mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-21 22:20:14 +01:00
When INTEL_DEBUG=ann is also set, the disassembler would annotate the output with either a string or the string verison of a NIR instruction. This was done by keeping two pointers (but only using one at a time). Change the code to print the instruction into a string instead of keeping it pointer around (peg the string to the shader). That way, only one pointer is needed for annotations. Because that serialization is not free, only do that when the environment variable is set. Since we are here, move the annotation string field to the end, moving it to the least commonly used cacheline. Further packing might allow the entire fs_inst to fit in two cachelines. For release builds, don't even add the debug annotation to the struct. Reviewed-by: Kenneth Graunke <kenneth@whitecape.org> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/30822>
895 lines
30 KiB
C++
895 lines
30 KiB
C++
/*
|
|
* Copyright © 2010 Intel Corporation
|
|
* SPDX-License-Identifier: MIT
|
|
*/
|
|
|
|
#include "brw_fs.h"
|
|
#include "brw_fs_builder.h"
|
|
|
|
using namespace brw;
|
|
|
|
/**
|
|
* Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
|
|
* or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
|
|
*/
|
|
bool
|
|
brw_fs_lower_constant_loads(fs_visitor &s)
|
|
{
|
|
unsigned index, pull_index;
|
|
bool progress = false;
|
|
|
|
foreach_block_and_inst_safe (block, fs_inst, inst, s.cfg) {
|
|
/* Set up the annotation tracking for new generated instructions. */
|
|
const fs_builder ibld(&s, block, inst);
|
|
|
|
for (int i = 0; i < inst->sources; i++) {
|
|
if (inst->src[i].file != UNIFORM)
|
|
continue;
|
|
|
|
/* We'll handle this case later */
|
|
if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
|
|
continue;
|
|
|
|
if (!s.get_pull_locs(inst->src[i], &index, &pull_index))
|
|
continue;
|
|
|
|
assert(inst->src[i].stride == 0);
|
|
|
|
const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
|
|
const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
|
|
const brw_reg dst = ubld.vgrf(BRW_TYPE_UD);
|
|
const unsigned base = pull_index * 4;
|
|
|
|
brw_reg srcs[PULL_UNIFORM_CONSTANT_SRCS];
|
|
srcs[PULL_UNIFORM_CONSTANT_SRC_SURFACE] = brw_imm_ud(index);
|
|
srcs[PULL_UNIFORM_CONSTANT_SRC_OFFSET] = brw_imm_ud(base & ~(block_sz - 1));
|
|
srcs[PULL_UNIFORM_CONSTANT_SRC_SIZE] = brw_imm_ud(block_sz);
|
|
|
|
|
|
ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, dst,
|
|
srcs, PULL_UNIFORM_CONSTANT_SRCS);
|
|
|
|
/* Rewrite the instruction to use the temporary VGRF. */
|
|
inst->src[i].file = VGRF;
|
|
inst->src[i].nr = dst.nr;
|
|
inst->src[i].offset = (base & (block_sz - 1)) +
|
|
inst->src[i].offset % 4;
|
|
|
|
progress = true;
|
|
}
|
|
|
|
if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
|
|
inst->src[0].file == UNIFORM) {
|
|
|
|
if (!s.get_pull_locs(inst->src[0], &index, &pull_index))
|
|
continue;
|
|
|
|
ibld.VARYING_PULL_CONSTANT_LOAD(inst->dst,
|
|
brw_imm_ud(index),
|
|
brw_reg() /* surface_handle */,
|
|
inst->src[1],
|
|
pull_index * 4, 4, 1);
|
|
inst->remove(block);
|
|
|
|
progress = true;
|
|
}
|
|
}
|
|
s.invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
|
|
|
|
return progress;
|
|
}
|
|
|
|
bool
|
|
brw_fs_lower_load_payload(fs_visitor &s)
|
|
{
|
|
bool progress = false;
|
|
|
|
foreach_block_and_inst_safe (block, fs_inst, inst, s.cfg) {
|
|
if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
|
|
continue;
|
|
|
|
assert(inst->dst.file == VGRF);
|
|
assert(inst->saturate == false);
|
|
brw_reg dst = inst->dst;
|
|
|
|
const fs_builder ibld(&s, block, inst);
|
|
const fs_builder ubld = ibld.exec_all();
|
|
|
|
for (uint8_t i = 0; i < inst->header_size;) {
|
|
/* Number of header GRFs to initialize at once with a single MOV
|
|
* instruction.
|
|
*/
|
|
const unsigned n =
|
|
(i + 1 < inst->header_size && inst->src[i].stride == 1 &&
|
|
inst->src[i + 1].equals(byte_offset(inst->src[i], REG_SIZE))) ?
