mesa/src/util/half_float.c
Chia-I Wu 9febc11af9 util: Keep quiet NaNs quiet when converting to half float.
We don't want to be throwing exceptions and changing float values later by
emitting a signaling binary16 nan.

If we don't do this, then when we convert back to f32 in NIR constant
expression evaluation, the signaling NaN can end up giving NaN for
fmax(NaN, 0.0), instead of 0.0.

Closes: https://gitlab.freedesktop.org/mesa/mesa/-/issues/5933
Cc: mesa-stable
Reviewed-by: Emma Anholt <emma@anholt.net>
Reviewed-by: Jason Ekstrand <jason.ekstrand@collabora.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/16233>
(cherry picked from commit 27e33d5c96)
2022-05-03 09:41:32 -07:00

239 lines
6.8 KiB
C

/*
* Mesa 3-D graphics library
*
* Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
* Copyright 2015 Philip Taylor <philip@zaynar.co.uk>
* Copyright 2018 Advanced Micro Devices, Inc.
* Copyright (C) 2018-2019 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <math.h>
#include <assert.h>
#include "half_float.h"
#include "rounding.h"
#include "softfloat.h"
#include "macros.h"
#include "u_math.h"
typedef union { float f; int32_t i; uint32_t u; } fi_type;
/**
* Convert a 4-byte float to a 2-byte half float.
*
* Not all float32 values can be represented exactly as a float16 value. We
* round such intermediate float32 values to the nearest float16. When the
* float32 lies exactly between to float16 values, we round to the one with
* an even mantissa.
*
* This rounding behavior has several benefits:
* - It has no sign bias.
*
* - It reproduces the behavior of real hardware: opcode F32TO16 in Intel's
* GPU ISA.
*
* - By reproducing the behavior of the GPU (at least on Intel hardware),
* compile-time evaluation of constant packHalf2x16 GLSL expressions will
* result in the same value as if the expression were executed on the GPU.
*/
uint16_t
_mesa_float_to_half_slow(float val)
{
const fi_type fi = {val};
const int flt_m = fi.i & 0x7fffff;
const int flt_e = (fi.i >> 23) & 0xff;
const int flt_s = (fi.i >> 31) & 0x1;
int s, e, m = 0;
uint16_t result;
/* sign bit */
s = flt_s;
/* handle special cases */
if ((flt_e == 0) && (flt_m == 0)) {
/* zero */
/* m = 0; - already set */
e = 0;
}
else if ((flt_e == 0) && (flt_m != 0)) {
/* denorm -- denorm float maps to 0 half */
/* m = 0; - already set */
e = 0;
}
else if ((flt_e == 0xff) && (flt_m == 0)) {
/* infinity */
/* m = 0; - already set */
e = 31;
}
else if ((flt_e == 0xff) && (flt_m != 0)) {
/* Retain the top bits of a NaN to make sure that the quiet/signaling
* status stays the same.
*/
m = flt_m >> 13;
if (!m)
m = 1;
e = 31;
}
else {
/* regular number */
const int new_exp = flt_e - 127;
if (new_exp < -14) {
/* The float32 lies in the range (0.0, min_normal16) and is rounded
* to a nearby float16 value. The result will be either zero, subnormal,
* or normal.
*/
e = 0;
m = _mesa_lroundevenf((1 << 24) * fabsf(fi.f));
}
else if (new_exp > 15) {
/* map this value to infinity */
/* m = 0; - already set */
e = 31;
}
else {
/* The float32 lies in the range
* [min_normal16, max_normal16 + max_step16)
* and is rounded to a nearby float16 value. The result will be
* either normal or infinite.
*/
e = new_exp + 15;
m = _mesa_lroundevenf(flt_m / (float) (1 << 13));
}
}
assert(0 <= m && m <= 1024);
if (m == 1024) {
/* The float32 was rounded upwards into the range of the next exponent,
* so bump the exponent. This correctly handles the case where f32
* should be rounded up to float16 infinity.
*/
++e;
m = 0;
}
result = (s << 15) | (e << 10) | m;
return result;
}
uint16_t
_mesa_float_to_float16_rtz_slow(float val)
{
return _mesa_float_to_half_rtz_slow(val);
}
/**
* Convert a 2-byte half float to a 4-byte float.
* Based on code from:
* http://www.opengl.org/discussion_boards/ubb/Forum3/HTML/008786.html
*/
float
_mesa_half_to_float_slow(uint16_t val)
{
union fi infnan;
union fi magic;
union fi f32;
infnan.ui = 0x8f << 23;
infnan.f = 65536.0f;
magic.ui = 0xef << 23;
/* Exponent / Mantissa */
f32.ui = (val & 0x7fff) << 13;
/* Adjust */
f32.f *= magic.f;
/* XXX: The magic mul relies on denorms being available */
/* Inf / NaN */
if (f32.f >= infnan.f)
f32.ui |= 0xff << 23;
/* Sign */
f32.ui |= (uint32_t)(val & 0x8000) << 16;
return f32.f;
}
/**
* Convert 0.0 to 0x00, 1.0 to 0xff.
* Values outside the range [0.0, 1.0] will give undefined results.
*/
uint8_t _mesa_half_to_unorm8(uint16_t val)
{
const int m = val & 0x3ff;
const int e = (val >> 10) & 0x1f;
ASSERTED const int s = (val >> 15) & 0x1;
/* v = round_to_nearest(1.mmmmmmmmmm * 2^(e-15) * 255)
* = round_to_nearest((1.mmmmmmmmmm * 255) * 2^(e-15))
* = round_to_nearest((1mmmmmmmmmm * 255) * 2^(e-25))
* = round_to_zero((1mmmmmmmmmm * 255) * 2^(e-25) + 0.5)
* = round_to_zero(((1mmmmmmmmmm * 255) * 2^(e-24) + 1) / 2)
*
* This happens to give the correct answer for zero/subnormals too
*/
assert(s == 0 && val <= FP16_ONE); /* check 0 <= this <= 1 */
/* (implies e <= 15, which means the bit-shifts below are safe) */
uint32_t v = ((1 << 10) | m) * 255;
v = ((v >> (24 - e)) + 1) >> 1;
return v;
}
/**
* Takes a uint16_t, divides by 65536, converts the infinite-precision
* result to fp16 with round-to-zero. Used by the ASTC decoder.
*/
uint16_t _mesa_uint16_div_64k_to_half(uint16_t v)
{
/* Zero or subnormal. Set the mantissa to (v << 8) and return. */
if (v < 4)
return v << 8;
/* Count the leading 0s in the uint16_t */
#ifdef HAVE___BUILTIN_CLZ
int n = __builtin_clz(v) - 16;
#else
int n = 16;
for (int i = 15; i >= 0; i--) {
if (v & (1 << i)) {
n = 15 - i;
break;
}
}
#endif
/* Shift the mantissa up so bit 16 is the hidden 1 bit,
* mask it off, then shift back down to 10 bits
*/
int m = ( ((uint32_t)v << (n + 1)) & 0xffff ) >> 6;
/* (0{n} 1 X{15-n}) * 2^-16
* = 1.X * 2^(15-n-16)
* = 1.X * 2^(14-n - 15)
* which is the FP16 form with e = 14 - n
*/
int e = 14 - n;
assert(e >= 1 && e <= 30);
assert(m >= 0 && m < 0x400);
return (e << 10) | m;
}