mesa/src/gallium/drivers/vc4/vc4_program.c
Eric Anholt aae4223fbd vc4: Restructure depth input/output in fragment shaders.
The goal here is to have an argument for the depth write opcode so that I
can do computed depth.  In the process, this makes the calculations that
will be emitted more obvious in the QIR.
2014-09-16 13:03:32 -07:00

1848 lines
64 KiB
C

/*
* Copyright (c) 2014 Scott Mansell
* Copyright © 2014 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <inttypes.h>
#include "pipe/p_state.h"
#include "util/u_format.h"
#include "util/u_hash_table.h"
#include "util/u_hash.h"
#include "util/u_memory.h"
#include "util/ralloc.h"
#include "tgsi/tgsi_dump.h"
#include "tgsi/tgsi_info.h"
#include "vc4_context.h"
#include "vc4_qpu.h"
#include "vc4_qir.h"
#ifdef USE_VC4_SIMULATOR
#include "simpenrose/simpenrose.h"
#endif
struct vc4_key {
struct pipe_shader_state *shader_state;
struct {
enum pipe_format format;
unsigned compare_mode:1;
unsigned compare_func:3;
uint8_t swizzle[4];
} tex[VC4_MAX_TEXTURE_SAMPLERS];
};
struct vc4_fs_key {
struct vc4_key base;
enum pipe_format color_format;
bool depth_enabled;
bool is_points;
bool is_lines;
struct pipe_rt_blend_state blend;
};
struct vc4_vs_key {
struct vc4_key base;
enum pipe_format attr_formats[8];
};
static void
resize_qreg_array(struct vc4_compile *c,
struct qreg **regs,
uint32_t *size,
uint32_t decl_size)
{
if (*size >= decl_size)
return;
*size = MAX2(*size * 2, decl_size);
*regs = reralloc(c, *regs, struct qreg, *size);
if (!*regs) {
fprintf(stderr, "Malloc failure\n");
abort();
}
}
static struct qreg
add_uniform(struct vc4_compile *c,
enum quniform_contents contents,
uint32_t data)
{
uint32_t uniform = c->num_uniforms++;
struct qreg u = { QFILE_UNIF, uniform };
c->uniform_contents[uniform] = contents;
c->uniform_data[uniform] = data;
return u;
}
static struct qreg
get_temp_for_uniform(struct vc4_compile *c, enum quniform_contents contents,
uint32_t data)
{
for (int i = 0; i < c->num_uniforms; i++) {
if (c->uniform_contents[i] == contents &&
c->uniform_data[i] == data)
return c->uniforms[i];
}
struct qreg u = add_uniform(c, contents, data);
struct qreg t = qir_MOV(c, u);
resize_qreg_array(c, &c->uniforms, &c->uniforms_array_size,
u.index + 1);
c->uniforms[u.index] = t;
return t;
}
static struct qreg
qir_uniform_ui(struct vc4_compile *c, uint32_t ui)
{
return get_temp_for_uniform(c, QUNIFORM_CONSTANT, ui);
}
static struct qreg
qir_uniform_f(struct vc4_compile *c, float f)
{
return qir_uniform_ui(c, fui(f));
}
static struct qreg
get_src(struct vc4_compile *c, unsigned tgsi_op,
struct tgsi_src_register *src, int i)
{
struct qreg r = c->undef;
uint32_t s = i;
switch (i) {
case TGSI_SWIZZLE_X:
s = src->SwizzleX;
break;
case TGSI_SWIZZLE_Y:
s = src->SwizzleY;
break;
case TGSI_SWIZZLE_Z:
s = src->SwizzleZ;
break;
case TGSI_SWIZZLE_W:
s = src->SwizzleW;
break;
default:
abort();
}
assert(!src->Indirect);
switch (src->File) {
case TGSI_FILE_NULL:
return r;
case TGSI_FILE_TEMPORARY:
r = c->temps[src->Index * 4 + s];
break;
case TGSI_FILE_IMMEDIATE:
r = c->consts[src->Index * 4 + s];
break;
case TGSI_FILE_CONSTANT:
r = get_temp_for_uniform(c, QUNIFORM_UNIFORM,
src->Index * 4 + s);
break;
case TGSI_FILE_INPUT:
r = c->inputs[src->Index * 4 + s];
break;
case TGSI_FILE_SAMPLER:
case TGSI_FILE_SAMPLER_VIEW:
r = c->undef;
break;
default:
fprintf(stderr, "unknown src file %d\n", src->File);
abort();
}
if (src->Absolute)
r = qir_FMAXABS(c, r, r);
if (src->Negate) {
switch (tgsi_opcode_infer_src_type(tgsi_op)) {
case TGSI_TYPE_SIGNED:
case TGSI_TYPE_UNSIGNED:
r = qir_SUB(c, qir_uniform_ui(c, 0), r);
break;
default:
r = qir_FSUB(c, qir_uniform_f(c, 0.0), r);
break;
}
}
return r;
};
static void
update_dst(struct vc4_compile *c, struct tgsi_full_instruction *tgsi_inst,
int i, struct qreg val)
{
struct tgsi_dst_register *tgsi_dst = &tgsi_inst->Dst[0].Register;
assert(!tgsi_dst->Indirect);
switch (tgsi_dst->File) {
case TGSI_FILE_TEMPORARY:
c->temps[tgsi_dst->Index * 4 + i] = val;
break;
case TGSI_FILE_OUTPUT:
c->outputs[tgsi_dst->Index * 4 + i] = val;
c->num_outputs = MAX2(c->num_outputs,
tgsi_dst->Index * 4 + i + 1);
break;
default:
fprintf(stderr, "unknown dst file %d\n", tgsi_dst->File);
abort();
}
};
static struct qreg
get_swizzled_channel(struct vc4_compile *c,
struct qreg *srcs, int swiz)
{
switch (swiz) {
default:
case UTIL_FORMAT_SWIZZLE_NONE:
fprintf(stderr, "warning: unknown swizzle\n");
/* FALLTHROUGH */
case UTIL_FORMAT_SWIZZLE_0:
return qir_uniform_f(c, 0.0);
case UTIL_FORMAT_SWIZZLE_1:
return qir_uniform_f(c, 1.0);
case UTIL_FORMAT_SWIZZLE_X:
case UTIL_FORMAT_SWIZZLE_Y:
case UTIL_FORMAT_SWIZZLE_Z:
case UTIL_FORMAT_SWIZZLE_W:
return srcs[swiz];
}
}
static struct qreg
tgsi_to_qir_alu(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
struct qreg dst = qir_get_temp(c);
qir_emit(c, qir_inst4(op, dst,
src[0 * 4 + i],