|
|
2 : 1;
|
|
|
|
if (inst->src[i].file != BAD_FILE)
|
|
ubld.group(8 * n, 0).MOV(retype(dst, BRW_TYPE_UD),
|
|
retype(inst->src[i], BRW_TYPE_UD));
|
|
|
|
dst = byte_offset(dst, n * REG_SIZE);
|
|
i += n;
|
|
}
|
|
|
|
for (uint8_t i = inst->header_size; i < inst->sources; i++) {
|
|
dst.type = inst->src[i].type;
|
|
if (inst->src[i].file != BAD_FILE) {
|
|
ibld.MOV(dst, inst->src[i]);
|
|
}
|
|
dst = offset(dst, ibld, 1);
|
|
}
|
|
|
|
inst->remove(block);
|
|
progress = true;
|
|
}
|
|
|
|
if (progress)
|
|
s.invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
|
|
|
|
return progress;
|
|
}
|
|
|
|
/**
|
|
* Lower CSEL with unsupported types to CMP+SEL.
|
|
*
|
|
* Or, for unsigned ==/!= comparisons, simply change the types.
|
|
*/
|
|
bool
|
|
brw_fs_lower_csel(fs_visitor &s)
|
|
{
|
|
const intel_device_info *devinfo = s.devinfo;
|
|
bool progress = false;
|
|
|
|
foreach_block_and_inst_safe(block, fs_inst, inst, s.cfg) {
|
|
if (inst->opcode != BRW_OPCODE_CSEL)
|
|
continue;
|
|
|
|
bool supported = false;
|
|
enum brw_reg_type orig_type = inst->src[2].type;
|
|
enum brw_reg_type new_type = orig_type;
|
|
|
|
switch (orig_type) {
|
|
case BRW_TYPE_F:
|
|
/* Gfx9 CSEL can only do F */
|
|
supported = true;
|
|
break;
|
|
case BRW_TYPE_HF:
|
|
case BRW_TYPE_W:
|
|
case BRW_TYPE_D:
|
|
/* Gfx11+ CSEL can do HF, W, and D. Note that we can't simply
|
|
* retype integer ==/!= comparisons as float on earlier hardware
|
|
* because it breaks for 0x8000000 and 0 (-0.0 == 0.0).
|
|
*/
|
|
supported = devinfo->ver >= 11;
|
|
break;
|
|
case BRW_TYPE_UW:
|
|
case BRW_TYPE_UD:
|
|
/* CSEL doesn't support UW/UD but we can simply retype to use the
|
|
* signed types when comparing with == or !=.
|
|
*/
|
|
supported = devinfo->ver >= 11 &&
|
|
(inst->conditional_mod == BRW_CONDITIONAL_EQ ||
|
|
inst->conditional_mod == BRW_CONDITIONAL_NEQ);
|
|
|
|
/* Bspec 47408, Gfx125+ CSEL does support the both signed and unsigned
|
|
* integer types.
|
|
*/
|
|
if (devinfo->verx10 < 125) {
|
|
new_type = inst->src[2].type == BRW_TYPE_UD ?
|
|
BRW_TYPE_D : BRW_TYPE_W;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (!supported) {
|
|
const fs_builder ibld(&s, block, inst);
|
|
|
|
/* CSEL: dst = src2 <op> 0 ? src0 : src1 */
|
|
brw_reg zero = brw_imm_reg(orig_type);
|
|
ibld.CMP(retype(brw_null_reg(), orig_type),
|
|
inst->src[2], zero, inst->conditional_mod);
|
|
|
|
inst->opcode = BRW_OPCODE_SEL;
|
|
inst->predicate = BRW_PREDICATE_NORMAL;
|
|
inst->conditional_mod = BRW_CONDITIONAL_NONE;
|
|
inst->resize_sources(2);
|
|
progress = true;
|
|
} else if (new_type != orig_type) {
|
|
inst->src[0].type = new_type;
|
|
inst->src[1].type = new_type;
|
|
inst->src[2].type = new_type;
|
|
progress = true;
|
|
}
|
|
}
|
|
|
|
if (progress)
|
|
s.invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
|
|
|
|
return progress;
|
|
}
|
|
|
|
bool
|
|
brw_fs_lower_sub_sat(fs_visitor &s)
|
|
{
|
|
bool progress = false;
|
|
|
|
foreach_block_and_inst_safe(block, fs_inst, inst, s.cfg) {
|
|
const fs_builder ibld(&s, block, inst);
|
|
|
|
if (inst->opcode == SHADER_OPCODE_USUB_SAT ||
|
|
inst->opcode == SHADER_OPCODE_ISUB_SAT) {
|
|
/* The fundamental problem is the hardware performs source negation
|
|
* at the bit width of the source. If the source is 0x80000000D, the
|
|
* negation is 0x80000000D. As a result, subtractSaturate(0,
|
|
* 0x80000000) will produce 0x80000000 instead of 0x7fffffff. There
|
|
* are at least three ways to resolve this:
|
|
*
|
|
* 1. Use the accumulator for the negated source. The accumulator is
|
|
* 33 bits, so our source 0x80000000 is sign-extended to
|
|
* 0x1800000000. The negation of which is 0x080000000. This
|
|
* doesn't help for 64-bit integers (which are already bigger than
|
|
* 33 bits). There are also only 8 accumulators, so SIMD16 or
|
|
* SIMD32 instructions would have to be split into multiple SIMD8
|
|
* instructions.
