data_size = PVR_DW_TO_BYTES(data_size_dwords);
|
|
const size_t code_size = PVR_DW_TO_BYTES(code_size_dwords);
|
|
const uint64_t data_aligned_size = ALIGN_POT(data_size, data_alignment);
|
|
const uint64_t code_aligned_size = ALIGN_POT(code_size, code_alignment);
|
|
const uint32_t code_offset = ALIGN_POT(data_aligned_size, code_alignment);
|
|
const uint64_t bo_alignment = MAX2(min_alignment, data_alignment);
|
|
const uint64_t bo_size = (!!code) ? (code_offset + code_aligned_size)
|
|
: data_aligned_size;
|
|
VkResult result;
|
|
void *map;
|
|
|
|
assert(code || data);
|
|
assert(!code || (code_size_dwords != 0 && code_alignment != 0));
|
|
assert(!data || (data_size_dwords != 0 && data_alignment != 0));
|
|
|
|
result = pvr_bo_suballoc(&device->suballoc_pds,
|
|
bo_size,
|
|
bo_alignment,
|
|
true,
|
|
&pds_upload_out->pvr_bo);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
|
|
map = pvr_bo_suballoc_get_map_addr(pds_upload_out->pvr_bo);
|
|
|
|
if (data) {
|
|
memcpy(map, data, data_size);
|
|
|
|
pds_upload_out->data_offset = pds_upload_out->pvr_bo->dev_addr.addr -
|
|
device->heaps.pds_heap->base_addr.addr;
|
|
|
|
/* Store data size in dwords. */
|
|
assert(data_aligned_size % 4 == 0);
|
|
pds_upload_out->data_size = data_aligned_size / 4;
|
|
} else {
|
|
pds_upload_out->data_offset = 0;
|
|
pds_upload_out->data_size = 0;
|
|
}
|
|
|
|
if (code) {
|
|
memcpy((uint8_t *)map + code_offset, code, code_size);
|
|
|
|
pds_upload_out->code_offset =
|
|
(pds_upload_out->pvr_bo->dev_addr.addr + code_offset) -
|
|
device->heaps.pds_heap->base_addr.addr;
|
|
|
|
/* Store code size in dwords. */
|
|
assert(code_aligned_size % 4 == 0);
|
|
pds_upload_out->code_size = code_aligned_size / 4;
|
|
} else {
|
|
pds_upload_out->code_offset = 0;
|
|
pds_upload_out->code_size = 0;
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void pvr_render_targets_fini(struct pvr_render_target *render_targets,
|
|
uint32_t render_targets_count)
|
|
{
|
|
for (uint32_t i = 0; i < render_targets_count; i++) {
|
|
pvr_render_targets_datasets_destroy(&render_targets[i]);
|
|
pthread_mutex_destroy(&render_targets[i].mutex);
|
|
}
|
|
}
|
|
|
|
void pvr_render_state_cleanup(struct pvr_device *device,
|
|
const struct pvr_render_state *rstate)
|
|
{
|
|
if (!rstate)
|
|
return;
|
|
|
|
for (uint32_t i = 0; i < rstate->render_count; i++) {
|
|
pvr_spm_finish_bgobj_state(device,
|
|
&rstate->spm_bgobj_state_per_render[i]);
|
|
|
|
pvr_spm_finish_eot_state(device, &rstate->spm_eot_state_per_render[i]);
|
|
}
|
|
|
|
pvr_spm_scratch_buffer_release(device, rstate->scratch_buffer);
|
|
pvr_render_targets_fini(rstate->render_targets,
|
|
rstate->render_targets_count);
|
|
pvr_bo_suballoc_free(rstate->ppp_state_bo);
|
|
vk_free(&device->vk.alloc, rstate->render_targets);
|
|
}
|
|
|
|
void pvr_GetBufferMemoryRequirements2(
|
|
VkDevice _device,
|
|
const VkBufferMemoryRequirementsInfo2 *pInfo,
|
|
VkMemoryRequirements2 *pMemoryRequirements)
|
|
{
|
|
VK_FROM_HANDLE(pvr_buffer, buffer, pInfo->buffer);
|
|
VK_FROM_HANDLE(pvr_device, device, _device);
|
|
uint64_t size;
|
|
|
|
/* The Vulkan 1.0.166 spec says:
|
|
*
|
|
* memoryTypeBits is a bitmask and contains one bit set for every
|
|
* supported memory type for the resource. Bit 'i' is set if and only
|
|
* if the memory type 'i' in the VkPhysicalDeviceMemoryProperties
|
|
* structure for the physical device is supported for the resource.
