mesa/src/compiler/nir/nir_opt_copy_prop_vars.c
Caio Marcelo de Oliveira Filho 73572abc2a nir: Add scoped_memory_barrier intrinsic
Add a NIR instrinsic that represent a memory barrier in SPIR-V /
Vulkan Memory Model, with extra attributes that describe the barrier:

- Ordering: whether is an Acquire or Release;
- "Cache control": availability ("ensure this gets written in the memory")
  and visibility ("ensure my cache is up to date when I'm reading");
- Variable modes: which memory types this barrier applies to;
- Scope: how far this barrier applies.

Note that unlike in SPIR-V, the "Storage Semantics" and the "Memory
Semantics" are split into two different attributes so we can use
variable modes for the former.

NIR passes that took barriers in consideration were also changed

- nir_opt_copy_prop_vars: clean up the values for the mode of an
  ACQUIRE barrier.  Copy propagation effect is to "pull up a load" (by
  not performing it), which is what ACQUIRE restricts.

- nir_opt_dead_write_vars and nir_opt_combine_writes: clean up the
  pending writes for the modes of an RELEASE barrier.  Dead writes
  effect is to "push down a store", which is what RELEASE restricts.

- nir_opt_access: treat the ACQUIRE and RELEASE as a full barrier for
  the modes.  This is conservative, but since this is a GL-specific
  pass, doesn't make a difference for now.

v2: Fix the scoped barrier handling in copy propagation.  (Jason)
    Add scoped barrier handling to nir_opt_access and
    nir_opt_combine_writes.  (Rhys)

Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
Reviewed-by: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl>
2019-10-24 11:39:55 -07:00

1180 lines
39 KiB
C

/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir.h"
#include "nir_builder.h"
#include "nir_deref.h"
#include "util/bitscan.h"
#include "util/u_dynarray.h"
static const bool debug = false;
/**
* Variable-based copy propagation
*
* Normally, NIR trusts in SSA form for most of its copy-propagation needs.
* However, there are cases, especially when dealing with indirects, where SSA
* won't help you. This pass is for those times. Specifically, it handles
* the following things that the rest of NIR can't:
*
* 1) Copy-propagation on variables that have indirect access. This includes
* propagating from indirect stores into indirect loads.
*
* 2) Removal of redundant load_deref intrinsics. We can't trust regular CSE
* to do this because it isn't aware of variable writes that may alias the
* value and make the former load invalid.
*
* This pass uses an intermediate solution between being local / "per-block"
* and a complete data-flow analysis. It follows the control flow graph, and
* propagate the available copy information forward, invalidating data at each
* cf_node.
*
* Removal of dead writes to variables is handled by another pass.
*/
struct vars_written {
nir_variable_mode modes;
/* Key is deref and value is the uintptr_t with the write mask. */
struct hash_table *derefs;
};
struct value {
bool is_ssa;
union {
struct {
nir_ssa_def *def[NIR_MAX_VEC_COMPONENTS];
uint8_t component[NIR_MAX_VEC_COMPONENTS];
} ssa;
nir_deref_instr *deref;
};
};
static void
value_set_ssa_components(struct value *value, nir_ssa_def *def,
unsigned num_components)
{
if (!value->is_ssa)
memset(&value->ssa, 0, sizeof(value->ssa));
value->is_ssa = true;
for (unsigned i = 0; i < num_components; i++) {
value->ssa.def[i] = def;
value->ssa.component[i] = i;
}
}
struct copy_entry {
struct value src;
nir_deref_instr *dst;
};
struct copy_prop_var_state {
nir_function_impl *impl;
void *mem_ctx;
void *lin_ctx;
/* Maps nodes to vars_written. Used to invalidate copy entries when
* visiting each node.