src[1 * 4 + i],
src[2 * 4 + i],
c->undef));
return dst;
}
static struct qreg
tgsi_to_qir_umul(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
struct qreg src0_hi = qir_SHR(c, src[0 * 4 + i],
qir_uniform_ui(c, 16));
struct qreg src0_lo = qir_AND(c, src[0 * 4 + i],
qir_uniform_ui(c, 0xffff));
struct qreg src1_hi = qir_SHR(c, src[1 * 4 + i],
qir_uniform_ui(c, 16));
struct qreg src1_lo = qir_AND(c, src[1 * 4 + i],
qir_uniform_ui(c, 0xffff));
struct qreg hilo = qir_MUL24(c, src0_hi, src1_lo);
struct qreg lohi = qir_MUL24(c, src0_lo, src1_hi);
struct qreg lolo = qir_MUL24(c, src0_lo, src1_lo);
return qir_ADD(c, lolo, qir_SHL(c,
qir_ADD(c, hilo, lohi),
qir_uniform_ui(c, 16)));
}
static struct qreg
tgsi_to_qir_idiv(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
return qir_FTOI(c, qir_FMUL(c,
qir_ITOF(c, src[0 * 4 + i]),
qir_RCP(c, qir_ITOF(c, src[1 * 4 + i]))));
}
static struct qreg
tgsi_to_qir_ineg(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
return qir_SUB(c, qir_uniform_ui(c, 0), src[0 * 4 + i]);
}
static struct qreg
tgsi_to_qir_seq(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
return qir_SEL_X_0_ZS(c, qir_uniform_f(c, 1.0));
}
static struct qreg
tgsi_to_qir_sne(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
return qir_SEL_X_0_ZC(c, qir_uniform_f(c, 1.0));
}
static struct qreg
tgsi_to_qir_slt(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
return qir_SEL_X_0_NS(c, qir_uniform_f(c, 1.0));
}
static struct qreg
tgsi_to_qir_sge(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
return qir_SEL_X_0_NC(c, qir_uniform_f(c, 1.0));
}
static struct qreg
tgsi_to_qir_fseq(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
return qir_SEL_X_0_ZS(c, qir_uniform_ui(c, ~0));
}
static struct qreg
tgsi_to_qir_fsne(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
return qir_SEL_X_0_ZC(c, qir_uniform_ui(c, ~0));
}
static struct qreg
tgsi_to_qir_fslt(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
return qir_SEL_X_0_NS(c, qir_uniform_ui(c, ~0));
}
static struct qreg
tgsi_to_qir_fsge(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
qir_SF(c, qir_FSUB(c, src[0 * 4 + i], src[1 * 4 + i]));
return qir_SEL_X_0_NC(c, qir_uniform_ui(c, ~0));
}
static struct qreg
tgsi_to_qir_useq(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
qir_SF(c, qir_SUB(c, src[0 * 4 + i], src[1 * 4 + i]));
return qir_SEL_X_0_ZS(c, qir_uniform_ui(c, ~0));
}
static struct qreg
tgsi_to_qir_usne(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
qir_SF(c, qir_SUB(c, src[0 * 4 + i], src[1 * 4 + i]));
return qir_SEL_X_0_ZC(c, qir_uniform_ui(c, ~0));
}
static struct qreg
tgsi_to_qir_islt(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
qir_SF(c, qir_SUB(c, src[0 * 4 + i], src[1 * 4 + i]));
return qir_SEL_X_0_NS(c, qir_uniform_ui(c, ~0));
}
static struct qreg
tgsi_to_qir_isge(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
qir_SF(c, qir_SUB(c, src[0 * 4 + i], src[1 * 4 + i]));
return qir_SEL_X_0_NC(c, qir_uniform_ui(c, ~0));
}
static struct qreg
tgsi_to_qir_cmp(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
qir_SF(c, src[0 * 4 + i]);
return qir_SEL_X_Y_NS(c,
src[1 * 4 + i],
src[2 * 4 + i]);
}
static struct qreg
tgsi_to_qir_mad(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
return qir_FADD(c,
qir_FMUL(c,
src[0 * 4 + i],
src[1 * 4 + i]),
src[2 * 4 + i]);
}
static struct qreg
tgsi_to_qir_lit(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
struct qreg x = src[0 * 4 + 0];
struct qreg y = src[0 * 4 + 1];
struct qreg w = src[0 * 4 + 3];
switch (i) {
case 0:
case 3:
return qir_uniform_f(c, 1.0);
case 1:
return qir_FMAX(c, src[0 * 4 + 0], qir_uniform_f(c, 0.0));
case 2: {
struct qreg zero = qir_uniform_f(c, 0.0);
qir_SF(c, x);
/* XXX: Clamp w to -128..128 */
return qir_SEL_X_0_NC(c,
qir_EXP2(c, qir_FMUL(c,
w,
qir_LOG2(c,
qir_FMAX(c,
y,
zero)))));
}
default:
assert(!"not reached");
return c->undef;
}
}
static struct qreg
tgsi_to_qir_lrp(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
struct qreg src0 = src[0 * 4 + i];
struct qreg src1 = src[1 * 4 + i];
struct qreg src2 = src[2 * 4 + i];
/* LRP is:
* src0 * src1 + (1 - src0) * src2.
* -> src0 * src1 + src2 - src0 * src2
* -> src2 + src0 * (src1 - src2)
*/
return qir_FADD(c, src2, qir_FMUL(c, src0, qir_FSUB(c, src1, src2)));
}
static void
tgsi_to_qir_tex(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src)
{
assert(!tgsi_inst->Instruction.Saturate);
struct qreg s = src[0 * 4 + 0];
struct qreg t = src[0 * 4 + 1];
uint32_t unit = tgsi_inst->Src[1].Register.Index;
struct qreg proj = c->undef;
if (tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXP) {
proj = qir_RCP(c, src[0 * 4 + 3]);
s = qir_FMUL(c, s, proj);
t = qir_FMUL(c, t, proj);
}
/* There is no native support for GL texture rectangle coordinates, so
* we have to rescale from ([0, width], [0, height]) to ([0, 1], [0,
* 1]).
