mesa/src/intel/tools/aub_write.c
Antonio Ospite ddf2aa3a4d build: avoid redefining unreachable() which is standard in C23
In the C23 standard unreachable() is now a predefined function-like
macro in <stddef.h>

See https://android.googlesource.com/platform/bionic/+/HEAD/docs/c23.md#is-now-a-predefined-function_like-macro-in

And this causes build errors when building for C23:

-----------------------------------------------------------------------
In file included from ../src/util/log.h:30,
                 from ../src/util/log.c:30:
../src/util/macros.h:123:9: warning: "unreachable" redefined
  123 | #define unreachable(str)    \
      |         ^~~~~~~~~~~
In file included from ../src/util/macros.h:31:
/usr/lib/gcc/x86_64-linux-gnu/14/include/stddef.h:456:9: note: this is the location of the previous definition
  456 | #define unreachable() (__builtin_unreachable ())
      |         ^~~~~~~~~~~
-----------------------------------------------------------------------

So don't redefine it with the same name, but use the name UNREACHABLE()
to also signify it's a macro.

Using a different name also makes sense because the behavior of the
macro was extending the one of __builtin_unreachable() anyway, and it
also had a different signature, accepting one argument, compared to the
standard unreachable() with no arguments.

This change improves the chances of building mesa with the C23 standard,
which for instance is the default in recent AOSP versions.

All the instances of the macro, including the definition, were updated
with the following command line:

  git grep -l '[^_]unreachable(' -- "src/**" | sort | uniq | \
  while read file; \
  do \
    sed -e 's/\([^_]\)unreachable(/\1UNREACHABLE(/g' -i "$file"; \
  done && \
  sed -e 's/#undef unreachable/#undef UNREACHABLE/g' -i src/intel/isl/isl_aux_info.c

Reviewed-by: Erik Faye-Lund <erik.faye-lund@collabora.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/36437>
2025-07-31 17:49:42 +00:00

842 lines
28 KiB
C

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "aub_write.h"
#include <inttypes.h>
#include <signal.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include "intel_aub.h"
#include "intel_context.h"
#include "util/u_math.h"
#define MI_BATCH_NON_SECURE_I965 (1 << 8)
#define min(a, b) ({ \
__typeof(a) _a = (a); \
__typeof(b) _b = (b); \
_a < _b ? _a : _b; \
})
#define max(a, b) ({ \
__typeof(a) _a = (a); \
__typeof(b) _b = (b); \
_a > _b ? _a : _b; \
})
static struct aub_context *aub_context_new(struct aub_file *aub, uint32_t new_id);
static void mem_trace_memory_write_header_out(struct aub_file *aub, uint64_t addr,
uint32_t len, uint32_t addr_space,
const char *desc);
#define fail_if(cond, ...) _fail_if(cond, NULL, __VA_ARGS__)
static void
aub_ppgtt_table_finish(struct aub_ppgtt_table *table, int level)
{
if (level == 1)
return;
for (unsigned i = 0; i < ARRAY_SIZE(table->subtables); i++) {
if (table->subtables[i]) {
aub_ppgtt_table_finish(table->subtables[i], level - 1);
free(table->subtables[i]);
}
}
}
static void
data_out(struct aub_file *aub, const void *data, size_t size)
{
if (size == 0)
return;
fail_if(fwrite(data, 1, size, aub->file) == 0,
"Writing to output failed\n");
}
static void
dword_out(struct aub_file *aub, uint32_t data)