|
|
*
|
|
* 2. Use slightly different math. For any n-bit value x, we know (x
|
|
* >> 1) != -(x >> 1). We can use this fact to only do
|
|
* subtractions involving (x >> 1). subtractSaturate(a, b) ==
|
|
* subtractSaturate(subtractSaturate(a, (b >> 1)), b - (b >> 1)).
|
|
*
|
|
* 3. For unsigned sources, it is sufficient to replace the
|
|
* subtractSaturate with (a > b) ? a - b : 0.
|
|
*
|
|
* It may also be possible to use the SUBB instruction. This
|
|
* implicitly writes the accumulator, so it could only be used in the
|
|
* same situations as #1 above. It is further limited by only
|
|
* allowing UD sources.
|
|
*/
|
|
if (inst->exec_size == 8 && inst->src[0].type != BRW_TYPE_Q &&
|
|
inst->src[0].type != BRW_TYPE_UQ) {
|
|
brw_reg acc = retype(brw_acc_reg(inst->exec_size),
|
|
inst->src[1].type);
|
|
|
|
ibld.MOV(acc, inst->src[1]);
|
|
fs_inst *add = ibld.ADD(inst->dst, acc, inst->src[0]);
|
|
add->saturate = true;
|
|
add->src[0].negate = true;
|
|
} else if (inst->opcode == SHADER_OPCODE_ISUB_SAT) {
|
|
/* tmp = src1 >> 1;
|
|
* dst = add.sat(add.sat(src0, -tmp), -(src1 - tmp));
|
|
*/
|
|
fs_inst *add;
|
|
|
|
brw_reg tmp = ibld.vgrf(inst->src[0].type);
|
|
ibld.SHR(tmp, inst->src[1], brw_imm_d(1));
|
|
|
|
brw_reg s1_sub_t = ibld.ADD(inst->src[1], negate(tmp));
|
|
brw_reg sat_s0_sub_t = ibld.ADD(inst->src[0], negate(tmp), &add);
|
|
add->saturate = true;
|
|
|
|
add = ibld.ADD(inst->dst, sat_s0_sub_t, negate(s1_sub_t));
|
|
add->saturate = true;
|
|
} else {
|
|
/* a > b ? a - b : 0 */
|
|
ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
|
|
BRW_CONDITIONAL_G);
|
|
|
|
fs_inst *add = ibld.ADD(inst->dst, inst->src[0], inst->src[1]);
|
|
add->src[1].negate = !add->src[1].negate;
|
|
|
|
ibld.SEL(inst->dst, inst->dst, brw_imm_ud(0))
|
|
->predicate = BRW_PREDICATE_NORMAL;
|
|
}
|
|
|
|
inst->remove(block);
|
|
progress = true;
|
|
}
|
|
}
|
|
|
|
if (progress)
|
|
s.invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
|
|
|
|
return progress;
|
|
}
|
|
|
|
/**
|
|
* Transform barycentric vectors into the interleaved form expected by the PLN
|
|
* instruction and returned by the Gfx7+ PI shared function.
|
|
*
|
|
* For channels 0-15 in SIMD16 mode they are expected to be laid out as
|
|
* follows in the register file:
|
|
*
|
|
* rN+0: X[0-7]
|
|
* rN+1: Y[0-7]
|
|
* rN+2: X[8-15]
|
|
* rN+3: Y[8-15]
|
|
*
|
|
* There is no need to handle SIMD32 here -- This is expected to be run after
|
|
* SIMD lowering, since SIMD lowering relies on vectors having the standard
|
|
* component layout.