*/
struct hash_table *vars_written_map;
bool progress;
};
static bool
value_equals_store_src(struct value *value, nir_intrinsic_instr *intrin)
{
assert(intrin->intrinsic == nir_intrinsic_store_deref);
uintptr_t write_mask = nir_intrinsic_write_mask(intrin);
for (unsigned i = 0; i < intrin->num_components; i++) {
if ((write_mask & (1 << i)) &&
(value->ssa.def[i] != intrin->src[1].ssa ||
value->ssa.component[i] != i))
return false;
}
return true;
}
static struct vars_written *
create_vars_written(struct copy_prop_var_state *state)
{
struct vars_written *written =
linear_zalloc_child(state->lin_ctx, sizeof(struct vars_written));
written->derefs = _mesa_pointer_hash_table_create(state->mem_ctx);
return written;
}
static void
gather_vars_written(struct copy_prop_var_state *state,
struct vars_written *written,
nir_cf_node *cf_node)
{
struct vars_written *new_written = NULL;
switch (cf_node->type) {
case nir_cf_node_function: {
nir_function_impl *impl = nir_cf_node_as_function(cf_node);
foreach_list_typed_safe(nir_cf_node, cf_node, node, &impl->body)
gather_vars_written(state, NULL, cf_node);
break;
}
case nir_cf_node_block: {
if (!written)
break;
nir_block *block = nir_cf_node_as_block(cf_node);
nir_foreach_instr(instr, block) {
if (instr->type == nir_instr_type_call) {
written->modes |= nir_var_shader_out |
nir_var_shader_temp |
nir_var_function_temp |
nir_var_mem_ssbo |
nir_var_mem_shared;
continue;
}
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_barrier:
case nir_intrinsic_memory_barrier:
written->modes |= nir_var_shader_out |
nir_var_mem_ssbo |
nir_var_mem_shared;
break;
case nir_intrinsic_scoped_memory_barrier:
if (nir_intrinsic_memory_semantics(intrin) & NIR_MEMORY_ACQUIRE)
written->modes |= nir_intrinsic_memory_modes(intrin);
break;
case nir_intrinsic_emit_vertex:
case nir_intrinsic_emit_vertex_with_counter:
written->modes = nir_var_shader_out;
break;
case nir_intrinsic_deref_atomic_add:
case nir_intrinsic_deref_atomic_imin:
case nir_intrinsic_deref_atomic_umin:
case nir_intrinsic_deref_atomic_imax:
case nir_intrinsic_deref_atomic_umax:
case nir_intrinsic_deref_atomic_and:
case nir_intrinsic_deref_atomic_or:
case nir_intrinsic_deref_atomic_xor:
case nir_intrinsic_deref_atomic_exchange:
case nir_intrinsic_deref_atomic_comp_swap:
case nir_intrinsic_store_deref:
case nir_intrinsic_copy_deref: {
/* Destination in all of store_deref, copy_deref and the atomics is src[0]. */
nir_deref_instr *dst = nir_src_as_deref(intrin->src[0]);
uintptr_t mask = intrin->intrinsic == nir_intrinsic_store_deref ?
nir_intrinsic_write_mask(intrin) : (1 << glsl_get_vector_elements(dst->type)) - 1;
struct hash_entry *ht_entry = _mesa_hash_table_search(written->derefs, dst);
if (ht_entry)
ht_entry->data = (void *)(mask | (uintptr_t)ht_entry->data);
else
_mesa_hash_table_insert(written->derefs, dst, (void *)mask);
break;
}
default:
break;
}
}
break;
}
case nir_cf_node_if: {
nir_if *if_stmt = nir_cf_node_as_if(cf_node);
new_written = create_vars_written(state);
foreach_list_typed_safe(nir_cf_node, cf_node, node, &if_stmt->then_list)
gather_vars_written(state, new_written, cf_node);
foreach_list_typed_safe(nir_cf_node, cf_node, node, &if_stmt->else_list)
gather_vars_written(state, new_written, cf_node);
break;
}
case nir_cf_node_loop: {
nir_loop *loop = nir_cf_node_as_loop(cf_node);
new_written = create_vars_written(state);
foreach_list_typed_safe(nir_cf_node, cf_node, node, &loop->body)
gather_vars_written(state, new_written, cf_node);
break;
}
default:
unreachable("Invalid CF node type");
}
if (new_written) {
/* Merge new information to the parent control flow node. */
if (written) {
written->modes |= new_written->modes;
hash_table_foreach(new_written->derefs, new_entry) {
struct hash_entry *old_entry =
_mesa_hash_table_search_pre_hashed(written->derefs, new_entry->hash,
new_entry->key);
if (old_entry) {
nir_component_mask_t merged = (uintptr_t) new_entry->data |
(uintptr_t) old_entry->data;
old_entry->data = (void *) ((uintptr_t) merged);
} else {
_mesa_hash_table_insert_pre_hashed(written->derefs, new_entry->hash,
new_entry->key, new_entry->data);
}
}
}
_mesa_hash_table_insert(state->vars_written_map, cf_node, new_written);
}
}
static struct copy_entry *
copy_entry_create(struct util_dynarray *copies,
nir_deref_instr *dst_deref)
{
struct copy_entry new_entry = {
.dst = dst_deref,
};
util_dynarray_append(copies, struct copy_entry, new_entry);
return util_dynarray_top_ptr(copies, struct copy_entry);
}
/* Remove copy entry by swapping it with the last element and reducing the
* size. If used inside an iteration on copies, it must be a reverse
* (backwards) iteration. It is safe to use in those cases because the swap
* will not affect the rest of the iteration.
