mesa/src/intel/compiler/brw_compiler.h
Iván Briano b200e5765c anv: use a simpler MUE layout for fast linked libraries
The compaction introduced in a252123363 ("intel/compiler/mesh: compactify MUE layout")
is not suitable for the case where graphics pipeline libraries are fast
linked, as the fragment shader won't receive the mue_map to know where
to locate its inputs.
For that case, keep doing what we did before and lay things down in the
order varyings are defined, which is also how it works for the non-mesh
case.

Fixes dEQP-VK.fragment_shading_rate.*fast_linked_library*.ms

Reviewed-by: Caio Oliveira <caio.oliveira@intel.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/25047>
2023-09-12 02:51:31 +00:00

2242 lines
69 KiB
C

/*
* Copyright © 2010 - 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef BRW_COMPILER_H
#define BRW_COMPILER_H
#include <stdio.h>
#include "c11/threads.h"
#include "dev/intel_device_info.h"
#include "util/macros.h"
#include "util/enum_operators.h"
#include "util/ralloc.h"
#include "util/u_math.h"
#include "brw_isa_info.h"
#ifdef __cplusplus
extern "C" {
#endif
struct ra_regs;
struct nir_shader;
struct shader_info;
struct nir_shader_compiler_options;
typedef struct nir_shader nir_shader;
struct brw_compiler {
const struct intel_device_info *devinfo;
/* This lock must be taken if the compiler is to be modified in any way,
* including adding something to the ralloc child list.
*/
mtx_t mutex;
struct brw_isa_info isa;
struct {
struct ra_regs *regs;
/**
* Array of the ra classes for the unaligned contiguous register
* block sizes used.
*/
struct ra_class **classes;
} vec4_reg_set;
struct {
struct ra_regs *regs;
/**
* Array of the ra classes for the unaligned contiguous register
* block sizes used, indexed by register size.
*/
struct ra_class *classes[16];
/**
* ra class for the aligned barycentrics we use for PLN, which doesn't
* appear in *classes.
*/
struct ra_class *aligned_bary_class;
} fs_reg_sets[3];
void (*shader_debug_log)(void *, unsigned *id, const char *str, ...) PRINTFLIKE(3, 4);
void (*shader_perf_log)(void *, unsigned *id, const char *str, ...) PRINTFLIKE(3, 4);
bool scalar_stage[MESA_ALL_SHADER_STAGES];
bool use_tcs_multi_patch;
struct nir_shader_compiler_options *nir_options[MESA_ALL_SHADER_STAGES];
/**
* Apply workarounds for SIN and COS output range problems.
* This can negatively impact performance.
*/
bool precise_trig;
/**
* Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
* Base Address? (If not, it's a normal GPU address.)
*/
bool constant_buffer_0_is_relative;
/**
* Whether or not the driver supports NIR shader constants. This controls
* whether nir_opt_large_constants will be run.
*/
bool supports_shader_constants;
/**
* Whether indirect UBO loads should use the sampler or go through the
* data/constant cache. For the sampler, UBO surface states have to be set
* up with VK_FORMAT_R32G32B32A32_FLOAT whereas if it's going through the
* constant or data cache, UBOs must use VK_FORMAT_RAW.
*/
bool indirect_ubos_use_sampler;
/**
* Gfx12.5+ has a bit in the SEND instruction extending the bindless
* surface offset range from 20 to 26 bits, effectively giving us 4Gb of
* bindless surface descriptors instead of 64Mb previously.
*/
bool extended_bindless_surface_offset;
/**
* Gfx11+ has a bit in the dword 3 of the sampler message header that
* indicates whether the sampler handle is relative to the dynamic state
* base address (0) or the bindless sampler base address (1). The driver
* can select this.
*/
bool use_bindless_sampler_offset;
/**
* Calling the ra_allocate function after each register spill can take
* several minutes. This option speeds up shader compilation by spilling
* more registers after the ra_allocate failure. Required for
* Cyberpunk 2077, which uses a watchdog thread to terminate the process
* in case the render thread hasn't responded within 2 minutes.
*/
int spilling_rate;
struct nir_shader *clc_shader;
struct {
unsigned mue_header_packing;
bool mue_compaction;
} mesh;
};
#define brw_shader_debug_log(compiler, data, fmt, ... ) do { \
static unsigned id = 0; \
compiler->shader_debug_log(data, &id, fmt, ##__VA_ARGS__); \
} while (0)
#define brw_shader_perf_log(compiler, data, fmt, ... ) do { \
static unsigned id = 0; \
compiler->shader_perf_log(data, &id, fmt, ##__VA_ARGS__); \
} while (0)
/**
* We use a constant subgroup size of 32. It really only needs to be a
* maximum and, since we do SIMD32 for compute shaders in some cases, it
* needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a
* subgroup size of 32 but will act as if 16 or 24 of those channels are
* disabled.
*/
#define BRW_SUBGROUP_SIZE 32
static inline bool
brw_shader_stage_is_bindless(gl_shader_stage stage)
{
return stage >= MESA_SHADER_RAYGEN &&
stage <= MESA_SHADER_CALLABLE;
}
static inline bool
brw_shader_stage_requires_bindless_resources(gl_shader_stage stage)
{
return brw_shader_stage_is_bindless(stage) || gl_shader_stage_is_mesh(stage);
}
/**
* Program key structures.
*
* When drawing, we look for the currently bound shaders in the program
* cache. This is essentially a hash table lookup, and these are the keys.
*
* Sometimes OpenGL features specified as state need to be simulated via
* shader code, due to a mismatch between the API and the hardware. This
* is often referred to as "non-orthagonal state" or "NOS". We store NOS
* in the program key so it's considered when searching for a program. If
* we haven't seen a particular combination before, we have to recompile a
* new specialized version.
*
* Shader compilation should not look up state in gl_context directly, but
* instead use the copy in the program key. This guarantees recompiles will
* happen correctly.
*
* @{
*/
enum PACKED gfx6_gather_sampler_wa {
WA_SIGN = 1, /* whether we need to sign extend */
WA_8BIT = 2, /* if we have an 8bit format needing wa */
WA_16BIT = 4, /* if we have a 16bit format needing wa */
};
#define BRW_MAX_SAMPLERS 32
/* Provide explicit padding for each member, to ensure that the compiler
* initializes every bit in the shader cache keys. The keys will be compared
* with memcmp.
*/
PRAGMA_DIAGNOSTIC_PUSH
PRAGMA_DIAGNOSTIC_ERROR(-Wpadded)
/**
* Sampler information needed by VS, WM, and GS program cache keys.
*/
struct brw_sampler_prog_key_data {
/**
* EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
*
* This field is not consumed by the back-end compiler and is only relevant
* for the crocus OpenGL driver for Broadwell and earlier hardware.
*/
uint16_t swizzles[BRW_MAX_SAMPLERS];
uint32_t gl_clamp_mask[3];
/**
* For RG32F, gather4's channel select is broken.
*/
uint32_t gather_channel_quirk_mask;
/**
* For Sandybridge, which shader w/a we need for gather quirks.
*/
enum gfx6_gather_sampler_wa gfx6_gather_wa[BRW_MAX_SAMPLERS];
};
enum brw_robustness_flags {
BRW_ROBUSTNESS_UBO = BITFIELD_BIT(0),
BRW_ROBUSTNESS_SSBO = BITFIELD_BIT(1),
};
struct brw_base_prog_key {
unsigned program_string_id;
enum brw_robustness_flags robust_flags:2;
unsigned padding:22;
/**
* Apply workarounds for SIN and COS input range problems.
* This limits input range for SIN and COS to [-2p : 2p] to
* avoid precision issues.
*/
bool limit_trig_input_range;
struct brw_sampler_prog_key_data tex;
};
/**
* The VF can't natively handle certain types of attributes, such as GL_FIXED
* or most 10_10_10_2 types. These flags enable various VS workarounds to
* "fix" attributes at the beginning of shaders.