|
|
*/
|
|
bool
|
|
brw_fs_lower_barycentrics(fs_visitor &s)
|
|
{
|
|
const intel_device_info *devinfo = s.devinfo;
|
|
|
|
if (s.stage != MESA_SHADER_FRAGMENT || devinfo->ver >= 20)
|
|
return false;
|
|
|
|
bool progress = false;
|
|
|
|
foreach_block_and_inst_safe(block, fs_inst, inst, s.cfg) {
|
|
if (inst->exec_size < 16)
|
|
continue;
|
|
|
|
const fs_builder ibld(&s, block, inst);
|
|
const fs_builder ubld = ibld.exec_all().group(8, 0);
|
|
|
|
switch (inst->opcode) {
|
|
case BRW_OPCODE_PLN: {
|
|
assert(inst->exec_size == 16);
|
|
const brw_reg tmp = ibld.vgrf(inst->src[1].type, 2);
|
|
brw_reg srcs[4];
|
|
|
|
for (unsigned i = 0; i < ARRAY_SIZE(srcs); i++)
|
|
srcs[i] = horiz_offset(offset(inst->src[1], ibld, i % 2),
|
|
8 * (i / 2));
|
|
|
|
ubld.LOAD_PAYLOAD(tmp, srcs, ARRAY_SIZE(srcs), ARRAY_SIZE(srcs));
|
|
|
|
inst->src[1] = tmp;
|
|
progress = true;
|
|
break;
|
|
}
|
|
case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
|
|
case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
|
|
case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: {
|
|
assert(inst->exec_size == 16);
|
|
const brw_reg tmp = ibld.vgrf(inst->dst.type, 2);
|
|
|
|
for (unsigned i = 0; i < 2; i++) {
|
|
for (unsigned g = 0; g < inst->exec_size / 8; g++) {
|
|
fs_inst *mov = ibld.at(block, inst->next).group(8, g)
|
|
.MOV(horiz_offset(offset(inst->dst, ibld, i),
|
|
8 * g),
|
|
offset(tmp, ubld, 2 * g + i));
|
|
mov->predicate = inst->predicate;
|
|
mov->predicate_inverse = inst->predicate_inverse;
|
|
mov->flag_subreg = inst->flag_subreg;
|
|
}
|
|
}
|
|
|
|
inst->dst = tmp;
|
|
progress = true;
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (progress)
|
|
s.invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
|
|
|
|
return progress;
|
|
}
|
|
|
|
/**
|
|
* Lower a derivative instruction as the floating-point difference of two
|
|
* swizzles of the source, specified as \p swz0 and \p swz1.
|
|
*/
|
|
static bool
|
|
lower_derivative(fs_visitor &s, bblock_t *block, fs_inst *inst,
|
|
unsigned swz0, unsigned swz1)
|
|
{
|
|
const fs_builder ubld = fs_builder(&s, block, inst).exec_all();
|
|
const brw_reg tmp0 = ubld.vgrf(inst->src[0].type);
|
|
const brw_reg tmp1 = ubld.vgrf(inst->src[0].type);
|
|
|
|
ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp0, inst->src[0], brw_imm_ud(swz0));
|
|
ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp1, inst->src[0], brw_imm_ud(swz1));
|
|
|
|
inst->resize_sources(2);
|
|
inst->src[0] = negate(tmp0);
|
|
inst->src[1] = tmp1;
|
|
inst->opcode = BRW_OPCODE_ADD;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Lower derivative instructions on platforms where codegen cannot implement
|
|
* them efficiently (i.e. XeHP).
|
|
*/
|
|
bool
|
|
brw_fs_lower_derivatives(fs_visitor &s)
|
|
{
|
|
bool progress = false;
|
|
|
|
if (s.devinfo->verx10 < 125)
|
|
return false;
|
|
|
|
foreach_block_and_inst(block, fs_inst, inst, s.cfg) {
|
|
if (inst->opcode == FS_OPCODE_DDX_COARSE)
|
|
progress |= lower_derivative(s, block, inst,
|
|
BRW_SWIZZLE_XXXX, BRW_SWIZZLE_YYYY);
|
|
|
|
else if (inst->opcode == FS_OPCODE_DDX_FINE)
|
|
progress |= lower_derivative(s, block, inst,
|
|
BRW_SWIZZLE_XXZZ, BRW_SWIZZLE_YYWW);
|
|
|
|
else if (inst->opcode == FS_OPCODE_DDY_COARSE)
|
|
progress |= lower_derivative(s, block, inst,
|
|
BRW_SWIZZLE_XXXX, BRW_SWIZZLE_ZZZZ);
|
|
|
|
else if (inst->opcode == FS_OPCODE_DDY_FINE)
|
|
progress |= lower_derivative(s, block, inst,
|
|
BRW_SWIZZLE_XYXY, BRW_SWIZZLE_ZWZW);
|
|
}
|
|
|
|
if (progress)
|
|
s.invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
|
|
|
|
return progress;
|
|
}
|
|
|
|
bool
|
|
brw_fs_lower_find_live_channel(fs_visitor &s)
|
|
{
|
|
bool progress = false;
|
|
|
|
bool packed_dispatch =
|
|
brw_stage_has_packed_dispatch(s.devinfo, s.stage, s.max_polygons,
|
|
s.prog_data);
|
|
bool vmask =
|
|
s.stage == MESA_SHADER_FRAGMENT &&
|
|
brw_wm_prog_data(s.prog_data)->uses_vmask;
|
|
|
|
foreach_block_and_inst_safe(block, fs_inst, inst, s.cfg) {
|
|
if (inst->opcode != SHADER_OPCODE_FIND_LIVE_CHANNEL &&
|
|
inst->opcode != SHADER_OPCODE_FIND_LAST_LIVE_CHANNEL &&
|
|
inst->opcode != SHADER_OPCODE_LOAD_LIVE_CHANNELS)
|
|
continue;
|
|
|
|
bool first = inst->opcode == SHADER_OPCODE_FIND_LIVE_CHANNEL;
|
|
|
|
/* Getting the first active channel index is easy on Gfx8: Just find
|
|
* the first bit set in the execution mask. The register exists on
|
|
* HSW already but it reads back as all ones when the current
|
|
* instruction has execution masking disabled, so it's kind of
|
|
* useless there.