*/
if (tgsi_inst->Texture.Texture == TGSI_TEXTURE_RECT ||
tgsi_inst->Texture.Texture == TGSI_TEXTURE_SHADOWRECT) {
s = qir_FMUL(c, s,
get_temp_for_uniform(c,
QUNIFORM_TEXRECT_SCALE_X,
unit));
t = qir_FMUL(c, t,
get_temp_for_uniform(c,
QUNIFORM_TEXRECT_SCALE_Y,
unit));
}
qir_TEX_T(c, t, add_uniform(c, QUNIFORM_TEXTURE_CONFIG_P0, unit));
struct qreg sampler_p1 = add_uniform(c, QUNIFORM_TEXTURE_CONFIG_P1,
unit);
if (tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXB) {
qir_TEX_B(c, src[0 * 4 + 3], sampler_p1);
qir_TEX_S(c, s, add_uniform(c, QUNIFORM_CONSTANT, 0));
} else {
qir_TEX_S(c, s, sampler_p1);
}
c->num_texture_samples++;
struct qreg r4 = qir_TEX_RESULT(c);
enum pipe_format format = c->key->tex[unit].format;
struct qreg unpacked[4];
if (util_format_is_depth_or_stencil(format)) {
struct qreg depthf = qir_ITOF(c, qir_SHR(c, r4,
qir_uniform_ui(c, 8)));
struct qreg normalized = qir_FMUL(c, depthf,
qir_uniform_f(c, 1.0f/0xffffff));
struct qreg depth_output;
struct qreg compare = src[0 * 4 + 2];
if (tgsi_inst->Instruction.Opcode == TGSI_OPCODE_TXP)
compare = qir_FMUL(c, compare, proj);
struct qreg one = qir_uniform_f(c, 1.0f);
if (c->key->tex[unit].compare_mode) {
switch (c->key->tex[unit].compare_func) {
case PIPE_FUNC_NEVER:
depth_output = qir_uniform_f(c, 0.0f);
break;
case PIPE_FUNC_ALWAYS:
depth_output = one;
break;
case PIPE_FUNC_EQUAL:
qir_SF(c, qir_FSUB(c, compare, normalized));
depth_output = qir_SEL_X_0_ZS(c, one);
break;
case PIPE_FUNC_NOTEQUAL:
qir_SF(c, qir_FSUB(c, compare, normalized));
depth_output = qir_SEL_X_0_ZC(c, one);
break;
case PIPE_FUNC_GREATER:
qir_SF(c, qir_FSUB(c, compare, normalized));
depth_output = qir_SEL_X_0_NC(c, one);
break;
case PIPE_FUNC_GEQUAL:
qir_SF(c, qir_FSUB(c, normalized, compare));
depth_output = qir_SEL_X_0_NS(c, one);
break;
case PIPE_FUNC_LESS:
qir_SF(c, qir_FSUB(c, compare, normalized));
depth_output = qir_SEL_X_0_NS(c, one);
break;
case PIPE_FUNC_LEQUAL:
qir_SF(c, qir_FSUB(c, normalized, compare));
depth_output = qir_SEL_X_0_NC(c, one);
break;
}
} else {
depth_output = normalized;
}
for (int i = 0; i < 4; i++)
unpacked[i] = depth_output;
} else {
for (int i = 0; i < 4; i++)
unpacked[i] = qir_R4_UNPACK(c, r4, i);
}
const uint8_t *format_swiz = vc4_get_format_swizzle(format);
uint8_t swiz[4];
util_format_compose_swizzles(format_swiz, c->key->tex[unit].swizzle, swiz);
for (int i = 0; i < 4; i++) {
if (!(tgsi_inst->Dst[0].Register.WriteMask & (1 << i)))
continue;
update_dst(c, tgsi_inst, i,
get_swizzled_channel(c, unpacked, swiz[i]));
}
}
static struct qreg
tgsi_to_qir_pow(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
/* Note that this instruction replicates its result from the x channel
*/
return qir_EXP2(c, qir_FMUL(c,
src[1 * 4 + 0],
qir_LOG2(c, src[0 * 4 + 0])));
}
static struct qreg
tgsi_to_qir_trunc(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
return qir_ITOF(c, qir_FTOI(c, src[0 * 4 + i]));
}
/**
* Computes x - floor(x), which is tricky because our FTOI truncates (rounds
* to zero).
*/
static struct qreg
tgsi_to_qir_frc(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src[0 * 4 + i]));
struct qreg diff = qir_FSUB(c, src[0 * 4 + i], trunc);
qir_SF(c, diff);
return qir_SEL_X_Y_NS(c,
qir_FADD(c, diff, qir_uniform_f(c, 1.0)),
diff);
}
/**
* Computes floor(x), which is tricky because our FTOI truncates (rounds to
* zero).
*/
static struct qreg
tgsi_to_qir_flr(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src[0 * 4 + i]));
/* This will be < 0 if we truncated and the truncation was of a value
* that was < 0 in the first place.
*/
qir_SF(c, qir_FSUB(c, src[0 * 4 + i], trunc));
return qir_SEL_X_Y_NS(c,
qir_FSUB(c, trunc, qir_uniform_f(c, 1.0)),
trunc);
}
static struct qreg
tgsi_to_qir_dp(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
int num, struct qreg *src, int i)
{
struct qreg sum = qir_FMUL(c, src[0 * 4 + 0], src[1 * 4 + 0]);
for (int j = 1; j < num; j++) {
sum = qir_FADD(c, sum, qir_FMUL(c,
src[0 * 4 + j],
src[1 * 4 + j]));
}
return sum;
}
static struct qreg
tgsi_to_qir_dp2(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
return tgsi_to_qir_dp(c, tgsi_inst, 2, src, i);
}
static struct qreg
tgsi_to_qir_dp3(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
return tgsi_to_qir_dp(c, tgsi_inst, 3, src, i);
}
static struct qreg
tgsi_to_qir_dp4(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
return tgsi_to_qir_dp(c, tgsi_inst, 4, src, i);
}
static struct qreg
tgsi_to_qir_abs(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
struct qreg arg = src[0 * 4 + i];
return qir_FMAXABS(c, arg, arg);
}
/* Note that this instruction replicates its result from the x channel */
static struct qreg
tgsi_to_qir_sin(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
float coeff[] = {
2.0 * M_PI,
-pow(2.0 * M_PI, 3) / (3 * 2 * 1),
pow(2.0 * M_PI, 5) / (5 * 4 * 3 * 2 * 1),
-pow(2.0 * M_PI, 7) / (7 * 6 * 5 * 4 * 3 * 2 * 1),
};
struct qreg scaled_x =
qir_FMUL(c,
src[0 * 4 + 0],
qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
struct qreg x = tgsi_to_qir_frc(c, NULL, 0, &scaled_x, 0);
struct qreg x2 = qir_FMUL(c, x, x);
struct qreg sum = qir_FMUL(c, x, qir_uniform_f(c, coeff[0]));
for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
x = qir_FMUL(c, x, x2);
sum = qir_FADD(c,
sum,
qir_FMUL(c,
x,
qir_uniform_f(c, coeff[i])));
}
return sum;
}
/* Note that this instruction replicates its result from the x channel */
static struct qreg
tgsi_to_qir_cos(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op, struct qreg *src, int i)
{
float coeff[] = {
1.0f,
-pow(2.0 * M_PI, 2) / (2 * 1),
pow(2.0 * M_PI, 4) / (4 * 3 * 2 * 1),
-pow(2.0 * M_PI, 6) / (6 * 5 * 4 * 3 * 2 * 1),
};
struct qreg scaled_x =
qir_FMUL(c, src[0 * 4 + 0],
qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
struct qreg x_frac = tgsi_to_qir_frc(c, NULL, 0, &scaled_x, 0);
struct qreg sum = qir_uniform_f(c, coeff[0]);
struct qreg x2 = qir_FMUL(c, x_frac, x_frac);
struct qreg x = x2; /* Current x^2, x^4, or x^6 */
for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
if (i != 1)
x = qir_FMUL(c, x, x2);
struct qreg mul = qir_FMUL(c,
x,
qir_uniform_f(c, coeff[i]));
if (i == 0)
sum = mul;
else
sum = qir_FADD(c, sum, mul);
}
return sum;
}
static void
emit_vertex_input(struct vc4_compile *c, int attr)
{
enum pipe_format format = c->vs_key->attr_formats[attr];
struct qreg vpm_reads[4];
/* Right now, we're setting the VPM offsets to be 16 bytes wide every
* time, so we always read 4 32-bit VPM entries.