*/
#define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
#define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
#define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
#define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
#define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
/**
* OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
* [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
* input vertex attributes. In Vulkan, we expose up to 28 user vertex input
* attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
*/
#define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
#define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
/**
* Max number of binding table entries used for stream output.
*
* From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
* minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
*
* On Gfx6, the size of transform feedback data is limited not by the number
* of components but by the number of binding table entries we set aside. We
* use one binding table entry for a float, one entry for a vector, and one
* entry per matrix column. Since the only way we can communicate our
* transform feedback capabilities to the client is via
* MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
* worst case, in which all the varyings are floats, so we use up one binding
* table entry per component. Therefore we need to set aside at least 64
* binding table entries for use by transform feedback.
*
* Note: since we don't currently pack varyings, it is currently impossible
* for the client to actually use up all of these binding table entries--if
* all of their varyings were floats, they would run out of varying slots and
* fail to link. But that's a bug, so it seems prudent to go ahead and
* allocate the number of binding table entries we will need once the bug is
* fixed.
*/
#define BRW_MAX_SOL_BINDINGS 64
/** The program key for Vertex Shaders. */
struct brw_vs_prog_key {
struct brw_base_prog_key base;
/**
* Per-attribute workaround flags
*
* For each attribute, a combination of BRW_ATTRIB_WA_*.
*
* For OpenGL, where we expose a maximum of 16 user input attributes
* we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
* slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
* expose up to 28 user input vertex attributes that are mapped to slots
* starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
* enough to hold this many slots.
*/
uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
/**
* For pre-Gfx6 hardware, a bitfield indicating which texture coordinates
* are going to be replaced with point coordinates (as a consequence of a
* call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
* our SF thread requires exact matching between VS outputs and FS inputs,
* these texture coordinates will need to be unconditionally included in
* the VUE, even if they aren't written by the vertex shader.
*/
uint8_t point_coord_replace;
unsigned clamp_pointsize:1;
bool copy_edgeflag:1;
bool clamp_vertex_color:1;
/**
* How many user clipping planes are being uploaded to the vertex shader as
* push constants.
*
* These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
* clip distances.
*/
unsigned nr_userclip_plane_consts:4;
uint32_t padding: 25;
};
/** The program key for Tessellation Control Shaders. */
struct brw_tcs_prog_key
{
struct brw_base_prog_key base;
/** A bitfield of per-vertex outputs written. */
uint64_t outputs_written;
enum tess_primitive_mode _tes_primitive_mode;
/** Number of input vertices, 0 means dynamic */
unsigned input_vertices;
/** A bitfield of per-patch outputs written. */
uint32_t patch_outputs_written;
bool quads_workaround;
uint32_t padding:24;
};
#define BRW_MAX_TCS_INPUT_VERTICES (32)
static inline uint32_t
brw_tcs_prog_key_input_vertices(const struct brw_tcs_prog_key *key)
{
return key->input_vertices != 0 ?
key->input_vertices : BRW_MAX_TCS_INPUT_VERTICES;
}
/** The program key for Tessellation Evaluation Shaders. */
struct brw_tes_prog_key
{
struct brw_base_prog_key base;
/** A bitfield of per-vertex inputs read. */
uint64_t inputs_read;
/** A bitfield of per-patch inputs read. */
uint32_t patch_inputs_read;
/**
* How many user clipping planes are being uploaded to the tessellation
* evaluation shader as push constants.
*
* These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
* clip distances.
*/
unsigned nr_userclip_plane_consts:4;
unsigned clamp_pointsize:1;
uint32_t padding:27;
};
/** The program key for Geometry Shaders. */
struct brw_gs_prog_key
{
struct brw_base_prog_key base;
/**
* How many user clipping planes are being uploaded to the geometry shader
* as push constants.
*
* These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
* clip distances.
*/
unsigned nr_userclip_plane_consts:4;
unsigned clamp_pointsize:1;
unsigned padding:27;
};
struct brw_task_prog_key
{
struct brw_base_prog_key base;
};
struct brw_mesh_prog_key
{
struct brw_base_prog_key base;
bool compact_mue:1;
unsigned padding:31;
};
enum brw_sf_primitive {
BRW_SF_PRIM_POINTS = 0,
BRW_SF_PRIM_LINES = 1,
BRW_SF_PRIM_TRIANGLES = 2,
BRW_SF_PRIM_UNFILLED_TRIS = 3,
};
struct brw_sf_prog_key {
uint64_t attrs;
bool contains_flat_varying;
unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
uint8_t point_sprite_coord_replace;
enum brw_sf_primitive primitive:2;
bool do_twoside_color:1;
bool frontface_ccw:1;
bool do_point_sprite:1;
bool do_point_coord:1;
bool sprite_origin_lower_left:1;
bool userclip_active:1;
unsigned padding: 32;
};
enum brw_clip_mode {
BRW_CLIP_MODE_NORMAL = 0,
BRW_CLIP_MODE_CLIP_ALL = 1,
BRW_CLIP_MODE_CLIP_NON_REJECTED = 2,
BRW_CLIP_MODE_REJECT_ALL = 3,
BRW_CLIP_MODE_ACCEPT_ALL = 4,
BRW_CLIP_MODE_KERNEL_CLIP = 5,
};
enum brw_clip_fill_mode {
BRW_CLIP_FILL_MODE_LINE = 0,
BRW_CLIP_FILL_MODE_POINT = 1,
BRW_CLIP_FILL_MODE_FILL = 2,
BRW_CLIP_FILL_MODE_CULL = 3,
};
/* Note that if unfilled primitives are being emitted, we have to fix
* up polygon offset and flatshading at this point:
*/
struct brw_clip_prog_key {
uint64_t attrs;
float offset_factor;
float offset_units;
float offset_clamp;
bool contains_flat_varying;
bool contains_noperspective_varying;
unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
unsigned primitive:4;
unsigned nr_userclip:4;
bool pv_first:1;
bool do_unfilled:1;
enum brw_clip_fill_mode fill_cw:2; /* includes cull information */
enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
bool offset_cw:1;
bool offset_ccw:1;
bool copy_bfc_cw:1;
bool copy_bfc_ccw:1;
enum brw_clip_mode clip_mode:3;
uint64_t padding:51;
};
/* A big lookup table is used to figure out which and how many
* additional regs will inserted before the main payload in the WM
* program execution. These mainly relate to depth and stencil
* processing and the early-depth-test optimization.
*/
enum brw_wm_iz_bits {
BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
BRW_WM_IZ_BIT_MAX = 0x40
};
enum brw_sometimes {
BRW_NEVER = 0,
BRW_SOMETIMES,
BRW_ALWAYS
};
static inline enum brw_sometimes
brw_sometimes_invert(enum brw_sometimes x)
{
return (enum brw_sometimes)((int)BRW_ALWAYS - (int)x);
}
/** The program key for Fragment/Pixel Shaders. */
struct brw_wm_prog_key {
struct brw_base_prog_key base;
uint64_t input_slots_valid;
float alpha_test_ref;
uint8_t color_outputs_valid;
/* Some collection of BRW_WM_IZ_* */
uint8_t iz_lookup;
bool stats_wm:1;
bool flat_shade:1;
unsigned nr_color_regions:5;
bool emit_alpha_test:1;
enum compare_func alpha_test_func:3; /* < For Gfx4/5 MRT alpha test */
bool alpha_test_replicate_alpha:1;
enum brw_sometimes alpha_to_coverage:2;
bool clamp_fragment_color:1;
bool force_dual_color_blend:1;
/** Whether or inputs are interpolated at sample rate by default
*
* This corresponds to the sample shading API bit in Vulkan or OpenGL which
* controls how inputs with no interpolation qualifier are interpolated.
* This is distinct from the way that using gl_SampleID or similar requires
* us to run per-sample. Even when running per-sample due to gl_SampleID,
* we may still interpolate unqualified inputs at the pixel center.