|
|
*/
|
|
|
|
const fs_builder ibld(&s, block, inst);
|
|
if (!inst->is_partial_write())
|
|
ibld.emit_undef_for_dst(inst);
|
|
|
|
const fs_builder ubld = fs_builder(&s, block, inst).exec_all().group(1, 0);
|
|
|
|
brw_reg exec_mask = ubld.vgrf(BRW_TYPE_UD);
|
|
ubld.UNDEF(exec_mask);
|
|
ubld.emit(SHADER_OPCODE_READ_ARCH_REG, exec_mask,
|
|
retype(brw_mask_reg(0),
|
|
BRW_TYPE_UD));
|
|
|
|
/* ce0 doesn't consider the thread dispatch mask (DMask or VMask),
|
|
* so combine the execution and dispatch masks to obtain the true mask.
|
|
*
|
|
* If we're looking for the first live channel, and we have packed
|
|
* dispatch, we can skip this step, as we know all dispatched channels
|
|
* will appear at the front of the mask.
|
|
*/
|
|
if (!(first && packed_dispatch)) {
|
|
brw_reg mask = ubld.vgrf(BRW_TYPE_UD);
|
|
ubld.UNDEF(mask);
|
|
ubld.emit(SHADER_OPCODE_READ_ARCH_REG, mask,
|
|
retype(brw_sr0_reg(vmask ? 3 : 2),
|
|
BRW_TYPE_UD));
|
|
|
|
/* Quarter control has the effect of magically shifting the value of
|
|
* ce0 so you'll get the first/last active channel relative to the
|
|
* specified quarter control as result.
|
|
*/
|
|
if (inst->group > 0)
|
|
ubld.SHR(mask, mask, brw_imm_ud(ALIGN(inst->group, 8)));
|
|
|
|
ubld.AND(mask, exec_mask, mask);
|
|
exec_mask = mask;
|
|
}
|
|
|
|
switch (inst->opcode) {
|
|
case SHADER_OPCODE_FIND_LIVE_CHANNEL:
|
|
ubld.FBL(inst->dst, exec_mask);
|
|
break;
|
|
|
|
case SHADER_OPCODE_FIND_LAST_LIVE_CHANNEL: {
|
|
brw_reg tmp = ubld.vgrf(BRW_TYPE_UD);
|
|
ubld.UNDEF(tmp);
|
|
ubld.LZD(tmp, exec_mask);
|
|
ubld.ADD(inst->dst, negate(tmp), brw_imm_uw(31));
|
|
break;
|
|
}
|
|
|
|
case SHADER_OPCODE_LOAD_LIVE_CHANNELS:
|
|
ubld.MOV(inst->dst, exec_mask);
|
|
break;
|
|
|
|
default:
|
|
unreachable("Impossible.");
|
|
}
|
|
|
|
inst->remove(block);
|
|
progress = true;
|
|
}
|
|
|
|
if (progress)
|
|
s.invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
|
|
|
|
return progress;
|
|
}
|
|
|
|
/**
|
|
* From the Skylake PRM Vol. 2a docs for sends:
|
|
*
|
|
* "It is required that the second block of GRFs does not overlap with the
|
|
* first block."
|
|
*
|
|
* There are plenty of cases where we may accidentally violate this due to
|
|
* having, for instance, both sources be the constant 0. This little pass
|
|
* just adds a new vgrf for the second payload and copies it over.
|
|
*/
|
|
bool
|
|
brw_fs_lower_sends_overlapping_payload(fs_visitor &s)
|
|
{
|
|
bool progress = false;
|
|
|
|
foreach_block_and_inst_safe (block, fs_inst, inst, s.cfg) {
|
|
if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 &&
|
|
regions_overlap(inst->src[2], inst->mlen * REG_SIZE,
|
|
inst->src[3], inst->ex_mlen * REG_SIZE)) {
|
|
const unsigned arg = inst->mlen < inst->ex_mlen ? 2 : 3;
|
|
const unsigned len = MIN2(inst->mlen, inst->ex_mlen);
|
|
|
|
brw_reg tmp = brw_vgrf(s.alloc.allocate(len),
|
|
BRW_TYPE_UD);
|
|
|
|
/* Sadly, we've lost all notion of channels and bit sizes at this
|
|
* point. Just WE_all it.