*/
for (int i = 0; i < 4; i++) {
vpm_reads[i] = qir_get_temp(c);
qir_emit(c, qir_inst(QOP_VPM_READ,
vpm_reads[i],
c->undef,
c->undef));
c->num_inputs++;
}
bool format_warned = false;
const struct util_format_description *desc =
util_format_description(format);
for (int i = 0; i < 4; i++) {
uint8_t swiz = desc->swizzle[i];
if (swiz <= UTIL_FORMAT_SWIZZLE_W &&
!format_warned &&
(desc->channel[swiz].type != UTIL_FORMAT_TYPE_FLOAT ||
desc->channel[swiz].size != 32)) {
fprintf(stderr,
"vtx element %d unsupported type: %s\n",
attr, util_format_name(format));
format_warned = true;
}
c->inputs[attr * 4 + i] =
get_swizzled_channel(c, vpm_reads, swiz);
}
}
static void
tgsi_to_qir_kill_if(struct vc4_compile *c, struct qreg *src, int i)
{
if (c->discard.file == QFILE_NULL)
c->discard = qir_uniform_f(c, 0.0);
qir_SF(c, src[0 * 4 + i]);
c->discard = qir_SEL_X_Y_NS(c, qir_uniform_f(c, 1.0),
c->discard);
}
static void
emit_fragcoord_input(struct vc4_compile *c, int attr)
{
c->inputs[attr * 4 + 0] = qir_FRAG_X(c);
c->inputs[attr * 4 + 1] = qir_FRAG_Y(c);
c->inputs[attr * 4 + 2] =
qir_FMUL(c,
qir_ITOF(c, qir_FRAG_Z(c)),
qir_uniform_f(c, 1.0 / 0xffffff));
c->inputs[attr * 4 + 3] = qir_FRAG_RCP_W(c);
}
static struct qreg
emit_fragment_varying(struct vc4_compile *c, int index)
{
struct qreg vary = {
QFILE_VARY,
index
};
/* XXX: multiply by W */
return qir_VARY_ADD_C(c, qir_MOV(c, vary));
}
static void
emit_fragment_input(struct vc4_compile *c, int attr)
{
for (int i = 0; i < 4; i++) {
c->inputs[attr * 4 + i] =
emit_fragment_varying(c, attr * 4 + i);
c->num_inputs++;
}
}
static void
emit_tgsi_declaration(struct vc4_compile *c,
struct tgsi_full_declaration *decl)
{
switch (decl->Declaration.File) {
case TGSI_FILE_TEMPORARY:
resize_qreg_array(c, &c->temps, &c->temps_array_size,
(decl->Range.Last + 1) * 4);
break;
case TGSI_FILE_INPUT:
resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
(decl->Range.Last + 1) * 4);
for (int i = decl->Range.First;
i <= decl->Range.Last;
i++) {
if (c->stage == QSTAGE_FRAG) {
if (decl->Semantic.Name ==
TGSI_SEMANTIC_POSITION) {
emit_fragcoord_input(c, i);
} else {
emit_fragment_input(c, i);
}
} else {
emit_vertex_input(c, i);
}
}
break;
case TGSI_FILE_OUTPUT:
resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
(decl->Range.Last + 1) * 4);
break;
}
}
static void
emit_tgsi_instruction(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst)
{
struct {
enum qop op;
struct qreg (*func)(struct vc4_compile *c,
struct tgsi_full_instruction *tgsi_inst,
enum qop op,
struct qreg *src, int i);
} op_trans[] = {
[TGSI_OPCODE_MOV] = { QOP_MOV, tgsi_to_qir_alu },
[TGSI_OPCODE_ABS] = { 0, tgsi_to_qir_abs },
[TGSI_OPCODE_MUL] = { QOP_FMUL, tgsi_to_qir_alu },
[TGSI_OPCODE_ADD] = { QOP_FADD, tgsi_to_qir_alu },
[TGSI_OPCODE_SUB] = { QOP_FSUB, tgsi_to_qir_alu },
[TGSI_OPCODE_MIN] = { QOP_FMIN, tgsi_to_qir_alu },
[TGSI_OPCODE_MAX] = { QOP_FMAX, tgsi_to_qir_alu },
[TGSI_OPCODE_F2I] = { QOP_FTOI, tgsi_to_qir_alu },
[TGSI_OPCODE_I2F] = { QOP_ITOF, tgsi_to_qir_alu },
[TGSI_OPCODE_UADD] = { QOP_ADD, tgsi_to_qir_alu },
[TGSI_OPCODE_USHR] = { QOP_SHR, tgsi_to_qir_alu },
[TGSI_OPCODE_ISHR] = { QOP_ASR, tgsi_to_qir_alu },
[TGSI_OPCODE_SHL] = { QOP_SHL, tgsi_to_qir_alu },
[TGSI_OPCODE_IMIN] = { QOP_MIN, tgsi_to_qir_alu },
[TGSI_OPCODE_IMAX] = { QOP_MAX, tgsi_to_qir_alu },
[TGSI_OPCODE_AND] = { QOP_AND, tgsi_to_qir_alu },
[TGSI_OPCODE_OR] = { QOP_OR, tgsi_to_qir_alu },
[TGSI_OPCODE_XOR] = { QOP_XOR, tgsi_to_qir_alu },
[TGSI_OPCODE_NOT] = { QOP_NOT, tgsi_to_qir_alu },
[TGSI_OPCODE_UMUL] = { 0, tgsi_to_qir_umul },
[TGSI_OPCODE_IDIV] = { 0, tgsi_to_qir_idiv },
[TGSI_OPCODE_INEG] = { 0, tgsi_to_qir_ineg },
[TGSI_OPCODE_RSQ] = { QOP_RSQ, tgsi_to_qir_alu },
[TGSI_OPCODE_SEQ] = { 0, tgsi_to_qir_seq },
[TGSI_OPCODE_SNE] = { 0, tgsi_to_qir_sne },
[TGSI_OPCODE_SGE] = { 0, tgsi_to_qir_sge },
[TGSI_OPCODE_SLT] = { 0, tgsi_to_qir_slt },
[TGSI_OPCODE_FSEQ] = { 0, tgsi_to_qir_fseq },
[TGSI_OPCODE_FSNE] = { 0, tgsi_to_qir_fsne },
[TGSI_OPCODE_FSGE] = { 0, tgsi_to_qir_fsge },
[TGSI_OPCODE_FSLT] = { 0, tgsi_to_qir_fslt },
[TGSI_OPCODE_USEQ] = { 0, tgsi_to_qir_useq },
[TGSI_OPCODE_USNE] = { 0, tgsi_to_qir_usne },
[TGSI_OPCODE_ISGE] = { 0, tgsi_to_qir_isge },
[TGSI_OPCODE_ISLT] = { 0, tgsi_to_qir_islt },
[TGSI_OPCODE_CMP] = { 0, tgsi_to_qir_cmp },
[TGSI_OPCODE_MAD] = { 0, tgsi_to_qir_mad },
[TGSI_OPCODE_DP2] = { 0, tgsi_to_qir_dp2 },
[TGSI_OPCODE_DP3] = { 0, tgsi_to_qir_dp3 },
[TGSI_OPCODE_DP4] = { 0, tgsi_to_qir_dp4 },
[TGSI_OPCODE_RCP] = { QOP_RCP, tgsi_to_qir_alu },
[TGSI_OPCODE_RSQ] = { QOP_RSQ, tgsi_to_qir_alu },
[TGSI_OPCODE_EX2] = { QOP_EXP2, tgsi_to_qir_alu },
[TGSI_OPCODE_LG2] = { QOP_LOG2, tgsi_to_qir_alu },