*/
enum brw_sometimes persample_interp:2;
/* Whether or not we are running on a multisampled framebuffer */
enum brw_sometimes multisample_fbo:2;
enum brw_sometimes line_aa:2;
bool coherent_fb_fetch:1;
bool ignore_sample_mask_out:1;
bool coarse_pixel:1;
uint64_t padding:55;
};
struct brw_cs_prog_key {
struct brw_base_prog_key base;
};
struct brw_bs_prog_key {
struct brw_base_prog_key base;
/* Represents enum enum brw_rt_ray_flags values given at pipeline creation
* to be combined with ray_flags handed to the traceRayEXT() calls by the
* shader.
*/
uint32_t pipeline_ray_flags;
};
struct brw_ff_gs_prog_key {
uint64_t attrs;
/**
* Map from the index of a transform feedback binding table entry to the
* gl_varying_slot that should be streamed out through that binding table
* entry.
*/
unsigned char transform_feedback_bindings[BRW_MAX_SOL_BINDINGS];
/**
* Map from the index of a transform feedback binding table entry to the
* swizzles that should be used when streaming out data through that
* binding table entry.
*/
unsigned char transform_feedback_swizzles[BRW_MAX_SOL_BINDINGS];
/**
* Hardware primitive type being drawn, e.g. _3DPRIM_TRILIST.
*/
unsigned primitive:8;
unsigned pv_first:1;
unsigned need_gs_prog:1;
/**
* Number of varyings that are output to transform feedback.
*/
unsigned num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
uint64_t padding:47;
};
/* brw_any_prog_key is any of the keys that map to an API stage */
union brw_any_prog_key {
struct brw_base_prog_key base;
struct brw_vs_prog_key vs;
struct brw_tcs_prog_key tcs;
struct brw_tes_prog_key tes;
struct brw_gs_prog_key gs;
struct brw_wm_prog_key wm;
struct brw_cs_prog_key cs;
struct brw_bs_prog_key bs;
struct brw_task_prog_key task;
struct brw_mesh_prog_key mesh;
};
PRAGMA_DIAGNOSTIC_POP
/*
* Image metadata structure as laid out in the shader parameter
* buffer. Entries have to be 16B-aligned for the vec4 back-end to be
* able to use them. That's okay because the padding and any unused
* entries [most of them except when we're doing untyped surface
* access] will be removed by the uniform packing pass.
*/
#define BRW_IMAGE_PARAM_OFFSET_OFFSET 0
#define BRW_IMAGE_PARAM_SIZE_OFFSET 4
#define BRW_IMAGE_PARAM_STRIDE_OFFSET 8
#define BRW_IMAGE_PARAM_TILING_OFFSET 12
#define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 16
#define BRW_IMAGE_PARAM_SIZE 20
struct brw_image_param {
/** Offset applied to the X and Y surface coordinates. */
uint32_t offset[2];
/** Surface X, Y and Z dimensions. */
uint32_t size[3];
/** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
* pixels, vertical slice stride in pixels.
*/
uint32_t stride[4];
/** Log2 of the tiling modulus in the X, Y and Z dimension. */
uint32_t tiling[3];
/**
* Right shift to apply for bit 6 address swizzling. Two different
* swizzles can be specified and will be applied one after the other. The
* resulting address will be:
*
* addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
* (addr >> swizzling[1])))
*
* Use \c 0xff if any of the swizzles is not required.
*/
uint32_t swizzling[2];
};
/** Max number of render targets in a shader */
#define BRW_MAX_DRAW_BUFFERS 8
/**
* Binding table index for the first gfx6 SOL binding.
*/
#define BRW_GFX6_SOL_BINDING_START 0
struct brw_ubo_range
{
uint16_t block;
/* In units of 32-byte registers */
uint8_t start;
uint8_t length;
};
/* We reserve the first 2^16 values for builtins */
#define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
enum brw_param_builtin {
BRW_PARAM_BUILTIN_ZERO,
BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
BRW_PARAM_BUILTIN_PATCH_VERTICES_IN,
BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
BRW_PARAM_BUILTIN_SUBGROUP_ID,
BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X,
BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Y,
BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Z,
BRW_PARAM_BUILTIN_WORK_DIM,
};
#define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
(BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
#define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
(param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
#define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
(((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
#define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
(((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
enum brw_shader_reloc_id {
BRW_SHADER_RELOC_CONST_DATA_ADDR_LOW,
BRW_SHADER_RELOC_CONST_DATA_ADDR_HIGH,
BRW_SHADER_RELOC_SHADER_START_OFFSET,
BRW_SHADER_RELOC_RESUME_SBT_ADDR_LOW,
BRW_SHADER_RELOC_RESUME_SBT_ADDR_HIGH,
BRW_SHADER_RELOC_DESCRIPTORS_ADDR_HIGH,
};
enum brw_shader_reloc_type {
/** An arbitrary 32-bit value */
BRW_SHADER_RELOC_TYPE_U32,
/** A MOV instruction with an immediate source */
BRW_SHADER_RELOC_TYPE_MOV_IMM,
};
/** Represents a code relocation
*
* Relocatable constants are immediates in the code which we want to be able
* to replace post-compile with the actual value.
*/
struct brw_shader_reloc {
/** The 32-bit ID of the relocatable constant */
uint32_t id;
/** Type of this relocation */
enum brw_shader_reloc_type type;
/** The offset in the shader to the relocated value
*
* For MOV_IMM relocs, this is an offset to the MOV instruction. This
* allows us to do some sanity checking while we update the value.
*/
uint32_t offset;
/** Value to be added to the relocated value before it is written */
uint32_t delta;
};
/** A value to write to a relocation */
struct brw_shader_reloc_value {
/** The 32-bit ID of the relocatable constant */
uint32_t id;
/** The value with which to replace the relocated immediate */
uint32_t value;
};
struct brw_stage_prog_data {
struct brw_ubo_range ubo_ranges[4];
unsigned nr_params; /**< number of float params/constants */
gl_shader_stage stage;
/* zero_push_reg is a bitfield which indicates what push registers (if any)
* should be zeroed by SW at the start of the shader. The corresponding
* push_reg_mask_param specifies the param index (in 32-bit units) where
* the actual runtime 64-bit mask will be pushed. The shader will zero
* push reg i if
*
* reg_used & zero_push_reg & ~*push_reg_mask_param & (1ull << i)
*
* If this field is set, brw_compiler::compact_params must be false.
*/
uint64_t zero_push_reg;
unsigned push_reg_mask_param;
unsigned curb_read_length;
unsigned total_scratch;
unsigned total_shared;
unsigned program_size;
unsigned const_data_size;
unsigned const_data_offset;
unsigned num_relocs;
const struct brw_shader_reloc *relocs;
/** Does this program pull from any UBO or other constant buffers? */
bool has_ubo_pull;
/** How many ray queries objects in this shader. */
unsigned ray_queries;
/**
* Register where the thread expects to find input data from the URB
* (typically uniforms, followed by vertex or fragment attributes).
*/
unsigned dispatch_grf_start_reg;
bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
/* 32-bit identifiers for all push/pull parameters. These can be anything
* the driver wishes them to be; the core of the back-end compiler simply
* re-arranges them. The one restriction is that the bottom 2^16 values
* are reserved for builtins defined in the brw_param_builtin enum defined
* above.
*/
uint32_t *param;
/* Whether shader uses atomic operations. */
bool uses_atomic_load_store;
};
static inline uint32_t *
brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
unsigned nr_new_params)
{
unsigned old_nr_params = prog_data->nr_params;
prog_data->nr_params += nr_new_params;
prog_data->param = reralloc(ralloc_parent(prog_data->param),
prog_data->param, uint32_t,
prog_data->nr_params);
return prog_data->param + old_nr_params;
}
enum brw_barycentric_mode {
BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
BRW_BARYCENTRIC_MODE_COUNT = 6
};
#define BRW_BARYCENTRIC_PERSPECTIVE_BITS \
((1 << BRW_BARYCENTRIC_PERSPECTIVE_PIXEL) | \
(1 << BRW_BARYCENTRIC_PERSPECTIVE_CENTROID) | \
(1 << BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE))
#define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
(1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
(1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
enum brw_pixel_shader_computed_depth_mode {
BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
};
enum brw_wm_msaa_flags {
/** Must be set whenever any dynamic MSAA is used
*
* This flag mostly exists to let us assert that the driver understands
* dynamic MSAA so we don't run into trouble with drivers that don't.
