mesa/src/intel/vulkan/anv_sparse.c
Paulo Zanoni aa07d8a04c anv/sparse: don't issue a single bind operation per vm_bind ioctl
The xe.ko driver finally fixed bug 746, which means we can finally
pass multiple bind operations in a single ioctl. There's a dEQP test
that issues 960 bind operations in a single call, so our gains here
have potential, although most real-world apps are not even remotely
close to this.

Link: https://gitlab.freedesktop.org/drm/xe/kernel/-/issues/746
Reviewed-by: José Roberto de Souza <jose.souza@intel.com>
Signed-off-by: Paulo Zanoni <paulo.r.zanoni@intel.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/27926>
2024-03-08 23:14:09 +00:00

1327 lines
48 KiB
C

/*
* Copyright © 2022 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <anv_private.h>
/* Sparse binding handling.
*
* There is one main structure passed around all over this file:
*
* - struct anv_sparse_binding_data: every resource (VkBuffer or VkImage) has
* a pointer to an instance of this structure. It contains the virtual
* memory address (VMA) used by the binding operations (which is different
* from the VMA used by the anv_bo it's bound to) and the VMA range size. We
* do not keep record of our our list of bindings (which ranges were bound
* to which buffers).
*/
__attribute__((format(printf, 1, 2)))
static void
sparse_debug(const char *format, ...)
{
if (!INTEL_DEBUG(DEBUG_SPARSE))
return;
va_list args;
va_start(args, format);
vfprintf(stderr, format, args);
va_end(args);
}
static void
dump_anv_vm_bind(struct anv_device *device,
const struct anv_vm_bind *bind)
{
sparse_debug("[%s] ", bind->op == ANV_VM_BIND ? " bind " : "unbind");
if (bind->bo)
sparse_debug("bo:%04u ", bind->bo->gem_handle);
else
sparse_debug("bo:---- ");
sparse_debug("address:%016"PRIx64" size:%08"PRIx64" "
"mem_offset:%08"PRIx64"\n",
bind->address, bind->size, bind->bo_offset);
}
static void
dump_vk_sparse_memory_bind(const VkSparseMemoryBind *bind)
{
if (!INTEL_DEBUG(DEBUG_SPARSE))
return;
if (bind->memory != VK_NULL_HANDLE) {
struct anv_bo *bo = anv_device_memory_from_handle(bind->memory)->bo;
sparse_debug("bo:%04u ", bo->gem_handle);
} else {
sparse_debug("bo:---- ");
}
sparse_debug("res_offset:%08"PRIx64" size:%08"PRIx64" "
"mem_offset:%08"PRIx64" flags:0x%08x\n",
bind->resourceOffset, bind->size, bind->memoryOffset,
bind->flags);
}
static void
dump_anv_image(struct anv_image *i)
{
if (!INTEL_DEBUG(DEBUG_SPARSE))
return;
sparse_debug("anv_image:\n");
sparse_debug("- format: %d\n", i->vk.format);
sparse_debug("- extent: [%d, %d, %d]\n",
i->vk.extent.width, i->vk.extent.height, i->vk.extent.depth);
sparse_debug("- mip_levels: %d array_layers: %d samples: %d\n",
i->vk.mip_levels, i->vk.array_layers, i->vk.samples);
sparse_debug("- n_planes: %d\n", i->n_planes);
sparse_debug("- disjoint: %d\n", i->disjoint);
}
static void
dump_isl_surf(struct isl_surf *s)
{
if (!INTEL_DEBUG(DEBUG_SPARSE))
return;
sparse_debug("isl_surf:\n");
const char *dim_s = s->dim == ISL_SURF_DIM_1D ? "1D" :
s->dim == ISL_SURF_DIM_2D ? "2D" :
s->dim == ISL_SURF_DIM_3D ? "3D" :
"(ERROR)";
sparse_debug("- dim: %s\n", dim_s);
sparse_debug("- tiling: %d (%s)\n", s->tiling,
isl_tiling_to_name(s->tiling));
sparse_debug("- format: %s\n", isl_format_get_short_name(s->format));
sparse_debug("- image_alignment_el: [%d, %d, %d]\n",
s->image_alignment_el.w, s->image_alignment_el.h,
s->image_alignment_el.d);
sparse_debug("- logical_level0_px: [%d, %d, %d, %d]\n",
s->logical_level0_px.w,
s->logical_level0_px.h,
s->logical_level0_px.d,
s->logical_level0_px.a);
sparse_debug("- phys_level0_sa: [%d, %d, %d, %d]\n",
s->phys_level0_sa.w,
s->phys_level0_sa.h,
s->phys_level0_sa.d,
s->phys_level0_sa.a);
sparse_debug("- levels: %d samples: %d\n", s->levels, s->samples);
sparse_debug("- size_B: %"PRIu64" alignment_B: %u\n",
s->size_B, s->alignment_B);
sparse_debug("- row_pitch_B: %u\n", s->row_pitch_B);
sparse_debug("- array_pitch_el_rows: %u\n", s->array_pitch_el_rows);
const struct isl_format_layout *layout = isl_format_get_layout(s->format);
sparse_debug("- format layout:\n");
sparse_debug(" - format:%d bpb:%d bw:%d bh:%d bd:%d\n",
layout->format, layout->bpb, layout->bw, layout->bh,
layout->bd);
struct isl_tile_info tile_info;
isl_surf_get_tile_info(s, &tile_info);
sparse_debug("- tile info:\n");
sparse_debug(" - format_bpb: %d\n", tile_info.format_bpb);
sparse_debug(" - logical_extent_el: [%d, %d, %d, %d]\n",
tile_info.logical_extent_el.w,