{
data_out(aub, &data, sizeof(data));
}
static void
write_execlists_header(struct aub_file *aub, const char *name)
{
char app_name[8 * 4];
int app_name_len, dwords;
app_name_len =
snprintf(app_name, sizeof(app_name), "PCI-ID=0x%X %s",
aub->pci_id, name);
app_name_len = ALIGN(app_name_len, sizeof(uint32_t));
dwords = 5 + app_name_len / sizeof(uint32_t);
dword_out(aub, CMD_MEM_TRACE_VERSION | (dwords - 1));
dword_out(aub, AUB_MEM_TRACE_VERSION_FILE_VERSION);
dword_out(aub, aub->devinfo.simulator_id << AUB_MEM_TRACE_VERSION_DEVICE_SHIFT);
dword_out(aub, 0); /* version */
dword_out(aub, 0); /* version */
data_out(aub, app_name, app_name_len);
}
static void
write_legacy_header(struct aub_file *aub, const char *name)
{
char app_name[8 * 4];
char comment[16];
int comment_len, comment_dwords, dwords;
comment_len = snprintf(comment, sizeof(comment), "PCI-ID=0x%x", aub->pci_id);
comment_dwords = ((comment_len + 3) / 4);
/* Start with a (required) version packet. */
dwords = 13 + comment_dwords;
dword_out(aub, CMD_AUB_HEADER | (dwords - 2));
dword_out(aub, (4 << AUB_HEADER_MAJOR_SHIFT) |
(0 << AUB_HEADER_MINOR_SHIFT));
/* Next comes a 32-byte application name. */
strncpy(app_name, name, sizeof(app_name));
app_name[sizeof(app_name) - 1] = 0;
data_out(aub, app_name, sizeof(app_name));
dword_out(aub, 0); /* timestamp */
dword_out(aub, 0); /* timestamp */
dword_out(aub, comment_len);
data_out(aub, comment, comment_dwords * 4);
}
static void
aub_write_header(struct aub_file *aub, const char *app_name)
{
if (aub_use_execlists(aub))
write_execlists_header(aub, app_name);
else
write_legacy_header(aub, app_name);
}
void
aub_file_init(struct aub_file *aub, FILE *file, FILE *debug, uint16_t pci_id, const char *app_name)
{
memset(aub, 0, sizeof(*aub));
aub->verbose_log_file = debug;
aub->file = file;
aub->pci_id = pci_id;
fail_if(!intel_get_device_info_from_pci_id(pci_id, &aub->devinfo),
"failed to identify chipset=0x%x\n", pci_id);
aub->addr_bits = aub->devinfo.ver >= 8 ? 48 : 32;
aub_write_header(aub, app_name);
aub->phys_addrs_allocator = 0;
aub->ggtt_addrs_allocator = 0;
aub->pml4.phys_addr = aub->phys_addrs_allocator++ << 12;
mem_trace_memory_write_header_out(aub, aub->ggtt_addrs_allocator++,
GFX8_PTE_SIZE,
AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT_ENTRY,
"GGTT PT");
dword_out(aub, 1);
dword_out(aub, 0);
aub->next_context_handle = 1;
aub_context_new(aub, 0); /* Default context */
}
void
aub_file_finish(struct aub_file *aub)
{
aub_ppgtt_table_finish(&aub->pml4, 4);
fclose(aub->file);
}
uint32_t
aub_gtt_size(struct aub_file *aub)
{
return NUM_PT_ENTRIES * (aub->addr_bits > 32 ? GFX8_PTE_SIZE : PTE_SIZE);
}
static void
mem_trace_memory_write_header_out(struct aub_file *aub, uint64_t addr,
uint32_t len, uint32_t addr_space,
const char *desc)
{
uint32_t dwords = ALIGN(len, sizeof(uint32_t)) / sizeof(uint32_t);
if (aub->verbose_log_file) {
fprintf(aub->verbose_log_file,
" MEM WRITE (0x%016" PRIx64 "-0x%016" PRIx64 ") %s\n",
addr, addr + len, desc);
}
dword_out(aub, CMD_MEM_TRACE_MEMORY_WRITE | (5 + dwords - 1));
dword_out(aub, addr & 0xFFFFFFFF); /* addr lo */
dword_out(aub, addr >> 32); /* addr hi */
dword_out(aub, addr_space); /* gtt */
dword_out(aub, len);
}
static void