*/
BRW_WM_MSAA_FLAG_ENABLE_DYNAMIC = (1 << 0),
/** True if the framebuffer is multisampled */
BRW_WM_MSAA_FLAG_MULTISAMPLE_FBO = (1 << 1),
/** True if this shader has been dispatched per-sample */
BRW_WM_MSAA_FLAG_PERSAMPLE_DISPATCH = (1 << 2),
/** True if inputs should be interpolated per-sample by default */
BRW_WM_MSAA_FLAG_PERSAMPLE_INTERP = (1 << 3),
/** True if this shader has been dispatched with alpha-to-coverage */
BRW_WM_MSAA_FLAG_ALPHA_TO_COVERAGE = (1 << 4),
/** True if this shader has been dispatched coarse
*
* This is intentionally chose to be bit 15 to correspond to the coarse bit
* in the pixel interpolator messages.
*/
BRW_WM_MSAA_FLAG_COARSE_PI_MSG = (1 << 15),
/** True if this shader has been dispatched coarse
*
* This is intentionally chose to be bit 18 to correspond to the coarse bit
* in the render target messages.
*/
BRW_WM_MSAA_FLAG_COARSE_RT_WRITES = (1 << 18),
};
MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(enum brw_wm_msaa_flags)
/* Data about a particular attempt to compile a program. Note that
* there can be many of these, each in a different GL state
* corresponding to a different brw_wm_prog_key struct, with different
* compiled programs.
*/
struct brw_wm_prog_data {
struct brw_stage_prog_data base;
unsigned num_per_primitive_inputs;
unsigned num_varying_inputs;
uint8_t reg_blocks_8;
uint8_t reg_blocks_16;
uint8_t reg_blocks_32;
uint8_t dispatch_grf_start_reg_16;
uint8_t dispatch_grf_start_reg_32;
uint32_t prog_offset_16;
uint32_t prog_offset_32;
struct {
/** @{
* surface indices the WM-specific surfaces
*/
uint32_t render_target_read_start;
/** @} */
} binding_table;
uint8_t color_outputs_written;
uint8_t computed_depth_mode;
bool computed_stencil;
bool early_fragment_tests;
bool post_depth_coverage;
bool inner_coverage;
bool dispatch_8;
bool dispatch_16;
bool dispatch_32;
bool dual_src_blend;
bool uses_pos_offset;
bool uses_omask;
bool uses_kill;
bool uses_src_depth;
bool uses_src_w;
bool uses_depth_w_coefficients;
bool uses_sample_mask;
bool uses_vmask;
bool has_render_target_reads;
bool has_side_effects;
bool pulls_bary;
bool contains_flat_varying;
bool contains_noperspective_varying;
/** True if the shader wants sample shading
*
* This corresponds to whether or not a gl_SampleId, gl_SamplePosition, or
* a sample-qualified input are used in the shader. It is independent of
* GL_MIN_SAMPLE_SHADING_VALUE in GL or minSampleShading in Vulkan.
*/
bool sample_shading;
/** Should this shader be dispatched per-sample */
enum brw_sometimes persample_dispatch;
/**
* Shader is ran at the coarse pixel shading dispatch rate (3DSTATE_CPS).
*/
enum brw_sometimes coarse_pixel_dispatch;
/**
* Shader writes the SampleMask and this is AND-ed with the API's
* SampleMask to generate a new coverage mask.
*/
enum brw_sometimes alpha_to_coverage;
unsigned msaa_flags_param;
/**
* Mask of which interpolation modes are required by the fragment shader.
* Those interpolations are delivered as part of the thread payload. Used
* in hardware setup on gfx6+.
*/
uint32_t barycentric_interp_modes;
/**
* Whether nonperspective interpolation modes are used by the
* barycentric_interp_modes or fragment shader through interpolator messages.
*/
bool uses_nonperspective_interp_modes;
/**
* Mask of which FS inputs are marked flat by the shader source. This is
* needed for setting up 3DSTATE_SF/SBE.
*/
uint32_t flat_inputs;
/**
* The FS inputs
*/
uint64_t inputs;
/* Mapping of VUE slots to interpolation modes.
* Used by the Gfx4-5 clip/sf/wm stages.
*/
unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
/**
* Map from gl_varying_slot to the position within the FS setup data
* payload where the varying's attribute vertex deltas should be delivered.
* For varying slots that are not used by the FS, the value is -1.
*/
int urb_setup[VARYING_SLOT_MAX];
int urb_setup_channel[VARYING_SLOT_MAX];
/**
* Cache structure into the urb_setup array above that contains the
* attribute numbers of active varyings out of urb_setup.
* The actual count is stored in urb_setup_attribs_count.
*/
uint8_t urb_setup_attribs[VARYING_SLOT_MAX];
uint8_t urb_setup_attribs_count;
};
/** Returns the SIMD width corresponding to a given KSP index
*
* The "Variable Pixel Dispatch" table in the PRM (which can be found, for
* example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
* kernel start pointer (KSP) indices that is based on what dispatch widths
* are enabled. This function provides, effectively, the reverse mapping.
*
* If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
* width of 8, 16, or 32 is returned. If the KSP is invalid, 0 is returned.
*/
static inline unsigned
brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
bool simd16_enabled, bool simd32_enabled)
{
/* This function strictly ignores contiguous dispatch */
switch (ksp_idx) {
case 0:
return simd8_enabled ? 8 :
(simd16_enabled && !simd32_enabled) ? 16 :
(simd32_enabled && !simd16_enabled) ? 32 : 0;
case 1:
return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
case 2:
return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
default:
unreachable("Invalid KSP index");
}
}
#define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
(wm_state)._16PixelDispatchEnable, \
(wm_state)._32PixelDispatchEnable)
#define brw_wm_state_has_ksp(wm_state, ksp_idx) \
(brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
static inline uint32_t
_brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data,
unsigned simd_width)
{
switch (simd_width) {
case 8: return 0;
case 16: return prog_data->prog_offset_16;
case 32: return prog_data->prog_offset_32;
default: return 0;
}
}
#define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
_brw_wm_prog_data_prog_offset(prog_data, \
brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
static inline uint8_t
_brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data,
unsigned simd_width)
{
switch (simd_width) {
case 8: return prog_data->base.dispatch_grf_start_reg;
case 16: return prog_data->dispatch_grf_start_reg_16;
case 32: return prog_data->dispatch_grf_start_reg_32;
default: return 0;
}
}
#define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
_brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \
brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
static inline uint8_t
_brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data *prog_data,
unsigned simd_width)
{
switch (simd_width) {
case 8: return prog_data->reg_blocks_8;
case 16: return prog_data->reg_blocks_16;
case 32: return prog_data->reg_blocks_32;
default: return 0;
}
}
#define brw_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \
_brw_wm_prog_data_reg_blocks(prog_data, \
brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
static inline bool
brw_wm_prog_data_is_persample(const struct brw_wm_prog_data *prog_data,
enum brw_wm_msaa_flags pushed_msaa_flags)
{
if (pushed_msaa_flags & BRW_WM_MSAA_FLAG_ENABLE_DYNAMIC) {
if (!(pushed_msaa_flags & BRW_WM_MSAA_FLAG_MULTISAMPLE_FBO))
return false;
if (prog_data->sample_shading)
assert(pushed_msaa_flags & BRW_WM_MSAA_FLAG_PERSAMPLE_DISPATCH);
if (pushed_msaa_flags & BRW_WM_MSAA_FLAG_PERSAMPLE_DISPATCH)
assert(prog_data->persample_dispatch != BRW_NEVER);
else
assert(prog_data->persample_dispatch != BRW_ALWAYS);
return (pushed_msaa_flags & BRW_WM_MSAA_FLAG_PERSAMPLE_DISPATCH) != 0;
}
assert(prog_data->persample_dispatch == BRW_ALWAYS ||
prog_data->persample_dispatch == BRW_NEVER);
return prog_data->persample_dispatch;
}
static inline uint32_t
wm_prog_data_barycentric_modes(const struct brw_wm_prog_data *prog_data,
enum brw_wm_msaa_flags pushed_msaa_flags)
{
uint32_t modes = prog_data->barycentric_interp_modes;
/* In the non dynamic case, we can just return the computed modes from
* compilation time.
