mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-21 18:00:13 +01:00
Reviewed-by: Rohan Garg <rohan.garg@intel.com> Reviewed-by: Ian Romanick <ian.d.romanick@intel.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/34506>
3019 lines
110 KiB
C
3019 lines
110 KiB
C
/*
|
|
* Copyright © 2015-2019 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
/** @file
|
|
*
|
|
* This file implements a pass that validates shader assembly.
|
|
*
|
|
* The restrictions implemented herein are intended to verify that instructions
|
|
* in shader assembly do not violate restrictions documented in the graphics
|
|
* programming reference manuals.
|
|
*
|
|
* The restrictions are difficult for humans to quickly verify due to their
|
|
* complexity and abundance.
|
|
*
|
|
* It is critical that this code is thoroughly unit tested because false
|
|
* results will lead developers astray, which is worse than having no validator
|
|
* at all. Functional changes to this file without corresponding unit tests (in
|
|
* test_eu_validate.cpp) will be rejected.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include "brw_eu.h"
|
|
#include "brw_disasm_info.h"
|
|
|
|
enum brw_hw_instr_format {
|
|
FORMAT_BASIC,
|
|
FORMAT_BASIC_THREE_SRC,
|
|
FORMAT_DPAS_THREE_SRC,
|
|
FORMAT_SEND,
|
|
FORMAT_BRANCH,
|
|
FORMAT_ILLEGAL,
|
|
FORMAT_NOP,
|
|
};
|
|
|
|
typedef struct brw_hw_decoded_inst {
|
|
const brw_eu_inst *raw;
|
|
|
|
enum brw_hw_instr_format format;
|
|
|
|
enum opcode opcode;
|
|
|
|
unsigned exec_size;
|
|
unsigned access_mode;
|
|
|
|
enum brw_conditional_mod cond_modifier;
|
|
enum brw_predicate pred_control;
|
|
bool saturate;
|
|
|
|
bool has_dst;
|
|
struct {
|
|
enum brw_reg_file file;
|
|
enum brw_reg_type type;
|
|
unsigned address_mode;
|
|
|
|
/* These are already physical register numbers. */
|
|
unsigned nr;
|
|
unsigned subnr;
|
|
|
|
unsigned hstride;
|
|
} dst;
|
|
|
|
unsigned num_sources;
|
|
struct {
|
|
enum brw_reg_file file;
|
|
enum brw_reg_type type;
|
|
unsigned address_mode;
|
|
bool negate;
|
|
bool abs;
|
|
|
|
/* These are already physical register numbers. */
|
|
unsigned nr;
|
|
unsigned subnr;
|
|
|
|
unsigned vstride;
|
|
unsigned width;
|
|
unsigned hstride;
|
|
} src[3];
|
|
} brw_hw_decoded_inst;
|
|
|
|
/* We're going to do lots of string concatenation, so this should help. */
|
|
struct string {
|
|
char *str;
|
|
size_t len;
|
|
};
|
|
|
|
static void
|
|
cat(struct string *dest, const struct string src)
|
|
{
|
|
dest->str = realloc(dest->str, dest->len + src.len + 1);
|
|
memcpy(dest->str + dest->len, src.str, src.len);
|
|
dest->str[dest->len + src.len] = '\0';
|
|
dest->len = dest->len + src.len;
|
|
}
|
|
#define CAT(dest, src) cat(&dest, (struct string){src, strlen(src)})
|
|
|
|
static bool
|
|
contains(const struct string haystack, const struct string needle)
|
|
{
|
|
return haystack.str && memmem(haystack.str, haystack.len,
|
|
needle.str, needle.len) != NULL;
|
|
}
|
|
#define CONTAINS(haystack, needle) \
|
|
contains(haystack, (struct string){needle, strlen(needle)})
|
|
|
|
#define error(str) "\tERROR: " str "\n"
|
|
#define ERROR_INDENT "\t "
|
|
|
|
#define ERROR(msg) ERROR_IF(true, msg)
|
|
#define ERROR_IF(cond, msg) \
|
|
do { \
|
|
if ((cond) && !CONTAINS(error_msg, error(msg))) { \
|
|
CAT(error_msg, error(msg)); \
|
|
} \
|
|
} while(0)
|
|
|
|
#define RETURN_ERROR(msg) RETURN_ERROR_IF(true, msg)
|
|
#define RETURN_ERROR_IF(cond, msg) \
|
|
do { \
|
|
if ((cond) && !CONTAINS(error_msg, error(msg))) { \
|
|
CAT(error_msg, error(msg)); \
|
|
return error_msg; \
|
|
} \
|
|
} while(0)
|
|
|
|
#define STRIDE(stride) (stride != 0 ? 1 << ((stride) - 1) : 0)
|
|
#define WIDTH(width) (1 << (width))
|
|
|
|
static bool
|
|
inst_is_send(const brw_hw_decoded_inst *inst)
|
|
{
|
|
switch (inst->opcode) {
|
|
case BRW_OPCODE_SEND:
|
|
case BRW_OPCODE_SENDC:
|
|
case BRW_OPCODE_SENDS:
|
|
case BRW_OPCODE_SENDSC:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool
|
|
inst_is_split_send(const struct brw_isa_info *isa, const brw_hw_decoded_inst *inst)
|
|
{
|
|
const struct intel_device_info *devinfo = isa->devinfo;
|
|
|
|
if (devinfo->ver >= 12) {
|
|
return inst_is_send(inst);
|
|
} else {
|
|
switch (inst->opcode) {
|
|
case BRW_OPCODE_SENDS:
|
|
case BRW_OPCODE_SENDSC:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
static unsigned
|
|
signed_type(unsigned type)
|
|
{
|
|
return brw_type_is_uint(type) ? (type | BRW_TYPE_BASE_SINT) : type;
|
|
}
|
|
|
|
static bool
|
|
inst_is_raw_move(const brw_hw_decoded_inst *inst)
|
|
{
|
|
unsigned dst_type = signed_type(inst->dst.type);
|
|
unsigned src_type = signed_type(inst->src[0].type);
|
|
|
|
if (inst->src[0].file == IMM) {
|
|
/* FIXME: not strictly true */
|
|
if (brw_type_is_vector_imm(inst->src[0].type))
|
|
return false;
|
|
} else if (inst->src[0].negate || inst->src[0].abs) {
|
|
return false;
|
|
}
|
|
|
|
return inst->opcode == BRW_OPCODE_MOV &&
|
|
!inst->saturate &&
|
|
dst_type == src_type;
|
|
}
|
|
|
|
static bool
|
|
dst_is_null(const brw_hw_decoded_inst *inst)
|
|
{
|
|
return inst->dst.file == ARF && inst->dst.nr == BRW_ARF_NULL;
|
|
}
|
|
|
|
static bool
|
|
src0_is_null(const brw_hw_decoded_inst *inst)
|
|
{
|
|
return inst->src[0].address_mode == BRW_ADDRESS_DIRECT &&
|
|
inst->src[0].file == ARF &&
|
|
inst->src[0].nr == BRW_ARF_NULL;
|
|
}
|
|
|
|
static bool
|
|
src1_is_null(const brw_hw_decoded_inst *inst)
|
|
{
|
|
assert(inst->src[1].address_mode == BRW_ADDRESS_DIRECT);
|
|
return inst->src[1].file == ARF &&
|
|
inst->src[1].nr == BRW_ARF_NULL;
|
|
}
|
|
|
|
static bool
|
|
src0_is_acc(const brw_hw_decoded_inst *inst)
|
|
{
|
|
return inst->src[0].address_mode == BRW_ADDRESS_DIRECT &&
|
|
inst->src[0].file == ARF &&
|
|
(inst->src[0].nr & 0xF0) == BRW_ARF_ACCUMULATOR;
|
|
}
|
|
|
|
static bool
|
|
src1_is_acc(const brw_hw_decoded_inst *inst)
|
|
{
|
|
assert(inst->src[1].address_mode == BRW_ADDRESS_DIRECT);
|
|
return inst->src[1].file == ARF &&
|
|
(inst->src[1].nr & 0xF0) == BRW_ARF_ACCUMULATOR;
|
|
}
|
|
|
|
static bool
|
|
src_has_scalar_region(const brw_hw_decoded_inst *inst, int src)
|
|
{
|
|
return inst->src[src].vstride == 0 &&
|
|
inst->src[src].width == 1 &&
|
|
inst->src[src].hstride == 0;
|
|
}
|
|
|
|
static struct string
|
|
invalid_values(const struct brw_isa_info *isa, const brw_hw_decoded_inst *inst)
|
|
{
|
|
const struct intel_device_info *devinfo = isa->devinfo;
|
|
|
|
struct string error_msg = { .str = NULL, .len = 0 };
|
|
|
|
if (devinfo->ver >= 12) {
|
|
unsigned qtr_ctrl = brw_eu_inst_qtr_control(devinfo, inst->raw);
|
|
unsigned nib_ctrl =
|
|
devinfo->ver == 12 ? brw_eu_inst_nib_control(devinfo, inst->raw) : 0;
|
|
|
|
unsigned chan_off = (qtr_ctrl * 2 + nib_ctrl) << 2;
|
|
ERROR_IF(chan_off % inst->exec_size != 0,
|
|
"The execution size must be a factor of the chosen offset");
|
|
}
|
|
|
|
return error_msg;
|
|
}
|
|
|
|
static struct string
|
|
sources_not_null(const struct brw_isa_info *isa,
|
|
const brw_hw_decoded_inst *inst)
|
|
{
|
|
struct string error_msg = { .str = NULL, .len = 0 };
|
|
|
|
/* Nothing to test. 3-src instructions can only have GRF sources, and
|
|
* there's no bit to control the file.
|
|
*/
|
|
if (inst->num_sources == 3)
|
|
return (struct string){};
|
|
|
|
/* Nothing to test. Split sends can only encode a file in sources that are
|
|
* allowed to be NULL.
|
|
*/
|
|
if (inst_is_split_send(isa, inst))
|
|
return (struct string){};
|
|
|
|
if (inst->num_sources >= 1 && inst->opcode != BRW_OPCODE_SYNC)
|
|
ERROR_IF(src0_is_null(inst), "src0 is null");
|
|
|
|
if (inst->num_sources == 2)
|
|
ERROR_IF(src1_is_null(inst), "src1 is null");
|
|
|
|
return error_msg;
|
|
}
|
|
|
|
static bool
|
|
inst_uses_src_acc(const struct brw_isa_info *isa,
|
|
const brw_hw_decoded_inst *inst)
|
|
{
|
|
/* Check instructions that use implicit accumulator sources */
|
|
switch (inst->opcode) {
|
|
case BRW_OPCODE_MAC:
|
|
case BRW_OPCODE_MACH:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* FIXME: support 3-src instructions */
|
|
assert(inst->num_sources < 3);
|
|
|
|
return src0_is_acc(inst) || (inst->num_sources > 1 && src1_is_acc(inst));
|
|
}
|
|
|
|
static struct string
|
|
send_restrictions(const struct brw_isa_info *isa,
|
|
const brw_hw_decoded_inst *inst)
|
|
{
|
|
const struct intel_device_info *devinfo = isa->devinfo;
|
|
|
|
struct string error_msg = { .str = NULL, .len = 0 };
|
|
|
|
if (inst_is_split_send(isa, inst)) {
|
|
ERROR_IF(inst->src[1].file == ARF &&
|
|
inst->src[1].nr != BRW_ARF_NULL,
|
|
"src1 of split send must be a GRF or NULL");
|
|
|
|
if (devinfo->ver < 30) {
|
|
ERROR_IF(brw_eu_inst_eot(devinfo, inst->raw) &&
|
|
inst->src[0].nr < 112,
|
|
"send with EOT must use g112-g127");
|
|
ERROR_IF(brw_eu_inst_eot(devinfo, inst->raw) &&
|
|
inst->src[1].file == FIXED_GRF &&
|
|
inst->src[1].nr < 112,
|
|
"send with EOT must use g112-g127");
|
|
}
|
|
|
|
if (inst->src[0].file == FIXED_GRF && inst->src[1].file == FIXED_GRF) {
|
|
/* Assume minimums if we don't know */
|
|
unsigned mlen = 1;
|
|
if (!brw_eu_inst_send_sel_reg32_desc(devinfo, inst->raw)) {
|
|
const uint32_t desc = brw_eu_inst_send_desc(devinfo, inst->raw);
|
|
mlen = brw_message_desc_mlen(devinfo, desc) / reg_unit(devinfo);
|
|
}
|
|
|
|
unsigned ex_mlen = 1;
|
|
if (!brw_eu_inst_send_sel_reg32_ex_desc(devinfo, inst->raw)) {
|
|
const uint32_t ex_desc = brw_eu_inst_sends_ex_desc(devinfo, inst->raw, false);
|
|
ex_mlen = brw_message_ex_desc_ex_mlen(devinfo, ex_desc) /
|
|
reg_unit(devinfo);
|
|
}
|
|
const unsigned src0_reg_nr = inst->src[0].nr;
|
|
const unsigned src1_reg_nr = inst->src[1].nr;
|
|
ERROR_IF((src0_reg_nr <= src1_reg_nr &&
|
|
src1_reg_nr < src0_reg_nr + mlen) ||
|
|
(src1_reg_nr <= src0_reg_nr &&
|
|
src0_reg_nr < src1_reg_nr + ex_mlen),
|
|
"split send payloads must not overlap");
|
|
}
|
|
} else if (inst_is_send(inst)) {
|
|
ERROR_IF(inst->src[0].address_mode != BRW_ADDRESS_DIRECT,
|
|
"send must use direct addressing");
|
|
|
|
ERROR_IF(inst->src[0].file != FIXED_GRF,
|
|
"send from non-GRF");
|
|
ERROR_IF(brw_eu_inst_eot(devinfo, inst->raw) &&
|
|
inst->src[0].nr < 112,
|
|
"send with EOT must use g112-g127");
|
|
|
|
ERROR_IF(!dst_is_null(inst) &&
|
|
(inst->dst.nr + brw_eu_inst_rlen(devinfo, inst->raw) > 127) &&
|
|
(inst->src[0].nr + brw_eu_inst_mlen(devinfo, inst->raw) > inst->dst.nr),
|
|
"r127 must not be used for return address when there is "
|
|
"a src and dest overlap");
|
|
}
|
|
|
|
return error_msg;
|
|
}
|
|
|
|
static bool
|
|
is_unsupported_inst(const struct brw_isa_info *isa,
|
|
const brw_eu_inst *inst)
|
|
{
|
|
return brw_eu_inst_opcode(isa, inst) == BRW_OPCODE_ILLEGAL;
|
|
}
|
|
|
|
/**
|
|
* Returns whether a combination of two types would qualify as mixed float
|
|
* operation mode
|
|
*/
|
|
static inline bool
|
|
types_are_mixed_float(enum brw_reg_type t0, enum brw_reg_type t1)
|
|
{
|
|
return (t0 == BRW_TYPE_F && t1 == BRW_TYPE_HF) ||
|
|
(t1 == BRW_TYPE_F && t0 == BRW_TYPE_HF);
|
|
}
|
|
|
|
static enum brw_reg_type
|
|
execution_type_for_type(enum brw_reg_type type)
|
|
{
|
|
switch (type) {
|
|
case BRW_TYPE_DF:
|
|
case BRW_TYPE_F:
|
|
case BRW_TYPE_HF:
|
|
return type;
|
|
|
|
case BRW_TYPE_VF:
|
|
case BRW_TYPE_BF:
|
|
return BRW_TYPE_F;
|
|
|
|
case BRW_TYPE_Q:
|
|
case BRW_TYPE_UQ:
|
|
return BRW_TYPE_Q;
|
|
|
|
case BRW_TYPE_D:
|
|
case BRW_TYPE_UD:
|
|
return BRW_TYPE_D;
|
|
|
|
case BRW_TYPE_W:
|
|
case BRW_TYPE_UW:
|
|
case BRW_TYPE_B:
|
|
case BRW_TYPE_UB:
|
|
case BRW_TYPE_V:
|
|
case BRW_TYPE_UV:
|
|
return BRW_TYPE_W;
|
|
|
|
default:
|
|
return BRW_TYPE_INVALID;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns the execution type of an instruction \p inst
|
|
*/
|
|
static enum brw_reg_type
|
|
execution_type(const brw_hw_decoded_inst *inst)
|
|
{
|
|
enum brw_reg_type src0_exec_type, src1_exec_type;
|
|
|
|
/* Execution data type is independent of destination data type, except in
|
|
* mixed F/HF instructions.