tile_info.logical_extent_el.h,
tile_info.logical_extent_el.d,
tile_info.logical_extent_el.a);
sparse_debug(" - phys_extent_B: [%d, %d]\n",
tile_info.phys_extent_B.w,
tile_info.phys_extent_B.h);
}
static VkOffset3D
vk_offset3d_px_to_el(const VkOffset3D offset_px,
const struct isl_format_layout *layout)
{
return (VkOffset3D) {
.x = offset_px.x / layout->bw,
.y = offset_px.y / layout->bh,
.z = offset_px.z / layout->bd,
};
}
static VkOffset3D
vk_offset3d_el_to_px(const VkOffset3D offset_el,
const struct isl_format_layout *layout)
{
return (VkOffset3D) {
.x = offset_el.x * layout->bw,
.y = offset_el.y * layout->bh,
.z = offset_el.z * layout->bd,
};
}
static VkExtent3D
vk_extent3d_px_to_el(const VkExtent3D extent_px,
const struct isl_format_layout *layout)
{
return (VkExtent3D) {
.width = extent_px.width / layout->bw,
.height = extent_px.height / layout->bh,
.depth = extent_px.depth / layout->bd,
};
}
static VkExtent3D
vk_extent3d_el_to_px(const VkExtent3D extent_el,
const struct isl_format_layout *layout)
{
return (VkExtent3D) {
.width = extent_el.width * layout->bw,
.height = extent_el.height * layout->bh,
.depth = extent_el.depth * layout->bd,
};
}
static bool
isl_tiling_supports_standard_block_shapes(enum isl_tiling tiling)
{
return isl_tiling_is_64(tiling) ||
tiling == ISL_TILING_ICL_Ys ||
tiling == ISL_TILING_SKL_Ys;
}
static VkExtent3D
anv_sparse_get_standard_image_block_shape(enum isl_format format,
VkImageType image_type,
uint16_t texel_size)
{
const struct isl_format_layout *layout = isl_format_get_layout(format);
VkExtent3D block_shape = { .width = 0, .height = 0, .depth = 0 };
switch (image_type) {
case VK_IMAGE_TYPE_1D:
/* 1D images don't have a standard block format. */
assert(false);
break;
case VK_IMAGE_TYPE_2D:
switch (texel_size) {
case 8:
block_shape = (VkExtent3D) { .width = 256, .height = 256, .depth = 1 };
break;
case 16:
block_shape = (VkExtent3D) { .width = 256, .height = 128, .depth = 1 };
break;
case 32:
block_shape = (VkExtent3D) { .width = 128, .height = 128, .depth = 1 };
break;
case 64:
block_shape = (VkExtent3D) { .width = 128, .height = 64, .depth = 1 };
break;
case 128:
block_shape = (VkExtent3D) { .width = 64, .height = 64, .depth = 1 };
break;
default:
fprintf(stderr, "unexpected texel_size %d\n", texel_size);
assert(false);
}
break;
case VK_IMAGE_TYPE_3D:
switch (texel_size) {
case 8:
block_shape = (VkExtent3D) { .width = 64, .height = 32, .depth = 32 };
break;
case 16:
block_shape = (VkExtent3D) { .width = 32, .height = 32, .depth = 32 };
break;
case 32:
block_shape = (VkExtent3D) { .width = 32, .height = 32, .depth = 16 };
break;
case 64:
block_shape = (VkExtent3D) { .width = 32, .height = 16, .depth = 16 };
break;
case 128:
block_shape = (VkExtent3D) { .width = 16, .height = 16, .depth = 16 };
break;
default:
fprintf(stderr, "unexpected texel_size %d\n", texel_size);
assert(false);
}
break;
default:
fprintf(stderr, "unexpected image_type %d\n", image_type);
assert(false);
}
return vk_extent3d_el_to_px(block_shape, layout);
}
/* Adds "bind_op" to the list in "submit", while also trying to check if we
* can just extend the last operation instead.
*/
static VkResult
anv_sparse_submission_add(struct anv_device *device,
struct anv_sparse_submission *submit,
struct anv_vm_bind *bind_op)
{
struct anv_vm_bind *prev_bind = submit->binds_len == 0 ? NULL :
&submit->binds[submit->binds_len - 1];
if (prev_bind &&
bind_op->op == prev_bind->op &&
bind_op->bo == prev_bind->bo &&
bind_op->address == prev_bind->address + prev_bind->size &&
(bind_op->bo_offset == prev_bind->bo_offset + prev_bind->size ||
prev_bind->bo == NULL)) {
prev_bind->size += bind_op->size;
return VK_SUCCESS;
}
if (submit->binds_len < submit->binds_capacity) {
submit->binds[submit->binds_len++] = *bind_op;
return VK_SUCCESS;
}
int new_capacity = MAX2(32, submit->binds_capacity * 2);
struct anv_vm_bind *new_binds =
vk_realloc(&device->vk.alloc, submit->binds,
new_capacity * sizeof(*new_binds), 8,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (!new_binds)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
new_binds[submit->binds_len] = *bind_op;
submit->binds = new_binds;
submit->binds_len++;
submit->binds_capacity = new_capacity;
return VK_SUCCESS;
}
/* We really want to try to have all the page tables on as few BOs as possible
* to benefit from cache locality and to keep the i915.ko relocation lists
* small. On the other hand, we don't want to waste memory on unused space.