*/
if (!(pushed_msaa_flags & BRW_WM_MSAA_FLAG_ENABLE_DYNAMIC))
return modes;
if (pushed_msaa_flags & BRW_WM_MSAA_FLAG_PERSAMPLE_INTERP) {
assert(prog_data->persample_dispatch == BRW_ALWAYS ||
(pushed_msaa_flags & BRW_WM_MSAA_FLAG_PERSAMPLE_DISPATCH));
/* Making dynamic per-sample interpolation work is a bit tricky. The
* hardware will hang if SAMPLE is requested but per-sample dispatch is
* not enabled. This means we can't preemptively add SAMPLE to the
* barycentrics bitfield. Instead, we have to add it late and only
* on-demand. Annoyingly, changing the number of barycentrics requested
* changes the whole PS shader payload so we very much don't want to do
* that. Instead, if the dynamic per-sample interpolation flag is set,
* we check to see if SAMPLE was requested and, if not, replace the
* highest barycentric bit in the [non]perspective grouping (CENTROID,
* if it exists, else PIXEL) with SAMPLE. The shader will stomp all the
* barycentrics in the shader with SAMPLE so it really doesn't matter
* which one we replace. The important thing is that we keep the number
* of barycentrics in each [non]perspective grouping the same.
*/
if ((modes & BRW_BARYCENTRIC_PERSPECTIVE_BITS) &&
!(modes & BITFIELD_BIT(BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE))) {
int sample_mode =
util_last_bit(modes & BRW_BARYCENTRIC_PERSPECTIVE_BITS) - 1;
assert(modes & BITFIELD_BIT(sample_mode));
modes &= ~BITFIELD_BIT(sample_mode);
modes |= BITFIELD_BIT(BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE);
}
if ((modes & BRW_BARYCENTRIC_NONPERSPECTIVE_BITS) &&
!(modes & BITFIELD_BIT(BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))) {
int sample_mode =
util_last_bit(modes & BRW_BARYCENTRIC_NONPERSPECTIVE_BITS) - 1;
assert(modes & BITFIELD_BIT(sample_mode));
modes &= ~BITFIELD_BIT(sample_mode);
modes |= BITFIELD_BIT(BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE);
}
} else {
/* If we're not using per-sample interpolation, we need to disable the
* per-sample bits.
*
* SKL PRMs, Volume 2a: Command Reference: Instructions,
* 3DSTATE_WM:Barycentric Interpolation Mode:
* "MSDISPMODE_PERSAMPLE is required in order to select Perspective
* Sample or Non-perspective Sample barycentric coordinates."
*/
modes &= ~(BITFIELD_BIT(BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE) |
BITFIELD_BIT(BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE));
}
return modes;
}
static inline bool
brw_wm_prog_data_is_coarse(const struct brw_wm_prog_data *prog_data,
enum brw_wm_msaa_flags pushed_msaa_flags)
{
if (pushed_msaa_flags & BRW_WM_MSAA_FLAG_ENABLE_DYNAMIC) {
if (pushed_msaa_flags & BRW_WM_MSAA_FLAG_COARSE_RT_WRITES)
assert(prog_data->coarse_pixel_dispatch != BRW_NEVER);
else
assert(prog_data->coarse_pixel_dispatch != BRW_ALWAYS);
return pushed_msaa_flags & BRW_WM_MSAA_FLAG_COARSE_RT_WRITES;
}
assert(prog_data->coarse_pixel_dispatch == BRW_ALWAYS ||
prog_data->coarse_pixel_dispatch == BRW_NEVER);
return prog_data->coarse_pixel_dispatch;
}
struct brw_push_const_block {
unsigned dwords; /* Dword count, not reg aligned */
unsigned regs;
unsigned size; /* Bytes, register aligned */
};
struct brw_cs_prog_data {
struct brw_stage_prog_data base;
unsigned local_size[3];
/* Program offsets for the 8/16/32 SIMD variants. Multiple variants are
* kept when using variable group size, and the right one can only be
* decided at dispatch time.
*/
unsigned prog_offset[3];
/* Bitmask indicating which program offsets are valid. */
unsigned prog_mask;
/* Bitmask indicating which programs have spilled. */
unsigned prog_spilled;
bool uses_barrier;
bool uses_num_work_groups;
bool uses_inline_data;
bool uses_btd_stack_ids;
struct {
struct brw_push_const_block cross_thread;
struct brw_push_const_block per_thread;
} push;
struct {
/** @{
* surface indices the CS-specific surfaces
*/
uint32_t work_groups_start;
/** @} */
} binding_table;
};
static inline uint32_t
brw_cs_prog_data_prog_offset(const struct brw_cs_prog_data *prog_data,
unsigned dispatch_width)
{
assert(dispatch_width == 8 ||
dispatch_width == 16 ||
dispatch_width == 32);
const unsigned index = dispatch_width / 16;
assert(prog_data->prog_mask & (1 << index));
return prog_data->prog_offset[index];
}
struct brw_bs_prog_data {
struct brw_stage_prog_data base;
/** SIMD size of the root shader */
uint8_t simd_size;
/** Maximum stack size of all shaders */
uint32_t max_stack_size;
/** Offset into the shader where the resume SBT is located */
uint32_t resume_sbt_offset;
/** Number of resume shaders */
uint32_t num_resume_shaders;
};
struct brw_ff_gs_prog_data {
unsigned urb_read_length;
unsigned total_grf;
/**
* Gfx6 transform feedback: Amount by which the streaming vertex buffer
* indices should be incremented each time the GS is invoked.
*/
unsigned svbi_postincrement_value;
};
/**
* Enum representing the i965-specific vertex results that don't correspond
* exactly to any element of gl_varying_slot. The values of this enum are
* assigned such that they don't conflict with gl_varying_slot.
*/
typedef enum
{
BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
BRW_VARYING_SLOT_PAD,
/**
* Technically this is not a varying but just a placeholder that
* compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
* builtin variable to be compiled correctly. see compile_sf_prog() for
* more info.
*/
BRW_VARYING_SLOT_PNTC,
BRW_VARYING_SLOT_COUNT
} brw_varying_slot;
/**
* We always program SF to start reading at an offset of 1 (2 varying slots)
* from the start of the vertex URB entry. This causes it to skip:
* - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gfx4-5
* - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gfx6+
*/
#define BRW_SF_URB_ENTRY_READ_OFFSET 1
/**
* Bitmask indicating which fragment shader inputs represent varyings (and
* hence have to be delivered to the fragment shader by the SF/SBE stage).
*/
#define BRW_FS_VARYING_INPUT_MASK \
(BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
~VARYING_BIT_POS & ~VARYING_BIT_FACE)
/**
* Data structure recording the relationship between the gl_varying_slot enum
* and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
* single octaword within the VUE (128 bits).
*
* Note that each BRW register contains 256 bits (2 octawords), so when
* accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
* consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
* in a vertex shader), each register corresponds to a single VUE slot, since
* it contains data for two separate vertices.
*/
struct brw_vue_map {
/**
* Bitfield representing all varying slots that are (a) stored in this VUE
* map, and (b) actually written by the shader. Does not include any of
* the additional varying slots defined in brw_varying_slot.