|
|
*/
|
|
enum brw_reg_type dst_exec_type = inst->dst.type;
|
|
|
|
src0_exec_type = execution_type_for_type(inst->src[0].type);
|
|
if (inst->num_sources == 1) {
|
|
if (src0_exec_type == BRW_TYPE_HF)
|
|
return dst_exec_type;
|
|
return src0_exec_type;
|
|
}
|
|
|
|
src1_exec_type = execution_type_for_type(inst->src[1].type);
|
|
if (types_are_mixed_float(src0_exec_type, src1_exec_type) ||
|
|
types_are_mixed_float(src0_exec_type, dst_exec_type) ||
|
|
types_are_mixed_float(src1_exec_type, dst_exec_type)) {
|
|
return BRW_TYPE_F;
|
|
}
|
|
|
|
if (src0_exec_type == src1_exec_type)
|
|
return src0_exec_type;
|
|
|
|
if (src0_exec_type == BRW_TYPE_Q ||
|
|
src1_exec_type == BRW_TYPE_Q)
|
|
return BRW_TYPE_Q;
|
|
|
|
if (src0_exec_type == BRW_TYPE_D ||
|
|
src1_exec_type == BRW_TYPE_D)
|
|
return BRW_TYPE_D;
|
|
|
|
if (src0_exec_type == BRW_TYPE_W ||
|
|
src1_exec_type == BRW_TYPE_W)
|
|
return BRW_TYPE_W;
|
|
|
|
if (src0_exec_type == BRW_TYPE_DF ||
|
|
src1_exec_type == BRW_TYPE_DF)
|
|
return BRW_TYPE_DF;
|
|
|
|
unreachable("not reached");
|
|
}
|
|
|
|
/**
|
|
* Returns whether a region is packed
|
|
*
|
|
* A region is packed if its elements are adjacent in memory, with no
|
|
* intervening space, no overlap, and no replicated values.
|
|
*/
|
|
static bool
|
|
is_packed(unsigned vstride, unsigned width, unsigned hstride)
|
|
{
|
|
if (vstride == width) {
|
|
if (vstride == 1) {
|
|
return hstride == 0;
|
|
} else {
|
|
return hstride == 1;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Returns whether a region is linear
|
|
*
|
|
* A region is linear if its elements do not overlap and are not replicated.
|
|
* Unlike a packed region, intervening space (i.e. strided values) is allowed.
|
|
*/
|
|
static bool
|
|
is_linear(unsigned vstride, unsigned width, unsigned hstride)
|
|
{
|
|
return vstride == width * hstride ||
|
|
(hstride == 0 && width == 1);
|
|
}
|
|
|
|
/**
|
|
* Returns whether an instruction is an explicit or implicit conversion
|
|
* to/from half-float.
|
|
*/
|
|
static bool
|
|
is_half_float_conversion(const brw_hw_decoded_inst *inst)
|
|
{
|
|
enum brw_reg_type dst_type = inst->dst.type;
|
|
|
|
enum brw_reg_type src0_type = inst->src[0].type;
|
|
|
|
if (dst_type != src0_type &&
|
|
(dst_type == BRW_TYPE_HF || src0_type == BRW_TYPE_HF)) {
|
|
return true;
|
|
} else if (inst->num_sources > 1) {
|
|
enum brw_reg_type src1_type = inst->src[1].type;
|
|
return dst_type != src1_type &&
|
|
(dst_type == BRW_TYPE_HF ||
|
|
src1_type == BRW_TYPE_HF);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Returns whether an instruction is using mixed float operation mode
|
|
*/
|
|
static bool
|
|
is_mixed_float(const brw_hw_decoded_inst *inst)
|
|
{
|
|
if (inst_is_send(inst))
|
|
return false;
|
|
|
|
if (!inst->has_dst)
|
|
return false;
|
|
|
|
/* FIXME: support 3-src instructions */
|
|
assert(inst->num_sources < 3);
|
|
|
|
enum brw_reg_type dst_type = inst->dst.type;
|
|
enum brw_reg_type src0_type = inst->src[0].type;
|
|
|
|
if (inst->num_sources == 1)
|
|
return types_are_mixed_float(src0_type, dst_type);
|
|
|
|
enum brw_reg_type src1_type = inst->src[1].type;
|
|
|
|
return types_are_mixed_float(src0_type, src1_type) ||
|
|
types_are_mixed_float(src0_type, dst_type) ||
|
|
types_are_mixed_float(src1_type, dst_type);
|
|
}
|
|
|
|
static bool
|
|
is_pure_bfloat(const brw_hw_decoded_inst *inst)
|
|
{
|
|
if (inst_is_send(inst))
|
|
return false;
|
|
|
|
if (inst->num_sources == 0 && !inst->has_dst)
|
|
return false;
|
|
|
|
for (int i = 0; i < inst->num_sources; i++) {
|
|
if (!brw_type_is_bfloat(inst->src[i].type))
|
|
return false;
|
|
}
|
|
|
|
if (inst->has_dst && !brw_type_is_bfloat(inst->dst.type))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
is_mixed_bfloat(const brw_hw_decoded_inst *inst)
|
|
{
|
|
if (inst_is_send(inst))
|
|
return false;
|
|
|
|
const int operands = inst->num_sources + inst->has_dst;
|
|
|
|
int bfloat = 0;
|
|
for (int i = 0; i < inst->num_sources; i++)
|
|
bfloat += brw_type_is_bfloat(inst->src[i].type);
|
|
if (inst->has_dst)
|
|
bfloat += brw_type_is_bfloat(inst->dst.type);
|
|
|
|
return bfloat > 0 && bfloat != operands;
|
|
}
|
|
|
|
/**
|
|
* Returns whether an instruction is an explicit or implicit conversion
|
|
* to/from byte.
|
|
*/
|
|
static bool
|
|
is_byte_conversion(const struct brw_isa_info *isa,
|
|
const brw_hw_decoded_inst *inst)
|
|
{
|
|
enum brw_reg_type dst_type = inst->dst.type;
|
|
|
|
enum brw_reg_type src0_type = inst->src[0].type;
|
|
|
|
if (dst_type != src0_type &&
|
|
(brw_type_size_bytes(dst_type) == 1 ||
|
|
brw_type_size_bytes(src0_type) == 1)) {
|
|
return true;
|
|
} else if (inst->num_sources > 1) {
|
|
enum brw_reg_type src1_type = inst->src[1].type;
|
|
return dst_type != src1_type &&
|
|
(brw_type_size_bytes(dst_type) == 1 ||
|
|
brw_type_size_bytes(src1_type) == 1);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Checks restrictions listed in "General Restrictions Based on Operand Types"
|
|
* in the "Register Region Restrictions" section.
|
|
*/
|
|
static struct string
|
|
general_restrictions_based_on_operand_types(const struct brw_isa_info *isa,
|
|
const brw_hw_decoded_inst *inst)
|
|
{
|
|
const struct intel_device_info *devinfo = isa->devinfo;
|
|
|
|
struct string error_msg = { .str = NULL, .len = 0 };
|
|
|
|
if (inst_is_send(inst))
|
|
return error_msg;
|
|
|
|
if (devinfo->ver >= 11) {
|
|
/* A register type of B or UB for DPAS actually means 4 bytes packed into
|
|
* a D or UD, so it is allowed.
|
|
*/
|
|
if (inst->num_sources == 3 && inst->opcode != BRW_OPCODE_DPAS) {
|
|
ERROR_IF(brw_type_size_bytes(inst->src[1].type) == 1 ||
|
|
brw_type_size_bytes(inst->src[2].type) == 1,
|
|
"Byte data type is not supported for src1/2 register regioning. This includes "
|
|
"byte broadcast as well.");
|
|
}
|
|
if (inst->num_sources == 2) {
|
|
ERROR_IF(brw_type_size_bytes(inst->src[1].type) == 1,
|
|
"Byte data type is not supported for src1 register regioning. This includes "
|
|
"byte broadcast as well.");
|
|
}
|
|
}
|
|
|
|
enum brw_reg_type dst_type = inst->dst.type;
|
|
|
|
ERROR_IF(brw_type_is_bfloat(dst_type) &&
|
|
!devinfo->has_bfloat16,
|
|
"Bfloat destination, but platform does not support it");
|
|
|
|
ERROR_IF(dst_type == BRW_TYPE_DF &&
|
|
!devinfo->has_64bit_float,
|
|
"64-bit float destination, but platform does not support it");
|
|
|
|
ERROR_IF((dst_type == BRW_TYPE_Q ||
|
|
dst_type == BRW_TYPE_UQ) &&
|
|
!devinfo->has_64bit_int,
|
|
"64-bit int destination, but platform does not support it");
|
|
|
|
for (unsigned s = 0; s < inst->num_sources; s++) {
|
|
enum brw_reg_type src_type = inst->src[s].type;
|
|
|
|
ERROR_IF(brw_type_is_bfloat(src_type) &&
|
|
!devinfo->has_bfloat16,
|
|
"Bfloat source, but platform does not support it");
|
|
|
|
ERROR_IF(src_type == BRW_TYPE_DF &&
|
|
!devinfo->has_64bit_float,
|
|
"64-bit float source, but platform does not support it");
|
|
|
|
ERROR_IF((src_type == BRW_TYPE_Q ||
|
|
src_type == BRW_TYPE_UQ) &&
|
|
!devinfo->has_64bit_int,
|
|
"64-bit int source, but platform does not support it");
|
|
if (inst->access_mode == BRW_ALIGN_16 &&
|
|
inst->num_sources == 3 && brw_type_size_bytes(src_type) > 4) {
|
|
/* From the Broadwell PRM, Volume 7 "3D Media GPGPU", page 944:
|
|
*
|
|
* "This is applicable to 32b datatypes and 16b datatype. 64b
|
|
* datatypes cannot use the replicate control."
|
|
*/
|
|
switch (s) {
|
|
case 0:
|
|
ERROR_IF(brw_eu_inst_3src_a16_src0_rep_ctrl(devinfo, inst->raw),
|
|
"RepCtrl must be zero for 64-bit source 0");
|
|
break;
|
|
case 1:
|
|
ERROR_IF(brw_eu_inst_3src_a16_src1_rep_ctrl(devinfo, inst->raw),
|
|
"RepCtrl must be zero for 64-bit source 1");
|
|
break;
|
|
case 2:
|
|
ERROR_IF(brw_eu_inst_3src_a16_src2_rep_ctrl(devinfo, inst->raw),
|
|
"RepCtrl must be zero for 64-bit source 2");
|
|
break;
|
|
default: unreachable("invalid src");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (inst->num_sources == 3)
|
|
return error_msg;
|
|
|
|
if (inst->exec_size == 1)
|
|
return error_msg;
|
|
|
|
if (!inst->has_dst)
|
|
return error_msg;
|
|
|
|
if (inst->opcode == BRW_OPCODE_MATH &&
|
|
intel_needs_workaround(devinfo, 22016140776)) {
|
|
/* Wa_22016140776:
|
|
*
|
|
* Scalar broadcast on HF math (packed or unpacked) must not be
|
|
* used. Compiler must use a mov instruction to expand the scalar
|
|
* value to a vector before using in a HF (packed or unpacked)
|
|
* math operation.