*/
#define ANV_TRTT_PAGE_TABLE_BO_SIZE (2 * 1024 * 1024)
static VkResult
trtt_make_page_table_bo(struct anv_device *device, struct anv_bo **bo)
{
VkResult result;
struct anv_trtt *trtt = &device->trtt;
result = anv_device_alloc_bo(device, "trtt-page-table",
ANV_TRTT_PAGE_TABLE_BO_SIZE, 0, 0, bo);
if (result != VK_SUCCESS)
return result;
if (trtt->num_page_table_bos < trtt->page_table_bos_capacity) {
trtt->page_table_bos[trtt->num_page_table_bos++] = *bo;
} else {
int new_capacity = MAX2(8, trtt->page_table_bos_capacity * 2);
struct anv_bo **new_page_table_bos =
vk_realloc(&device->vk.alloc, trtt->page_table_bos,
new_capacity * sizeof(*trtt->page_table_bos), 8,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (!new_page_table_bos) {
anv_device_release_bo(device, *bo);
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
}
new_page_table_bos[trtt->num_page_table_bos] = *bo;
trtt->page_table_bos = new_page_table_bos;
trtt->page_table_bos_capacity = new_capacity;
trtt->num_page_table_bos++;
}
trtt->cur_page_table_bo = *bo;
trtt->next_page_table_bo_offset = 0;
sparse_debug("new number of page table BOs: %d\n",
trtt->num_page_table_bos);
return VK_SUCCESS;
}
static VkResult
trtt_get_page_table_bo(struct anv_device *device, struct anv_bo **bo,
uint64_t *bo_addr)
{
struct anv_trtt *trtt = &device->trtt;
VkResult result;
if (!trtt->cur_page_table_bo) {
result = trtt_make_page_table_bo(device, bo);
if (result != VK_SUCCESS)
return result;
}
*bo = trtt->cur_page_table_bo;
*bo_addr = trtt->cur_page_table_bo->offset +
trtt->next_page_table_bo_offset;
trtt->next_page_table_bo_offset += 4096;
if (trtt->next_page_table_bo_offset >= ANV_TRTT_PAGE_TABLE_BO_SIZE)
trtt->cur_page_table_bo = NULL;
return VK_SUCCESS;
}
static VkResult
anv_trtt_init_context_state(struct anv_queue *queue)
{
struct anv_device *device = queue->device;
struct anv_trtt *trtt = &device->trtt;
struct drm_syncobj_create create = {
.handle = 0,
.flags = 0,
};
if (intel_ioctl(device->fd, DRM_IOCTL_SYNCOBJ_CREATE, &create))
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
assert(create.handle != 0);
trtt->timeline_handle = create.handle;
struct anv_bo *l3_bo;
VkResult result = trtt_get_page_table_bo(device, &l3_bo, &trtt->l3_addr);
if (result != VK_SUCCESS)
return result;
trtt->l3_mirror = vk_zalloc(&device->vk.alloc, 4096, 8,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (!trtt->l3_mirror) {
result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
return result;
}
/* L3 has 512 entries, so we can have up to 512 L2 tables. */
trtt->l2_mirror = vk_zalloc(&device->vk.alloc, 512 * 4096, 8,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (!trtt->l2_mirror) {
result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail_free_l3;
}
result = anv_genX(device->info, init_trtt_context_state)(queue);
return result;
fail_free_l3:
vk_free(&device->vk.alloc, trtt->l3_mirror);
return result;
}
static void
anv_trtt_bind_list_add_entry(struct anv_trtt_bind *binds, int *binds_len,
uint64_t pte_addr, uint64_t entry_addr)
{
binds[*binds_len] = (struct anv_trtt_bind) {
.pte_addr = pte_addr,
.entry_addr = entry_addr,
};
(*binds_len)++;
}
/* For L3 and L2 pages, null and invalid entries are indicated by bits 1 and 0
* respectively. For L1 entries, the hardware compares the addresses against
* what we program to the GFX_TRTT_NULL and GFX_TRTT_INVAL registers.
*/
#define ANV_TRTT_L3L2_NULL_ENTRY (1 << 1)
#define ANV_TRTT_L3L2_INVALID_ENTRY (1 << 0)
/* Adds elements to the anv_trtt_bind structs passed. This doesn't write the
* entries to the HW yet.
*/
static VkResult
anv_trtt_bind_add(struct anv_device *device,
uint64_t trtt_addr, uint64_t dest_addr,
struct anv_trtt_submission *s)
{
VkResult result = VK_SUCCESS;
struct anv_trtt *trtt = &device->trtt;
bool is_null_bind = dest_addr == ANV_TRTT_L1_NULL_TILE_VAL;
int l3_index = (trtt_addr >> 35) & 0x1FF;
int l2_index = (trtt_addr >> 26) & 0x1FF;
int l1_index = (trtt_addr >> 16) & 0x3FF;
uint64_t l2_addr = trtt->l3_mirror[l3_index];
if (l2_addr == ANV_TRTT_L3L2_NULL_ENTRY && is_null_bind) {
return VK_SUCCESS;
} else if (l2_addr == 0 || l2_addr == ANV_TRTT_L3L2_NULL_ENTRY) {
if (is_null_bind) {
trtt->l3_mirror[l3_index] = ANV_TRTT_L3L2_NULL_ENTRY;
anv_trtt_bind_list_add_entry(s->l3l2_binds, &s->l3l2_binds_len,
trtt->l3_addr + l3_index * sizeof(uint64_t),
ANV_TRTT_L3L2_NULL_ENTRY);
return VK_SUCCESS;
}
struct anv_bo *l2_bo;
result = trtt_get_page_table_bo(device, &l2_bo, &l2_addr);
if (result != VK_SUCCESS)
return result;
trtt->l3_mirror[l3_index] = l2_addr;
anv_trtt_bind_list_add_entry(s->l3l2_binds, &s->l3l2_binds_len,
trtt->l3_addr + l3_index * sizeof(uint64_t), l2_addr);
}
assert(l2_addr != 0 && l2_addr != ANV_TRTT_L3L2_NULL_ENTRY);
/* The first page in the l2_mirror corresponds to l3_index=0 and so on. */
uint64_t l1_addr = trtt->l2_mirror[l3_index * 512 + l2_index];
if (l1_addr == ANV_TRTT_L3L2_NULL_ENTRY && is_null_bind) {
return VK_SUCCESS;
} else if (l1_addr == 0 || l1_addr == ANV_TRTT_L3L2_NULL_ENTRY) {
if (is_null_bind) {
trtt->l2_mirror[l3_index * 512 + l2_index] =
ANV_TRTT_L3L2_NULL_ENTRY;
anv_trtt_bind_list_add_entry(s->l3l2_binds, &s->l3l2_binds_len,
l2_addr + l2_index * sizeof(uint64_t),
ANV_TRTT_L3L2_NULL_ENTRY);
return VK_SUCCESS;
}
struct anv_bo *l1_bo;
result = trtt_get_page_table_bo(device, &l1_bo, &l1_addr);
if (result != VK_SUCCESS)
return result;
trtt->l2_mirror[l3_index * 512 + l2_index] = l1_addr;
anv_trtt_bind_list_add_entry(s->l3l2_binds, &s->l3l2_binds_len,
l2_addr + l2_index * sizeof(uint64_t), l1_addr);
}
assert(l1_addr != 0 && l1_addr != ANV_TRTT_L3L2_NULL_ENTRY);
anv_trtt_bind_list_add_entry(s->l1_binds, &s->l1_binds_len,
l1_addr + l1_index * sizeof(uint32_t), dest_addr);
return VK_SUCCESS;
}
static VkResult
anv_sparse_bind_trtt(struct anv_device *device,
struct anv_sparse_submission *sparse_submit)
{
struct anv_trtt *trtt = &device->trtt;
VkResult result;
/* TR-TT submission needs a queue even when the API entry point doesn't
* give one, such as resource creation. */
if (!sparse_submit->queue)
sparse_submit->queue = trtt->queue;
/* These capacities are conservative estimations. For L1 binds the
* number will match exactly unless we skip NULL binds due to L2 already
* being NULL. For L3/L2 things are harder to estimate, but the resulting
* numbers are so small that a little overestimation won't hurt.