*/
static void
copy_entry_remove(struct util_dynarray *copies,
struct copy_entry *entry)
{
/* This also works when removing the last element since pop don't shrink
* the memory used by the array, so the swap is useless but not invalid.
*/
*entry = util_dynarray_pop(copies, struct copy_entry);
}
static bool
is_array_deref_of_vector(nir_deref_instr *deref)
{
if (deref->deref_type != nir_deref_type_array)
return false;
nir_deref_instr *parent = nir_deref_instr_parent(deref);
return glsl_type_is_vector(parent->type);
}
static struct copy_entry *
lookup_entry_for_deref(struct util_dynarray *copies,
nir_deref_instr *deref,
nir_deref_compare_result allowed_comparisons)
{
struct copy_entry *entry = NULL;
util_dynarray_foreach(copies, struct copy_entry, iter) {
nir_deref_compare_result result = nir_compare_derefs(iter->dst, deref);
if (result & allowed_comparisons) {
entry = iter;
if (result & nir_derefs_equal_bit)
break;
/* Keep looking in case we have an equal match later in the array. */
}
}
return entry;
}
static struct copy_entry *
lookup_entry_and_kill_aliases(struct util_dynarray *copies,
nir_deref_instr *deref,
unsigned write_mask)
{
/* TODO: Take into account the write_mask. */
nir_deref_instr *dst_match = NULL;
util_dynarray_foreach_reverse(copies, struct copy_entry, iter) {
if (!iter->src.is_ssa) {
/* If this write aliases the source of some entry, get rid of it */
if (nir_compare_derefs(iter->src.deref, deref) & nir_derefs_may_alias_bit) {
copy_entry_remove(copies, iter);
continue;
}
}
nir_deref_compare_result comp = nir_compare_derefs(iter->dst, deref);
if (comp & nir_derefs_equal_bit) {
/* Removing entries invalidate previous iter pointers, so we'll
* collect the matching entry later. Just make sure it is unique.
*/
assert(!dst_match);
dst_match = iter->dst;
} else if (comp & nir_derefs_may_alias_bit) {
copy_entry_remove(copies, iter);
}
}
struct copy_entry *entry = NULL;
if (dst_match) {
util_dynarray_foreach(copies, struct copy_entry, iter) {
if (iter->dst == dst_match) {
entry = iter;
break;
}
}
assert(entry);
}
return entry;
}
static void
kill_aliases(struct util_dynarray *copies,
nir_deref_instr *deref,
unsigned write_mask)
{
/* TODO: Take into account the write_mask. */
struct copy_entry *entry =
lookup_entry_and_kill_aliases(copies, deref, write_mask);
if (entry)
copy_entry_remove(copies, entry);
}
static struct copy_entry *
get_entry_and_kill_aliases(struct util_dynarray *copies,
nir_deref_instr *deref,
unsigned write_mask)
{
/* TODO: Take into account the write_mask. */
struct copy_entry *entry =
lookup_entry_and_kill_aliases(copies, deref, write_mask);
if (entry == NULL)
entry = copy_entry_create(copies, deref);
return entry;
}
static void
apply_barrier_for_modes(struct util_dynarray *copies,
nir_variable_mode modes)
{
util_dynarray_foreach_reverse(copies, struct copy_entry, iter) {
if ((iter->dst->mode & modes) ||
(!iter->src.is_ssa && (iter->src.deref->mode & modes)))
copy_entry_remove(copies, iter);
}
}
static void
value_set_from_value(struct value *value, const struct value *from,
unsigned base_index, unsigned write_mask)
{
/* We can't have non-zero indexes with non-trivial write masks */
assert(base_index == 0 || write_mask == 1);
if (from->is_ssa) {
/* Clear value if it was being used as non-SSA. */
if (!value->is_ssa)
memset(&value->ssa, 0, sizeof(value->ssa));
value->is_ssa = true;
/* Only overwrite the written components */
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
if (write_mask & (1 << i)) {
value->ssa.def[base_index + i] = from->ssa.def[i];
value->ssa.component[base_index + i] = from->ssa.component[i];
}
}
} else {
/* Non-ssa stores always write everything */
value->is_ssa = false;
value->deref = from->deref;
}
}
/* Try to load a single element of a vector from the copy_entry. If the data
* isn't available, just let the original intrinsic do the work.