register_write_out(struct aub_file *aub, uint32_t addr, uint32_t value)
{
uint32_t dwords = 1;
if (aub->verbose_log_file) {
fprintf(aub->verbose_log_file,
" MMIO WRITE (0x%08x = 0x%08x)\n", addr, value);
}
dword_out(aub, CMD_MEM_TRACE_REGISTER_WRITE | (5 + dwords - 1));
dword_out(aub, addr);
dword_out(aub, AUB_MEM_TRACE_REGISTER_SIZE_DWORD |
AUB_MEM_TRACE_REGISTER_SPACE_MMIO);
dword_out(aub, 0xFFFFFFFF); /* mask lo */
dword_out(aub, 0x00000000); /* mask hi */
dword_out(aub, value);
}
static void
populate_ppgtt_table(struct aub_file *aub, struct aub_ppgtt_table *table,
int start, int end, int level)
{
uint64_t entries[512] = {0};
int dirty_start = 512, dirty_end = 0;
if (aub->verbose_log_file) {
fprintf(aub->verbose_log_file,
" PPGTT (0x%016" PRIx64 "), lvl %d, start: %x, end: %x\n",
table->phys_addr, level, start, end);
}
for (int i = start; i <= end; i++) {
if (!table->subtables[i]) {
dirty_start = min(dirty_start, i);
dirty_end = max(dirty_end, i);
if (level == 1) {
table->subtables[i] =
(void *)(uintptr_t)(aub->phys_addrs_allocator++ << 12);
if (aub->verbose_log_file) {
fprintf(aub->verbose_log_file,
" Adding entry: %x, phys_addr: 0x%016" PRIx64 "\n",
i, (uint64_t)(uintptr_t)table->subtables[i]);
}
} else {
table->subtables[i] =
calloc(1, sizeof(struct aub_ppgtt_table));
table->subtables[i]->phys_addr =
aub->phys_addrs_allocator++ << 12;
if (aub->verbose_log_file) {
fprintf(aub->verbose_log_file,
" Adding entry: %x, phys_addr: 0x%016" PRIx64 "\n",
i, table->subtables[i]->phys_addr);
}
}
}
entries[i] = 3 /* read/write | present */ |
(level == 1 ? (uint64_t)(uintptr_t)table->subtables[i] :
table->subtables[i]->phys_addr);
}
if (dirty_start <= dirty_end) {
uint64_t write_addr = table->phys_addr + dirty_start *
sizeof(uint64_t);
uint64_t write_size = (dirty_end - dirty_start + 1) *
sizeof(uint64_t);
mem_trace_memory_write_header_out(aub, write_addr, write_size,
AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_PHYSICAL,
"PPGTT update");
data_out(aub, entries + dirty_start, write_size);
}
}
void
aub_map_ppgtt(struct aub_file *aub, uint64_t start, uint64_t size)
{
uint64_t l4_start = start & 0xff8000000000;
uint64_t l4_end = ((start + size - 1) | 0x007fffffffff) & 0xffffffffffff;
#define L4_index(addr) (((addr) >> 39) & 0x1ff)
#define L3_index(addr) (((addr) >> 30) & 0x1ff)
#define L2_index(addr) (((addr) >> 21) & 0x1ff)
#define L1_index(addr) (((addr) >> 12) & 0x1ff)
#define L3_table(addr) (aub->pml4.subtables[L4_index(addr)])
#define L2_table(addr) (L3_table(addr)->subtables[L3_index(addr)])
#define L1_table(addr) (L2_table(addr)->subtables[L2_index(addr)])
if (aub->verbose_log_file) {
fprintf(aub->verbose_log_file,
" Mapping PPGTT address: 0x%" PRIx64 ", size: %" PRIu64"\n",
start, size);
}
populate_ppgtt_table(aub, &aub->pml4, L4_index(l4_start), L4_index(l4_end), 4);
for (uint64_t l4 = l4_start; l4 < l4_end; l4 += (1ULL << 39)) {
uint64_t l3_start = max(l4, start & 0xffffc0000000);
uint64_t l3_end = min(l4 + (1ULL << 39) - 1,
((start + size - 1) | 0x00003fffffff) & 0xffffffffffff);
uint64_t l3_start_idx = L3_index(l3_start);
uint64_t l3_end_idx = L3_index(l3_end);
populate_ppgtt_table(aub, L3_table(l4), l3_start_idx, l3_end_idx, 3);
for (uint64_t l3 = l3_start; l3 < l3_end; l3 += (1ULL << 30)) {