*
* We have assertions below to catch estimation errors.
*/
int l3l2_binds_capacity = 1;
int l1_binds_capacity = 0;
for (int b = 0; b < sparse_submit->binds_len; b++) {
assert(sparse_submit->binds[b].size % (64 * 1024) == 0);
int pages = sparse_submit->binds[b].size / (64 * 1024);
l1_binds_capacity += pages;
l3l2_binds_capacity += (pages / 1024 + 1) * 2;
}
STACK_ARRAY(struct anv_trtt_bind, l3l2_binds, l3l2_binds_capacity);
STACK_ARRAY(struct anv_trtt_bind, l1_binds, l1_binds_capacity);
struct anv_trtt_submission trtt_submit = {
.sparse = sparse_submit,
.l3l2_binds = l3l2_binds,
.l1_binds = l1_binds,
.l3l2_binds_len = 0,
.l1_binds_len = 0,
};
pthread_mutex_lock(&trtt->mutex);
if (!trtt->l3_addr)
anv_trtt_init_context_state(sparse_submit->queue);
assert(trtt->l3_addr);
for (int b = 0; b < sparse_submit->binds_len; b++) {
struct anv_vm_bind *vm_bind = &sparse_submit->binds[b];
for (size_t i = 0; i < vm_bind->size; i += 64 * 1024) {
uint64_t trtt_addr = vm_bind->address + i;
uint64_t dest_addr =
(vm_bind->op == ANV_VM_BIND && vm_bind->bo) ?
vm_bind->bo->offset + vm_bind->bo_offset + i :
ANV_TRTT_L1_NULL_TILE_VAL;
result = anv_trtt_bind_add(device, trtt_addr, dest_addr,
&trtt_submit);
if (result != VK_SUCCESS)
goto out;
}
}
assert(trtt_submit.l3l2_binds_len <= l3l2_binds_capacity);
assert(trtt_submit.l1_binds_len <= l1_binds_capacity);
sparse_debug("trtt_binds: num_vm_binds:%02d l3l2:%04d l1:%04d\n",
sparse_submit->binds_len, trtt_submit.l3l2_binds_len,
trtt_submit.l1_binds_len);
if (trtt_submit.l3l2_binds_len || trtt_submit.l1_binds_len)
result = anv_genX(device->info, write_trtt_entries)(&trtt_submit);
if (result == VK_SUCCESS)
ANV_RMV(vm_binds, device, sparse_submit->binds, sparse_submit->binds_len);
out:
pthread_mutex_unlock(&trtt->mutex);
STACK_ARRAY_FINISH(l1_binds);
STACK_ARRAY_FINISH(l3l2_binds);
return result;
}
static VkResult
anv_sparse_bind_vm_bind(struct anv_device *device,
struct anv_sparse_submission *submit)
{
struct anv_queue *queue = submit->queue;
VkResult result;
if (!queue)
assert(submit->wait_count == 0 && submit->signal_count == 0);
/* TODO: make both the syncs and signals be passed as part of the vm_bind
* ioctl so they can be waited asynchronously. For now this doesn't matter
* as we're doing synchronous vm_bind, but later when we make it async this
* will make a difference.
*/
result = vk_sync_wait_many(&device->vk, submit->wait_count, submit->waits,
VK_SYNC_WAIT_COMPLETE, INT64_MAX);
if (result != VK_SUCCESS)
return vk_queue_set_lost(&queue->vk, "vk_sync_wait failed");
int rc = device->kmd_backend->vm_bind(device, submit);
if (rc)
return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
for (uint32_t i = 0; i < submit->signal_count; i++) {
struct vk_sync_signal *s = &submit->signals[i];
result = vk_sync_signal(&device->vk, s->sync, s->signal_value);
if (result != VK_SUCCESS)
return vk_queue_set_lost(&queue->vk, "vk_sync_signal failed");
}
return VK_SUCCESS;
}
VkResult
anv_sparse_bind(struct anv_device *device,
struct anv_sparse_submission *submit)
{
if (INTEL_DEBUG(DEBUG_SPARSE)) {
for (int b = 0; b < submit->binds_len; b++)
dump_anv_vm_bind(device, &submit->binds[b]);
}
return device->physical->sparse_uses_trtt ?