|
|
*/
|
|
ERROR_IF(inst->src[0].type == BRW_TYPE_HF &&
|
|
src_has_scalar_region(inst, 0),
|
|
"Scalar broadcast on HF math (packed or unpacked) must not "
|
|
"be used.");
|
|
|
|
if (inst->num_sources > 1) {
|
|
ERROR_IF(inst->src[1].type == BRW_TYPE_HF &&
|
|
src_has_scalar_region(inst, 1),
|
|
"Scalar broadcast on HF math (packed or unpacked) must not "
|
|
"be used.");
|
|
}
|
|
}
|
|
|
|
/* The PRMs say:
|
|
*
|
|
* Where n is the largest element size in bytes for any source or
|
|
* destination operand type, ExecSize * n must be <= 64.
|
|
*
|
|
* But we do not attempt to enforce it, because it is implied by other
|
|
* rules:
|
|
*
|
|
* - that the destination stride must match the execution data type
|
|
* - sources may not span more than two adjacent GRF registers
|
|
* - destination may not span more than two adjacent GRF registers
|
|
*
|
|
* In fact, checking it would weaken testing of the other rules.
|
|
*/
|
|
|
|
unsigned dst_stride = inst->dst.hstride;
|
|
bool dst_type_is_byte =
|
|
inst->dst.type == BRW_TYPE_B ||
|
|
inst->dst.type == BRW_TYPE_UB;
|
|
|
|
if (dst_type_is_byte) {
|
|
if (is_packed(inst->exec_size * dst_stride, inst->exec_size, dst_stride)) {
|
|
if (!inst_is_raw_move(inst))
|
|
ERROR("Only raw MOV supports a packed-byte destination");
|
|
return error_msg;
|
|
}
|
|
}
|
|
|
|
unsigned exec_type = execution_type(inst);
|
|
unsigned exec_type_size = brw_type_size_bytes(exec_type);
|
|
unsigned dst_type_size = brw_type_size_bytes(dst_type);
|
|
|
|
if (is_byte_conversion(isa, inst)) {
|
|
/* From the BDW+ PRM, Volume 2a, Command Reference, Instructions - MOV:
|
|
*
|
|
* "There is no direct conversion from B/UB to DF or DF to B/UB.
|
|
* There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB."
|
|
*
|
|
* Even if these restrictions are listed for the MOV instruction, we
|
|
* validate this more generally, since there is the possibility
|
|
* of implicit conversions from other instructions.
|
|
*/
|
|
enum brw_reg_type src0_type = inst->src[0].type;
|
|
enum brw_reg_type src1_type = inst->num_sources > 1 ?
|
|
inst->src[1].type : 0;
|
|
|
|
ERROR_IF(brw_type_size_bytes(dst_type) == 1 &&
|
|
(brw_type_size_bytes(src0_type) == 8 ||
|
|
(inst->num_sources > 1 && brw_type_size_bytes(src1_type) == 8)),
|
|
"There are no direct conversions between 64-bit types and B/UB");
|
|
|
|
ERROR_IF(brw_type_size_bytes(dst_type) == 8 &&
|
|
(brw_type_size_bytes(src0_type) == 1 ||
|
|
(inst->num_sources > 1 && brw_type_size_bytes(src1_type) == 1)),
|
|
"There are no direct conversions between 64-bit types and B/UB");
|
|
}
|
|
|
|
if (is_half_float_conversion(inst)) {
|
|
/**
|
|
* A helper to validate used in the validation of the following restriction
|
|
* from the BDW+ PRM, Volume 2a, Command Reference, Instructions - MOV:
|
|
*
|
|
* "There is no direct conversion from HF to DF or DF to HF.
|
|
* There is no direct conversion from HF to Q/UQ or Q/UQ to HF."
|
|
*
|
|
* Even if these restrictions are listed for the MOV instruction, we
|
|
* validate this more generally, since there is the possibility
|
|
* of implicit conversions from other instructions, such us implicit
|
|
* conversion from integer to HF with the ADD instruction in SKL+.
|
|
*/
|
|
enum brw_reg_type src0_type = inst->src[0].type;
|
|
enum brw_reg_type src1_type = inst->num_sources > 1 ?
|
|
inst->src[1].type : 0;
|
|
ERROR_IF(dst_type == BRW_TYPE_HF &&
|
|
(brw_type_size_bytes(src0_type) == 8 ||
|
|
(inst->num_sources > 1 && brw_type_size_bytes(src1_type) == 8)),
|
|
"There are no direct conversions between 64-bit types and HF");
|
|
|
|
ERROR_IF(brw_type_size_bytes(dst_type) == 8 &&
|
|
(src0_type == BRW_TYPE_HF ||
|
|
(inst->num_sources > 1 && src1_type == BRW_TYPE_HF)),
|
|
"There are no direct conversions between 64-bit types and HF");
|
|
|
|
/* From the BDW+ PRM:
|
|
*
|
|
* "Conversion between Integer and HF (Half Float) must be
|
|
* DWord-aligned and strided by a DWord on the destination."
|
|
*
|
|
* Also, the above restrictions seems to be expanded on CHV and SKL+ by:
|
|
*
|
|
* "There is a relaxed alignment rule for word destinations. When
|
|
* the destination type is word (UW, W, HF), destination data types
|
|
* can be aligned to either the lowest word or the second lowest
|
|
* word of the execution channel. This means the destination data
|
|
* words can be either all in the even word locations or all in the
|
|
* odd word locations."
|
|
*
|
|
* We do not implement the second rule as is though, since empirical
|
|
* testing shows inconsistencies:
|
|
* - It suggests that packed 16-bit is not allowed, which is not true.
|
|
* - It suggests that conversions from Q/DF to W (which need to be
|
|
* 64-bit aligned on the destination) are not possible, which is
|
|
* not true.
|
|
*
|
|
* So from this rule we only validate the implication that conversions
|
|
* from F to HF need to be DWord strided (except in Align1 mixed
|
|
* float mode where packed fp16 destination is allowed so long as the
|
|
* destination is oword-aligned).
|
|
*
|
|
* Finally, we only validate this for Align1 because Align16 always
|
|
* requires packed destinations, so these restrictions can't possibly
|
|
* apply to Align16 mode.
|
|
*/
|
|
if (inst->access_mode == BRW_ALIGN_1) {
|
|
if ((dst_type == BRW_TYPE_HF &&
|
|
(brw_type_is_int(src0_type) ||
|
|
(inst->num_sources > 1 && brw_type_is_int(src1_type)))) ||
|
|
(brw_type_is_int(dst_type) &&
|
|
(src0_type == BRW_TYPE_HF ||
|
|
(inst->num_sources > 1 && src1_type == BRW_TYPE_HF)))) {
|
|
ERROR_IF(dst_stride * dst_type_size != 4,
|
|
"Conversions between integer and half-float must be "
|
|
"strided by a DWord on the destination");
|
|
|
|
ERROR_IF(inst->dst.subnr % 4 != 0,
|
|
"Conversions between integer and half-float must be "
|
|
"aligned to a DWord on the destination");
|
|
} else if (dst_type == BRW_TYPE_HF) {
|
|
ERROR_IF(dst_stride != 2 &&
|
|
!(is_mixed_float(inst) &&
|
|
dst_stride == 1 && inst->dst.subnr % 16 == 0),
|
|
"Conversions to HF must have either all words in even "
|
|
"word locations or all words in odd word locations or "
|
|
"be mixed-float with Oword-aligned packed destination");
|
|
}
|
|
}
|
|
}
|
|
|
|
/* There are special regioning rules for mixed-float mode in CHV and SKL that
|
|
* override the general rule for the ratio of sizes of the destination type
|
|
* and the execution type. We will add validation for those in a later patch.
|
|
*/
|
|
bool validate_dst_size_and_exec_size_ratio = !is_mixed_float(inst) && !is_mixed_bfloat(inst);
|
|
|
|
if (validate_dst_size_and_exec_size_ratio &&
|
|
exec_type_size > dst_type_size) {
|
|
if (!(dst_type_is_byte && inst_is_raw_move(inst))) {
|
|
ERROR_IF(dst_stride * dst_type_size != exec_type_size,
|
|
"Destination stride must be equal to the ratio of the sizes "
|
|
"of the execution data type to the destination type");
|
|
}
|
|
|
|
unsigned subreg = inst->dst.subnr;
|
|
|
|
if (inst->access_mode == BRW_ALIGN_1 &&
|
|
inst->dst.address_mode == BRW_ADDRESS_DIRECT) {
|
|
/* The i965 PRM says:
|
|
*
|
|
* Implementation Restriction: The relaxed alignment rule for byte
|
|
* destination (#10.5) is not supported.
|
|
*/
|
|
if (dst_type_is_byte) {
|
|
ERROR_IF(subreg % exec_type_size != 0 &&
|
|
subreg % exec_type_size != 1,
|
|
"Destination subreg must be aligned to the size of the "
|
|
"execution data type (or to the next lowest byte for byte "
|
|
"destinations)");
|
|
} else {
|
|
ERROR_IF(subreg % exec_type_size != 0,
|
|
"Destination subreg must be aligned to the size of the "
|
|
"execution data type");
|
|
}
|
|
}
|
|
}
|
|
|
|
return error_msg;
|
|
}
|
|
|
|
/**
|
|
* Checks restrictions listed in "General Restrictions on Regioning Parameters"
|
|
* in the "Register Region Restrictions" section.
|
|
*/
|
|
static struct string
|
|
general_restrictions_on_region_parameters(const struct brw_isa_info *isa,
|
|
const brw_hw_decoded_inst *inst)
|
|
{
|
|
const struct intel_device_info *devinfo = isa->devinfo;
|
|
|
|
struct string error_msg = { .str = NULL, .len = 0 };
|
|
|
|
if (inst->num_sources == 3)
|
|
return (struct string){};
|
|
|
|
/* Split sends don't have the bits in the instruction to encode regions so
|
|
* there's nothing to check.
|
|
*/
|
|
if (inst_is_split_send(isa, inst))
|
|
return (struct string){};
|
|
|
|
if (inst->access_mode == BRW_ALIGN_16) {
|
|
if (inst->has_dst && !dst_is_null(inst))
|
|
ERROR_IF(inst->dst.hstride != 1,
|
|
"Destination Horizontal Stride must be 1");
|
|
|
|
if (inst->num_sources >= 1) {
|
|
ERROR_IF(inst->src[0].file != IMM &&
|
|
inst->src[0].vstride != 0 &&
|
|
inst->src[0].vstride != 2 &&
|
|
inst->src[0].vstride != 4,
|
|
"In Align16 mode, only VertStride of 0, 2, or 4 is allowed");
|
|
}
|
|
|
|
if (inst->num_sources == 2) {
|
|
ERROR_IF(inst->src[1].file != IMM &&
|
|
inst->src[1].vstride != 0 &&
|
|
inst->src[1].vstride != 2 &&
|
|
inst->src[1].vstride != 4,
|
|
"In Align16 mode, only VertStride of 0, 2, or 4 is allowed");
|
|
}
|
|
|
|
return error_msg;
|
|
}
|
|
|
|
for (unsigned i = 0; i < inst->num_sources; i++) {
|
|
if (inst->src[i].file == IMM)
|
|
continue;
|
|
|
|
enum brw_reg_type type = inst->src[i].type;
|
|
unsigned element_size = brw_type_size_bytes(type);
|
|
unsigned subreg = inst->src[i].subnr;
|
|
unsigned vstride = inst->src[i].vstride;
|
|
unsigned width = inst->src[i].width;
|
|
unsigned hstride = inst->src[i].hstride;
|
|
|
|
/* ExecSize must be greater than or equal to Width. */
|
|
ERROR_IF(inst->exec_size < width, "ExecSize must be greater than or equal "
|
|
"to Width");
|
|
|
|
/* If Width = 1, HorzStride must be 0 regardless of the values of
|
|
* ExecSize and VertStride.
|
|
*/
|
|
if (width == 1) {
|
|
ERROR_IF(hstride != 0,
|
|
"If Width = 1, HorzStride must be 0 regardless "
|
|
"of the values of ExecSize and VertStride");
|
|
}
|
|
|
|
if (vstride == STRIDE(BRW_VERTICAL_STRIDE_ONE_DIMENSIONAL))
|
|
continue;
|
|
|
|
/* If ExecSize = Width and HorzStride ≠ 0,
|
|
* VertStride must be set to Width * HorzStride.
|
|
*/
|
|
if (inst->exec_size == width && hstride != 0) {
|
|
ERROR_IF(vstride != width * hstride,
|
|
"If ExecSize = Width and HorzStride ≠ 0, "
|
|
"VertStride must be set to Width * HorzStride");
|
|
}
|
|
|
|
/* If ExecSize = Width = 1, both VertStride and HorzStride must be 0. */
|
|
if (inst->exec_size == 1 && width == 1) {
|
|
ERROR_IF(vstride != 0 || hstride != 0,
|
|
"If ExecSize = Width = 1, both VertStride "
|
|
"and HorzStride must be 0");
|
|
}
|
|
|
|
/* If VertStride = HorzStride = 0, Width must be 1 regardless of the
|
|
* value of ExecSize.
|
|
*/
|
|
if (vstride == 0 && hstride == 0) {
|
|
ERROR_IF(width != 1,
|
|
"If VertStride = HorzStride = 0, Width must be "
|
|
"1 regardless of the value of ExecSize");
|
|
}
|
|
|
|
/* VertStride must be used to cross GRF register boundaries. This rule
|
|
* implies that elements within a 'Width' cannot cross GRF boundaries.