*/
uint64_t slots_valid;
/**
* Is this VUE map for a separate shader pipeline?
*
* Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
* without the linker having a chance to dead code eliminate unused varyings.
*
* This means that we have to use a fixed slot layout, based on the output's
* location field, rather than assigning slots in a compact contiguous block.
*/
bool separate;
/**
* Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
* not stored in a slot (because they are not written, or because
* additional processing is applied before storing them in the VUE), the
* value is -1.
*/
signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
/**
* Map from VUE slot to gl_varying_slot value. For slots that do not
* directly correspond to a gl_varying_slot, the value comes from
* brw_varying_slot.
*
* For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
*/
signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
/**
* Total number of VUE slots in use
*/
int num_slots;
/**
* Number of position VUE slots. If num_pos_slots > 1, primitive
* replication is being used.
*/
int num_pos_slots;
/**
* Number of per-patch VUE slots. Only valid for tessellation control
* shader outputs and tessellation evaluation shader inputs.
*/
int num_per_patch_slots;
/**
* Number of per-vertex VUE slots. Only valid for tessellation control
* shader outputs and tessellation evaluation shader inputs.
*/
int num_per_vertex_slots;
};
void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map,
gl_shader_stage stage);
/**
* Convert a VUE slot number into a byte offset within the VUE.
*/
static inline unsigned brw_vue_slot_to_offset(unsigned slot)
{
return 16*slot;
}
/**
* Convert a vertex output (brw_varying_slot) into a byte offset within the
* VUE.
*/
static inline unsigned
brw_varying_to_offset(const struct brw_vue_map *vue_map, unsigned varying)
{
return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
}
void brw_compute_vue_map(const struct intel_device_info *devinfo,
struct brw_vue_map *vue_map,
uint64_t slots_valid,
bool separate_shader,
uint32_t pos_slots);
void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
uint64_t slots_valid,
uint32_t is_patch);
/* brw_interpolation_map.c */
void brw_setup_vue_interpolation(const struct brw_vue_map *vue_map,
struct nir_shader *nir,
struct brw_wm_prog_data *prog_data);
enum shader_dispatch_mode {
DISPATCH_MODE_4X1_SINGLE = 0,
DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
DISPATCH_MODE_SIMD8 = 3,
DISPATCH_MODE_TCS_SINGLE_PATCH = 0,
DISPATCH_MODE_TCS_MULTI_PATCH = 2,
};
/**
* @defgroup Tessellator parameter enumerations.
*
* These correspond to the hardware values in 3DSTATE_TE, and are provided
* as part of the tessellation evaluation shader.
*
* @{
*/
enum brw_tess_partitioning {
BRW_TESS_PARTITIONING_INTEGER = 0,
BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
};
enum brw_tess_output_topology {
BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
};
enum brw_tess_domain {
BRW_TESS_DOMAIN_QUAD = 0,
BRW_TESS_DOMAIN_TRI = 1,
BRW_TESS_DOMAIN_ISOLINE = 2,
};
/** @} */
struct brw_vue_prog_data {
struct brw_stage_prog_data base;
struct brw_vue_map vue_map;
/** Should the hardware deliver input VUE handles for URB pull loads? */
bool include_vue_handles;
unsigned urb_read_length;
unsigned total_grf;
uint32_t clip_distance_mask;
uint32_t cull_distance_mask;
/* Used for calculating urb partitions. In the VS, this is the size of the
* URB entry used for both input and output to the thread. In the GS, this
* is the size of the URB entry used for output.
*/
unsigned urb_entry_size;
enum shader_dispatch_mode dispatch_mode;
};
struct brw_vs_prog_data {
struct brw_vue_prog_data base;
uint64_t inputs_read;
uint64_t double_inputs_read;
unsigned nr_attribute_slots;
bool uses_vertexid;
bool uses_instanceid;
bool uses_is_indexed_draw;
bool uses_firstvertex;
bool uses_baseinstance;
bool uses_drawid;
};
struct brw_tcs_prog_data
{
struct brw_vue_prog_data base;
/** Should the non-SINGLE_PATCH payload provide primitive ID? */
bool include_primitive_id;
/** Number vertices in output patch */
int instances;
/** Track patch count threshold */
int patch_count_threshold;
};
struct brw_tes_prog_data
{
struct brw_vue_prog_data base;
enum brw_tess_partitioning partitioning;
enum brw_tess_output_topology output_topology;
enum brw_tess_domain domain;
bool include_primitive_id;
};
struct brw_gs_prog_data
{
struct brw_vue_prog_data base;
unsigned vertices_in;
/**
* Size of an output vertex, measured in HWORDS (32 bytes).
*/
unsigned output_vertex_size_hwords;
unsigned output_topology;
/**
* Size of the control data (cut bits or StreamID bits), in hwords (32
* bytes). 0 if there is no control data.
*/
unsigned control_data_header_size_hwords;
/**
* Format of the control data (either GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
* if the control data is StreamID bits, or
* GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
* Ignored if control_data_header_size is 0.
*/
unsigned control_data_format;
bool include_primitive_id;
/**
* The number of vertices emitted, if constant - otherwise -1.
*/
int static_vertex_count;
int invocations;
/**
* Gfx6: Provoking vertex convention for odd-numbered triangles
* in tristrips.
*/
unsigned pv_first:1;
/**
* Gfx6: Number of varyings that are output to transform feedback.
*/
unsigned num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
/**
* Gfx6: Map from the index of a transform feedback binding table entry to the
* gl_varying_slot that should be streamed out through that binding table
* entry.
*/
unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
/**
* Gfx6: Map from the index of a transform feedback binding table entry to the
* swizzles that should be used when streaming out data through that
* binding table entry.
*/
unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
};
struct brw_sf_prog_data {
uint32_t urb_read_length;
uint32_t total_grf;
/* Each vertex may have up to 12 attributes, 4 components each,
* except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
* rows.
*
* Actually we use 4 for each, so call it 12 rows.