anv_sparse_bind_trtt(device, submit) :
anv_sparse_bind_vm_bind(device, submit);
}
VkResult
anv_init_sparse_bindings(struct anv_device *device,
uint64_t size_,
struct anv_sparse_binding_data *sparse,
enum anv_bo_alloc_flags alloc_flags,
uint64_t client_address,
struct anv_address *out_address)
{
uint64_t size = align64(size_, ANV_SPARSE_BLOCK_SIZE);
if (device->physical->sparse_uses_trtt)
alloc_flags |= ANV_BO_ALLOC_TRTT;
sparse->address = anv_vma_alloc(device, size, ANV_SPARSE_BLOCK_SIZE,
alloc_flags,
intel_48b_address(client_address),
&sparse->vma_heap);
sparse->size = size;
out_address->bo = NULL;
out_address->offset = sparse->address;
struct anv_vm_bind bind = {
.bo = NULL, /* That's a NULL binding. */
.address = sparse->address,
.bo_offset = 0,
.size = size,
.op = ANV_VM_BIND,
};
struct anv_sparse_submission submit = {
.queue = NULL,
.binds = &bind,
.binds_len = 1,
.binds_capacity = 1,
.wait_count = 0,
.signal_count = 0,
};
VkResult res = anv_sparse_bind(device, &submit);
if (res != VK_SUCCESS) {
anv_vma_free(device, sparse->vma_heap, sparse->address, sparse->size);
return res;
}
return VK_SUCCESS;
}
VkResult
anv_free_sparse_bindings(struct anv_device *device,
struct anv_sparse_binding_data *sparse)
{
if (!sparse->address)
return VK_SUCCESS;
sparse_debug("%s: address:0x%016"PRIx64" size:0x%08"PRIx64"\n",
__func__, sparse->address, sparse->size);
struct anv_vm_bind unbind = {
.bo = 0,
.address = sparse->address,
.bo_offset = 0,
.size = sparse->size,
.op = ANV_VM_UNBIND,
};
struct anv_sparse_submission submit = {
.queue = NULL,
.binds = &unbind,
.binds_len = 1,
.binds_capacity = 1,
.wait_count = 0,
.signal_count = 0,
};
VkResult res = anv_sparse_bind(device, &submit);
if (res != VK_SUCCESS)
return res;
anv_vma_free(device, sparse->vma_heap, sparse->address, sparse->size);
return VK_SUCCESS;
}
static VkExtent3D
anv_sparse_calc_block_shape(struct anv_physical_device *pdevice,
struct isl_surf *surf)
{
const struct isl_format_layout *layout =
isl_format_get_layout(surf->format);
const int Bpb = layout->bpb / 8;
struct isl_tile_info tile_info;
isl_surf_get_tile_info(surf, &tile_info);
VkExtent3D block_shape_el = {
.width = tile_info.logical_extent_el.width,
.height = tile_info.logical_extent_el.height,
.depth = tile_info.logical_extent_el.depth,
};
VkExtent3D block_shape_px = vk_extent3d_el_to_px(block_shape_el, layout);
if (surf->tiling == ISL_TILING_LINEAR) {
uint32_t elements_per_row = surf->row_pitch_B /
(block_shape_el.width * Bpb);
uint32_t rows_per_tile = ANV_SPARSE_BLOCK_SIZE /
(elements_per_row * Bpb);
assert(rows_per_tile * elements_per_row * Bpb == ANV_SPARSE_BLOCK_SIZE);
block_shape_px = (VkExtent3D) {
.width = elements_per_row * layout->bw,
.height = rows_per_tile * layout->bh,
.depth = layout->bd,
};
}
return block_shape_px;
}
VkSparseImageFormatProperties
anv_sparse_calc_image_format_properties(struct anv_physical_device *pdevice,
VkImageAspectFlags aspect,
VkImageType vk_image_type,
struct isl_surf *surf)
{
const struct isl_format_layout *isl_layout =
isl_format_get_layout(surf->format);
const int bpb = isl_layout->bpb;
assert(bpb == 8 || bpb == 16 || bpb == 32 || bpb == 64 ||bpb == 128);
const int Bpb = bpb / 8;
VkExtent3D granularity = anv_sparse_calc_block_shape(pdevice, surf);
bool is_standard = false;
bool is_known_nonstandard_format = false;
if (vk_image_type != VK_IMAGE_TYPE_1D) {
VkExtent3D std_shape =
anv_sparse_get_standard_image_block_shape(surf->format, vk_image_type,
bpb);
/* YUV formats don't work with Tile64, which is required if we want to
* claim standard block shapes. The spec requires us to support all
* non-compressed color formats that non-sparse supports, so we can't
* just say YUV formats are not supported by Sparse. So we end
* supporting this format and anv_sparse_calc_miptail_properties() will
* say that everything is part of the miptail.
*
* For more details on the hardware restriction, please check
* isl_gfx125_filter_tiling().
*/
if (pdevice->info.verx10 >= 125 && isl_format_is_yuv(surf->format))
is_known_nonstandard_format = true;
/* The standard block shapes (and by extension, the tiling formats they
* require) are simply incompatible with getting a 2D view of a 3D
* image.
*/
if (surf->usage & ISL_SURF_USAGE_2D_3D_COMPATIBLE_BIT)
is_known_nonstandard_format = true;
is_standard = granularity.width == std_shape.width &&
granularity.height == std_shape.height &&
granularity.depth == std_shape.depth;
/* TODO: dEQP seems to care about the block shapes being standard even
* for the cases where is_known_nonstandard_format is true. Luckily as
* of today all of those cases are NotSupported but sooner or later we
* may end up getting a failure.
* Notice that in practice we report these cases as having the mip tail
* starting on mip level 0, so the reported block shapes are irrelevant
* since non-opaque binds are not supported. Still, dEQP seems to care.
*/
assert(is_standard || is_known_nonstandard_format);
}
uint32_t block_size = granularity.width * granularity.height *
granularity.depth * Bpb;
bool wrong_block_size = block_size != ANV_SPARSE_BLOCK_SIZE;
return (VkSparseImageFormatProperties) {
.aspectMask = aspect,
.imageGranularity = granularity,
.flags = ((is_standard || is_known_nonstandard_format) ? 0 :
VK_SPARSE_IMAGE_FORMAT_NONSTANDARD_BLOCK_SIZE_BIT) |
(wrong_block_size ? VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT :
0),
};
}
/* The miptail is supposed to be this region where the tiniest mip levels
* are squished together in one single page, which should save us some memory.
* It's a hardware feature which our hardware supports on certain tiling
* formats - the ones we always want to use for sparse resources.
*
* For sparse, the main feature of the miptail is that it only supports opaque
* binds, so you either bind the whole miptail or you bind nothing at all,
* there are no subresources inside it to separately bind. While the idea is
* that the miptail as reported by sparse should match what our hardware does,
* in practice we can say in our sparse functions that certain mip levels are
* part of the miptail while from the point of view of our hardwared they
* aren't.
*
* If we detect we're using the sparse-friendly tiling formats and ISL
* supports miptails for them, we can just trust the miptail level set by ISL
* and things can proceed as The Spec intended.