|
|
*/
|
|
const fs_builder ibld = fs_builder(&s, block, inst).exec_all().group(16, 0);
|
|
brw_reg copy_src = retype(inst->src[arg], BRW_TYPE_UD);
|
|
brw_reg copy_dst = tmp;
|
|
for (unsigned i = 0; i < len; i += 2) {
|
|
if (len == i + 1) {
|
|
/* Only one register left; do SIMD8 */
|
|
ibld.group(8, 0).MOV(copy_dst, copy_src);
|
|
} else {
|
|
ibld.MOV(copy_dst, copy_src);
|
|
}
|
|
copy_src = offset(copy_src, ibld, 1);
|
|
copy_dst = offset(copy_dst, ibld, 1);
|
|
}
|
|
inst->src[arg] = tmp;
|
|
progress = true;
|
|
}
|
|
}
|
|
|
|
if (progress)
|
|
s.invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
|
|
|
|
return progress;
|
|
}
|
|
|
|
/**
|
|
* Three source instruction must have a GRF destination register.
|
|
* ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
|
|
*/
|
|
bool
|
|
brw_fs_lower_3src_null_dest(fs_visitor &s)
|
|
{
|
|
bool progress = false;
|
|
|
|
foreach_block_and_inst_safe (block, fs_inst, inst, s.cfg) {
|
|
if (inst->is_3src(s.compiler) && inst->dst.is_null()) {
|
|
inst->dst = brw_vgrf(s.alloc.allocate(s.dispatch_width / 8),
|
|
inst->dst.type);
|
|
progress = true;
|
|
}
|
|
}
|
|
|
|
if (progress)
|
|
s.invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL |
|
|
DEPENDENCY_VARIABLES);
|
|
|
|
return progress;
|
|
}
|
|
|
|
static bool
|
|
unsupported_64bit_type(const intel_device_info *devinfo,
|
|
enum brw_reg_type type)
|
|
{
|
|
return (!devinfo->has_64bit_float && type == BRW_TYPE_DF) ||
|
|
(!devinfo->has_64bit_int && (type == BRW_TYPE_UQ ||
|
|
type == BRW_TYPE_Q));
|
|
}
|
|
|
|
/**
|
|
* Perform lowering to legalize the IR for various ALU restrictions.
|
|
*
|
|
* For example:
|
|
* - Splitting 64-bit MOV/SEL into 2x32-bit where needed
|
|
*/
|
|
bool
|
|
brw_fs_lower_alu_restrictions(fs_visitor &s)
|
|
{
|
|
const intel_device_info *devinfo = s.devinfo;
|
|
bool progress = false;
|
|
|
|
foreach_block_and_inst_safe(block, fs_inst, inst, s.cfg) {
|
|
switch (inst->opcode) {
|
|
case BRW_OPCODE_MOV:
|
|
if (unsupported_64bit_type(devinfo, inst->dst.type)) {
|
|
assert(inst->dst.type == inst->src[0].type);
|
|
assert(!inst->saturate);
|
|
assert(!inst->src[0].abs);
|
|
assert(!inst->src[0].negate);
|
|
const brw::fs_builder ibld(&s, block, inst);
|
|
|
|
enum brw_reg_type type = brw_type_with_size(inst->dst.type, 32);
|
|
|
|
if (!inst->is_partial_write())
|
|
ibld.emit_undef_for_dst(inst);
|
|
|
|
ibld.MOV(subscript(inst->dst, type, 1),
|
|
subscript(inst->src[0], type, 1));
|
|
ibld.MOV(subscript(inst->dst, type, 0),
|
|
subscript(inst->src[0], type, 0));
|
|
|
|
inst->remove(block);
|
|
progress = true;
|
|
}
|
|
break;
|
|
|
|
case BRW_OPCODE_SEL:
|
|
if (unsupported_64bit_type(devinfo, inst->dst.type)) {
|
|
assert(inst->dst.type == inst->src[0].type);
|
|
assert(!inst->saturate);
|
|
assert(!inst->src[0].abs && !inst->src[0].negate);
|
|
assert(!inst->src[1].abs && !inst->src[1].negate);
|
|
assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
|
|
const brw::fs_builder ibld(&s, block, inst);
|
|
|
|
enum brw_reg_type type = brw_type_with_size(inst->dst.type, 32);
|
|
|
|
if (!inst->is_partial_write())
|
|
ibld.emit_undef_for_dst(inst);
|
|
|
|
set_predicate(inst->predicate,
|
|
ibld.SEL(subscript(inst->dst, type, 0),
|
|
subscript(inst->src[0], type, 0),
|
|
subscript(inst->src[1], type, 0)));
|
|
set_predicate(inst->predicate,
|
|