|
|
*
|
|
* All types are currently supported for buffers.
|
|
*/
|
|
pMemoryRequirements->memoryRequirements.memoryTypeBits =
|
|
(1ul << device->pdevice->memory.memoryTypeCount) - 1;
|
|
|
|
pMemoryRequirements->memoryRequirements.alignment = buffer->alignment;
|
|
|
|
size = buffer->vk.size;
|
|
|
|
if (size % device->ws->page_size == 0 ||
|
|
size % device->ws->page_size >
|
|
device->ws->page_size - PVR_BUFFER_MEMORY_PADDING_SIZE) {
|
|
/* TODO: We can save memory by having one extra virtual page mapped
|
|
* in and having the first and last virtual page mapped to the first
|
|
* physical address.
|
|
*/
|
|
size += PVR_BUFFER_MEMORY_PADDING_SIZE;
|
|
}
|
|
|
|
pMemoryRequirements->memoryRequirements.size =
|
|
ALIGN_POT(size, buffer->alignment);
|
|
|
|
vk_foreach_struct (ext, pMemoryRequirements->pNext) {
|
|
switch (ext->sType) {
|
|
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
|
|
VkMemoryDedicatedRequirements *req =
|
|
(VkMemoryDedicatedRequirements *)ext;
|
|
|
|
req->requiresDedicatedAllocation = false;
|
|
req->prefersDedicatedAllocation = false;
|
|
break;
|
|
}
|
|
default:
|
|
vk_debug_ignored_stype(ext->sType);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void pvr_GetImageMemoryRequirements2(VkDevice _device,
|
|
const VkImageMemoryRequirementsInfo2 *pInfo,
|
|
VkMemoryRequirements2 *pMemoryRequirements)
|
|
{
|
|
VK_FROM_HANDLE(pvr_device, device, _device);
|
|
VK_FROM_HANDLE(pvr_image, image, pInfo->image);
|
|
|
|
/* The Vulkan 1.0.166 spec says:
|
|
*
|
|
* memoryTypeBits is a bitmask and contains one bit set for every
|
|
* supported memory type for the resource. Bit 'i' is set if and only
|
|
* if the memory type 'i' in the VkPhysicalDeviceMemoryProperties
|
|
* structure for the physical device is supported for the resource.
|
|
*
|
|
* All types are currently supported for images.
|
|
*/
|
|
const uint32_t memory_types =
|
|
(1ul << device->pdevice->memory.memoryTypeCount) - 1;
|
|
|
|
/* TODO: The returned size is aligned here in case of arrays/CEM (as is done
|
|
* in GetImageMemoryRequirements()), but this should be known at image
|
|
* creation time (pCreateInfo->arrayLayers > 1). This is confirmed in
|
|
* ImageCreate()/ImageGetMipMapOffsetInBytes() where it aligns the size to
|
|
* 4096 if pCreateInfo->arrayLayers > 1. So is the alignment here actually
|
|
* necessary? If not, what should it be when pCreateInfo->arrayLayers == 1?
|
|
*
|
|
* Note: Presumably the 4096 alignment requirement comes from the Vulkan
|
|
* driver setting RGX_CR_TPU_TAG_CEM_4K_FACE_PACKING_EN when setting up
|
|
* render and compute jobs.
|
|
*/
|
|
pMemoryRequirements->memoryRequirements.alignment = image->alignment;
|
|
pMemoryRequirements->memoryRequirements.size =
|
|
align64(image->size, image->alignment);
|
|
pMemoryRequirements->memoryRequirements.memoryTypeBits = memory_types;
|
|
|
|
vk_foreach_struct (ext, pMemoryRequirements->pNext) {
|
|
switch (ext->sType) {
|
|
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
|
|
bool has_ext_handle_types = image->vk.external_handle_types != 0;
|
|
VkMemoryDedicatedRequirements *req =
|
|
(VkMemoryDedicatedRequirements *)ext;
|
|
|
|
req->prefersDedicatedAllocation = has_ext_handle_types;
|
|
req->requiresDedicatedAllocation = has_ext_handle_types;
|
|
break;
|
|
}
|
|
default:
|
|
vk_debug_ignored_stype(ext->sType);
|
|
break;
|
|
}
|
|
}
|
|
}
|