|
|
*/
|
|
if (inst->src[i].file == FIXED_GRF) {
|
|
unsigned rowbase = subreg;
|
|
assert(util_is_power_of_two_nonzero(reg_unit(devinfo)));
|
|
unsigned grf_size_shift = ffs(REG_SIZE * reg_unit(devinfo)) - 1;
|
|
|
|
for (int y = 0; y < inst->exec_size / width; y++) {
|
|
bool spans_grfs = false;
|
|
unsigned offset = rowbase;
|
|
unsigned first_grf = offset >> grf_size_shift;
|
|
|
|
for (int x = 0; x < width; x++) {
|
|
const unsigned end_byte = offset + (element_size - 1);
|
|
const unsigned end_grf = end_byte >> grf_size_shift;
|
|
spans_grfs = end_grf != first_grf;
|
|
if (spans_grfs)
|
|
break;
|
|
offset += hstride * element_size;
|
|
}
|
|
|
|
rowbase += vstride * element_size;
|
|
|
|
if (spans_grfs) {
|
|
ERROR("VertStride must be used to cross GRF register boundaries");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Dst.HorzStride must not be 0. */
|
|
if (inst->has_dst && !dst_is_null(inst)) {
|
|
ERROR_IF(inst->dst.hstride == 0,
|
|
"Destination Horizontal Stride must not be 0");
|
|
}
|
|
|
|
return error_msg;
|
|
}
|
|
|
|
static bool
|
|
is_multiplier_instruction(const brw_hw_decoded_inst *inst)
|
|
{
|
|
/* TODO: Complete this list. */
|
|
switch (inst->opcode) {
|
|
case BRW_OPCODE_MUL:
|
|
case BRW_OPCODE_MAC:
|
|
case BRW_OPCODE_MACH:
|
|
case BRW_OPCODE_MAD:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static struct string
|
|
special_restrictions_for_mixed_float_mode(const struct brw_isa_info *isa,
|
|
const brw_hw_decoded_inst *inst)
|
|
{
|
|
const struct intel_device_info *devinfo = isa->devinfo;
|
|
|
|
struct string error_msg = { .str = NULL, .len = 0 };
|
|
|
|
/* See instruction_restrictions() for DPAS operand type validation. */
|
|
if (inst->opcode == BRW_OPCODE_DPAS)
|
|
return error_msg;
|
|
|
|
ERROR_IF(is_pure_bfloat(inst),
|
|
"Instructions with pure bfloat16 operands are not supported.");
|
|
|
|
if (is_mixed_bfloat(inst)) {
|
|
ERROR_IF(devinfo->ver < 20 && inst->exec_size > 8,
|
|
"Execution size must not be greater than 8 in Gfx12.");
|
|
ERROR_IF(devinfo->ver >= 20 && inst->exec_size > 16,
|
|
"Execution size must not be greater than 8 in Gfx20+.");
|
|
|
|
for (int i = 0; i < inst->num_sources; i++) {
|
|
ERROR_IF(brw_type_is_bfloat(inst->src[i].type) &&
|
|
src_has_scalar_region(inst, i),
|
|
"Broadcast of bfloat16 scalar is not supported.");
|
|
}
|
|
|
|
if (is_multiplier_instruction(inst)) {
|
|
if (inst->num_sources == 2) {
|
|
ERROR_IF(brw_type_is_bfloat(inst->src[1].type),
|
|
"Bfloat16 not allowed in Src1 of 2-source instructions involving multiplier.");
|
|
} else if (inst->num_sources == 3) {
|
|
ERROR_IF(brw_type_is_bfloat(inst->src[2].type),
|
|
"Bfloat16 not allowed in Src2 of 3-source instructions involving multiplier.");
|
|
}
|
|
}
|
|
|
|
const unsigned half_offset = REG_SIZE * reg_unit(devinfo) / 2;
|
|
|
|
if (inst->has_dst && brw_type_is_bfloat(inst->dst.type)) {
|
|
unsigned dst_stride = inst->dst.hstride;
|
|
bool dst_is_packed = is_packed(inst->exec_size * dst_stride, inst->exec_size, dst_stride);
|
|
|
|
if (dst_is_packed) {
|
|
ERROR_IF(inst->dst.subnr != 0 && inst->dst.subnr != half_offset,
|
|
"Packed bfloat16 destination must have register offset 0 or half of GRF register.");
|
|
} else {
|
|
/* Offset in the restriction text is in terms of elements. */
|
|
const unsigned elem_size = brw_type_size_bytes(inst->dst.type);
|
|
ERROR_IF(dst_stride != 2 || (inst->dst.subnr != 0 &&
|
|
inst->dst.subnr != 1 * elem_size),
|
|
"Unpacked bfloat16 destination must have stride 2 and register offset 0 or 1.");
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < inst->num_sources; i++) {
|
|
if (brw_type_is_bfloat(inst->src[i].type)) {
|
|
bool src_is_packed = is_packed(inst->src[i].vstride, inst->src[i].width, inst->src[i].hstride);
|
|
ERROR_IF(!src_is_packed,
|
|
"Bfloat16 source must be packed");
|
|
ERROR_IF(inst->src[i].subnr != 0 && inst->src[i].subnr != half_offset,
|
|
"Bfloat16 source must have register offset 0 or half of GRF register.");
|
|
}
|
|
}
|
|
}
|
|
|
|
const unsigned opcode = inst->opcode;
|
|
if (inst->num_sources >= 3)
|
|
return error_msg;
|
|
|
|
if (!is_mixed_float(inst))
|
|
return error_msg;
|
|
|
|
bool is_align16 = inst->access_mode == BRW_ALIGN_16;
|
|
|
|
enum brw_reg_type src0_type = inst->src[0].type;
|
|
enum brw_reg_type src1_type = inst->num_sources > 1 ?
|
|
inst->src[1].type : 0;
|
|
enum brw_reg_type dst_type = inst->dst.type;
|
|
|
|
unsigned dst_stride = inst->dst.hstride;
|
|
bool dst_is_packed = is_packed(inst->exec_size * dst_stride, inst->exec_size, dst_stride);
|
|
|
|
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
|
|
* Float Operations:
|
|
*
|
|
* "Indirect addressing on source is not supported when source and
|
|
* destination data types are mixed float."
|
|
*/
|
|
ERROR_IF(inst->src[0].address_mode != BRW_ADDRESS_DIRECT ||
|
|
(inst->num_sources > 1 &&
|
|
inst->src[1].address_mode != BRW_ADDRESS_DIRECT),
|
|
"Indirect addressing on source is not supported when source and "
|
|
"destination data types are mixed float");
|
|
|
|
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
|
|
* Float Operations:
|
|
*
|
|
* "No SIMD16 in mixed mode when destination is f32. Instruction
|
|
* execution size must be no more than 8."
|
|
*/
|
|
ERROR_IF(inst->exec_size > 8 && devinfo->ver < 20 &&
|
|
dst_type == BRW_TYPE_F &&
|
|
opcode != BRW_OPCODE_MOV,
|
|
"Mixed float mode with 32-bit float destination is limited "
|
|
"to SIMD8");
|
|
|
|
if (is_align16) {
|
|
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
|
|
* Float Operations:
|
|
*
|
|
* "In Align16 mode, when half float and float data types are mixed
|
|
* between source operands OR between source and destination operands,
|
|
* the register content are assumed to be packed."
|
|
*
|
|
* Since Align16 doesn't have a concept of horizontal stride (or width),
|
|
* it means that vertical stride must always be 4, since 0 and 2 would
|
|
* lead to replicated data, and any other value is disallowed in Align16.
|
|
*/
|
|
ERROR_IF(inst->src[0].vstride != 4,
|
|
"Align16 mixed float mode assumes packed data (vstride must be 4");
|
|
|
|
ERROR_IF(inst->num_sources >= 2 &&
|
|
inst->src[1].vstride != 4,
|
|
"Align16 mixed float mode assumes packed data (vstride must be 4");
|
|
|
|
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
|
|
* Float Operations:
|
|
*
|
|
* "For Align16 mixed mode, both input and output packed f16 data
|
|
* must be oword aligned, no oword crossing in packed f16."
|
|
*
|
|
* The previous rule requires that Align16 operands are always packed,
|
|
* and since there is only one bit for Align16 subnr, which represents
|
|
* offsets 0B and 16B, this rule is always enforced and we don't need to
|
|
* validate it.
|
|
*/
|
|
|
|
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
|
|
* Float Operations:
|
|
*
|
|
* "No SIMD16 in mixed mode when destination is packed f16 for both
|
|
* Align1 and Align16."
|
|
*
|
|
* And:
|
|
*
|
|
* "In Align16 mode, when half float and float data types are mixed
|
|
* between source operands OR between source and destination operands,
|
|
* the register content are assumed to be packed."
|
|
*
|
|
* Which implies that SIMD16 is not available in Align16. This is further
|
|
* confirmed by:
|
|
*
|
|
* "For Align16 mixed mode, both input and output packed f16 data
|
|
* must be oword aligned, no oword crossing in packed f16"
|
|
*
|
|
* Since oword-aligned packed f16 data would cross oword boundaries when
|
|
* the execution size is larger than 8.
|
|
*/
|
|
ERROR_IF(inst->exec_size > 8, "Align16 mixed float mode is limited to SIMD8");
|
|
|
|
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
|
|
* Float Operations:
|
|
*
|
|
* "No accumulator read access for Align16 mixed float."
|
|
*/
|
|
ERROR_IF(inst_uses_src_acc(isa, inst),
|
|
"No accumulator read access for Align16 mixed float");
|
|
} else {
|
|
assert(!is_align16);
|
|
|
|
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
|
|
* Float Operations:
|
|
*
|
|
* "No SIMD16 in mixed mode when destination is packed f16 for both
|
|
* Align1 and Align16."
|
|
*/
|
|
ERROR_IF(inst->exec_size > 8 && dst_is_packed &&
|
|
dst_type == BRW_TYPE_HF &&
|
|
opcode != BRW_OPCODE_MOV,
|
|
"Align1 mixed float mode is limited to SIMD8 when destination "
|
|
"is packed half-float");
|
|
|
|
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
|
|
* Float Operations:
|
|
*
|
|
* "Math operations for mixed mode:
|
|
* - In Align1, f16 inputs need to be strided"
|
|
*/
|
|
if (opcode == BRW_OPCODE_MATH) {
|
|
if (src0_type == BRW_TYPE_HF) {
|
|
ERROR_IF(inst->src[0].hstride <= 1,
|
|
"Align1 mixed mode math needs strided half-float inputs");
|
|
}
|
|
|
|
if (inst->num_sources >= 2 && src1_type == BRW_TYPE_HF) {
|
|
ERROR_IF(inst->src[1].hstride <= 1,
|
|
"Align1 mixed mode math needs strided half-float inputs");
|
|
}
|
|
}
|
|
|
|
if (dst_type == BRW_TYPE_HF && dst_stride == 1) {
|
|
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
|
|
* Float Operations:
|
|
*
|
|
* "In Align1, destination stride can be smaller than execution
|
|
* type. When destination is stride of 1, 16 bit packed data is
|
|
* updated on the destination. However, output packed f16 data
|
|
* must be oword aligned, no oword crossing in packed f16."
|
|
*
|
|
* The requirement of not crossing oword boundaries for 16-bit oword
|
|
* aligned data means that execution size is limited to 8.
|
|
*/
|
|
ERROR_IF(inst->dst.subnr % 16 != 0,
|
|
"Align1 mixed mode packed half-float output must be "
|
|
"oword aligned");
|
|
ERROR_IF(inst->exec_size > 8,
|
|
"Align1 mixed mode packed half-float output must not "
|
|
"cross oword boundaries (max exec size is 8)");
|
|
|
|
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
|
|
* Float Operations:
|
|
*
|
|
* "When source is float or half float from accumulator register and
|
|
* destination is half float with a stride of 1, the source must
|
|
* register aligned. i.e., source must have offset zero."
|
|
*
|
|
* Align16 mixed float mode doesn't allow accumulator access on sources,
|
|
* so we only need to check this for Align1.
|
|
*/
|
|
if (src0_is_acc(inst) &&
|
|
(src0_type == BRW_TYPE_F ||
|
|
src0_type == BRW_TYPE_HF)) {
|
|
ERROR_IF(inst->src[0].subnr != 0,
|
|
"Mixed float mode requires register-aligned accumulator "
|
|
"source reads when destination is packed half-float");
|
|
|
|
}
|
|
|
|
if (inst->num_sources > 1 &&
|
|
src1_is_acc(inst) &&
|
|
(src1_type == BRW_TYPE_F ||
|
|
src1_type == BRW_TYPE_HF)) {
|
|
ERROR_IF(inst->src[1].subnr != 0,
|
|
"Mixed float mode requires register-aligned accumulator "
|
|
"source reads when destination is packed half-float");
|
|
}
|
|
}
|
|
|
|
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
|
|
* Float Operations:
|
|
*
|
|
* "No swizzle is allowed when an accumulator is used as an implicit
|
|
* source or an explicit source in an instruction. i.e. when
|
|
* destination is half float with an implicit accumulator source,
|
|
* destination stride needs to be 2."
|
|
*
|
|
* FIXME: it is not quite clear what the first sentence actually means
|
|
* or its link to the implication described after it, so we only
|
|
* validate the explicit implication, which is clearly described.
|
|
*/
|
|
if (dst_type == BRW_TYPE_HF &&
|
|
inst_uses_src_acc(isa, inst)) {
|
|
ERROR_IF(dst_stride != 2,
|
|
"Mixed float mode with implicit/explicit accumulator "
|
|
"source and half-float destination requires a stride "
|
|
"of 2 on the destination");
|
|
}
|
|
}
|
|
|
|
return error_msg;
|
|
}
|
|
|
|
/**
|
|
* Creates a \p grf_access_mask for an \p exec_size, \p element_size, and a
|
|
* region
|
|
*
|
|
* A \p grf_access_mask is a 32-element array of uint8_t, where each uint8_t
|
|
* is a bitmask of grfs accessed by the region.