*
* However, if that's not the case, we have to go on a best-effort policy. We
* could simply declare that every mip level is part of the miptail and be
* done, but since that kinda defeats the purpose of Sparse we try to find
* what level we really should be reporting as the first miptail level based
* on the alignments of the surface subresources.
*/
void
anv_sparse_calc_miptail_properties(struct anv_device *device,
struct anv_image *image,
VkImageAspectFlags vk_aspect,
uint32_t *imageMipTailFirstLod,
VkDeviceSize *imageMipTailSize,
VkDeviceSize *imageMipTailOffset,
VkDeviceSize *imageMipTailStride)
{
assert(__builtin_popcount(vk_aspect) == 1);
const uint32_t plane = anv_image_aspect_to_plane(image, vk_aspect);
struct isl_surf *surf = &image->planes[plane].primary_surface.isl;
uint64_t binding_plane_offset =
image->planes[plane].primary_surface.memory_range.offset;
const struct isl_format_layout *isl_layout =
isl_format_get_layout(surf->format);
const int Bpb = isl_layout->bpb / 8;
struct isl_tile_info tile_info;
isl_surf_get_tile_info(surf, &tile_info);
uint32_t tile_size = tile_info.logical_extent_el.width * Bpb *
tile_info.logical_extent_el.height *
tile_info.logical_extent_el.depth;
uint64_t layer1_offset;
uint32_t x_off, y_off;
/* Treat the whole thing as a single miptail. We should have already
* reported this image as VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT.
*
* In theory we could try to make ISL massage the alignments so that we
* could at least claim mip level 0 to be not part of the miptail, but
* that could end up wasting a lot of memory, so it's better to do
* nothing and focus our efforts into making things use the appropriate
* tiling formats that give us the standard block shapes.
*/
if (tile_size != ANV_SPARSE_BLOCK_SIZE)
goto out_everything_is_miptail;
assert(surf->tiling != ISL_TILING_LINEAR);
if (image->vk.array_layers == 1) {
layer1_offset = surf->size_B;
} else {
isl_surf_get_image_offset_B_tile_sa(surf, 0, 1, 0, &layer1_offset,
&x_off, &y_off);
if (x_off || y_off)
goto out_everything_is_miptail;
}
assert(layer1_offset % tile_size == 0);
/* We could try to do better here, but there's not really any point since
* we should be supporting the appropriate tiling formats everywhere.
*/
if (!isl_tiling_supports_standard_block_shapes(surf->tiling))
goto out_everything_is_miptail;
int miptail_first_level = surf->miptail_start_level;
if (miptail_first_level >= image->vk.mip_levels)
goto out_no_miptail;
uint64_t miptail_offset = 0;
isl_surf_get_image_offset_B_tile_sa(surf, miptail_first_level, 0, 0,
&miptail_offset,
&x_off, &y_off);
assert(x_off == 0 && y_off == 0);
assert(miptail_offset % tile_size == 0);
*imageMipTailFirstLod = miptail_first_level;
*imageMipTailSize = tile_size;
*imageMipTailOffset = binding_plane_offset + miptail_offset;
*imageMipTailStride = layer1_offset;
goto out_debug;
out_no_miptail:
*imageMipTailFirstLod = image->vk.mip_levels;
*imageMipTailSize = 0;
*imageMipTailOffset = 0;
*imageMipTailStride = 0;
goto out_debug;
out_everything_is_miptail:
*imageMipTailFirstLod = 0;
*imageMipTailSize = surf->size_B;
*imageMipTailOffset = binding_plane_offset;
*imageMipTailStride = 0;
out_debug:
sparse_debug("miptail first_lod:%d size:%"PRIu64" offset:%"PRIu64" "
"stride:%"PRIu64"\n",
*imageMipTailFirstLod, *imageMipTailSize,
*imageMipTailOffset, *imageMipTailStride);
}
static struct anv_vm_bind
vk_bind_to_anv_vm_bind(struct anv_sparse_binding_data *sparse,
const struct VkSparseMemoryBind *vk_bind)
{
struct anv_vm_bind anv_bind = {
.bo = NULL,
.address = sparse->address + vk_bind->resourceOffset,
.bo_offset = 0,
.size = vk_bind->size,
.op = ANV_VM_BIND,
};
assert(vk_bind->size);
assert(vk_bind->resourceOffset + vk_bind->size <= sparse->size);
if (vk_bind->memory != VK_NULL_HANDLE) {
anv_bind.bo = anv_device_memory_from_handle(vk_bind->memory)->bo;
anv_bind.bo_offset = vk_bind->memoryOffset,
assert(vk_bind->memoryOffset + vk_bind->size <= anv_bind.bo->size);
}
return anv_bind;
}
static VkResult
anv_sparse_bind_resource_memory(struct anv_device *device,
struct anv_sparse_binding_data *sparse,
uint64_t resource_size,
const VkSparseMemoryBind *vk_bind,
struct anv_sparse_submission *submit)
{
struct anv_vm_bind bind = vk_bind_to_anv_vm_bind(sparse, vk_bind);
uint64_t rem = vk_bind->size % ANV_SPARSE_BLOCK_SIZE;
if (rem != 0) {
if (vk_bind->resourceOffset + vk_bind->size == resource_size)
bind.size += ANV_SPARSE_BLOCK_SIZE - rem;
else
return vk_error(device, VK_ERROR_VALIDATION_FAILED_EXT);
}
return anv_sparse_submission_add(device, submit, &bind);
}
VkResult
anv_sparse_bind_buffer(struct anv_device *device,
struct anv_buffer *buffer,
const VkSparseMemoryBind *vk_bind,
struct anv_sparse_submission *submit)
{
return anv_sparse_bind_resource_memory(device, &buffer->sparse_data,
buffer->vk.size,
vk_bind, submit);
}
VkResult
anv_sparse_bind_image_opaque(struct anv_device *device,
struct anv_image *image,
const VkSparseMemoryBind *vk_bind,
struct anv_sparse_submission *submit)
{
struct anv_image_binding *b =
&image->bindings[ANV_IMAGE_MEMORY_BINDING_MAIN];
assert(!image->disjoint);
return anv_sparse_bind_resource_memory(device, &b->sparse_data,
b->memory_range.size,
vk_bind, submit);
}
VkResult
anv_sparse_bind_image_memory(struct anv_queue *queue,
struct anv_image *image,
const VkSparseImageMemoryBind *bind,
struct anv_sparse_submission *submit)
{
struct anv_device *device = queue->device;
VkImageAspectFlags aspect = bind->subresource.aspectMask;
uint32_t mip_level = bind->subresource.mipLevel;
uint32_t array_layer = bind->subresource.arrayLayer;
assert(__builtin_popcount(aspect) == 1);
assert(!(bind->flags & VK_SPARSE_MEMORY_BIND_METADATA_BIT));
struct anv_image_binding *img_binding = image->disjoint ?