[TGSI_OPCODE_LIT] = { 0, tgsi_to_qir_lit },
[TGSI_OPCODE_LRP] = { 0, tgsi_to_qir_lrp },
[TGSI_OPCODE_POW] = { 0, tgsi_to_qir_pow },
[TGSI_OPCODE_TRUNC] = { 0, tgsi_to_qir_trunc },
[TGSI_OPCODE_FRC] = { 0, tgsi_to_qir_frc },
[TGSI_OPCODE_FLR] = { 0, tgsi_to_qir_flr },
[TGSI_OPCODE_SIN] = { 0, tgsi_to_qir_sin },
[TGSI_OPCODE_COS] = { 0, tgsi_to_qir_cos },
};
static int asdf = 0;
uint32_t tgsi_op = tgsi_inst->Instruction.Opcode;
if (tgsi_op == TGSI_OPCODE_END)
return;
struct qreg src_regs[12];
for (int s = 0; s < 3; s++) {
for (int i = 0; i < 4; i++) {
src_regs[4 * s + i] =
get_src(c, tgsi_inst->Instruction.Opcode,
&tgsi_inst->Src[s].Register, i);
}
}
switch (tgsi_op) {
case TGSI_OPCODE_TEX:
case TGSI_OPCODE_TXP:
case TGSI_OPCODE_TXB:
tgsi_to_qir_tex(c, tgsi_inst,
op_trans[tgsi_op].op, src_regs);
return;
case TGSI_OPCODE_KILL:
c->discard = qir_uniform_f(c, 1.0);
return;
case TGSI_OPCODE_KILL_IF:
for (int i = 0; i < 4; i++)
tgsi_to_qir_kill_if(c, src_regs, i);
return;
default:
break;
}
if (tgsi_op > ARRAY_SIZE(op_trans) || !(op_trans[tgsi_op].func)) {
fprintf(stderr, "unknown tgsi inst: ");
tgsi_dump_instruction(tgsi_inst, asdf++);
fprintf(stderr, "\n");
abort();
}
for (int i = 0; i < 4; i++) {
if (!(tgsi_inst->Dst[0].Register.WriteMask & (1 << i)))
continue;
struct qreg result;
result = op_trans[tgsi_op].func(c, tgsi_inst,
op_trans[tgsi_op].op,
src_regs, i);
if (tgsi_inst->Instruction.Saturate) {
float low = (tgsi_inst->Instruction.Saturate ==
TGSI_SAT_MINUS_PLUS_ONE ? -1.0 : 0.0);
result = qir_FMAX(c,
qir_FMIN(c,
result,
qir_uniform_f(c, 1.0)),
qir_uniform_f(c, low));
}
update_dst(c, tgsi_inst, i, result);
}
}
static void
parse_tgsi_immediate(struct vc4_compile *c, struct tgsi_full_immediate *imm)
{
for (int i = 0; i < 4; i++) {
unsigned n = c->num_consts++;
resize_qreg_array(c, &c->consts, &c->consts_array_size, n + 1);
c->consts[n] = qir_uniform_ui(c, imm->u[i].Uint);
}
}
static struct qreg
vc4_blend_channel(struct vc4_compile *c,
struct qreg *dst,
struct qreg *src,
struct qreg val,
unsigned factor,
int channel)
{
switch(factor) {
case PIPE_BLENDFACTOR_ONE:
return val;
case PIPE_BLENDFACTOR_SRC_COLOR:
return qir_FMUL(c, val, src[channel]);
case PIPE_BLENDFACTOR_SRC_ALPHA:
return qir_FMUL(c, val, src[3]);
case PIPE_BLENDFACTOR_DST_ALPHA:
return qir_FMUL(c, val, dst[3]);
case PIPE_BLENDFACTOR_DST_COLOR:
return qir_FMUL(c, val, dst[channel]);
case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
return qir_FMIN(c, src[3], qir_FSUB(c,
qir_uniform_f(c, 1.0),
dst[3]));
case PIPE_BLENDFACTOR_CONST_COLOR:
return qir_FMUL(c, val,
get_temp_for_uniform(c,
QUNIFORM_BLEND_CONST_COLOR,
channel));
case PIPE_BLENDFACTOR_CONST_ALPHA:
return qir_FMUL(c, val,
get_temp_for_uniform(c,
QUNIFORM_BLEND_CONST_COLOR,
3));
case PIPE_BLENDFACTOR_ZERO:
return qir_uniform_f(c, 0.0);
case PIPE_BLENDFACTOR_INV_SRC_COLOR:
return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0),
src[channel]));
case PIPE_BLENDFACTOR_INV_SRC_ALPHA:
return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0),
src[3]));
case PIPE_BLENDFACTOR_INV_DST_ALPHA:
return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0),
dst[3]));
case PIPE_BLENDFACTOR_INV_DST_COLOR:
return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0),
dst[channel]));
case PIPE_BLENDFACTOR_INV_CONST_COLOR:
return qir_FMUL(c, val,
qir_FSUB(c, qir_uniform_f(c, 1.0),
get_temp_for_uniform(c,
QUNIFORM_BLEND_CONST_COLOR,
channel)));
case PIPE_BLENDFACTOR_INV_CONST_ALPHA:
return qir_FMUL(c, val,
qir_FSUB(c, qir_uniform_f(c, 1.0),
get_temp_for_uniform(c,
QUNIFORM_BLEND_CONST_COLOR,
3)));
default:
case PIPE_BLENDFACTOR_SRC1_COLOR:
case PIPE_BLENDFACTOR_SRC1_ALPHA:
case PIPE_BLENDFACTOR_INV_SRC1_COLOR:
case PIPE_BLENDFACTOR_INV_SRC1_ALPHA:
/* Unsupported. */
fprintf(stderr, "Unknown blend factor %d\n", factor);
return val;
}
}
static struct qreg
vc4_blend_func(struct vc4_compile *c,
struct qreg src, struct qreg dst,
unsigned func)
{
switch (func) {
case PIPE_BLEND_ADD:
return qir_FADD(c, src, dst);
case PIPE_BLEND_SUBTRACT:
return qir_FSUB(c, src, dst);
case PIPE_BLEND_REVERSE_SUBTRACT:
return qir_FSUB(c, dst, src);
case PIPE_BLEND_MIN:
return qir_FMIN(c, src, dst);
case PIPE_BLEND_MAX:
return qir_FMAX(c, src, dst);
default:
/* Unsupported. */
fprintf(stderr, "Unknown blend func %d\n", func);
return src;
}
}
/**
* Implements fixed function blending in shader code.
*
* VC4 doesn't have any hardware support for blending. Instead, you read the
* current contents of the destination from the tile buffer after having
* waited for the scoreboard (which is handled by vc4_qpu_emit.c), then do
* math using your output color and that destination value, and update the
* output color appropriately.