uint64_t l2_start = max(l3, start & 0xffffffe00000);
uint64_t l2_end = min(l3 + (1ULL << 30) - 1,
((start + size - 1) | 0x0000001fffff) & 0xffffffffffff);
uint64_t l2_start_idx = L2_index(l2_start);
uint64_t l2_end_idx = L2_index(l2_end);
populate_ppgtt_table(aub, L2_table(l3), l2_start_idx, l2_end_idx, 2);
for (uint64_t l2 = l2_start; l2 < l2_end; l2 += (1ULL << 21)) {
uint64_t l1_start = max(l2, start & 0xfffffffff000);
uint64_t l1_end = min(l2 + (1ULL << 21) - 1,
((start + size - 1) | 0x000000000fff) & 0xffffffffffff);
uint64_t l1_start_idx = L1_index(l1_start);
uint64_t l1_end_idx = L1_index(l1_end);
populate_ppgtt_table(aub, L1_table(l2), l1_start_idx, l1_end_idx, 1);
}
}
}
}
static uint64_t
ppgtt_lookup(struct aub_file *aub, uint64_t ppgtt_addr)
{
return (uint64_t)(uintptr_t)L1_table(ppgtt_addr)->subtables[L1_index(ppgtt_addr)];
}
static const struct engine {
const char *name;
enum intel_engine_class engine_class;
uint32_t hw_class;
uint32_t elsp_reg;
uint32_t elsq_reg;
uint32_t status_reg;
uint32_t control_reg;
} engines[] = {
[INTEL_ENGINE_CLASS_RENDER] = {
.name = "RENDER",
.engine_class = INTEL_ENGINE_CLASS_RENDER,
.hw_class = 1,
.elsp_reg = RCSUNIT(EXECLIST_SUBMITPORT),
.elsq_reg = RCSUNIT(EXECLIST_SQ_CONTENTS),
.status_reg = RCSUNIT(EXECLIST_STATUS),
.control_reg = RCSUNIT(EXECLIST_CONTROL),
},
[INTEL_ENGINE_CLASS_VIDEO] = {
.name = "VIDEO",
.engine_class = INTEL_ENGINE_CLASS_VIDEO,
.hw_class = 3,
.elsp_reg = VCSUNIT0(EXECLIST_SUBMITPORT),
.elsq_reg = VCSUNIT0(EXECLIST_SQ_CONTENTS),
.status_reg = VCSUNIT0(EXECLIST_STATUS),
.control_reg = VCSUNIT0(EXECLIST_CONTROL),
},
[INTEL_ENGINE_CLASS_COPY] = {
.name = "BLITTER",
.engine_class = INTEL_ENGINE_CLASS_COPY,
.hw_class = 2,
.elsp_reg = BCSUNIT0(EXECLIST_SUBMITPORT),
.elsq_reg = BCSUNIT0(EXECLIST_SQ_CONTENTS),
.status_reg = BCSUNIT0(EXECLIST_STATUS),
.control_reg = BCSUNIT0(EXECLIST_CONTROL),
},
};
static void
aub_map_ggtt(struct aub_file *aub, uint64_t virt_addr, uint64_t size)
{
/* Makes the code below a bit simpler. In practice all of the write we
* receive from error2aub are page aligned.
*/
assert(virt_addr % 4096 == 0);
assert((aub->phys_addrs_allocator + size) < (1ULL << 32));
/* GGTT PT */
uint32_t ggtt_ptes = DIV_ROUND_UP(size, 4096);
uint64_t phys_addr = aub->phys_addrs_allocator << 12;
aub->phys_addrs_allocator += ggtt_ptes;
if (aub->verbose_log_file) {
fprintf(aub->verbose_log_file,
" Mapping GGTT address: 0x%" PRIx64 ", size: %" PRIu64" phys_addr=0x%" PRIx64 " entries=%u\n",
virt_addr, size, phys_addr, ggtt_ptes);
}
mem_trace_memory_write_header_out(aub,
(virt_addr >> 12) * GFX8_PTE_SIZE,
ggtt_ptes * GFX8_PTE_SIZE,
AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT_ENTRY,
"GGTT PT");
for (uint32_t i = 0; i < ggtt_ptes; i++) {
dword_out(aub, 1 + phys_addr + i * 4096);
dword_out(aub, 0);
}
}
void
aub_write_ggtt(struct aub_file *aub, uint64_t virt_addr, uint64_t size, const void *data)
{
/* Default setup assumes a 1 to 1 mapping between physical and virtual GGTT
* addresses. This is somewhat incompatible with the aub_write_ggtt()
* function. In practice it doesn't matter as the GGTT writes are used to
* replace the default setup and we've taken care to setup the PML4 as the
* top of the GGTT.