anv_image_aspect_to_binding(image, aspect) :
&image->bindings[ANV_IMAGE_MEMORY_BINDING_MAIN];
struct anv_sparse_binding_data *sparse_data = &img_binding->sparse_data;
const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
struct isl_surf *surf = &image->planes[plane].primary_surface.isl;
uint64_t binding_plane_offset =
image->planes[plane].primary_surface.memory_range.offset;
const struct isl_format_layout *layout =
isl_format_get_layout(surf->format);
struct isl_tile_info tile_info;
isl_surf_get_tile_info(surf, &tile_info);
sparse_debug("\n=== [%s:%d] [%s] BEGIN\n", __FILE__, __LINE__, __func__);
sparse_debug("--> mip_level:%d array_layer:%d\n",
mip_level, array_layer);
sparse_debug("aspect:0x%x plane:%d\n", aspect, plane);
sparse_debug("binding offset: [%d, %d, %d] extent: [%d, %d, %d]\n",
bind->offset.x, bind->offset.y, bind->offset.z,
bind->extent.width, bind->extent.height, bind->extent.depth);
dump_anv_image(image);
dump_isl_surf(surf);
VkExtent3D block_shape_px =
anv_sparse_calc_block_shape(device->physical, surf);
VkExtent3D block_shape_el = vk_extent3d_px_to_el(block_shape_px, layout);
/* Both bind->offset and bind->extent are in pixel units. */
VkOffset3D bind_offset_el = vk_offset3d_px_to_el(bind->offset, layout);
/* The spec says we only really need to align if for a given coordinate
* offset + extent equals the corresponding dimensions of the image
* subresource, but all the other non-aligned usage is invalid, so just
* align everything.
*/
VkExtent3D bind_extent_px = {
.width = ALIGN_NPOT(bind->extent.width, block_shape_px.width),
.height = ALIGN_NPOT(bind->extent.height, block_shape_px.height),
.depth = ALIGN_NPOT(bind->extent.depth, block_shape_px.depth),
};
VkExtent3D bind_extent_el = vk_extent3d_px_to_el(bind_extent_px, layout);
/* A sparse block should correspond to our tile size, so this has to be
* either 4k or 64k depending on the tiling format. */
const uint64_t block_size_B = block_shape_el.width * (layout->bpb / 8) *
block_shape_el.height *
block_shape_el.depth;
/* How many blocks are necessary to form a whole line on this image? */
const uint32_t blocks_per_line = surf->row_pitch_B / (layout->bpb / 8) /
block_shape_el.width;
/* The loop below will try to bind a whole line of blocks at a time as
* they're guaranteed to be contiguous, so we calculate how many blocks
* that is and how big is each block to figure the bind size of a whole
* line.
*/
uint64_t line_bind_size_in_blocks = bind_extent_el.width /
block_shape_el.width;
uint64_t line_bind_size = line_bind_size_in_blocks * block_size_B;
assert(line_bind_size_in_blocks != 0);
assert(line_bind_size != 0);
uint64_t memory_offset = bind->memoryOffset;
for (uint32_t z = bind_offset_el.z;
z < bind_offset_el.z + bind_extent_el.depth;
z += block_shape_el.depth) {
uint64_t subresource_offset_B;
uint32_t subresource_x_offset, subresource_y_offset;
isl_surf_get_image_offset_B_tile_sa(surf, mip_level, array_layer, z,
&subresource_offset_B,
&subresource_x_offset,
&subresource_y_offset);
assert(subresource_x_offset == 0 && subresource_y_offset == 0);
assert(subresource_offset_B % block_size_B == 0);
for (uint32_t y = bind_offset_el.y;
y < bind_offset_el.y + bind_extent_el.height;
y+= block_shape_el.height) {
uint32_t line_block_offset = y / block_shape_el.height *
blocks_per_line;
uint64_t line_start_B = subresource_offset_B +
line_block_offset * block_size_B;
uint64_t bind_offset_B = line_start_B +
(bind_offset_el.x / block_shape_el.width) *
block_size_B;
VkSparseMemoryBind opaque_bind = {
.resourceOffset = binding_plane_offset + bind_offset_B,
.size = line_bind_size,
.memory = bind->memory,
.memoryOffset = memory_offset,
.flags = bind->flags,
};
memory_offset += line_bind_size;
assert(line_start_B % block_size_B == 0);
assert(opaque_bind.resourceOffset % block_size_B == 0);
assert(opaque_bind.size % block_size_B == 0);
struct anv_vm_bind anv_bind = vk_bind_to_anv_vm_bind(sparse_data,
&opaque_bind);
VkResult result = anv_sparse_submission_add(device, submit,
&anv_bind);
if (result != VK_SUCCESS)
return result;
}
}
sparse_debug("\n=== [%s:%d] [%s] END\n", __FILE__, __LINE__, __func__);
return VK_SUCCESS;
}
VkResult
anv_sparse_image_check_support(struct anv_physical_device *pdevice,
VkImageCreateFlags flags,
VkImageTiling tiling,
VkSampleCountFlagBits samples,
VkImageType type,
VkFormat vk_format)
{
assert(flags & VK_IMAGE_CREATE_SPARSE_BINDING_BIT);
/* The spec says:
* "A sparse image created using VK_IMAGE_CREATE_SPARSE_BINDING_BIT (but
* not VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT) supports all formats that
* non-sparse usage supports, and supports both VK_IMAGE_TILING_OPTIMAL
* and VK_IMAGE_TILING_LINEAR tiling."