*/
unsigned urb_entry_size;
};
struct brw_clip_prog_data {
uint32_t curb_read_length; /* user planes? */
uint32_t clip_mode;
uint32_t urb_read_length;
uint32_t total_grf;
};
struct brw_tue_map {
uint32_t size_dw;
uint32_t per_task_data_start_dw;
};
struct brw_mue_map {
int32_t start_dw[VARYING_SLOT_MAX];
uint32_t len_dw[VARYING_SLOT_MAX];
uint32_t per_primitive_indices_dw;
uint32_t size_dw;
uint32_t max_primitives;
uint32_t per_primitive_start_dw;
uint32_t per_primitive_header_size_dw;
uint32_t per_primitive_data_size_dw;
uint32_t per_primitive_pitch_dw;
bool user_data_in_primitive_header;
uint32_t max_vertices;
uint32_t per_vertex_start_dw;
uint32_t per_vertex_header_size_dw;
uint32_t per_vertex_data_size_dw;
uint32_t per_vertex_pitch_dw;
bool user_data_in_vertex_header;
};
struct brw_task_prog_data {
struct brw_cs_prog_data base;
struct brw_tue_map map;
bool uses_drawid;
};
enum brw_mesh_index_format {
BRW_INDEX_FORMAT_U32,
BRW_INDEX_FORMAT_U888X,
};
struct brw_mesh_prog_data {
struct brw_cs_prog_data base;
struct brw_mue_map map;
uint32_t clip_distance_mask;
uint32_t cull_distance_mask;
uint16_t primitive_type;
enum brw_mesh_index_format index_format;
bool uses_drawid;
};
/* brw_any_prog_data is prog_data for any stage that maps to an API stage */
union brw_any_prog_data {
struct brw_stage_prog_data base;
struct brw_vue_prog_data vue;
struct brw_vs_prog_data vs;
struct brw_tcs_prog_data tcs;
struct brw_tes_prog_data tes;
struct brw_gs_prog_data gs;
struct brw_wm_prog_data wm;
struct brw_cs_prog_data cs;
struct brw_bs_prog_data bs;
struct brw_task_prog_data task;
struct brw_mesh_prog_data mesh;
};
#define DEFINE_PROG_DATA_DOWNCAST(STAGE, CHECK) \
static inline struct brw_##STAGE##_prog_data * \
brw_##STAGE##_prog_data(struct brw_stage_prog_data *prog_data) \
{ \
if (prog_data) \
assert(CHECK); \
return (struct brw_##STAGE##_prog_data *) prog_data; \
} \
static inline const struct brw_##STAGE##_prog_data * \
brw_##STAGE##_prog_data_const(const struct brw_stage_prog_data *prog_data) \
{ \
if (prog_data) \
assert(CHECK); \
return (const struct brw_##STAGE##_prog_data *) prog_data; \
}
DEFINE_PROG_DATA_DOWNCAST(vs, prog_data->stage == MESA_SHADER_VERTEX)
DEFINE_PROG_DATA_DOWNCAST(tcs, prog_data->stage == MESA_SHADER_TESS_CTRL)
DEFINE_PROG_DATA_DOWNCAST(tes, prog_data->stage == MESA_SHADER_TESS_EVAL)
DEFINE_PROG_DATA_DOWNCAST(gs, prog_data->stage == MESA_SHADER_GEOMETRY)
DEFINE_PROG_DATA_DOWNCAST(wm, prog_data->stage == MESA_SHADER_FRAGMENT)
DEFINE_PROG_DATA_DOWNCAST(cs, gl_shader_stage_uses_workgroup(prog_data->stage))
DEFINE_PROG_DATA_DOWNCAST(bs, brw_shader_stage_is_bindless(prog_data->stage))
DEFINE_PROG_DATA_DOWNCAST(vue, prog_data->stage == MESA_SHADER_VERTEX ||
prog_data->stage == MESA_SHADER_TESS_CTRL ||
prog_data->stage == MESA_SHADER_TESS_EVAL ||
prog_data->stage == MESA_SHADER_GEOMETRY)
DEFINE_PROG_DATA_DOWNCAST(task, prog_data->stage == MESA_SHADER_TASK)
DEFINE_PROG_DATA_DOWNCAST(mesh, prog_data->stage == MESA_SHADER_MESH)
/* These are not really brw_stage_prog_data. */
DEFINE_PROG_DATA_DOWNCAST(ff_gs, true)
DEFINE_PROG_DATA_DOWNCAST(clip, true)
DEFINE_PROG_DATA_DOWNCAST(sf, true)
#undef DEFINE_PROG_DATA_DOWNCAST
struct brw_compile_stats {
uint32_t dispatch_width; /**< 0 for vec4 */
uint32_t max_dispatch_width;
uint32_t instructions;
uint32_t sends;
uint32_t loops;
uint32_t cycles;
uint32_t spills;
uint32_t fills;
uint32_t max_live_registers;
};
/** @} */
struct brw_compiler *
brw_compiler_create(void *mem_ctx, const struct intel_device_info *devinfo);
/**
* Returns a compiler configuration for use with disk shader cache
*
* This value only needs to change for settings that can cause different
* program generation between two runs on the same hardware.
*
* For example, it doesn't need to be different for gen 8 and gen 9 hardware,
* but it does need to be different if INTEL_DEBUG=nocompact is or isn't used.
*/
uint64_t
brw_get_compiler_config_value(const struct brw_compiler *compiler);
unsigned
brw_prog_data_size(gl_shader_stage stage);
unsigned
brw_prog_key_size(gl_shader_stage stage);
struct brw_compile_params {
void *mem_ctx;
nir_shader *nir;
struct brw_compile_stats *stats;
void *log_data;
char *error_str;
uint64_t debug_flag;
uint32_t source_hash;
};
/**
* Parameters for compiling a vertex shader.
*
* Some of these will be modified during the shader compilation.
*/
struct brw_compile_vs_params {
struct brw_compile_params base;
const struct brw_vs_prog_key *key;
struct brw_vs_prog_data *prog_data;
bool edgeflag_is_last; /* true for gallium */
};
/**
* Compile a vertex shader.
*
* Returns the final assembly and updates the parameters structure.
*/
const unsigned *
brw_compile_vs(const struct brw_compiler *compiler,
struct brw_compile_vs_params *params);
/**
* Parameters for compiling a tessellation control shader.
*
* Some of these will be modified during the shader compilation.
*/
struct brw_compile_tcs_params {
struct brw_compile_params base;
const struct brw_tcs_prog_key *key;
struct brw_tcs_prog_data *prog_data;
};
/**
* Compile a tessellation control shader.
*
* Returns the final assembly and updates the parameters structure.
*/
const unsigned *
brw_compile_tcs(const struct brw_compiler *compiler,
struct brw_compile_tcs_params *params);
/**
* Parameters for compiling a tessellation evaluation shader.
*
* Some of these will be modified during the shader compilation.
*/
struct brw_compile_tes_params {
struct brw_compile_params base;
const struct brw_tes_prog_key *key;
struct brw_tes_prog_data *prog_data;
const struct brw_vue_map *input_vue_map;
};
/**
* Compile a tessellation evaluation shader.
*
* Returns the final assembly and updates the parameters structure.
*/
const unsigned *
brw_compile_tes(const struct brw_compiler *compiler,
struct brw_compile_tes_params *params);
/**
* Parameters for compiling a geometry shader.
*
* Some of these will be modified during the shader compilation.
*/
struct brw_compile_gs_params {
struct brw_compile_params base;
const struct brw_gs_prog_key *key;
struct brw_gs_prog_data *prog_data;
};
/**
* Compile a geometry shader.
*
* Returns the final assembly and updates the parameters structure.
*/
const unsigned *
brw_compile_gs(const struct brw_compiler *compiler,
struct brw_compile_gs_params *params);
/**
* Compile a strips and fans shader.
*
* This is a fixed-function shader determined entirely by the shader key and
* a VUE map.
*
* Returns the final assembly and the program's size.
*/
const unsigned *
brw_compile_sf(const struct brw_compiler *compiler,
void *mem_ctx,
const struct brw_sf_prog_key *key,
struct brw_sf_prog_data *prog_data,
struct brw_vue_map *vue_map,
unsigned *final_assembly_size);
/**
* Compile a clipper shader.
*
* This is a fixed-function shader determined entirely by the shader key and
* a VUE map.
*
* Returns the final assembly and the program's size.
*/
const unsigned *
brw_compile_clip(const struct brw_compiler *compiler,
void *mem_ctx,
const struct brw_clip_prog_key *key,
struct brw_clip_prog_data *prog_data,
struct brw_vue_map *vue_map,
unsigned *final_assembly_size);
struct brw_compile_task_params {
struct brw_compile_params base;
const struct brw_task_prog_key *key;
struct brw_task_prog_data *prog_data;
};
const unsigned *
brw_compile_task(const struct brw_compiler *compiler,
struct brw_compile_task_params *params);
struct brw_compile_mesh_params {
struct brw_compile_params base;
const struct brw_mesh_prog_key *key;
struct brw_mesh_prog_data *prog_data;
const struct brw_tue_map *tue_map;
};
const unsigned *
brw_compile_mesh(const struct brw_compiler *compiler,
struct brw_compile_mesh_params *params);
/**
* Parameters for compiling a fragment shader.
*
* Some of these will be modified during the shader compilation.
*/
struct brw_compile_fs_params {
struct brw_compile_params base;
const struct brw_wm_prog_key *key;
struct brw_wm_prog_data *prog_data;
const struct brw_vue_map *vue_map;
const struct brw_mue_map *mue_map;
bool allow_spilling;
bool use_rep_send;
};
/**
* Compile a fragment shader.
*
* Returns the final assembly and updates the parameters structure.
*/
const unsigned *
brw_compile_fs(const struct brw_compiler *compiler,
struct brw_compile_fs_params *params);
/**
* Parameters for compiling a compute shader.