*/
assert(!aub->has_default_setup);
aub_map_ggtt(aub, virt_addr, size);
/* We write the GGTT buffer through the GGTT aub command rather than the
* PHYSICAL aub command. This is because the Gfx9 simulator seems to have 2
* different set of memory pools for GGTT and physical (probably someone
* didn't really understand the concept?).
*/
static const char null_block[8 * 4096];
for (uint64_t offset = 0; offset < size; offset += 4096) {
uint32_t block_size = min(4096, size - offset);
mem_trace_memory_write_header_out(aub, virt_addr + offset, block_size,
AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT,
"GGTT buffer");
data_out(aub, (char *) data + offset, block_size);
/* Pad to a multiple of 4 bytes. */
data_out(aub, null_block, -block_size & 3);
}
}
static const struct engine *
engine_from_engine_class(enum intel_engine_class engine_class)
{
switch (engine_class) {
case INTEL_ENGINE_CLASS_RENDER:
case INTEL_ENGINE_CLASS_COPY:
case INTEL_ENGINE_CLASS_VIDEO:
return &engines[engine_class];
default:
UNREACHABLE("unknown ring");
}
}
static void
get_context_init(const struct intel_device_info *devinfo,
const struct intel_context_parameters *params,
enum intel_engine_class engine_class,
uint32_t *data,
uint32_t *size)
{
static const intel_context_init_t gfx8_contexts[] = {
[INTEL_ENGINE_CLASS_RENDER] = gfx8_render_context_init,
[INTEL_ENGINE_CLASS_COPY] = gfx8_blitter_context_init,
[INTEL_ENGINE_CLASS_VIDEO] = gfx8_video_context_init,
};
static const intel_context_init_t gfx10_contexts[] = {
[INTEL_ENGINE_CLASS_RENDER] = gfx10_render_context_init,
[INTEL_ENGINE_CLASS_COPY] = gfx10_blitter_context_init,
[INTEL_ENGINE_CLASS_VIDEO] = gfx10_video_context_init,
};
assert(devinfo->ver >= 8);
if (devinfo->ver <= 10)
gfx8_contexts[engine_class](params, data, size);
else
gfx10_contexts[engine_class](params, data, size);
}
static uint64_t
alloc_ggtt_address(struct aub_file *aub, uint64_t size)
{
uint32_t ggtt_ptes = DIV_ROUND_UP(size, 4096);
uint64_t addr = aub->ggtt_addrs_allocator << 12;
aub->ggtt_addrs_allocator += ggtt_ptes;
aub_map_ggtt(aub, addr, size);
return addr;
}
static void
write_hwsp(struct aub_file *aub,
enum intel_engine_class engine_class)
{
uint32_t reg = 0;
switch (engine_class) {
case INTEL_ENGINE_CLASS_RENDER: reg = RCSUNIT (HWS_PGA); break;
case INTEL_ENGINE_CLASS_COPY: reg = BCSUNIT0(HWS_PGA); break;
case INTEL_ENGINE_CLASS_VIDEO: reg = VCSUNIT0(HWS_PGA); break;
default:
UNREACHABLE("unknown ring");
}
register_write_out(aub, reg, aub->engine_setup[engine_class].hwsp_addr);
}
static uint32_t
write_engine_execlist_setup(struct aub_file *aub,
uint32_t ctx_id,
struct aub_hw_context *hw_ctx,
enum intel_engine_class engine_class)
{
const struct engine *cs = engine_from_engine_class(engine_class);
uint32_t context_size;
get_context_init(&aub->devinfo, NULL, engine_class, NULL, &context_size);
/* GGTT PT */
uint32_t total_size = RING_SIZE + PPHWSP_SIZE + context_size;
char name[80];
uint64_t ggtt_addr = alloc_ggtt_address(aub, total_size);
snprintf(name, sizeof(name), "%s (ctx id: %d) GGTT PT", cs->name, ctx_id);
/* RING */
hw_ctx->ring_addr = ggtt_addr;
snprintf(name, sizeof(name), "%s RING", cs->name);
mem_trace_memory_write_header_out(aub, ggtt_addr, RING_SIZE,
AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT,
name);
for (uint32_t i = 0; i < RING_SIZE; i += sizeof(uint32_t))
dword_out(aub, 0);