*/
static bool
load_element_from_ssa_entry_value(struct copy_prop_var_state *state,
struct copy_entry *entry,
nir_builder *b, nir_intrinsic_instr *intrin,
struct value *value, unsigned index)
{
assert(index < glsl_get_vector_elements(entry->dst->type));
/* We don't have the element available, so let the instruction do the work. */
if (!entry->src.ssa.def[index])
return false;
b->cursor = nir_instr_remove(&intrin->instr);
intrin->instr.block = NULL;
assert(entry->src.ssa.component[index] <
entry->src.ssa.def[index]->num_components);
nir_ssa_def *def = nir_channel(b, entry->src.ssa.def[index],
entry->src.ssa.component[index]);
*value = (struct value) {
.is_ssa = true,
{
.ssa = {
.def = { def },
.component = { 0 },
},
}
};
return true;
}
/* Do a "load" from an SSA-based entry return it in "value" as a value with a
* single SSA def. Because an entry could reference multiple different SSA
* defs, a vecN operation may be inserted to combine them into a single SSA
* def before handing it back to the caller. If the load instruction is no
* longer needed, it is removed and nir_instr::block is set to NULL. (It is
* possible, in some cases, for the load to be used in the vecN operation in
* which case it isn't deleted.)
*/
static bool
load_from_ssa_entry_value(struct copy_prop_var_state *state,
struct copy_entry *entry,
nir_builder *b, nir_intrinsic_instr *intrin,
nir_deref_instr *src, struct value *value)
{
if (is_array_deref_of_vector(src)) {
if (nir_src_is_const(src->arr.index)) {
return load_element_from_ssa_entry_value(state, entry, b, intrin, value,
nir_src_as_uint(src->arr.index));
}
/* An SSA copy_entry for the vector won't help indirect load. */
if (glsl_type_is_vector(entry->dst->type)) {
assert(entry->dst->type == nir_deref_instr_parent(src)->type);
/* TODO: If all SSA entries are there, try an if-ladder. */
return false;
}
}
*value = entry->src;
assert(value->is_ssa);
const struct glsl_type *type = entry->dst->type;
unsigned num_components = glsl_get_vector_elements(type);
nir_component_mask_t available = 0;
bool all_same = true;
for (unsigned i = 0; i < num_components; i++) {
if (value->ssa.def[i])
available |= (1 << i);
if (value->ssa.def[i] != value->ssa.def[0])
all_same = false;
if (value->ssa.component[i] != i)
all_same = false;
}
if (all_same) {
/* Our work here is done */
b->cursor = nir_instr_remove(&intrin->instr);
intrin->instr.block = NULL;
return true;
}
if (available != (1 << num_components) - 1 &&
intrin->intrinsic == nir_intrinsic_load_deref &&
(available & nir_ssa_def_components_read(&intrin->dest.ssa)) == 0) {
/* If none of the components read are available as SSA values, then we
* should just bail. Otherwise, we would end up replacing the uses of
* the load_deref a vecN() that just gathers up its components.
*/
return false;
}
b->cursor = nir_after_instr(&intrin->instr);
nir_ssa_def *load_def =
intrin->intrinsic == nir_intrinsic_load_deref ? &intrin->dest.ssa : NULL;
bool keep_intrin = false;
nir_ssa_def *comps[NIR_MAX_VEC_COMPONENTS];
for (unsigned i = 0; i < num_components; i++) {
if (value->ssa.def[i]) {
comps[i] = nir_channel(b, value->ssa.def[i], value->ssa.component[i]);
} else {
/* We don't have anything for this component in our
* list. Just re-use a channel from the load.
*/
if (load_def == NULL)
load_def = nir_load_deref(b, entry->dst);
if (load_def->parent_instr == &intrin->instr)
keep_intrin = true;
comps[i] = nir_channel(b, load_def, i);
}
}
nir_ssa_def *vec = nir_vec(b, comps, num_components);
value_set_ssa_components(value, vec, num_components);
if (!keep_intrin) {
/* Removing this instruction should not touch the cursor because we
* created the cursor after the intrinsic and have added at least one
* instruction (the vec) since then.
*/
assert(b->cursor.instr != &intrin->instr);
nir_instr_remove(&intrin->instr);
intrin->instr.block = NULL;
}
return true;
}
/**
* Specialize the wildcards in a deref chain
*
* This function returns a deref chain identical to \param deref except that
* some of its wildcards are replaced with indices from \param specific. The
* process is guided by \param guide which references the same type as \param
* specific but has the same wildcard array lengths as \param deref.
*/
static nir_deref_instr *
specialize_wildcards(nir_builder *b,
nir_deref_path *deref,
nir_deref_path *guide,
nir_deref_path *specific)
{
nir_deref_instr **deref_p = &deref->path[1];
nir_deref_instr **guide_p = &guide->path[1];
nir_deref_instr **spec_p = &specific->path[1];
nir_deref_instr *ret_tail = deref->path[0];
for (; *deref_p; deref_p++) {
if ((*deref_p)->deref_type == nir_deref_type_array_wildcard) {
/* This is where things get tricky. We have to search through
* the entry deref to find its corresponding wildcard and fill
* this slot in with the value from the src.