*
* Some of these will be modified during the shader compilation.
*/
struct brw_compile_cs_params {
struct brw_compile_params base;
const struct brw_cs_prog_key *key;
struct brw_cs_prog_data *prog_data;
};
/**
* Compile a compute shader.
*
* Returns the final assembly and updates the parameters structure.
*/
const unsigned *
brw_compile_cs(const struct brw_compiler *compiler,
struct brw_compile_cs_params *params);
/**
* Parameters for compiling a Bindless shader.
*
* Some of these will be modified during the shader compilation.
*/
struct brw_compile_bs_params {
struct brw_compile_params base;
const struct brw_bs_prog_key *key;
struct brw_bs_prog_data *prog_data;
unsigned num_resume_shaders;
struct nir_shader **resume_shaders;
};
/**
* Compile a Bindless shader.
*
* Returns the final assembly and updates the parameters structure.
*/
const unsigned *
brw_compile_bs(const struct brw_compiler *compiler,
struct brw_compile_bs_params *params);
/**
* Compile a fixed function geometry shader.
*
* Returns the final assembly and the program's size.
*/
const unsigned *
brw_compile_ff_gs_prog(struct brw_compiler *compiler,
void *mem_ctx,
const struct brw_ff_gs_prog_key *key,
struct brw_ff_gs_prog_data *prog_data,
struct brw_vue_map *vue_map,
unsigned *final_assembly_size);
void brw_debug_key_recompile(const struct brw_compiler *c, void *log,
gl_shader_stage stage,
const struct brw_base_prog_key *old_key,
const struct brw_base_prog_key *key);
/* Shared Local Memory Size is specified as powers of two,
* and also have a Gen-dependent minimum value if not zero.
*/
static inline uint32_t
intel_calculate_slm_size(unsigned gen, uint32_t bytes)
{
assert(bytes <= 64 * 1024);
if (bytes > 0)
return MAX2(util_next_power_of_two(bytes), gen >= 9 ? 1024 : 4096);
else
return 0;
}
static inline uint32_t
encode_slm_size(unsigned gen, uint32_t bytes)
{
uint32_t slm_size = 0;
/* Shared Local Memory is specified as powers of two, and encoded in
* INTERFACE_DESCRIPTOR_DATA with the following representations:
*
* Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
* -------------------------------------------------------------------
* Gfx7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
* -------------------------------------------------------------------
* Gfx9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
*/
if (bytes > 0) {
slm_size = intel_calculate_slm_size(gen, bytes);
assert(util_is_power_of_two_nonzero(slm_size));
if (gen >= 9) {
/* Turn an exponent of 10 (1024 kB) into 1. */
assert(slm_size >= 1024);
slm_size = ffs(slm_size) - 10;
} else {
assert(slm_size >= 4096);
/* Convert to the pre-Gfx9 representation. */
slm_size = slm_size / 4096;
}
}
return slm_size;
}
unsigned
brw_cs_push_const_total_size(const struct brw_cs_prog_data *cs_prog_data,
unsigned threads);
void
brw_write_shader_relocs(const struct brw_isa_info *isa,
void *program,
const struct brw_stage_prog_data *prog_data,
struct brw_shader_reloc_value *values,
unsigned num_values);
struct brw_cs_dispatch_info {
uint32_t group_size;
uint32_t simd_size;
uint32_t threads;
/* RightExecutionMask field used in GPGPU_WALKER. */
uint32_t right_mask;
};
/**
* Get the dispatch information for a shader to be used with GPGPU_WALKER and
* similar instructions.
*
* If override_local_size is not NULL, it must to point to a 3-element that
* will override the value from prog_data->local_size. This is used by
* ARB_compute_variable_group_size, where the size is set only at dispatch
* time (so prog_data is outdated).
*/
struct brw_cs_dispatch_info
brw_cs_get_dispatch_info(const struct intel_device_info *devinfo,
const struct brw_cs_prog_data *prog_data,
const unsigned *override_local_size);
/**
* Return true if the given shader stage is dispatched contiguously by the
* relevant fixed function starting from channel 0 of the SIMD thread, which
* implies that the dispatch mask of a thread can be assumed to have the form
* '2^n - 1' for some n.
*/
static inline bool
brw_stage_has_packed_dispatch(ASSERTED const struct intel_device_info *devinfo,
gl_shader_stage stage,
const struct brw_stage_prog_data *prog_data)
{
/* The code below makes assumptions about the hardware's thread dispatch
* behavior that could be proven wrong in future generations -- Make sure
* to do a full test run with brw_fs_test_dispatch_packing() hooked up to
* the NIR front-end before changing this assertion.
*/
assert(devinfo->ver <= 12);
switch (stage) {
case MESA_SHADER_FRAGMENT: {
/* The PSD discards subspans coming in with no lit samples, which in the
* per-pixel shading case implies that each subspan will either be fully
* lit (due to the VMask being used to allow derivative computations),
* or not dispatched at all. In per-sample dispatch mode individual
* samples from the same subspan have a fixed relative location within
* the SIMD thread, so dispatch of unlit samples cannot be avoided in
* general and we should return false.
*/
const struct brw_wm_prog_data *wm_prog_data =
(const struct brw_wm_prog_data *)prog_data;
return devinfo->verx10 < 125 &&
!wm_prog_data->persample_dispatch &&
wm_prog_data->uses_vmask;
}
case MESA_SHADER_COMPUTE:
/* Compute shaders will be spawned with either a fully enabled dispatch
* mask or with whatever bottom/right execution mask was given to the
* GPGPU walker command to be used along the workgroup edges -- In both
* cases the dispatch mask is required to be tightly packed for our
* invocation index calculations to work.
*/
return true;
default:
/* Most remaining fixed functions are limited to use a packed dispatch
* mask due to the hardware representation of the dispatch mask as a
* single counter representing the number of enabled channels.
*/
return true;
}
}
/**
* Computes the first varying slot in the URB produced by the previous stage
* that is used in the next stage. We do this by testing the varying slots in
* the previous stage's vue map against the inputs read in the next stage.
*
* Note that:
*
* - Each URB offset contains two varying slots and we can only skip a
* full offset if both slots are unused, so the value we return here is always
* rounded down to the closest multiple of two.
*
* - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
* part of the vue header, so if these are read we can't skip anything.
*/
static inline int
brw_compute_first_urb_slot_required(uint64_t inputs_read,
const struct brw_vue_map *prev_stage_vue_map)
{
if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PRIMITIVE_SHADING_RATE)) == 0) {
for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
int varying = prev_stage_vue_map->slot_to_varying[i];
if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
return ROUND_DOWN_TO(i, 2);
}
}
return 0;
}
/* From InlineData in 3DSTATE_TASK_SHADER_DATA and 3DSTATE_MESH_SHADER_DATA. */
#define BRW_TASK_MESH_INLINE_DATA_SIZE_DW 8
/* InlineData[0-1] is used for Vulkan descriptor. */
#define BRW_TASK_MESH_PUSH_CONSTANTS_START_DW 2
#define BRW_TASK_MESH_PUSH_CONSTANTS_SIZE_DW \
(BRW_TASK_MESH_INLINE_DATA_SIZE_DW - BRW_TASK_MESH_PUSH_CONSTANTS_START_DW)
/**
* This enum is used as the base indice of the nir_load_topology_id_intel
* intrinsic. This is used to return different values based on some aspect of
* the topology of the device.
*/
enum brw_topology_id
{
/* A value based of the DSS identifier the shader is currently running on.
* Be mindful that the DSS ID can be higher than the total number of DSS on
* the device. This is because of the fusing that can occur on different
* parts.
*/
BRW_TOPOLOGY_ID_DSS,
/* A value composed of EU ID, thread ID & SIMD lane ID. */
BRW_TOPOLOGY_ID_EU_THREAD_SIMD,
};
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif /* BRW_COMPILER_H */