|
|
*
|
|
* For instance the access mask of the source gX.1<4,2,2>F in an exec_size = 4
|
|
* instruction would be
|
|
*
|
|
* access_mask[0] = 0x01 (bytes 7-4 of the 1st grf)
|
|
* access_mask[1] = 0x01 (bytes 15-12 of the 1st grf)
|
|
* access_mask[2] = 0x01 (bytes 23-20 of the 1st grf)
|
|
* access_mask[3] = 0x01 (bytes 31-28 of the 1st grf)
|
|
* access_mask[4-31] = 0
|
|
*
|
|
* Before Xe2, gX<1,1,0>F in an exec_size == 16 would yield:
|
|
*
|
|
* access_mask[0] = 0x01 (bytes 3-0 of the 1st grf)
|
|
* access_mask[1] = 0x01 (bytes 7-4 of the 1st grf)
|
|
* ...
|
|
* access_mask[7] = 0x01 (bytes 31-28 of the 1st grf)
|
|
* access_mask[8] = 0x02 (bytes 3-0 of the 2nd grf)
|
|
* ...
|
|
* access_mask[15] = 0x02 (bytes 31-28 of the 2nd grf)
|
|
* access_mask[16-31] = 0
|
|
*
|
|
* Whereas on Xe2, gX<1,1,0>F in an exec_size of 16 would yield:
|
|
*
|
|
* access_mask[0] = 0x01 (bytes 3-0 of the 1st grf)
|
|
* access_mask[1] = 0x01 (bytes 7-4 of the 1st grf)
|
|
* ...
|
|
* access_mask[7] = 0x01 (bytes 31-28 of the 1st grf)
|
|
* access_mask[8] = 0x01 (bytes 35-32 of the 1st grf)
|
|
* ...
|
|
* access_mask[15] = 0x01 (bytes 63-60 of the 1st grf)
|
|
* access_mask[4-31] = 0
|
|
*
|
|
*/
|
|
static void
|
|
grfs_accessed(const struct intel_device_info *devinfo,
|
|
uint8_t grf_access_mask[static 32],
|
|
unsigned exec_size, unsigned element_size, unsigned subreg,
|
|
unsigned vstride, unsigned width, unsigned hstride)
|
|
{
|
|
unsigned rowbase = subreg;
|
|
unsigned element = 0;
|
|
assert(util_is_power_of_two_nonzero(reg_unit(devinfo)));
|
|
unsigned grf_size_shift = (5 - 1) + ffs(reg_unit(devinfo));
|
|
|
|
for (int y = 0; y < exec_size / width; y++) {
|
|
unsigned offset = rowbase;
|
|
|
|
for (int x = 0; x < width; x++) {
|
|
const unsigned start_grf = (offset >> grf_size_shift) % 8;
|
|
const unsigned end_byte = offset + (element_size - 1);
|
|
const unsigned end_grf = (end_byte >> grf_size_shift) % 8;
|
|
grf_access_mask[element++] = (1 << start_grf) | (1 << end_grf);
|
|
offset += hstride * element_size;
|
|
}
|
|
|
|
rowbase += vstride * element_size;
|
|
}
|
|
|
|
assert(element == 0 || element == exec_size);
|
|
}
|
|
|
|
/**
|
|
* Returns the number of registers accessed according to the \p access_mask
|
|
*/
|
|
static int
|
|
registers_read(const uint8_t grfs_accessed[static 32])
|
|
{
|
|
uint8_t all_read = 0;
|
|
|
|
for (unsigned i = 0; i < 32; i++)
|
|
all_read |= grfs_accessed[i];
|
|
|
|
return util_bitcount(all_read);
|
|
}
|
|
|
|
/**
|
|
* Checks restrictions listed in "Region Alignment Rules" in the "Register
|
|
* Region Restrictions" section.
|
|
*/
|
|
static struct string
|
|
region_alignment_rules(const struct brw_isa_info *isa,
|
|
const brw_hw_decoded_inst *inst)
|
|
{
|
|
const struct intel_device_info *devinfo = isa->devinfo;
|
|
uint8_t dst_access_mask[32] = {}, src_access_mask[2][32] = {};
|
|
struct string error_msg = { .str = NULL, .len = 0 };
|
|
|
|
if (inst->num_sources == 3)
|
|
return (struct string){};
|
|
|
|
if (inst->access_mode == BRW_ALIGN_16)
|
|
return (struct string){};
|
|
|
|
if (inst_is_send(inst))
|
|
return (struct string){};
|
|
|
|
for (unsigned i = 0; i < inst->num_sources; i++) {
|
|
/* In Direct Addressing mode, a source cannot span more than 2 adjacent
|
|
* GRF registers.
|
|
*/
|
|
if (inst->src[i].file != FIXED_GRF ||
|
|
inst->src[i].address_mode != BRW_ADDRESS_DIRECT)
|
|
continue;
|
|
|
|
enum brw_reg_type type = inst->src[i].type;
|
|
unsigned element_size = brw_type_size_bytes(type);
|
|
unsigned subreg = inst->src[i].subnr;
|
|
unsigned vstride = inst->src[i].vstride;
|
|
unsigned width = inst->src[i].width;
|
|
unsigned hstride = inst->src[i].hstride;
|
|
|
|
grfs_accessed(devinfo, src_access_mask[i],
|
|
inst->exec_size, element_size, subreg,
|
|
vstride, width, hstride);
|
|
|
|
unsigned num_vstride = inst->exec_size / width;
|
|
unsigned num_hstride = width;
|
|
unsigned vstride_elements = (num_vstride - 1) * vstride;
|
|
unsigned hstride_elements = (num_hstride - 1) * hstride;
|
|
unsigned offset = (vstride_elements + hstride_elements) * element_size +
|
|
subreg;
|
|
ERROR_IF(offset >= 64 * reg_unit(devinfo),
|
|
"A source cannot span more than 2 adjacent GRF registers");
|
|
}
|
|
|
|
if (!inst->has_dst || dst_is_null(inst))
|
|
return error_msg;
|
|
|
|
unsigned stride = inst->dst.hstride;
|
|
enum brw_reg_type dst_type = inst->dst.type;
|
|
unsigned element_size = brw_type_size_bytes(dst_type);
|
|
unsigned subreg = inst->dst.subnr;
|
|
unsigned offset = ((inst->exec_size - 1) * stride * element_size) + subreg;
|
|
ERROR_IF(offset >= 64 * reg_unit(devinfo),
|
|
"A destination cannot span more than 2 adjacent GRF registers");
|
|
|
|
if (error_msg.str)
|
|
return error_msg;
|
|
|
|
grfs_accessed(devinfo, dst_access_mask, inst->exec_size, element_size, subreg,
|
|
inst->exec_size == 1 ? 0 : inst->exec_size * stride,
|
|
inst->exec_size == 1 ? 1 : inst->exec_size,
|
|
inst->exec_size == 1 ? 0 : stride);
|
|
|
|
unsigned dst_regs = registers_read(dst_access_mask);
|
|
|
|
/* The SKL PRM says:
|
|
*
|
|
* When destination of MATH instruction spans two registers, the
|
|
* destination elements must be evenly split between the two registers.
|
|
*
|
|
* It is not known whether this restriction applies to KBL other Gens after
|
|
* SKL.
|
|
*/
|
|
if (inst->opcode == BRW_OPCODE_MATH) {
|
|
if (dst_regs == 2) {
|
|
unsigned upper_reg_writes = 0, lower_reg_writes = 0;
|
|
|
|
for (unsigned i = 0; i < inst->exec_size; i++) {
|
|
if (dst_access_mask[i] == 2) {
|
|
upper_reg_writes++;
|
|
} else {
|
|
assert(dst_access_mask[i] == 1);
|
|
lower_reg_writes++;
|
|
}
|
|
}
|
|
|
|
ERROR_IF(upper_reg_writes != lower_reg_writes,
|
|
"Writes must be evenly split between the two "
|
|
"destination registers");
|
|
}
|
|
}
|
|
|
|
return error_msg;
|
|
}
|
|
|
|
static struct string
|
|
vector_immediate_restrictions(const struct brw_isa_info *isa,
|
|
const brw_hw_decoded_inst *inst)
|
|
{
|
|
const struct intel_device_info *devinfo = isa->devinfo;
|
|
|
|
struct string error_msg = { .str = NULL, .len = 0 };
|
|
|
|
if (inst->num_sources == 3 || inst->num_sources == 0 ||
|
|
(devinfo->ver >= 12 && inst_is_send(inst)))
|
|
return (struct string){};
|
|
|
|
unsigned file = inst->src[inst->num_sources == 1 ? 0 : 1].file;
|
|
if (file != IMM)
|
|
return (struct string){};
|
|
|
|
enum brw_reg_type dst_type = inst->dst.type;
|
|
unsigned dst_type_size = brw_type_size_bytes(dst_type);
|
|
unsigned dst_subreg = inst->dst.subnr;
|
|
unsigned dst_stride = inst->dst.hstride;
|
|
enum brw_reg_type type = inst->src[inst->num_sources == 1 ? 0 : 1].type;
|
|
|
|
/* The PRMs say:
|
|
*
|
|
* When an immediate vector is used in an instruction, the destination
|
|
* must be 128-bit aligned with destination horizontal stride equivalent
|
|
* to a word for an immediate integer vector (v) and equivalent to a
|
|
* DWord for an immediate float vector (vf).
|
|
*
|
|
* The text has not been updated for the addition of the immediate unsigned
|
|
* integer vector type (uv) on SNB, but presumably the same restriction
|
|
* applies.
|
|
*/
|
|
switch (type) {
|
|
case BRW_TYPE_V:
|
|
case BRW_TYPE_UV:
|
|
case BRW_TYPE_VF:
|
|
ERROR_IF(dst_subreg % (128 / 8) != 0,
|
|
"Destination must be 128-bit aligned in order to use immediate "
|
|
"vector types");
|
|
|
|
if (type == BRW_TYPE_VF) {
|
|
ERROR_IF(dst_type_size * dst_stride != 4,
|
|
"Destination must have stride equivalent to dword in order "
|
|
"to use the VF type");
|
|
} else {
|
|
ERROR_IF(dst_type_size * dst_stride != 2,
|
|
"Destination must have stride equivalent to word in order "
|
|
"to use the V or UV type");
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return error_msg;
|
|
}
|
|
|
|
static struct string
|
|
special_requirements_for_handling_double_precision_data_types(
|
|
const struct brw_isa_info *isa,
|
|
const brw_hw_decoded_inst *inst)
|
|
{
|
|
const struct intel_device_info *devinfo = isa->devinfo;
|
|
|
|
struct string error_msg = { .str = NULL, .len = 0 };
|
|
|
|
if (inst->num_sources == 3 || inst->num_sources == 0)
|
|
return (struct string){};
|
|
|
|
/* Split sends don't have types so there's no doubles there. */
|
|
if (inst_is_split_send(isa, inst))
|
|
return (struct string){};
|
|
|
|
enum brw_reg_type exec_type = execution_type(inst);
|
|
unsigned exec_type_size = brw_type_size_bytes(exec_type);
|
|
|
|
enum brw_reg_type dst_type = inst->dst.type;
|
|
unsigned dst_type_size = brw_type_size_bytes(dst_type);
|
|
unsigned dst_hstride = inst->dst.hstride;
|
|
unsigned dst_reg = inst->dst.nr;
|
|
unsigned dst_subreg = inst->dst.subnr;
|
|
unsigned dst_address_mode = inst->dst.address_mode;
|
|
|
|
bool is_integer_dword_multiply =
|
|
inst->opcode == BRW_OPCODE_MUL &&
|
|
(inst->src[0].type == BRW_TYPE_D || inst->src[0].type == BRW_TYPE_UD) &&
|
|
(inst->src[1].type == BRW_TYPE_D || inst->src[1].type == BRW_TYPE_UD);
|
|
|
|
const bool is_double_precision =
|
|
dst_type_size == 8 || exec_type_size == 8 || is_integer_dword_multiply;
|
|
|
|
for (unsigned i = 0; i < inst->num_sources; i++) {
|
|
enum brw_reg_file file = inst->src[i].file;
|
|
if (file == IMM)
|
|
continue;
|
|
|
|
enum brw_reg_type type = inst->src[i].type;
|
|
unsigned type_size = brw_type_size_bytes(type);
|
|
unsigned address_mode = inst->src[i].address_mode;
|
|
unsigned reg = inst->src[i].nr;
|
|
unsigned subreg = inst->src[i].subnr;
|
|
bool is_scalar_region = src_has_scalar_region(inst, i);
|
|
unsigned vstride = inst->src[i].vstride;
|
|
unsigned width = inst->src[i].width;
|
|
unsigned hstride = inst->src[i].hstride;
|
|
|
|
const unsigned src_stride = (hstride ? hstride : vstride) * type_size;
|
|
const unsigned dst_stride = dst_hstride * dst_type_size;
|
|
|
|
/* The PRMs say that for CHV, BXT:
|
|
*
|
|
* When source or destination datatype is 64b or operation is integer
|
|
* DWord multiply, regioning in Align1 must follow these rules:
|
|
*
|
|
* 1. Source and Destination horizontal stride must be aligned to the
|
|
* same qword.
|
|
* 2. Regioning must ensure Src.Vstride = Src.Width * Src.Hstride.
|
|
* 3. Source and Destination offset must be the same, except the case
|
|
* of scalar source.
|
|
*
|
|
* We assume that the restriction applies to GLK as well.