ggtt_addr += RING_SIZE;
/* PPHWSP */
hw_ctx->pphwsp_addr = ggtt_addr;
snprintf(name, sizeof(name), "%s PPHWSP", cs->name);
mem_trace_memory_write_header_out(aub, ggtt_addr,
PPHWSP_SIZE + context_size,
AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT,
name);
for (uint32_t i = 0; i < PPHWSP_SIZE; i += sizeof(uint32_t))
dword_out(aub, 0);
/* CONTEXT */
struct intel_context_parameters params = {
.ring_addr = hw_ctx->ring_addr,
.ring_size = RING_SIZE,
.pml4_addr = aub->pml4.phys_addr,
};
uint32_t *context_data = calloc(1, context_size);
get_context_init(&aub->devinfo, &params, engine_class, context_data, &context_size);
data_out(aub, context_data, context_size);
free(context_data);
hw_ctx->initialized = true;
return total_size;
}
static void
write_execlists_default_setup(struct aub_file *aub)
{
register_write_out(aub, RCSUNIT(GFX_MODE), 0x80008000 /* execlist enable */);
register_write_out(aub, VCSUNIT0(GFX_MODE), 0x80008000 /* execlist enable */);
register_write_out(aub, BCSUNIT0(GFX_MODE), 0x80008000 /* execlist enable */);
}
static void write_legacy_default_setup(struct aub_file *aub)
{
uint32_t entry = 0x200003;
/* Set up the GTT. The max we can handle is 64M */
dword_out(aub, CMD_AUB_TRACE_HEADER_BLOCK |
((aub->addr_bits > 32 ? 6 : 5) - 2));
dword_out(aub, AUB_TRACE_MEMTYPE_GTT_ENTRY |
AUB_TRACE_TYPE_NOTYPE | AUB_TRACE_OP_DATA_WRITE);
dword_out(aub, 0); /* subtype */
dword_out(aub, 0); /* offset */
dword_out(aub, aub_gtt_size(aub)); /* size */
if (aub->addr_bits > 32)
dword_out(aub, 0);
for (uint32_t i = 0; i < NUM_PT_ENTRIES; i++) {
dword_out(aub, entry + 0x1000 * i);
if (aub->addr_bits > 32)
dword_out(aub, 0);
}
}
/**
* Sets up a default GGTT/PPGTT address space and execlists context (when
* supported).
*/
void
aub_write_default_setup(struct aub_file *aub)
{
if (aub_use_execlists(aub))
write_execlists_default_setup(aub);
else
write_legacy_default_setup(aub);
aub->has_default_setup = true;
}
static struct aub_context *
aub_context_new(struct aub_file *aub, uint32_t new_id)
{
assert(aub->num_contexts < MAX_CONTEXT_COUNT);
struct aub_context *ctx = &aub->contexts[aub->num_contexts++];
memset(ctx, 0, sizeof(*ctx));
ctx->id = new_id;
return ctx;
}
uint32_t
aub_write_context_create(struct aub_file *aub, uint32_t *ctx_id)
{
uint32_t new_id = ctx_id ? *ctx_id : aub->next_context_handle;
aub_context_new(aub, new_id);
if (!ctx_id)
aub->next_context_handle++;
return new_id;
}
static struct aub_context *
aub_context_find(struct aub_file *aub, uint32_t id)
{
for (int i = 0; i < aub->num_contexts; i++) {
if (aub->contexts[i].id == id)
return &aub->contexts[i];
}
return NULL;
}
static struct aub_hw_context *
aub_write_ensure_context(struct aub_file *aub, uint32_t ctx_id,
enum intel_engine_class engine_class)
{
struct aub_context *ctx = aub_context_find(aub, ctx_id);
assert(ctx != NULL);
struct aub_hw_context *hw_ctx = &ctx->hw_contexts[engine_class];
if (!hw_ctx->initialized)
write_engine_execlist_setup(aub, ctx->id, hw_ctx, engine_class);
return hw_ctx;
}
static uint64_t
get_context_descriptor(struct aub_file *aub,
const struct engine *cs,
struct aub_hw_context *hw_ctx)
{
return cs->hw_class | hw_ctx->pphwsp_addr | CONTEXT_FLAGS;
}
/**
* Break up large objects into multiple writes. Otherwise a 128kb VBO
* would overflow the 16 bits of size field in the packet header and
* everything goes badly after that.