*/
while (*guide_p &&
(*guide_p)->deref_type != nir_deref_type_array_wildcard) {
guide_p++;
spec_p++;
}
assert(*guide_p && *spec_p);
ret_tail = nir_build_deref_follower(b, ret_tail, *spec_p);
guide_p++;
spec_p++;
} else {
ret_tail = nir_build_deref_follower(b, ret_tail, *deref_p);
}
}
return ret_tail;
}
/* Do a "load" from an deref-based entry return it in "value" as a value. The
* deref returned in "value" will always be a fresh copy so the caller can
* steal it and assign it to the instruction directly without copying it
* again.
*/
static bool
load_from_deref_entry_value(struct copy_prop_var_state *state,
struct copy_entry *entry,
nir_builder *b, nir_intrinsic_instr *intrin,
nir_deref_instr *src, struct value *value)
{
*value = entry->src;
b->cursor = nir_instr_remove(&intrin->instr);
nir_deref_path entry_dst_path, src_path;
nir_deref_path_init(&entry_dst_path, entry->dst, state->mem_ctx);
nir_deref_path_init(&src_path, src, state->mem_ctx);
bool need_to_specialize_wildcards = false;
nir_deref_instr **entry_p = &entry_dst_path.path[1];
nir_deref_instr **src_p = &src_path.path[1];
while (*entry_p && *src_p) {
nir_deref_instr *entry_tail = *entry_p++;
nir_deref_instr *src_tail = *src_p++;
if (src_tail->deref_type == nir_deref_type_array &&
entry_tail->deref_type == nir_deref_type_array_wildcard)
need_to_specialize_wildcards = true;
}
/* If the entry deref is longer than the source deref then it refers to a
* smaller type and we can't source from it.
*/
assert(*entry_p == NULL);
if (need_to_specialize_wildcards) {
/* The entry has some wildcards that are not in src. This means we need
* to construct a new deref based on the entry but using the wildcards
* from the source and guided by the entry dst. Oof.
*/
nir_deref_path entry_src_path;
nir_deref_path_init(&entry_src_path, entry->src.deref, state->mem_ctx);
value->deref = specialize_wildcards(b, &entry_src_path,
&entry_dst_path, &src_path);
nir_deref_path_finish(&entry_src_path);
}
/* If our source deref is longer than the entry deref, that's ok because
* it just means the entry deref needs to be extended a bit.
*/
while (*src_p) {
nir_deref_instr *src_tail = *src_p++;
value->deref = nir_build_deref_follower(b, value->deref, src_tail);
}
nir_deref_path_finish(&entry_dst_path);
nir_deref_path_finish(&src_path);
return true;
}
static bool
try_load_from_entry(struct copy_prop_var_state *state, struct copy_entry *entry,
nir_builder *b, nir_intrinsic_instr *intrin,
nir_deref_instr *src, struct value *value)
{
if (entry == NULL)
return false;
if (entry->src.is_ssa) {
return load_from_ssa_entry_value(state, entry, b, intrin, src, value);
} else {
return load_from_deref_entry_value(state, entry, b, intrin, src, value);
}
}
static void
invalidate_copies_for_cf_node(struct copy_prop_var_state *state,
struct util_dynarray *copies,
nir_cf_node *cf_node)
{
struct hash_entry *ht_entry = _mesa_hash_table_search(state->vars_written_map, cf_node);
assert(ht_entry);
struct vars_written *written = ht_entry->data;
if (written->modes) {
util_dynarray_foreach_reverse(copies, struct copy_entry, entry) {
if (entry->dst->mode & written->modes)
copy_entry_remove(copies, entry);
}
}
hash_table_foreach (written->derefs, entry) {
nir_deref_instr *deref_written = (nir_deref_instr *)entry->key;
kill_aliases(copies, deref_written, (uintptr_t)entry->data);
}
}
static void
print_value(struct value *value, unsigned num_components)
{
if (!value->is_ssa) {
printf(" %s ", glsl_get_type_name(value->deref->type));
nir_print_deref(value->deref, stdout);
return;
}
bool same_ssa = true;
for (unsigned i = 0; i < num_components; i++) {
if (value->ssa.component[i] != i ||
(i > 0 && value->ssa.def[i - 1] != value->ssa.def[i])) {
same_ssa = false;
break;
}
}
if (same_ssa) {
printf(" ssa_%d", value->ssa.def[0]->index);
} else {
for (int i = 0; i < num_components; i++) {
if (value->ssa.def[i])
printf(" ssa_%d[%u]", value->ssa.def[i]->index, value->ssa.component[i]);
else
printf(" _");
}
}
}
static void
print_copy_entry(struct copy_entry *entry)