|
|
*/
|
|
if (is_double_precision &&
|
|
inst->access_mode == BRW_ALIGN_1 &&
|
|
intel_device_info_is_9lp(devinfo)) {
|
|
ERROR_IF(!is_scalar_region &&
|
|
(src_stride % 8 != 0 ||
|
|
dst_stride % 8 != 0 ||
|
|
src_stride != dst_stride),
|
|
"Source and destination horizontal stride must equal and a "
|
|
"multiple of a qword when the execution type is 64-bit");
|
|
|
|
ERROR_IF(vstride != width * hstride,
|
|
"Vstride must be Width * Hstride when the execution type is "
|
|
"64-bit");
|
|
|
|
ERROR_IF(!is_scalar_region && dst_subreg != subreg,
|
|
"Source and destination offset must be the same when the "
|
|
"execution type is 64-bit");
|
|
}
|
|
|
|
/* The PRMs say that for CHV, BXT:
|
|
*
|
|
* When source or destination datatype is 64b or operation is integer
|
|
* DWord multiply, indirect addressing must not be used.
|
|
*
|
|
* We assume that the restriction applies to GLK as well.
|
|
*/
|
|
if (is_double_precision &&
|
|
intel_device_info_is_9lp(devinfo)) {
|
|
ERROR_IF(BRW_ADDRESS_REGISTER_INDIRECT_REGISTER == address_mode ||
|
|
BRW_ADDRESS_REGISTER_INDIRECT_REGISTER == dst_address_mode,
|
|
"Indirect addressing is not allowed when the execution type "
|
|
"is 64-bit");
|
|
}
|
|
|
|
/* The PRMs say that for CHV, BXT:
|
|
*
|
|
* ARF registers must never be used with 64b datatype or when
|
|
* operation is integer DWord multiply.
|
|
*
|
|
* We assume that the restriction applies to GLK as well.
|
|
*
|
|
* We assume that the restriction does not apply to the null register.
|
|
*/
|
|
if (is_double_precision &&
|
|
intel_device_info_is_9lp(devinfo)) {
|
|
ERROR_IF(inst->opcode == BRW_OPCODE_MAC ||
|
|
brw_eu_inst_acc_wr_control(devinfo, inst->raw) ||
|
|
(ARF == file &&
|
|
reg != BRW_ARF_NULL) ||
|
|
(ARF == inst->dst.file &&
|
|
dst_reg != BRW_ARF_NULL),
|
|
"Architecture registers cannot be used when the execution "
|
|
"type is 64-bit");
|
|
}
|
|
|
|
/* From the hardware spec section "Register Region Restrictions":
|
|
*
|
|
* There are two rules:
|
|
*
|
|
* "In case of all floating point data types used in destination:" and
|
|
*
|
|
* "In case where source or destination datatype is 64b or operation is
|
|
* integer DWord multiply:"
|
|
*
|
|
* both of which list the same restrictions:
|
|
*
|
|
* "1. Register Regioning patterns where register data bit location
|
|
* of the LSB of the channels are changed between source and
|
|
* destination are not supported on Src0 and Src1 except for
|
|
* broadcast of a scalar.
|
|
*
|
|
* 2. Explicit ARF registers except null and accumulator must not be
|
|
* used."
|
|
*/
|
|
if (devinfo->verx10 >= 125 &&
|
|
(brw_type_is_float(dst_type) ||
|
|
is_double_precision)) {
|
|
ERROR_IF(!brw_type_is_bfloat(type) &&
|
|
!is_scalar_region &&
|
|
BRW_ADDRESS_REGISTER_INDIRECT_REGISTER != address_mode &&
|
|
(!is_linear(vstride, width, hstride) ||
|
|
src_stride != dst_stride ||
|
|
subreg != dst_subreg),
|
|
"Register Regioning patterns where register data bit "
|
|
"location of the LSB of the channels are changed between "
|
|
"source and destination are not supported except for "
|
|
"broadcast of a scalar.");
|
|
|
|
/* NOTE: Expanded this to include Scalar. See documentation issue
|
|
* open in https://gfxspecs.intel.com/Predator/Home/Index/56640.
|
|
*/
|
|
ERROR_IF((address_mode == BRW_ADDRESS_DIRECT && file == ARF &&
|
|
reg != BRW_ARF_SCALAR &&
|
|
reg != BRW_ARF_NULL && !(reg >= BRW_ARF_ACCUMULATOR && reg < BRW_ARF_FLAG)) ||
|
|
(inst->dst.file == ARF &&
|
|
dst_reg != BRW_ARF_SCALAR &&
|
|
dst_reg != BRW_ARF_NULL && (dst_reg & 0xF0) != BRW_ARF_ACCUMULATOR),
|
|
"Explicit ARF registers except null, accumulator, and scalar must not "
|
|
"be used.");
|
|
}
|
|
|
|
/* From the hardware spec section "Register Region Restrictions":
|
|
*
|
|
* "Vx1 and VxH indirect addressing for Float, Half-Float, Double-Float and
|
|
* Quad-Word data must not be used."
|
|
*
|
|
* and
|
|
*
|
|
* "Vx1 and VxH indirect addressing for BFloat16 (...) data
|
|
* must not be used."
|
|
*/
|
|
if (devinfo->verx10 >= 125 &&
|
|
(brw_type_is_float_or_bfloat(type) || brw_type_size_bytes(type) == 8)) {
|
|
ERROR_IF(address_mode == BRW_ADDRESS_REGISTER_INDIRECT_REGISTER &&
|
|
vstride == BRW_VERTICAL_STRIDE_ONE_DIMENSIONAL,
|
|
"Vx1 and VxH indirect addressing for Float, Half-Float, "
|
|
"Double-Float, Quad-Word, and Bfloat16 data must not be used");
|
|
}
|
|
}
|
|
|
|
/* The PRMs say that for BDW, SKL:
|
|
*
|
|
* If Align16 is required for an operation with QW destination and non-QW
|
|
* source datatypes, the execution size cannot exceed 2.
|
|
*
|
|
* We assume that the restriction applies to all Gfx8+ parts.
|
|
*/
|
|
if (is_double_precision) {
|
|
enum brw_reg_type src0_type = inst->src[0].type;
|
|
enum brw_reg_type src1_type =
|
|
inst->num_sources > 1 ? inst->src[1].type : src0_type;
|
|
unsigned src0_type_size = brw_type_size_bytes(src0_type);
|
|
unsigned src1_type_size = brw_type_size_bytes(src1_type);
|
|
|
|
ERROR_IF(inst->access_mode == BRW_ALIGN_16 &&
|
|
dst_type_size == 8 &&
|
|
(src0_type_size != 8 || src1_type_size != 8) &&
|
|
inst->exec_size > 2,
|
|
"In Align16 exec size cannot exceed 2 with a QWord destination "
|
|
"and a non-QWord source");
|
|
}
|
|
|
|
/* The PRMs say that for CHV, BXT:
|
|
*
|
|
* When source or destination datatype is 64b or operation is integer
|
|
* DWord multiply, DepCtrl must not be used.
|
|
*
|
|
* We assume that the restriction applies to GLK as well.
|
|
*/
|
|
if (is_double_precision &&
|
|
intel_device_info_is_9lp(devinfo)) {
|
|
ERROR_IF(brw_eu_inst_no_dd_check(devinfo, inst->raw) ||
|
|
brw_eu_inst_no_dd_clear(devinfo, inst->raw),
|
|
"DepCtrl is not allowed when the execution type is 64-bit");
|
|
}
|
|
|
|
return error_msg;
|
|
}
|
|
|
|
static struct string
|
|
instruction_restrictions(const struct brw_isa_info *isa,
|
|
const brw_hw_decoded_inst *inst)
|
|
{
|
|
const struct intel_device_info *devinfo = isa->devinfo;
|
|
struct string error_msg = { .str = NULL, .len = 0 };
|
|
|
|
/* From Wa_1604601757:
|
|
*
|
|
* "When multiplying a DW and any lower precision integer, source modifier
|
|
* is not supported."
|
|
*/
|
|
if (devinfo->ver >= 12 &&
|
|
inst->opcode == BRW_OPCODE_MUL) {
|
|
enum brw_reg_type exec_type = execution_type(inst);
|
|
const bool src0_valid =
|
|
brw_type_size_bytes(inst->src[0].type) == 4 ||
|
|
inst->src[0].file == IMM ||
|
|
!(inst->src[0].negate || inst->src[0].abs);
|
|
const bool src1_valid =
|
|
brw_type_size_bytes(inst->src[1].type) == 4 ||
|
|
inst->src[1].file == IMM ||
|
|
!(inst->src[1].negate || inst->src[1].abs);
|
|
|
|
ERROR_IF(!brw_type_is_float(exec_type) &&
|
|
brw_type_size_bytes(exec_type) == 4 &&
|
|
!(src0_valid && src1_valid),
|
|
"When multiplying a DW and any lower precision integer, source "
|
|
"modifier is not supported.");
|
|
}
|
|
|
|
if (inst->opcode == BRW_OPCODE_CMP ||
|
|
inst->opcode == BRW_OPCODE_CMPN) {
|
|
ERROR_IF(inst->cond_modifier == BRW_CONDITIONAL_NONE,
|
|
"CMP (or CMPN) must have a condition.");
|
|
}
|
|
|
|
if (inst->opcode == BRW_OPCODE_SEL) {
|
|
ERROR_IF((inst->cond_modifier != BRW_CONDITIONAL_NONE) ==
|
|
(inst->pred_control != BRW_PREDICATE_NONE),
|
|
"SEL must either be predicated or have a condition modifiers");
|
|
}
|
|
|
|
if (inst->opcode == BRW_OPCODE_MUL) {
|
|
const enum brw_reg_type src0_type = inst->src[0].type;
|
|
const enum brw_reg_type src1_type = inst->src[1].type;
|
|
const enum brw_reg_type dst_type = inst->dst.type;
|
|
|
|
/* Page 966 (page 982 of the PDF) of Broadwell PRM volume 2a says:
|
|
*
|
|
* When multiplying a DW and any lower precision integer, the DW
|
|
* operand must on src0.
|
|
*
|
|
* Ivy Bridge, Haswell, Skylake, and Ice Lake PRMs contain the same
|
|
* text.
|
|
*/
|
|
ERROR_IF(brw_type_is_int(src1_type) &&
|
|
brw_type_size_bytes(src0_type) < 4 &&
|
|
brw_type_size_bytes(src1_type) == 4,
|
|
"When multiplying a DW and any lower precision integer, the "
|
|
"DW operand must be src0.");
|
|
|
|
/* Page 971 (page 987 of the PDF), section "Accumulator
|
|
* Restrictions," of the Broadwell PRM volume 7 says:
|
|
*
|
|
* Integer source operands cannot be accumulators.
|
|
*
|
|
* The Skylake and Ice Lake PRMs contain the same text.
|
|
*/
|
|
ERROR_IF((src0_is_acc(inst) &&
|
|
brw_type_is_int(src0_type)) ||
|
|
(src1_is_acc(inst) &&
|
|
brw_type_is_int(src1_type)),
|
|
"Integer source operands cannot be accumulators.");
|
|
|
|
/* Page 935 (page 951 of the PDF) of the Ice Lake PRM volume 2a says:
|
|
*
|
|
* When multiplying integer data types, if one of the sources is a
|
|
* DW, the resulting full precision data is stored in the
|
|
* accumulator. However, if the destination data type is either W or
|
|
* DW, the low bits of the result are written to the destination
|
|
* register and the remaining high bits are discarded. This results
|
|
* in undefined Overflow and Sign flags. Therefore, conditional
|
|
* modifiers and saturation (.sat) cannot be used in this case.
|
|
*
|
|
* Similar text appears in every version of the PRM.
|
|
*
|
|
* The wording of the last sentence is not very clear. It could either
|
|
* be interpreted as "conditional modifiers combined with saturation
|
|
* cannot be used" or "neither conditional modifiers nor saturation can
|
|
* be used." I have interpreted it as the latter primarily because that
|
|
* is the more restrictive interpretation.
|
|
*/
|
|
ERROR_IF((src0_type == BRW_TYPE_UD ||
|
|
src0_type == BRW_TYPE_D ||
|
|
src1_type == BRW_TYPE_UD ||
|
|
src1_type == BRW_TYPE_D) &&
|
|
(dst_type == BRW_TYPE_UD ||
|
|
dst_type == BRW_TYPE_D ||
|
|
dst_type == BRW_TYPE_UW ||
|
|
dst_type == BRW_TYPE_W) &&
|
|
(inst->saturate || inst->cond_modifier != BRW_CONDITIONAL_NONE),
|
|
"Neither Saturate nor conditional modifier allowed with DW "
|
|
"integer multiply.");
|
|
}
|
|
|
|
if (inst->opcode == BRW_OPCODE_MATH) {
|
|
unsigned math_function = brw_eu_inst_math_function(devinfo, inst->raw);
|
|
switch (math_function) {
|
|
case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT_AND_REMAINDER:
|
|
case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT:
|
|
case BRW_MATH_FUNCTION_INT_DIV_REMAINDER: {
|
|
/* Page 442 of the Broadwell PRM Volume 2a "Extended Math Function" says:
|
|
* INT DIV function does not support source modifiers.
|
|
* Bspec 6647 extends it back to Ivy Bridge.
|
|
*/
|
|
bool src0_valid = !inst->src[0].negate && !inst->src[0].abs;
|
|
bool src1_valid = !inst->src[1].negate && !inst->src[1].abs;
|
|
ERROR_IF(!src0_valid || !src1_valid,
|
|
"INT DIV function does not support source modifiers.");
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (inst->opcode == BRW_OPCODE_DP4A) {
|
|
/* Page 396 (page 412 of the PDF) of the DG1 PRM volume 2a says:
|
|
*
|
|
* Only one of src0 or src1 operand may be an the (sic) accumulator
|
|
* register (acc#).