ibld.SEL(subscript(inst->dst, type, 1),
|
|
subscript(inst->src[0], type, 1),
|
|
subscript(inst->src[1], type, 1)));
|
|
|
|
inst->remove(block);
|
|
progress = true;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (progress) {
|
|
s.invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW |
|
|
DEPENDENCY_INSTRUCTION_DETAIL);
|
|
}
|
|
|
|
return progress;
|
|
}
|
|
|
|
static void
|
|
brw_fs_lower_vgrf_to_fixed_grf(const struct intel_device_info *devinfo, fs_inst *inst,
|
|
brw_reg *reg, bool compressed)
|
|
{
|
|
if (reg->file != VGRF)
|
|
return;
|
|
|
|
struct brw_reg new_reg;
|
|
|
|
if (reg->stride == 0) {
|
|
new_reg = brw_vec1_grf(reg->nr, 0);
|
|
} else if (reg->stride > 4) {
|
|
assert(reg != &inst->dst);
|
|
assert(reg->stride * brw_type_size_bytes(reg->type) <= REG_SIZE);
|
|
new_reg = brw_vecn_grf(1, reg->nr, 0);
|
|
new_reg = stride(new_reg, reg->stride, 1, 0);
|
|
} else {
|
|
/* From the Haswell PRM:
|
|
*
|
|
* "VertStride must be used to cross GRF register boundaries. This
|
|
* rule implies that elements within a 'Width' cannot cross GRF
|
|
* boundaries."
|
|
*
|
|
* The maximum width value that could satisfy this restriction is:
|
|
*/
|
|
const unsigned reg_width =
|
|
REG_SIZE / (reg->stride * brw_type_size_bytes(reg->type));
|
|
|
|
/* Because the hardware can only split source regions at a whole
|
|
* multiple of width during decompression (i.e. vertically), clamp
|
|
* the value obtained above to the physical execution size of a
|
|
* single decompressed chunk of the instruction:
|
|
*/
|
|
const bool compressed = inst->dst.component_size(inst->exec_size) > REG_SIZE;
|
|
const unsigned phys_width = compressed ? inst->exec_size / 2 :
|
|
inst->exec_size;
|
|
|
|
/* XXX - The equation above is strictly speaking not correct on
|
|
* hardware that supports unbalanced GRF writes -- On Gfx9+
|
|
* each decompressed chunk of the instruction may have a
|
|
* different execution size when the number of components
|
|
* written to each destination GRF is not the same.
|
|
*/
|
|
|
|
const unsigned max_hw_width = 16;
|
|
|
|
const unsigned width = MIN3(reg_width, phys_width, max_hw_width);
|
|
new_reg = brw_vecn_grf(width, reg->nr, 0);
|
|
new_reg = stride(new_reg, width * reg->stride, width, reg->stride);
|
|
}
|
|
|
|
new_reg = retype(new_reg, reg->type);
|
|
new_reg = byte_offset(new_reg, reg->offset);
|
|
new_reg.abs = reg->abs;
|
|
new_reg.negate = reg->negate;
|
|
|
|
*reg = new_reg;
|
|
}
|
|
|
|
void
|
|
brw_fs_lower_vgrfs_to_fixed_grfs(fs_visitor &s)
|
|
{
|
|
assert(s.grf_used || !"Must be called after register allocation");
|
|
|
|
foreach_block_and_inst(block, fs_inst, inst, s.cfg) {
|
|
/* If the instruction writes to more than one register, it needs to be
|
|
* explicitly marked as compressed on Gen <= 5. On Gen >= 6 the
|
|
* hardware figures out by itself what the right compression mode is,
|
|
* but we still need to know whether the instruction is compressed to
|
|
* set up the source register regions appropriately.
|
|
*
|
|
* XXX - This is wrong for instructions that write a single register but
|
|
* read more than one which should strictly speaking be treated as
|
|
* compressed. For instructions that don't write any registers it
|
|
* relies on the destination being a null register of the correct
|
|
* type and regioning so the instruction is considered compressed
|
|
* or not accordingly.