{
printf(" %s ", glsl_get_type_name(entry->dst->type));
nir_print_deref(entry->dst, stdout);
printf(":\t");
unsigned num_components = glsl_get_vector_elements(entry->dst->type);
print_value(&entry->src, num_components);
printf("\n");
}
static void
dump_instr(nir_instr *instr)
{
printf(" ");
nir_print_instr(instr, stdout);
printf("\n");
}
static void
dump_copy_entries(struct util_dynarray *copies)
{
util_dynarray_foreach(copies, struct copy_entry, iter)
print_copy_entry(iter);
printf("\n");
}
static void
copy_prop_vars_block(struct copy_prop_var_state *state,
nir_builder *b, nir_block *block,
struct util_dynarray *copies)
{
if (debug) {
printf("# block%d\n", block->index);
dump_copy_entries(copies);
}
nir_foreach_instr_safe(instr, block) {
if (debug && instr->type == nir_instr_type_deref)
dump_instr(instr);
if (instr->type == nir_instr_type_call) {
if (debug) dump_instr(instr);
apply_barrier_for_modes(copies, nir_var_shader_out |
nir_var_shader_temp |
nir_var_function_temp |
nir_var_mem_ssbo |
nir_var_mem_shared);
if (debug) dump_copy_entries(copies);
continue;
}
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_barrier:
case nir_intrinsic_memory_barrier:
if (debug) dump_instr(instr);
apply_barrier_for_modes(copies, nir_var_shader_out |
nir_var_mem_ssbo |
nir_var_mem_shared);
break;
case nir_intrinsic_scoped_memory_barrier:
if (debug) dump_instr(instr);
if (nir_intrinsic_memory_semantics(intrin) & NIR_MEMORY_ACQUIRE)
apply_barrier_for_modes(copies, nir_intrinsic_memory_modes(intrin));
break;
case nir_intrinsic_emit_vertex:
case nir_intrinsic_emit_vertex_with_counter:
if (debug) dump_instr(instr);
apply_barrier_for_modes(copies, nir_var_shader_out);
break;
case nir_intrinsic_load_deref: {
if (debug) dump_instr(instr);
if (nir_intrinsic_access(intrin) & ACCESS_VOLATILE)
break;
nir_deref_instr *src = nir_src_as_deref(intrin->src[0]);
/* Direct array_derefs of vectors operate on the vectors (the parent
* deref). Indirects will be handled like other derefs.
*/
int vec_index = 0;
nir_deref_instr *vec_src = src;
if (is_array_deref_of_vector(src) && nir_src_is_const(src->arr.index)) {
vec_src = nir_deref_instr_parent(src);
unsigned vec_comps = glsl_get_vector_elements(vec_src->type);
vec_index = nir_src_as_uint(src->arr.index);
/* Loading from an invalid index yields an undef */
if (vec_index >= vec_comps) {
b->cursor = nir_instr_remove(instr);
nir_ssa_def *u = nir_ssa_undef(b, 1, intrin->dest.ssa.bit_size);
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, nir_src_for_ssa(u));
break;
}
}
struct copy_entry *src_entry =
lookup_entry_for_deref(copies, src, nir_derefs_a_contains_b_bit);
struct value value = {0};
if (try_load_from_entry(state, src_entry, b, intrin, src, &value)) {
if (value.is_ssa) {
/* lookup_load has already ensured that we get a single SSA
* value that has all of the channels. We just have to do the
* rewrite operation. Note for array derefs of vectors, the
* channel 0 is used.
*/
if (intrin->instr.block) {
/* The lookup left our instruction in-place. This means it
* must have used it to vec up a bunch of different sources.
* We need to be careful when rewriting uses so we don't
* rewrite the vecN itself.
*/
nir_ssa_def_rewrite_uses_after(&intrin->dest.ssa,
nir_src_for_ssa(value.ssa.def[0]),
value.ssa.def[0]->parent_instr);
} else {
nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
nir_src_for_ssa(value.ssa.def[0]));
}
} else {
/* We're turning it into a load of a different variable */
intrin->src[0] = nir_src_for_ssa(&value.deref->dest.ssa);
/* Put it back in again. */
nir_builder_instr_insert(b, instr);
value_set_ssa_components(&value, &intrin->dest.ssa,
intrin->num_components);
}
state->progress = true;
} else {
value_set_ssa_components(&value, &intrin->dest.ssa,
intrin->num_components);
}
/* Now that we have a value, we're going to store it back so that we
* have the right value next time we come looking for it. In order
* to do this, we need an exact match, not just something that
* contains what we're looking for.