|
|
*/
|
|
ERROR_IF(src0_is_acc(inst) && src1_is_acc(inst),
|
|
"Only one of src0 or src1 operand may be an accumulator "
|
|
"register (acc#).");
|
|
|
|
}
|
|
|
|
if (inst->opcode == BRW_OPCODE_ADD3) {
|
|
const enum brw_reg_type dst_type = inst->dst.type;
|
|
|
|
ERROR_IF(dst_type != BRW_TYPE_D &&
|
|
dst_type != BRW_TYPE_UD &&
|
|
dst_type != BRW_TYPE_W &&
|
|
dst_type != BRW_TYPE_UW,
|
|
"Destination must be integer D, UD, W, or UW type.");
|
|
|
|
for (unsigned i = 0; i < 3; i++) {
|
|
enum brw_reg_type src_type = inst->src[i].type;
|
|
|
|
ERROR_IF(src_type != BRW_TYPE_D &&
|
|
src_type != BRW_TYPE_UD &&
|
|
src_type != BRW_TYPE_W &&
|
|
src_type != BRW_TYPE_UW,
|
|
"Source must be integer D, UD, W, or UW type.");
|
|
|
|
ERROR_IF(inst->src[i].file == IMM &&
|
|
src_type != BRW_TYPE_W &&
|
|
src_type != BRW_TYPE_UW,
|
|
"Immediate source must be integer W or UW type.");
|
|
}
|
|
}
|
|
|
|
if (inst->opcode == BRW_OPCODE_OR ||
|
|
inst->opcode == BRW_OPCODE_AND ||
|
|
inst->opcode == BRW_OPCODE_XOR ||
|
|
inst->opcode == BRW_OPCODE_NOT) {
|
|
/* While the behavior of the negate source modifier is defined as
|
|
* logical not, the behavior of abs source modifier is not
|
|
* defined. Disallow it to be safe.
|
|
*/
|
|
ERROR_IF(inst->src[0].abs,
|
|
"Behavior of abs source modifier in logic ops is undefined.");
|
|
ERROR_IF(inst->opcode != BRW_OPCODE_NOT &&
|
|
inst->src[1].file != IMM &&
|
|
inst->src[1].abs,
|
|
"Behavior of abs source modifier in logic ops is undefined.");
|
|
|
|
/* Page 479 (page 495 of the PDF) of the Broadwell PRM volume 2a says:
|
|
*
|
|
* Source modifier is not allowed if source is an accumulator.
|
|
*
|
|
* The same text also appears for OR, NOT, and XOR instructions.
|
|
*/
|
|
ERROR_IF((inst->src[0].abs || inst->src[0].negate) &&
|
|
src0_is_acc(inst),
|
|
"Source modifier is not allowed if source is an accumulator.");
|
|
ERROR_IF(inst->num_sources > 1 &&
|
|
(inst->src[1].abs || inst->src[1].negate) &&
|
|
src1_is_acc(inst),
|
|
"Source modifier is not allowed if source is an accumulator.");
|
|
|
|
/* Page 479 (page 495 of the PDF) of the Broadwell PRM volume 2a says:
|
|
*
|
|
* This operation does not produce sign or overflow conditions. Only
|
|
* the .e/.z or .ne/.nz conditional modifiers should be used.
|
|
*
|
|
* The same text also appears for OR, NOT, and XOR instructions.
|
|
*
|
|
* Per the comment around nir_op_imod in brw_from_nir.cpp, we have
|
|
* determined this to not be true. The only conditions that seem
|
|
* absolutely sketchy are O, R, and U. Some OpenGL shaders from Doom
|
|
* 2016 have been observed to generate and.g and operate correctly.
|
|
*/
|
|
const enum brw_conditional_mod cmod = inst->cond_modifier;
|
|
ERROR_IF(cmod == BRW_CONDITIONAL_O ||
|
|
cmod == BRW_CONDITIONAL_R ||
|
|
cmod == BRW_CONDITIONAL_U,
|
|
"O, R, and U conditional modifiers should not be used.");
|
|
}
|
|
|
|
if (inst->opcode == BRW_OPCODE_BFI2) {
|
|
ERROR_IF(inst->cond_modifier != BRW_CONDITIONAL_NONE,
|
|
"BFI2 cannot have conditional modifier");
|
|
|
|
ERROR_IF(inst->saturate,
|
|
"BFI2 cannot have saturate modifier");
|
|
|
|
enum brw_reg_type dst_type = inst->dst.type;
|
|
|
|
ERROR_IF(dst_type != BRW_TYPE_D &&
|
|
dst_type != BRW_TYPE_UD,
|
|
"BFI2 destination type must be D or UD");
|
|
|
|
for (unsigned s = 0; s < 3; s++) {
|
|
enum brw_reg_type src_type = inst->src[s].type;
|
|
|
|
ERROR_IF(src_type != dst_type,
|
|
"BFI2 source type must match destination type");
|
|
}
|
|
}
|
|
|
|
if (inst->opcode == BRW_OPCODE_CSEL) {
|
|
ERROR_IF(inst->pred_control != BRW_PREDICATE_NONE,
|
|
"CSEL cannot be predicated");
|
|
|
|
/* CSEL is CMP and SEL fused into one. The condition modifier, which
|
|
* does not actually modify the flags, controls the built-in comparison.
|
|
*/
|
|
ERROR_IF(inst->cond_modifier == BRW_CONDITIONAL_NONE,
|
|
"CSEL must have a condition.");
|
|
|
|
enum brw_reg_type dst_type = inst->dst.type;
|
|
|
|
if (devinfo->ver == 9) {
|
|
ERROR_IF(dst_type != BRW_TYPE_F,
|
|
"CSEL destination type must be F");
|
|
} else {
|
|
ERROR_IF(dst_type != BRW_TYPE_F &&
|
|
dst_type != BRW_TYPE_HF &&
|
|
dst_type != BRW_TYPE_D &&
|
|
dst_type != BRW_TYPE_W &&
|
|
dst_type != BRW_TYPE_UD &&
|
|
dst_type != BRW_TYPE_UW,
|
|
"CSEL destination type must be F, HF, *D, or *W");
|
|
}
|
|
|
|
for (unsigned s = 0; s < 3; s++) {
|
|
enum brw_reg_type src_type = inst->src[s].type;
|
|
|
|
if (devinfo->ver == 9) {
|
|
ERROR_IF(src_type != BRW_TYPE_F,
|
|
"CSEL source type must be F");
|
|
} else {
|
|
ERROR_IF(src_type != BRW_TYPE_F && src_type != BRW_TYPE_HF &&
|
|
src_type != BRW_TYPE_D && src_type != BRW_TYPE_UD &&
|
|
src_type != BRW_TYPE_W && src_type != BRW_TYPE_UW,
|
|
"CSEL source type must be F, HF, *D, or *W");
|
|
|
|
ERROR_IF(brw_type_is_float(src_type) != brw_type_is_float(dst_type),
|
|
"CSEL cannot mix float and integer types.");
|
|
|
|
ERROR_IF(brw_type_size_bytes(src_type) !=
|
|
brw_type_size_bytes(dst_type),
|
|
"CSEL cannot mix different type sizes.");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (inst->opcode == BRW_OPCODE_DPAS) {
|
|
ERROR_IF(brw_eu_inst_dpas_3src_sdepth(devinfo, inst->raw) != BRW_SYSTOLIC_DEPTH_8,
|
|
"Systolic depth must be 8.");
|
|
|
|
const unsigned sdepth = 8;
|
|
|
|
const enum brw_reg_type dst_type = inst->dst.type;
|
|
const enum brw_reg_type src0_type = inst->src[0].type;
|
|
const enum brw_reg_type src1_type = inst->src[1].type;
|
|
const enum brw_reg_type src2_type = inst->src[2].type;
|
|
|
|
const enum gfx12_sub_byte_precision src1_sub_byte =
|
|
brw_eu_inst_dpas_3src_src1_subbyte(devinfo, inst->raw);
|
|
|
|
if (src1_type != BRW_TYPE_B && src1_type != BRW_TYPE_UB) {
|
|
ERROR_IF(src1_sub_byte != BRW_SUB_BYTE_PRECISION_NONE,
|
|
"Sub-byte precision must be None for source type larger than Byte.");
|
|
} else {
|
|
ERROR_IF(src1_sub_byte != BRW_SUB_BYTE_PRECISION_NONE &&
|
|
src1_sub_byte != BRW_SUB_BYTE_PRECISION_4BIT &&
|
|
src1_sub_byte != BRW_SUB_BYTE_PRECISION_2BIT,
|
|
"Invalid sub-byte precision.");
|
|
}
|
|
|
|
const enum gfx12_sub_byte_precision src2_sub_byte =
|
|
brw_eu_inst_dpas_3src_src2_subbyte(devinfo, inst->raw);
|
|
|
|
if (src2_type != BRW_TYPE_B && src2_type != BRW_TYPE_UB) {
|
|
ERROR_IF(src2_sub_byte != BRW_SUB_BYTE_PRECISION_NONE,
|
|
"Sub-byte precision must be None.");
|
|
} else {
|
|
ERROR_IF(src2_sub_byte != BRW_SUB_BYTE_PRECISION_NONE &&
|
|
src2_sub_byte != BRW_SUB_BYTE_PRECISION_4BIT &&
|
|
src2_sub_byte != BRW_SUB_BYTE_PRECISION_2BIT,
|
|
"Invalid sub-byte precision.");
|
|
}
|
|
|
|
const unsigned src1_bits_per_element =
|
|
brw_type_size_bits(src1_type) >>
|
|
brw_eu_inst_dpas_3src_src1_subbyte(devinfo, inst->raw);
|
|
|
|
const unsigned src2_bits_per_element =
|
|
brw_type_size_bits(src2_type) >>
|
|
brw_eu_inst_dpas_3src_src2_subbyte(devinfo, inst->raw);
|
|
|
|
/* The MAX2(1, ...) is just to prevent possible division by 0 later. */
|
|
const unsigned ops_per_chan =
|
|
MAX2(1, 32 / MAX2(src1_bits_per_element, src2_bits_per_element));
|
|
|
|
if (devinfo->ver < 20) {
|
|
ERROR_IF(inst->exec_size != 8, "DPAS execution size must be 8.");
|
|
} else {
|
|
ERROR_IF(inst->exec_size != 16, "DPAS execution size must be 16.");
|
|
}
|
|
|
|
const unsigned dst_subnr = inst->dst.subnr;
|
|
const unsigned src0_subnr = inst->src[0].subnr;
|
|
const unsigned src1_subnr = inst->src[1].subnr;
|
|
const unsigned src2_subnr = inst->src[2].subnr;
|
|
|
|
/* Until HF is supported as dst type, this is effectively subnr == 0. */
|
|
ERROR_IF(dst_subnr % inst->exec_size != 0,
|
|
"Destination subregister offset must be a multiple of ExecSize.");
|
|
|
|
/* Until HF is supported as src0 type, this is effectively subnr == 0. */
|
|
ERROR_IF(src0_subnr % inst->exec_size != 0,
|
|
"Src0 subregister offset must be a multiple of ExecSize.");
|
|
|
|
ERROR_IF(src1_subnr != 0,
|
|
"Src1 subregister offsets must be 0.");
|
|
|
|
/* In nearly all cases, this effectively requires that src2.subnr be
|
|
* 0. It is only when src1 is 8 bits and src2 is 2 or 4 bits that the
|
|
* ops_per_chan value can allow non-zero src2.subnr.
|
|
*/
|
|
ERROR_IF(src2_subnr % (sdepth * ops_per_chan) != 0,
|
|
"Src2 subregister offset must be a multiple of SystolicDepth "
|
|
"times OPS_PER_CHAN.");
|
|
|
|
ERROR_IF(dst_subnr * brw_type_size_bytes(dst_type) >= REG_SIZE,
|
|
"Destination subregister specifies next register.");
|
|
|
|
ERROR_IF(src0_subnr * brw_type_size_bytes(src0_type) >= REG_SIZE,
|
|
"Src0 subregister specifies next register.");
|
|
|
|
ERROR_IF((src1_subnr * brw_type_size_bytes(src1_type) * src1_bits_per_element) / 8 >= REG_SIZE,
|
|
"Src1 subregister specifies next register.");
|
|
|
|
ERROR_IF((src2_subnr * brw_type_size_bytes(src2_type) * src2_bits_per_element) / 8 >= REG_SIZE,
|
|
"Src2 subregister specifies next register.");
|
|
|
|
if (brw_eu_inst_3src_atomic_control(devinfo, inst->raw)) {
|
|
/* FINISHME: When we start emitting DPAS with Atomic set, figure out
|
|
* a way to validate it. Also add a test in test_eu_validate.cpp.