*/
static void
vc4_blend(struct vc4_compile *c, struct qreg *result,
struct qreg *dst_color, struct qreg *src_color)
{
struct pipe_rt_blend_state *blend = &c->fs_key->blend;
if (!blend->blend_enable) {
for (int i = 0; i < 4; i++)
result[i] = src_color[i];
return;
}
struct qreg src_blend[4], dst_blend[4];
for (int i = 0; i < 3; i++) {
src_blend[i] = vc4_blend_channel(c,
dst_color, src_color,
src_color[i],
blend->rgb_src_factor, i);
dst_blend[i] = vc4_blend_channel(c,
dst_color, src_color,
dst_color[i],
blend->rgb_dst_factor, i);
}
src_blend[3] = vc4_blend_channel(c,
dst_color, src_color,
src_color[3],
blend->alpha_src_factor, 3);
dst_blend[3] = vc4_blend_channel(c,
dst_color, src_color,
dst_color[3],
blend->alpha_dst_factor, 3);
for (int i = 0; i < 3; i++) {
result[i] = vc4_blend_func(c,
src_blend[i], dst_blend[i],
blend->rgb_func);
}
result[3] = vc4_blend_func(c,
src_blend[3], dst_blend[3],
blend->alpha_func);
}
static void
emit_frag_end(struct vc4_compile *c)
{
enum pipe_format color_format = c->fs_key->color_format;
const uint8_t *format_swiz = vc4_get_format_swizzle(color_format);
struct qreg tlb_read_color[4] = { c->undef, c->undef, c->undef, c->undef };
struct qreg dst_color[4] = { c->undef, c->undef, c->undef, c->undef };
if (c->fs_key->blend.blend_enable ||
c->fs_key->blend.colormask != 0xf) {
struct qreg r4 = qir_TLB_COLOR_READ(c);
for (int i = 0; i < 4; i++)
tlb_read_color[i] = qir_R4_UNPACK(c, r4, i);
for (int i = 0; i < 4; i++)
dst_color[i] = get_swizzled_channel(c,
tlb_read_color,
format_swiz[i]);
}
struct qreg blend_color[4];
struct qreg undef_array[4] = {
c->undef, c->undef, c->undef, c->undef
};
vc4_blend(c, blend_color, dst_color,
c->outputs ? c->outputs : undef_array);
/* If the bit isn't set in the color mask, then just return the
* original dst color, instead.
*/
for (int i = 0; i < 4; i++) {
if (!(c->fs_key->blend.colormask & (1 << i))) {
blend_color[i] = dst_color[i];
}
}
/* Debug: Sometimes you're getting a black output and just want to see
* if the FS is getting executed at all. Spam magenta into the color
* output.
*/
if (0) {
blend_color[0] = qir_uniform_f(c, 1.0);
blend_color[1] = qir_uniform_f(c, 0.0);
blend_color[2] = qir_uniform_f(c, 1.0);
blend_color[3] = qir_uniform_f(c, 0.5);
}
struct qreg swizzled_outputs[4];
for (int i = 0; i < 4; i++) {
swizzled_outputs[i] = get_swizzled_channel(c, blend_color,
format_swiz[i]);
}
if (c->discard.file != QFILE_NULL)
qir_TLB_DISCARD_SETUP(c, c->discard);
if (c->fs_key->depth_enabled) {
qir_TLB_Z_WRITE(c, qir_FRAG_Z(c));
}
bool color_written = false;
for (int i = 0; i < 4; i++) {
if (swizzled_outputs[i].file != QFILE_NULL)
color_written = true;
}
struct qreg packed_color;
if (color_written) {
/* Fill in any undefined colors. The simulator will assertion
* fail if we read something that wasn't written, and I don't
* know what hardware does.
*/
for (int i = 0; i < 4; i++) {
if (swizzled_outputs[i].file == QFILE_NULL)
swizzled_outputs[i] = qir_uniform_f(c, 0.0);
}
packed_color = qir_get_temp(c);
qir_emit(c, qir_inst4(QOP_PACK_COLORS, packed_color,
swizzled_outputs[0],
swizzled_outputs[1],
swizzled_outputs[2],
swizzled_outputs[3]));
} else {
packed_color = qir_uniform_ui(c, 0);
}
qir_emit(c, qir_inst(QOP_TLB_COLOR_WRITE, c->undef,
packed_color, c->undef));
}
static void
emit_scaled_viewport_write(struct vc4_compile *c, struct qreg rcp_w)
{
struct qreg xyi[2];
for (int i = 0; i < 2; i++) {
struct qreg scale =
add_uniform(c, QUNIFORM_VIEWPORT_X_SCALE + i, 0);
xyi[i] = qir_FTOI(c, qir_FMUL(c,
qir_FMUL(c,
c->outputs[i],
scale),
rcp_w));
}
qir_VPM_WRITE(c, qir_PACK_SCALED(c, xyi[0], xyi[1]));
}
static void
emit_zs_write(struct vc4_compile *c, struct qreg rcp_w)
{
struct qreg zscale = add_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0);
struct qreg zoffset = add_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0);
qir_VPM_WRITE(c, qir_FMUL(c, qir_FADD(c, qir_FMUL(c,
c->outputs[2],
zscale),
zoffset),
rcp_w));
}
static void
emit_rcp_wc_write(struct vc4_compile *c, struct qreg rcp_w)
{
qir_VPM_WRITE(c, rcp_w);
}
static void
emit_vert_end(struct vc4_compile *c)
{
struct qreg rcp_w = qir_RCP(c, c->outputs[3]);
emit_scaled_viewport_write(c, rcp_w);
emit_zs_write(c, rcp_w);
emit_rcp_wc_write(c, rcp_w);
for (int i = 4; i < c->num_outputs; i++) {
qir_VPM_WRITE(c, c->outputs[i]);
}
}
static void
emit_coord_end(struct vc4_compile *c)
{
struct qreg rcp_w = qir_RCP(c, c->outputs[3]);
for (int i = 0; i < 4; i++)
qir_VPM_WRITE(c, c->outputs[i]);
emit_scaled_viewport_write(c, rcp_w);
emit_zs_write(c, rcp_w);
emit_rcp_wc_write(c, rcp_w);
}
static struct vc4_compile *
vc4_shader_tgsi_to_qir(struct vc4_compiled_shader *shader, enum qstage stage,
struct vc4_key *key)
{
struct vc4_compile *c = qir_compile_init();
int ret;
c->stage = stage;
c->uniform_data = ralloc_array(c, uint32_t, 1024);
c->uniform_contents = ralloc_array(c, enum quniform_contents, 1024);
c->shader_state = key->shader_state;
ret = tgsi_parse_init(&c->parser, c->shader_state->tokens);
assert(ret == TGSI_PARSE_OK);
if (vc4_debug & VC4_DEBUG_TGSI) {
fprintf(stderr, "TGSI:\n");
tgsi_dump(c->shader_state->tokens, 0);
}
c->key = key;
switch (stage) {
case QSTAGE_FRAG:
c->fs_key = (struct vc4_fs_key *)key;
if (c->fs_key->is_points) {
c->point_x = emit_fragment_varying(c, 0);
c->point_y = emit_fragment_varying(c, 0);
} else if (c->fs_key->is_lines) {
c->line_x = emit_fragment_varying(c, 0);
}
break;
case QSTAGE_VERT:
c->vs_key = (struct vc4_vs_key *)key;
break;
case QSTAGE_COORD:
c->vs_key = (struct vc4_vs_key *)key;
break;
}
while (!tgsi_parse_end_of_tokens(&c->parser)) {
tgsi_parse_token(&c->parser);
switch (c->parser.FullToken.Token.Type) {
case TGSI_TOKEN_TYPE_DECLARATION:
emit_tgsi_declaration(c,