*/
struct copy_entry *entry =
lookup_entry_for_deref(copies, vec_src, nir_derefs_equal_bit);
if (!entry)
entry = copy_entry_create(copies, vec_src);
/* Update the entry with the value of the load. This way
* we can potentially remove subsequent loads.
*/
value_set_from_value(&entry->src, &value, vec_index,
(1 << intrin->num_components) - 1);
break;
}
case nir_intrinsic_store_deref: {
if (debug) dump_instr(instr);
if (nir_intrinsic_access(intrin) & ACCESS_VOLATILE)
break;
nir_deref_instr *dst = nir_src_as_deref(intrin->src[0]);
assert(glsl_type_is_vector_or_scalar(dst->type));
/* Direct array_derefs of vectors operate on the vectors (the parent
* deref). Indirects will be handled like other derefs.
*/
int vec_index = 0;
nir_deref_instr *vec_dst = dst;
if (is_array_deref_of_vector(dst) && nir_src_is_const(dst->arr.index)) {
vec_dst = nir_deref_instr_parent(dst);
unsigned vec_comps = glsl_get_vector_elements(vec_dst->type);
vec_index = nir_src_as_uint(dst->arr.index);
/* Storing to an invalid index is a no-op. */
if (vec_index >= vec_comps) {
nir_instr_remove(instr);
break;
}
}
struct copy_entry *entry =
lookup_entry_for_deref(copies, dst, nir_derefs_equal_bit);
if (entry && value_equals_store_src(&entry->src, intrin)) {
/* If we are storing the value from a load of the same var the
* store is redundant so remove it.
*/
nir_instr_remove(instr);
} else {
struct value value = {0};
value_set_ssa_components(&value, intrin->src[1].ssa,
intrin->num_components);
unsigned wrmask = nir_intrinsic_write_mask(intrin);
struct copy_entry *entry =
get_entry_and_kill_aliases(copies, vec_dst, wrmask);
value_set_from_value(&entry->src, &value, vec_index, wrmask);
}
break;
}
case nir_intrinsic_copy_deref: {
if (debug) dump_instr(instr);
if ((nir_intrinsic_src_access(intrin) & ACCESS_VOLATILE) ||
(nir_intrinsic_dst_access(intrin) & ACCESS_VOLATILE))
break;
nir_deref_instr *dst = nir_src_as_deref(intrin->src[0]);
nir_deref_instr *src = nir_src_as_deref(intrin->src[1]);
if (nir_compare_derefs(src, dst) & nir_derefs_equal_bit) {
/* This is a no-op self-copy. Get rid of it */
nir_instr_remove(instr);
continue;
}
/* The copy_deref intrinsic doesn't keep track of num_components, so
* get it ourselves.
*/
unsigned num_components = glsl_get_vector_elements(dst->type);
unsigned full_mask = (1 << num_components) - 1;
/* Copy of direct array derefs of vectors are not handled. Just
* invalidate what's written and bail.
*/
if ((is_array_deref_of_vector(src) && nir_src_is_const(src->arr.index)) ||
(is_array_deref_of_vector(dst) && nir_src_is_const(dst->arr.index))) {
kill_aliases(copies, dst, full_mask);
break;
}
struct copy_entry *src_entry =
lookup_entry_for_deref(copies, src, nir_derefs_a_contains_b_bit);
struct value value;
if (try_load_from_entry(state, src_entry, b, intrin, src, &value)) {
/* If load works, intrin (the copy_deref) is removed. */
if (value.is_ssa) {
nir_store_deref(b, dst, value.ssa.def[0], full_mask);
} else {
/* If this would be a no-op self-copy, don't bother. */
if (nir_compare_derefs(value.deref, dst) & nir_derefs_equal_bit)
continue;
/* Just turn it into a copy of a different deref */
intrin->src[1] = nir_src_for_ssa(&value.deref->dest.ssa);
/* Put it back in again. */
nir_builder_instr_insert(b, instr);
}
state->progress = true;
} else {
value = (struct value) {
.is_ssa = false,
{ .deref = src },
};
}
nir_variable *src_var = nir_deref_instr_get_variable(src);
if (src_var && src_var->data.cannot_coalesce) {
/* The source cannot be coaleseced, which means we can't propagate
* this copy.