*/
if (!(flags & VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT))
return VK_SUCCESS;
/* From here on, these are the rules:
* "A sparse image created using VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT
* supports all non-compressed color formats with power-of-two element
* size that non-sparse usage supports. Additional formats may also be
* supported and can be queried via
* vkGetPhysicalDeviceSparseImageFormatProperties.
* VK_IMAGE_TILING_LINEAR tiling is not supported."
*/
/* We choose not to support sparse residency on emulated compressed
* formats due to the additional image plane. It would make the
* implementation extremely complicated.
*/
if (anv_is_format_emulated(pdevice, vk_format))
return VK_ERROR_FORMAT_NOT_SUPPORTED;
/* While the spec itself says linear is not supported (see above), deqp-vk
* tries anyway to create linear sparse images, so we have to check for it.
* This is also said in VUID-VkImageCreateInfo-tiling-04121:
* "If tiling is VK_IMAGE_TILING_LINEAR, flags must not contain
* VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT"
*/
if (tiling == VK_IMAGE_TILING_LINEAR)
return VK_ERROR_FORMAT_NOT_SUPPORTED;
/* TODO: not supported yet. */
if (samples != VK_SAMPLE_COUNT_1_BIT)
return VK_ERROR_FEATURE_NOT_PRESENT;
/* While the Vulkan spec allows us to support depth/stencil sparse images
* everywhere, sometimes we're not able to have them with the tiling
* formats that give us the standard block shapes. Having standard block
* shapes is higher priority than supporting depth/stencil sparse images.
*
* Please see ISL's filter_tiling() functions for accurate explanations on
* why depth/stencil images are not always supported with the tiling
* formats we want. But in short: depth/stencil support in our HW is
* limited to 2D and we can't build a 2D view of a 3D image with these
* tiling formats due to the address swizzling being different.
*/
VkImageAspectFlags aspects = vk_format_aspects(vk_format);
if (aspects & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
/* For 125+, isl_gfx125_filter_tiling() claims 3D is not supported.
* For the previous platforms, isl_gfx6_filter_tiling() says only 2D is
* supported.
*/
if (pdevice->info.verx10 >= 125) {
if (type == VK_IMAGE_TYPE_3D)
return VK_ERROR_FORMAT_NOT_SUPPORTED;
} else {
if (type != VK_IMAGE_TYPE_2D)
return VK_ERROR_FORMAT_NOT_SUPPORTED;
}
}
const struct anv_format *anv_format = anv_get_format(vk_format);
if (!anv_format)
return VK_ERROR_FORMAT_NOT_SUPPORTED;
for (int p = 0; p < anv_format->n_planes; p++) {
enum isl_format isl_format = anv_format->planes[p].isl_format;
if (isl_format == ISL_FORMAT_UNSUPPORTED)
return VK_ERROR_FORMAT_NOT_SUPPORTED;
const struct isl_format_layout *isl_layout =
isl_format_get_layout(isl_format);
/* As quoted above, we only need to support the power-of-two formats.
* The problem with the non-power-of-two formats is that we need an
* integer number of pixels to fit into a sparse block, so we'd need the
* sparse block sizes to be, for example, 192k for 24bpp.
*
* TODO: add support for these formats.
*/
if (isl_layout->bpb != 8 && isl_layout->bpb != 16 &&
isl_layout->bpb != 32 && isl_layout->bpb != 64 &&
isl_layout->bpb != 128)
return VK_ERROR_FORMAT_NOT_SUPPORTED;
}
/* These YUV formats are considered by Vulkan to be compressed 2x1 blocks.
* We don't need to support them since they're compressed. On Gfx12 we
* can't even have Tile64 for them. Once we do support these formats we'll
* have to report the correct block shapes because dEQP cares about them,
* and we'll have to adjust for the fact that ISL treats these as 16bpp 1x1
* blocks instead of 32bpp 2x1 compressed blocks (as block shapes are
* reported in units of compressed blocks).
*/
if (vk_format == VK_FORMAT_G8B8G8R8_422_UNORM ||
vk_format == VK_FORMAT_B8G8R8G8_422_UNORM)
return VK_ERROR_FORMAT_NOT_SUPPORTED;
return VK_SUCCESS;
}
static VkResult
anv_trtt_garbage_collect_batches(struct anv_device *device)
{
struct anv_trtt *trtt = &device->trtt;
if (trtt->timeline_val % 8 != 7)
return VK_SUCCESS;
uint64_t cur_timeline_val = 0;
struct drm_syncobj_timeline_array array = {
.handles = (uintptr_t)&trtt->timeline_handle,
.points = (uintptr_t)&cur_timeline_val,
.count_handles = 1,
.flags = 0,
};
if (intel_ioctl(device->fd, DRM_IOCTL_SYNCOBJ_QUERY, &array))
return vk_error(device, VK_ERROR_UNKNOWN);
list_for_each_entry_safe(struct anv_trtt_batch_bo, trtt_bbo,
&trtt->in_flight_batches, link) {
if (trtt_bbo->timeline_val > cur_timeline_val)
return VK_SUCCESS;
anv_trtt_batch_bo_free(device, trtt_bbo);
}
return VK_SUCCESS;
}
VkResult
anv_trtt_batch_bo_new(struct anv_device *device, uint32_t batch_size,
struct anv_trtt_batch_bo **out_trtt_bbo)
{
struct anv_trtt *trtt = &device->trtt;
VkResult result;
anv_trtt_garbage_collect_batches(device);
struct anv_trtt_batch_bo *trtt_bbo =
vk_alloc(&device->vk.alloc, sizeof(*trtt_bbo), 8,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (!trtt_bbo)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
result = anv_bo_pool_alloc(&device->batch_bo_pool, batch_size,
&trtt_bbo->bo);
if (result != VK_SUCCESS)
goto out;
trtt_bbo->size = batch_size;
trtt_bbo->timeline_val = ++trtt->timeline_val;
list_addtail(&trtt_bbo->link, &trtt->in_flight_batches);
*out_trtt_bbo = trtt_bbo;
return VK_SUCCESS;
out:
vk_free(&device->vk.alloc, trtt_bbo);
return result;
}