*/
void
aub_write_trace_block(struct aub_file *aub,
uint32_t type, void *virtual,
uint32_t size, uint64_t gtt_offset)
{
uint32_t block_size;
uint32_t subtype = 0;
static const char null_block[8 * 4096];
for (uint32_t offset = 0; offset < size; offset += block_size) {
block_size = min(8 * 4096, size - offset);
if (aub_use_execlists(aub)) {
block_size = min(4096, block_size);
mem_trace_memory_write_header_out(aub,
ppgtt_lookup(aub, gtt_offset + offset),
block_size,
AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_PHYSICAL,
"Trace Block");
} else {
dword_out(aub, CMD_AUB_TRACE_HEADER_BLOCK |
((aub->addr_bits > 32 ? 6 : 5) - 2));
dword_out(aub, AUB_TRACE_MEMTYPE_GTT |
type | AUB_TRACE_OP_DATA_WRITE);
dword_out(aub, subtype);
dword_out(aub, gtt_offset + offset);
dword_out(aub, align(block_size, 4));
if (aub->addr_bits > 32)
dword_out(aub, (gtt_offset + offset) >> 32);
}
if (virtual)
data_out(aub, ((char *) virtual) + offset, block_size);
else
data_out(aub, null_block, block_size);
/* Pad to a multiple of 4 bytes. */
data_out(aub, null_block, -block_size & 3);
}
}
static void
aub_dump_ring_buffer_execlist(struct aub_file *aub,
struct aub_hw_context *hw_ctx,
const struct engine *cs,
uint64_t batch_offset)
{
mem_trace_memory_write_header_out(aub, hw_ctx->ring_addr, 16,
AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT,
"RING MI_BATCH_BUFFER_START user");
dword_out(aub, AUB_MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965 | (3 - 2));
dword_out(aub, batch_offset & 0xFFFFFFFF);
dword_out(aub, batch_offset >> 32);
dword_out(aub, 0 /* MI_NOOP */);
mem_trace_memory_write_header_out(aub, hw_ctx->ring_addr + 8192 + 20, 4,
AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT,
"RING BUFFER HEAD");
dword_out(aub, 0); /* RING_BUFFER_HEAD */
mem_trace_memory_write_header_out(aub, hw_ctx->ring_addr + 8192 + 28, 4,
AUB_MEM_TRACE_MEMORY_ADDRESS_SPACE_GGTT,
"RING BUFFER TAIL");
dword_out(aub, 16); /* RING_BUFFER_TAIL */
}
static void
aub_dump_execlist(struct aub_file *aub, const struct engine *cs, uint64_t descriptor)
{
if (aub->devinfo.ver >= 11) {
register_write_out(aub, cs->elsq_reg, descriptor & 0xFFFFFFFF);
register_write_out(aub, cs->elsq_reg + sizeof(uint32_t), descriptor >> 32);
register_write_out(aub, cs->control_reg, 1);
} else {
register_write_out(aub, cs->elsp_reg, 0);
register_write_out(aub, cs->elsp_reg, 0);
register_write_out(aub, cs->elsp_reg, descriptor >> 32);
register_write_out(aub, cs->elsp_reg, descriptor & 0xFFFFFFFF);
}
dword_out(aub, CMD_MEM_TRACE_REGISTER_POLL | (5 + 1 - 1));
dword_out(aub, cs->status_reg);
dword_out(aub, AUB_MEM_TRACE_REGISTER_SIZE_DWORD |
AUB_MEM_TRACE_REGISTER_SPACE_MMIO);
if (aub->devinfo.ver >= 11) {