*/
break;
}
struct copy_entry *dst_entry =
get_entry_and_kill_aliases(copies, dst, full_mask);
value_set_from_value(&dst_entry->src, &value, 0, full_mask);
break;
}
case nir_intrinsic_deref_atomic_add:
case nir_intrinsic_deref_atomic_imin:
case nir_intrinsic_deref_atomic_umin:
case nir_intrinsic_deref_atomic_imax:
case nir_intrinsic_deref_atomic_umax:
case nir_intrinsic_deref_atomic_and:
case nir_intrinsic_deref_atomic_or:
case nir_intrinsic_deref_atomic_xor:
case nir_intrinsic_deref_atomic_exchange:
case nir_intrinsic_deref_atomic_comp_swap:
if (debug) dump_instr(instr);
if (nir_intrinsic_access(intrin) & ACCESS_VOLATILE)
break;
nir_deref_instr *dst = nir_src_as_deref(intrin->src[0]);
unsigned num_components = glsl_get_vector_elements(dst->type);
unsigned full_mask = (1 << num_components) - 1;
kill_aliases(copies, dst, full_mask);
break;
default:
continue; /* To skip the debug below. */
}
if (debug) dump_copy_entries(copies);
}
}
static void
copy_prop_vars_cf_node(struct copy_prop_var_state *state,
struct util_dynarray *copies,
nir_cf_node *cf_node)
{
switch (cf_node->type) {
case nir_cf_node_function: {
nir_function_impl *impl = nir_cf_node_as_function(cf_node);
struct util_dynarray impl_copies;
util_dynarray_init(&impl_copies, state->mem_ctx);
foreach_list_typed_safe(nir_cf_node, cf_node, node, &impl->body)
copy_prop_vars_cf_node(state, &impl_copies, cf_node);
break;
}
case nir_cf_node_block: {
nir_block *block = nir_cf_node_as_block(cf_node);
nir_builder b;
nir_builder_init(&b, state->impl);
copy_prop_vars_block(state, &b, block, copies);
break;
}
case nir_cf_node_if: {
nir_if *if_stmt = nir_cf_node_as_if(cf_node);
/* Clone the copies for each branch of the if statement. The idea is
* that they both see the same state of available copies, but do not
* interfere to each other.
*/
struct util_dynarray then_copies;
util_dynarray_clone(&then_copies, state->mem_ctx, copies);
struct util_dynarray else_copies;
util_dynarray_clone(&else_copies, state->mem_ctx, copies);
foreach_list_typed_safe(nir_cf_node, cf_node, node, &if_stmt->then_list)
copy_prop_vars_cf_node(state, &then_copies, cf_node);
foreach_list_typed_safe(nir_cf_node, cf_node, node, &if_stmt->else_list)
copy_prop_vars_cf_node(state, &else_copies, cf_node);
/* Both branches copies can be ignored, since the effect of running both
* branches was captured in the first pass that collects vars_written.
*/
invalidate_copies_for_cf_node(state, copies, cf_node);
break;
}
case nir_cf_node_loop: {
nir_loop *loop = nir_cf_node_as_loop(cf_node);
/* Invalidate before cloning the copies for the loop, since the loop
* body can be executed more than once.
*/
invalidate_copies_for_cf_node(state, copies, cf_node);
struct util_dynarray loop_copies;
util_dynarray_clone(&loop_copies, state->mem_ctx, copies);
foreach_list_typed_safe(nir_cf_node, cf_node, node, &loop->body)
copy_prop_vars_cf_node(state, &loop_copies, cf_node);
break;
}
default:
unreachable("Invalid CF node type");
}
}
static bool
nir_copy_prop_vars_impl(nir_function_impl *impl)
{
void *mem_ctx = ralloc_context(NULL);
if (debug) {
nir_metadata_require(impl, nir_metadata_block_index);
printf("## nir_copy_prop_vars_impl for %s\n", impl->function->name);
}
struct copy_prop_var_state state = {
.impl = impl,
.mem_ctx = mem_ctx,
.lin_ctx = linear_zalloc_parent(mem_ctx, 0),
.vars_written_map = _mesa_pointer_hash_table_create(mem_ctx),
};
gather_vars_written(&state, NULL, &impl->cf_node);
copy_prop_vars_cf_node(&state, NULL, &impl->cf_node);
if (state.progress) {
nir_metadata_preserve(impl, nir_metadata_block_index |
nir_metadata_dominance);
} else {
#ifndef NDEBUG
impl->valid_metadata &= ~nir_metadata_not_properly_reset;
#endif
}
ralloc_free(mem_ctx);
return state.progress;
}
bool
nir_opt_copy_prop_vars(nir_shader *shader)
{
bool progress = false;
nir_foreach_function(function, shader) {
if (!function->impl)
continue;
progress |= nir_copy_prop_vars_impl(function->impl);
}
return progress;
}