|
|
*/
|
|
|
|
const bool compressed =
|
|
inst->dst.component_size(inst->exec_size) > REG_SIZE;
|
|
|
|
brw_fs_lower_vgrf_to_fixed_grf(s.devinfo, inst, &inst->dst, compressed);
|
|
for (int i = 0; i < inst->sources; i++) {
|
|
brw_fs_lower_vgrf_to_fixed_grf(s.devinfo, inst, &inst->src[i], compressed);
|
|
}
|
|
}
|
|
|
|
s.invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW |
|
|
DEPENDENCY_VARIABLES);
|
|
}
|
|
|
|
bool
|
|
brw_fs_lower_load_subgroup_invocation(fs_visitor &s)
|
|
{
|
|
bool progress = false;
|
|
|
|
foreach_block_and_inst_safe(block, fs_inst, inst, s.cfg) {
|
|
if (inst->opcode != SHADER_OPCODE_LOAD_SUBGROUP_INVOCATION)
|
|
continue;
|
|
|
|
const fs_builder abld =
|
|
fs_builder(&s, block, inst).annotate("SubgroupInvocation");
|
|
const fs_builder ubld8 = abld.group(8, 0).exec_all();
|
|
ubld8.UNDEF(inst->dst);
|
|
|
|
if (inst->exec_size == 8) {
|
|
assert(inst->dst.type == BRW_TYPE_UD);
|
|
brw_reg uw = retype(inst->dst, BRW_TYPE_UW);
|
|
ubld8.MOV(uw, brw_imm_v(0x76543210));
|
|
ubld8.MOV(inst->dst, uw);
|
|
} else {
|
|
assert(inst->dst.type == BRW_TYPE_UW);
|
|
ubld8.MOV(inst->dst, brw_imm_v(0x76543210));
|
|
ubld8.ADD(byte_offset(inst->dst, 16), inst->dst, brw_imm_uw(8u));
|
|
if (inst->exec_size > 16) {
|
|
const fs_builder ubld16 = abld.group(16, 0).exec_all();
|
|
ubld16.ADD(byte_offset(inst->dst, 32), inst->dst, brw_imm_uw(16u));
|
|
}
|
|
}
|
|
|
|
inst->remove(block);
|
|
progress = true;
|
|
}
|
|
|
|
if (progress)
|
|
s.invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
|
|
|
|
return progress;
|
|
}
|
|
|
|
bool
|
|
brw_fs_lower_indirect_mov(fs_visitor &s)
|
|
{
|
|
bool progress = false;
|
|
|
|
if (s.devinfo->ver < 20)
|
|
return progress;
|
|
|
|
foreach_block_and_inst_safe(block, fs_inst, inst, s.cfg) {
|
|
if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT) {
|
|
if (brw_type_size_bytes(inst->src[0].type) > 1 &&
|
|
brw_type_size_bytes(inst->dst.type) > 1) {
|
|
continue;
|
|
}
|
|
|
|
assert(brw_type_size_bytes(inst->src[0].type) ==
|
|
brw_type_size_bytes(inst->dst.type));
|
|
|
|
const fs_builder ibld(&s, block, inst);
|
|
|
|
/* Extract unaligned part */
|
|
uint16_t extra_offset = inst->src[0].offset & 0x1;
|
|
brw_reg offset = ibld.ADD(inst->src[1], brw_imm_uw(extra_offset));
|
|
|
|
/* Check if offset is odd or even so that we can choose either high or
|
|
* low byte from the result.
|
|
*/
|
|
brw_reg is_odd = ibld.AND(offset, brw_imm_ud(1));
|
|
|
|
/* Make sure offset is word (2-bytes) aligned */
|
|
offset = ibld.AND(offset, brw_imm_uw(~1));
|
|
|
|
/* Indirect addressing(vx1 and vxh) not supported with UB/B datatype for
|
|
* Src0, so change data type for src0 and dst to UW.
|
|
*/
|
|
brw_reg dst = ibld.vgrf(BRW_TYPE_UW);
|
|
|
|
/* Substract unaligned offset from src0 offset since we already
|
|
* accounted unaligned part in the indirect byte offset.
|
|
*/
|
|
brw_reg start = retype(inst->src[0], BRW_TYPE_UW);
|
|
start.offset &= ~extra_offset;
|
|
|
|
/* Adjust length to account extra offset. */
|
|
assert(inst->src[2].file == IMM);
|
|
brw_reg length = brw_imm_ud(inst->src[2].ud + extra_offset);
|
|
|
|
ibld.emit(SHADER_OPCODE_MOV_INDIRECT, dst, start, offset, length);
|
|
|
|
/* Select high byte if offset is odd otherwise select low byte. */
|
|
brw_reg lo = ibld.AND(dst, brw_imm_uw(0xff));
|
|
brw_reg hi = ibld.SHR(dst, brw_imm_uw(8));
|
|
brw_reg result = ibld.vgrf(BRW_TYPE_UW);
|
|
ibld.CSEL(result, hi, lo, is_odd, BRW_CONDITIONAL_NZ);
|
|
|
|
/* Extra MOV needed here to convert back to the corresponding B type */
|
|
ibld.MOV(inst->dst, result);
|
|
|
|
inst->remove(block);
|
|
progress = true;
|
|
}
|
|
}
|
|
|
|
if (progress)
|
|
s.invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
|
|
|
|
return progress;
|
|
}
|