&c->parser.FullToken.FullDeclaration);
break;
case TGSI_TOKEN_TYPE_INSTRUCTION:
emit_tgsi_instruction(c,
&c->parser.FullToken.FullInstruction);
break;
case TGSI_TOKEN_TYPE_IMMEDIATE:
parse_tgsi_immediate(c,
&c->parser.FullToken.FullImmediate);
break;
}
}
switch (stage) {
case QSTAGE_FRAG:
emit_frag_end(c);
break;
case QSTAGE_VERT:
emit_vert_end(c);
break;
case QSTAGE_COORD:
emit_coord_end(c);
break;
}
tgsi_parse_free(&c->parser);
qir_optimize(c);
if (vc4_debug & VC4_DEBUG_QIR) {
fprintf(stderr, "QIR:\n");
qir_dump(c);
}
vc4_generate_code(c);
if (vc4_debug & VC4_DEBUG_SHADERDB) {
fprintf(stderr, "SHADER-DB: %s: %d instructions\n",
qir_get_stage_name(c->stage), c->qpu_inst_count);
fprintf(stderr, "SHADER-DB: %s: %d uniforms\n",
qir_get_stage_name(c->stage), c->num_uniforms);
}
return c;
}
static void *
vc4_shader_state_create(struct pipe_context *pctx,
const struct pipe_shader_state *cso)
{
struct pipe_shader_state *so = CALLOC_STRUCT(pipe_shader_state);
if (!so)
return NULL;
so->tokens = tgsi_dup_tokens(cso->tokens);
return so;
}
static void
copy_uniform_state_to_shader(struct vc4_compiled_shader *shader,
int shader_index,
struct vc4_compile *c)
{
int count = c->num_uniforms;
struct vc4_shader_uniform_info *uinfo = &shader->uniforms[shader_index];
uinfo->count = count;
uinfo->data = malloc(count * sizeof(*uinfo->data));
memcpy(uinfo->data, c->uniform_data,
count * sizeof(*uinfo->data));
uinfo->contents = malloc(count * sizeof(*uinfo->contents));
memcpy(uinfo->contents, c->uniform_contents,
count * sizeof(*uinfo->contents));
uinfo->num_texture_samples = c->num_texture_samples;
}
static void
vc4_fs_compile(struct vc4_context *vc4, struct vc4_compiled_shader *shader,
struct vc4_fs_key *key)
{
struct vc4_compile *c = vc4_shader_tgsi_to_qir(shader, QSTAGE_FRAG,
&key->base);
shader->num_inputs = c->num_inputs;
copy_uniform_state_to_shader(shader, 0, c);
shader->bo = vc4_bo_alloc_mem(vc4->screen, c->qpu_insts,
c->qpu_inst_count * sizeof(uint64_t),
"fs_code");
qir_compile_destroy(c);
}
static void
vc4_vs_compile(struct vc4_context *vc4, struct vc4_compiled_shader *shader,
struct vc4_vs_key *key)
{
struct vc4_compile *vs_c = vc4_shader_tgsi_to_qir(shader,
QSTAGE_VERT,
&key->base);
copy_uniform_state_to_shader(shader, 0, vs_c);
struct vc4_compile *cs_c = vc4_shader_tgsi_to_qir(shader,
QSTAGE_COORD,
&key->base);
copy_uniform_state_to_shader(shader, 1, cs_c);
uint32_t vs_size = vs_c->qpu_inst_count * sizeof(uint64_t);
uint32_t cs_size = cs_c->qpu_inst_count * sizeof(uint64_t);
shader->coord_shader_offset = vs_size; /* XXX: alignment? */
shader->bo = vc4_bo_alloc(vc4->screen,
shader->coord_shader_offset + cs_size,
"vs_code");
void *map = vc4_bo_map(shader->bo);
memcpy(map, vs_c->qpu_insts, vs_size);
memcpy(map + shader->coord_shader_offset,
cs_c->qpu_insts, cs_size);
qir_compile_destroy(vs_c);
qir_compile_destroy(cs_c);
}
static void
vc4_setup_shared_key(struct vc4_key *key, struct vc4_texture_stateobj *texstate)
{
for (int i = 0; i < texstate->num_textures; i++) {
struct pipe_sampler_view *sampler = texstate->textures[i];
struct pipe_sampler_state *sampler_state =
texstate->samplers[i];
if (sampler) {
struct pipe_resource *prsc = sampler->texture;
key->tex[i].format = prsc->format;
key->tex[i].swizzle[0] = sampler->swizzle_r;
key->tex[i].swizzle[1] = sampler->swizzle_g;
key->tex[i].swizzle[2] = sampler->swizzle_b;
key->tex[i].swizzle[3] = sampler->swizzle_a;
key->tex[i].compare_mode = sampler_state->compare_mode;
key->tex[i].compare_func = sampler_state->compare_func;
}
}
}
static void
vc4_update_compiled_fs(struct vc4_context *vc4, uint8_t prim_mode)
{
struct vc4_fs_key local_key;
struct vc4_fs_key *key = &local_key;
memset(key, 0, sizeof(*key));
vc4_setup_shared_key(&key->base, &vc4->fragtex);
key->base.shader_state = vc4->prog.bind_fs;
key->is_points = (prim_mode == PIPE_PRIM_POINTS);
key->is_lines = (prim_mode >= PIPE_PRIM_LINES &&
prim_mode <= PIPE_PRIM_LINE_STRIP);
key->blend = vc4->blend->rt[0];
if (vc4->framebuffer.cbufs[0])
key->color_format = vc4->framebuffer.cbufs[0]->format;
key->depth_enabled = vc4->zsa->base.depth.enabled;
vc4->prog.fs = util_hash_table_get(vc4->fs_cache, key);
if (vc4->prog.fs)
return;
key = malloc(sizeof(*key));
memcpy(key, &local_key, sizeof(*key));
struct vc4_compiled_shader *shader = CALLOC_STRUCT(vc4_compiled_shader);
vc4_fs_compile(vc4, shader, key);
util_hash_table_set(vc4->fs_cache, key, shader);
vc4->prog.fs = shader;
}
static void
vc4_update_compiled_vs(struct vc4_context *vc4)
{
struct vc4_vs_key local_key;
struct vc4_vs_key *key = &local_key;
memset(key, 0, sizeof(*key));
vc4_setup_shared_key(&key->base, &vc4->verttex);
key->base.shader_state = vc4->prog.bind_vs;
for (int i = 0; i < ARRAY_SIZE(key->attr_formats); i++)
key->attr_formats[i] = vc4->vtx->pipe[i].src_format;
vc4->prog.vs = util_hash_table_get(vc4->vs_cache, key);
if (vc4->prog.vs)
return;
key = malloc(sizeof(*key));
memcpy(key, &local_key, sizeof(*key));
struct vc4_compiled_shader *shader = CALLOC_STRUCT(vc4_compiled_shader);
vc4_vs_compile(vc4, shader, key);
util_hash_table_set(vc4->vs_cache, key, shader);
vc4->prog.vs = shader;
}
void
vc4_update_compiled_shaders(struct vc4_context *vc4, uint8_t prim_mode)
{
vc4_update_compiled_fs(vc4, prim_mode);
vc4_update_compiled_vs(vc4);
}
static unsigned
fs_cache_hash(void *key)
{
return util_hash_crc32(key, sizeof(struct vc4_fs_key));
}
static unsigned
vs_cache_hash(void *key)
{
return util_hash_crc32(key, sizeof(struct vc4_vs_key));
}
static int
fs_cache_compare(void *key1, void *key2)
{
return memcmp(key1, key2, sizeof(struct vc4_fs_key));
}
static int
vs_cache_compare(void *key1, void *key2)
{
return memcmp(key1, key2, sizeof(struct vc4_vs_key));
}