dword_out(aub, 0x00000001); /* mask lo */
dword_out(aub, 0x00000000); /* mask hi */
dword_out(aub, 0x00000001);
} else {
dword_out(aub, 0x00000010); /* mask lo */
dword_out(aub, 0x00000000); /* mask hi */
dword_out(aub, 0x00000000);
}
}
static void
aub_dump_ring_buffer_legacy(struct aub_file *aub,
uint64_t batch_offset,
uint64_t offset,
enum intel_engine_class engine_class)
{
uint32_t ringbuffer[4096];
unsigned aub_mi_bbs_len;
int ring_count = 0;
static const int engine_class_to_ring[] = {
[INTEL_ENGINE_CLASS_RENDER] = AUB_TRACE_TYPE_RING_PRB0,
[INTEL_ENGINE_CLASS_VIDEO] = AUB_TRACE_TYPE_RING_PRB1,
[INTEL_ENGINE_CLASS_COPY] = AUB_TRACE_TYPE_RING_PRB2,
};
int ring = engine_class_to_ring[engine_class];
/* Make a ring buffer to execute our batchbuffer. */
memset(ringbuffer, 0, sizeof(ringbuffer));
aub_mi_bbs_len = aub->addr_bits > 32 ? 3 : 2;
ringbuffer[ring_count] = AUB_MI_BATCH_BUFFER_START | (aub_mi_bbs_len - 2);
aub_write_reloc(&aub->devinfo, &ringbuffer[ring_count + 1], batch_offset);
ring_count += aub_mi_bbs_len;
/* Write out the ring. This appears to trigger execution of
* the ring in the simulator.
*/
dword_out(aub, CMD_AUB_TRACE_HEADER_BLOCK |
((aub->addr_bits > 32 ? 6 : 5) - 2));
dword_out(aub, AUB_TRACE_MEMTYPE_GTT | ring | AUB_TRACE_OP_COMMAND_WRITE);
dword_out(aub, 0); /* general/surface subtype */
dword_out(aub, offset);
dword_out(aub, ring_count * 4);
if (aub->addr_bits > 32)
dword_out(aub, offset >> 32);
data_out(aub, ringbuffer, ring_count * 4);
}
static void
aub_write_ensure_hwsp(struct aub_file *aub,
enum intel_engine_class engine_class)
{
uint64_t *hwsp_addr = &aub->engine_setup[engine_class].hwsp_addr;
if (*hwsp_addr != 0)
return;
*hwsp_addr = alloc_ggtt_address(aub, 4096);
write_hwsp(aub, engine_class);
}
void
aub_write_exec(struct aub_file *aub, uint32_t ctx_id, uint64_t batch_addr,
uint64_t offset, enum intel_engine_class engine_class)
{
const struct engine *cs = engine_from_engine_class(engine_class);
if (aub_use_execlists(aub)) {
struct aub_hw_context *hw_ctx =
aub_write_ensure_context(aub, ctx_id, engine_class);
uint64_t descriptor = get_context_descriptor(aub, cs, hw_ctx);
aub_write_ensure_hwsp(aub, engine_class);
aub_dump_ring_buffer_execlist(aub, hw_ctx, cs, batch_addr);
aub_dump_execlist(aub, cs, descriptor);
} else {
/* Dump ring buffer */
aub_dump_ring_buffer_legacy(aub, batch_addr, offset, engine_class);
}
fflush(aub->file);
}
void
aub_write_context_execlists(struct aub_file *aub, uint64_t context_addr,
enum intel_engine_class engine_class)
{
const struct engine *cs = engine_from_engine_class(engine_class);
uint64_t descriptor = ((uint64_t)1 << 62 | context_addr | CONTEXT_FLAGS);
aub_dump_execlist(aub, cs, descriptor);
}