struct delete_state {
struct vc4_context *vc4;
struct pipe_shader_state *shader_state;
};
static enum pipe_error
fs_delete_from_cache(void *in_key, void *in_value, void *data)
{
struct delete_state *del = data;
struct vc4_fs_key *key = in_key;
struct vc4_compiled_shader *shader = in_value;
if (key->base.shader_state == data) {
util_hash_table_remove(del->vc4->fs_cache, key);
vc4_bo_unreference(&shader->bo);
free(shader);
}
return 0;
}
static enum pipe_error
vs_delete_from_cache(void *in_key, void *in_value, void *data)
{
struct delete_state *del = data;
struct vc4_vs_key *key = in_key;
struct vc4_compiled_shader *shader = in_value;
if (key->base.shader_state == data) {
util_hash_table_remove(del->vc4->vs_cache, key);
vc4_bo_unreference(&shader->bo);
free(shader);
}
return 0;
}
static void
vc4_shader_state_delete(struct pipe_context *pctx, void *hwcso)
{
struct vc4_context *vc4 = vc4_context(pctx);
struct pipe_shader_state *so = hwcso;
struct delete_state del;
del.vc4 = vc4;
del.shader_state = so;
util_hash_table_foreach(vc4->fs_cache, fs_delete_from_cache, &del);
util_hash_table_foreach(vc4->vs_cache, vs_delete_from_cache, &del);
free((void *)so->tokens);
free(so);
}
static uint32_t translate_wrap(uint32_t p_wrap)
{
switch (p_wrap) {
case PIPE_TEX_WRAP_REPEAT:
return 0;
case PIPE_TEX_WRAP_CLAMP:
case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
return 1;
case PIPE_TEX_WRAP_MIRROR_REPEAT:
return 2;
case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
return 3;
default:
fprintf(stderr, "Unknown wrap mode %d\n", p_wrap);
assert(!"not reached");
return 0;
}
}
static void
write_texture_p0(struct vc4_context *vc4,
struct vc4_texture_stateobj *texstate,
uint32_t unit)
{
struct pipe_sampler_view *texture = texstate->textures[unit];
struct vc4_resource *rsc = vc4_resource(texture->texture);
cl_reloc(vc4, &vc4->uniforms, rsc->bo,
rsc->slices[0].offset | texture->u.tex.last_level |
((rsc->vc4_format & 7) << 4));
}
static void
write_texture_p1(struct vc4_context *vc4,
struct vc4_texture_stateobj *texstate,
uint32_t unit)
{
struct pipe_sampler_view *texture = texstate->textures[unit];
struct vc4_resource *rsc = vc4_resource(texture->texture);
struct pipe_sampler_state *sampler = texstate->samplers[unit];
static const uint32_t mipfilter_map[] = {
[PIPE_TEX_MIPFILTER_NEAREST] = 2,
[PIPE_TEX_MIPFILTER_LINEAR] = 4,
[PIPE_TEX_MIPFILTER_NONE] = 0
};
static const uint32_t imgfilter_map[] = {
[PIPE_TEX_FILTER_NEAREST] = 1,
[PIPE_TEX_FILTER_LINEAR] = 0,
};
cl_u32(&vc4->uniforms,
((rsc->vc4_format >> 4) << 31) |
(texture->texture->height0 << 20) |
(texture->texture->width0 << 8) |
(imgfilter_map[sampler->mag_img_filter] << 7) |
((imgfilter_map[sampler->min_img_filter] +
mipfilter_map[sampler->min_mip_filter]) << 4) |
(translate_wrap(sampler->wrap_t) << 2) |
(translate_wrap(sampler->wrap_s) << 0));
}
static uint32_t
get_texrect_scale(struct vc4_texture_stateobj *texstate,
enum quniform_contents contents,
uint32_t data)
{
struct pipe_sampler_view *texture = texstate->textures[data];
uint32_t dim;
if (contents == QUNIFORM_TEXRECT_SCALE_X)
dim = texture->texture->width0;
else
dim = texture->texture->height0;
return fui(1.0f / dim);
}
void
vc4_write_uniforms(struct vc4_context *vc4, struct vc4_compiled_shader *shader,
struct vc4_constbuf_stateobj *cb,
struct vc4_texture_stateobj *texstate,
int shader_index)
{
struct vc4_shader_uniform_info *uinfo = &shader->uniforms[shader_index];
const uint32_t *gallium_uniforms = cb->cb[0].user_buffer;
cl_start_shader_reloc(&vc4->uniforms, uinfo->num_texture_samples);
for (int i = 0; i < uinfo->count; i++) {
switch (uinfo->contents[i]) {
case QUNIFORM_CONSTANT:
cl_u32(&vc4->uniforms, uinfo->data[i]);
break;
case QUNIFORM_UNIFORM:
cl_u32(&vc4->uniforms,
gallium_uniforms[uinfo->data[i]]);
break;
case QUNIFORM_VIEWPORT_X_SCALE:
cl_f(&vc4->uniforms, vc4->viewport.scale[0] * 16.0f);
break;
case QUNIFORM_VIEWPORT_Y_SCALE:
cl_f(&vc4->uniforms, vc4->viewport.scale[1] * 16.0f);
break;
case QUNIFORM_VIEWPORT_Z_OFFSET:
cl_f(&vc4->uniforms, vc4->viewport.translate[2]);
break;
case QUNIFORM_VIEWPORT_Z_SCALE:
cl_f(&vc4->uniforms, vc4->viewport.scale[2]);
break;
case QUNIFORM_TEXTURE_CONFIG_P0:
write_texture_p0(vc4, texstate, uinfo->data[i]);
break;
case QUNIFORM_TEXTURE_CONFIG_P1:
write_texture_p1(vc4, texstate, uinfo->data[i]);
break;
case QUNIFORM_TEXRECT_SCALE_X:
case QUNIFORM_TEXRECT_SCALE_Y:
cl_u32(&vc4->uniforms,
get_texrect_scale(texstate,
uinfo->contents[i],
uinfo->data[i]));
break;
case QUNIFORM_BLEND_CONST_COLOR:
cl_f(&vc4->uniforms,
vc4->blend_color.color[uinfo->data[i]]);
break;
}
#if 0
uint32_t written_val = *(uint32_t *)(vc4->uniforms.next - 4);
fprintf(stderr, "%p/%d: %d: 0x%08x (%f)\n",
shader, shader_index, i, written_val, uif(written_val));
#endif
}
}
static void
vc4_fp_state_bind(struct pipe_context *pctx, void *hwcso)
{
struct vc4_context *vc4 = vc4_context(pctx);
vc4->prog.bind_fs = hwcso;
vc4->prog.dirty |= VC4_SHADER_DIRTY_FP;
vc4->dirty |= VC4_DIRTY_PROG;
}
static void
vc4_vp_state_bind(struct pipe_context *pctx, void *hwcso)
{
struct vc4_context *vc4 = vc4_context(pctx);
vc4->prog.bind_vs = hwcso;
vc4->prog.dirty |= VC4_SHADER_DIRTY_VP;
vc4->dirty |= VC4_DIRTY_PROG;
}
void
vc4_program_init(struct pipe_context *pctx)
{
struct vc4_context *vc4 = vc4_context(pctx);
pctx->create_vs_state = vc4_shader_state_create;
pctx->delete_vs_state = vc4_shader_state_delete;
pctx->create_fs_state = vc4_shader_state_create;
pctx->delete_fs_state = vc4_shader_state_delete;
pctx->bind_fs_state = vc4_fp_state_bind;
pctx->bind_vs_state = vc4_vp_state_bind;
vc4->fs_cache = util_hash_table_create(fs_cache_hash, fs_cache_compare);
vc4->vs_cache = util_hash_table_create(vs_cache_hash, vs_cache_compare);
}