|
|
*/
|
|
ERROR_IF(true,
|
|
"When instruction option Atomic is used it must be follwed by a "
|
|
"DPAS instruction.");
|
|
}
|
|
|
|
if (brw_eu_inst_dpas_3src_exec_type(devinfo, inst->raw) ==
|
|
BRW_ALIGN1_3SRC_EXEC_TYPE_FLOAT) {
|
|
ERROR_IF(src1_type != BRW_TYPE_HF &&
|
|
src1_type != BRW_TYPE_BF,
|
|
"DPAS src1 type must be HF or BF.");
|
|
ERROR_IF(src2_type != BRW_TYPE_HF &&
|
|
src2_type != BRW_TYPE_BF,
|
|
"DPAS src2 type must be HF or BF.");
|
|
ERROR_IF(src1_type != src2_type,
|
|
"DPAS src1 and src2 with types must match when using float types.");
|
|
|
|
if (devinfo->ver < 20) {
|
|
ERROR_IF(dst_type != BRW_TYPE_F,
|
|
"DPAS destination type must be F in Gfx12.");
|
|
ERROR_IF(src0_type != BRW_TYPE_F,
|
|
"DPAS src0 type must be F in Gfx12.");
|
|
} else {
|
|
ERROR_IF(dst_type != BRW_TYPE_F &&
|
|
dst_type != src1_type,
|
|
"DPAS destination type must be F or match Src1/Src2 in Gfx20+.");
|
|
ERROR_IF(src0_type != BRW_TYPE_F &&
|
|
src0_type != src1_type,
|
|
"DPAS src0 type must be F or match Src1/Src2 in Gfx20+.");
|
|
}
|
|
} else {
|
|
ERROR_IF(dst_type != BRW_TYPE_D &&
|
|
dst_type != BRW_TYPE_UD,
|
|
"DPAS destination type must be D or UD.");
|
|
ERROR_IF(src0_type != BRW_TYPE_D &&
|
|
src0_type != BRW_TYPE_UD,
|
|
"DPAS src0 type must be D or UD.");
|
|
ERROR_IF(src1_type != BRW_TYPE_B &&
|
|
src1_type != BRW_TYPE_UB,
|
|
"DPAS src1 base type must be B or UB.");
|
|
ERROR_IF(src2_type != BRW_TYPE_B &&
|
|
src2_type != BRW_TYPE_UB,
|
|
"DPAS src2 base type must be B or UB.");
|
|
|
|
if (brw_type_is_uint(dst_type)) {
|
|
ERROR_IF(!brw_type_is_uint(src0_type) ||
|
|
!brw_type_is_uint(src1_type) ||
|
|
!brw_type_is_uint(src2_type),
|
|
"If any source datatype is signed, destination datatype "
|
|
"must be signed.");
|
|
}
|
|
}
|
|
|
|
/* FINISHME: Additional restrictions mentioned in the Bspec that are not
|
|
* yet enforced here:
|
|
*
|
|
* - General Accumulator registers access is not supported. This is
|
|
* currently enforced in brw_dpas_three_src (brw_eu_emit.c).
|
|
*
|
|
* - Given any combination of datatypes in the sources of a DPAS
|
|
* instructions, the boundaries of a register should not be crossed.
|
|
*/
|
|
}
|
|
|
|
return error_msg;
|
|
}
|
|
|
|
static struct string
|
|
send_descriptor_restrictions(const struct brw_isa_info *isa,
|
|
const brw_hw_decoded_inst *inst)
|
|
{
|
|
const struct intel_device_info *devinfo = isa->devinfo;
|
|
struct string error_msg = { .str = NULL, .len = 0 };
|
|
|
|
if (inst_is_split_send(isa, inst)) {
|
|
/* We can only validate immediate descriptors */
|
|
if (brw_eu_inst_send_sel_reg32_desc(devinfo, inst->raw))
|
|
return error_msg;
|
|
} else if (inst_is_send(inst)) {
|
|
/* We can only validate immediate descriptors */
|
|
if (inst->src[1].file != IMM)
|
|
return error_msg;
|
|
} else {
|
|
return error_msg;
|
|
}
|
|
|
|
const uint32_t desc = brw_eu_inst_send_desc(devinfo, inst->raw);
|
|
|
|
switch (brw_eu_inst_sfid(devinfo, inst->raw)) {
|
|
case BRW_SFID_URB:
|
|
if (devinfo->ver < 20)
|
|
break;
|
|
FALLTHROUGH;
|
|
case BRW_SFID_TGM:
|
|
case BRW_SFID_SLM:
|
|
case BRW_SFID_UGM:
|
|
ERROR_IF(!devinfo->has_lsc, "Platform does not support LSC");
|
|
|
|
ERROR_IF(lsc_opcode_has_transpose(lsc_msg_desc_opcode(devinfo, desc)) &&
|
|
lsc_msg_desc_transpose(devinfo, desc) &&
|
|
inst->exec_size != 1,
|
|
"Transposed vectors are restricted to Exec_Mask = 1.");
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (brw_eu_inst_sfid(devinfo, inst->raw) == BRW_SFID_URB && devinfo->ver < 20) {
|
|
ERROR_IF(!brw_eu_inst_header_present(devinfo, inst->raw),
|
|
"Header must be present for all URB messages.");
|
|
|
|
switch (brw_eu_inst_urb_opcode(devinfo, inst->raw)) {
|
|
case GFX7_URB_OPCODE_ATOMIC_INC:
|
|
case GFX7_URB_OPCODE_ATOMIC_MOV:
|
|
case GFX8_URB_OPCODE_ATOMIC_ADD:
|
|
case GFX8_URB_OPCODE_SIMD8_WRITE:
|
|
break;
|
|
|
|
case GFX8_URB_OPCODE_SIMD8_READ:
|
|
ERROR_IF(brw_eu_inst_rlen(devinfo, inst->raw) == 0,
|
|
"URB SIMD8 read message must read some data.");
|
|
break;
|
|
|
|
case GFX125_URB_OPCODE_FENCE:
|
|
ERROR_IF(devinfo->verx10 < 125,
|
|
"URB fence message only valid on gfx >= 12.5");
|
|
break;
|
|
|
|
default:
|
|
ERROR_IF(true, "Invalid URB message");
|
|
break;
|
|
}
|
|
}
|
|
|
|
return error_msg;
|
|
}
|
|
|
|
static struct string
|
|
register_region_special_restrictions(const struct brw_isa_info *isa,
|
|
const brw_hw_decoded_inst *inst)
|
|
{
|
|
const struct intel_device_info *devinfo = isa->devinfo;
|
|
struct string error_msg = { .str = NULL, .len = 0 };
|
|
|
|
bool format_uses_regions = inst->format == FORMAT_BASIC ||
|
|
inst->format == FORMAT_BASIC_THREE_SRC;
|
|
|
|
/* "Src0 Restrictions" in "Special Restrictions" in Bspec 56640 (r57070). */
|
|
if (devinfo->ver >= 20 &&
|
|
format_uses_regions &&
|
|
inst->num_sources > 0 &&
|
|
inst->src[0].file == FIXED_GRF) {
|
|
const unsigned v = inst->src[0].vstride;
|
|
const unsigned w = inst->src[0].width;
|
|
const unsigned h = inst->src[0].hstride;
|
|
|
|
const bool multi_indirect =
|
|
inst->src[0].address_mode == BRW_ADDRESS_REGISTER_INDIRECT_REGISTER &&
|
|
inst->src[0].vstride == STRIDE(BRW_VERTICAL_STRIDE_ONE_DIMENSIONAL);
|
|
const bool is_Vx1 = multi_indirect && w != 1;
|
|
const bool is_VxH = multi_indirect && w == 1;
|
|
|
|
const unsigned src0_stride = w == 1 ? v : h;
|
|
const unsigned src0_uniform_stride = (w == 1) || (h * w == v) || is_Vx1;
|
|
const unsigned dst_stride = inst->dst.hstride;
|
|
|
|
const unsigned src0_size = brw_type_size_bytes(inst->src[0].type);
|
|
const unsigned dst_size = brw_type_size_bytes(inst->dst.type);
|
|
const unsigned src0_subnr = inst->src[0].subnr / src0_size;
|
|
const unsigned dst_subnr = inst->dst.subnr / dst_size;
|
|
|
|
const bool dst_dword_aligned = (dst_size >= 4) ||
|
|
(dst_size == 2 && (dst_subnr % 2 == 0)) ||
|
|
(dst_size == 1 && (dst_subnr % 4 == 0));
|
|
|
|
/* The section below follows the pseudo-code in the spec to make
|
|
* easier to verify.
|
|
*/
|
|
bool allowed = false;
|
|
if ((dst_size >= 4) ||
|
|
(src0_size >= 4) ||
|
|
(dst_size == 2 && dst_stride > 1) ||
|
|
(dst_size == 1 && dst_stride > 2) ||
|
|
is_VxH) {
|
|
/* One element per DWord channel. */
|
|
allowed = true;
|
|
|
|
} else if (src0_uniform_stride || dst_dword_aligned) {
|
|
if (src0_size == 2 && dst_size == 2) {
|
|
if ((src0_stride < 2) ||
|
|
(src0_stride == 2 && src0_uniform_stride && (dst_subnr % 16 == src0_subnr / 2)))
|
|
allowed = true;
|
|
|
|
} else if (src0_size == 2 && dst_size == 1 && dst_stride == 2) {
|
|
if ((src0_stride < 2) ||
|
|
(src0_stride == 2 && src0_uniform_stride && (dst_subnr % 32 == src0_subnr)))
|
|
allowed = true;
|
|
|
|
} else if (src0_size == 1 && dst_size == 2) {
|
|
if ((src0_stride < 4) ||
|
|
(src0_stride == 4 && src0_uniform_stride && ((2 * dst_subnr) % 16 == src0_subnr / 2)) ||
|
|
(src0_stride == 8 && src0_uniform_stride && ((2 * dst_subnr) % 8 == src0_subnr / 4)))
|
|
allowed = true;
|
|
|
|
} else if (src0_size == 1 && dst_size == 1 && dst_stride == 2) {
|
|
if ((src0_stride < 4) ||
|
|
(src0_stride == 4 && src0_uniform_stride && (dst_subnr % 32 == src0_subnr / 2)) ||
|
|
(src0_stride == 8 && src0_uniform_stride && (dst_subnr % 16 == src0_subnr / 4)))
|
|
allowed = true;
|
|
|
|
} else if (src0_size == 1 && dst_size == 1 && dst_stride == 1 && w != 2) {
|
|
if ((src0_stride < 2) ||
|
|
(src0_stride == 2 && src0_uniform_stride && (dst_subnr % 32 == src0_subnr / 2)) ||
|
|
(src0_stride == 4 && src0_uniform_stride && (dst_subnr % 16 == src0_subnr / 4)))
|
|
allowed = true;
|
|
|
|
} else if (src0_size == 1 && dst_size == 1 && dst_stride == 1 && w == 2) {
|
|
if ((h == 0 && v < 4) ||
|
|
(h == 1 && v < 4) ||
|
|
(h == 2 && v < 2) ||
|
|
(h == 1 && v == 4 && (dst_subnr % 32 == 2 * (src0_subnr / 4)) && (src0_subnr % 2 == 0)) ||
|
|
(h == 2 && v == 4 && (dst_subnr % 32 == src0_subnr / 2)) ||
|
|
(h == 4 && v == 8 && (dst_subnr % 32 == src0_subnr / 4)))
|
|
allowed = true;
|
|
}
|
|
}
|
|
|
|
ERROR_IF(!allowed,
|
|
"Invalid register region for source 0. See special restrictions section.");
|
|
}
|
|
|
|
/* "Src1 Restrictions" in "Special Restrictions" in Bspec 56640 (r57070). */
|
|
if (devinfo->ver >= 20 &&
|
|
format_uses_regions &&
|
|
inst->num_sources > 1 &&
|
|
inst->src[1].file == FIXED_GRF) {
|
|
const unsigned v = inst->src[1].vstride;
|
|
const unsigned w = inst->src[1].width;
|
|
const unsigned h = inst->src[1].hstride;
|
|
|
|
const bool multi_indirect =
|
|
inst->src[1].address_mode == BRW_ADDRESS_REGISTER_INDIRECT_REGISTER &&
|
|
inst->src[1].vstride == STRIDE(BRW_VERTICAL_STRIDE_ONE_DIMENSIONAL);
|
|
const bool is_Vx1 = multi_indirect && w != 1;
|
|
|
|
const unsigned src1_stride = w == 1 ? v : h;
|
|
const unsigned src1_uniform_stride = (w == 1) || (h * w == v) || is_Vx1;
|
|
const unsigned dst_stride = inst->dst.hstride;
|
|
|
|
const unsigned src1_size = brw_type_size_bytes(inst->src[1].type);
|
|
const unsigned dst_size = brw_type_size_bytes(inst->dst.type);
|
|
const unsigned src1_subnr = inst->src[1].subnr / src1_size;
|
|
const unsigned dst_subnr = inst->dst.subnr / dst_size;
|
|
|
|
const bool dst_dword_aligned = (dst_size >= 4) ||
|
|
(dst_size == 2 && (dst_subnr % 2 == 0)) ||
|
|
(dst_size == 1 && (dst_subnr % 4 == 0));
|
|
|
|
/* The section below follows the pseudo-code in the spec to make
|
|
* easier to verify.
|
|
*/
|
|
bool allowed = false;
|
|
if ((dst_size >= 4) ||
|
|
(src1_size >= 4) ||
|
|
(dst_size == 2 && dst_stride > 1) ||
|
|
(dst_size == 1 && dst_stride > 2)) {
|
|
/* One element per DWord channel. */
|
|
allowed = true;
|
|
|
|
} else if (src1_uniform_stride || dst_dword_aligned) {
|
|
if (src1_size == 2 && dst_size == 2) {
|
|
if ((src1_stride < 2) ||
|
|
(src1_stride == 2 && src1_uniform_stride && (dst_subnr % 16 == src1_subnr / 2)))
|
|
allowed = true;
|
|
|
|
} else if (src1_size == 2 && dst_size == 1 && dst_stride == 2) {
|
|
if ((src1_stride < 2) ||
|
|
(src1_stride == 2 && src1_uniform_stride && (dst_subnr % 32 == src1_subnr)))
|
|
allowed = true;
|
|
}
|
|
}
|
|
|
|
ERROR_IF(!allowed,
|
|
"Invalid register region for source 1. See special restrictions section.");
|
|
}
|
|
|
|
return error_msg;
|
|
}
|
|
|
|
static struct string
|
|
scalar_register_restrictions(const struct brw_isa_info *isa,
|
|
const brw_hw_decoded_inst *inst)
|
|
{
|
|
const struct intel_device_info *devinfo = isa->devinfo;
|
|
struct string error_msg = { .str = NULL, .len = 0 };
|
|
|
|
/* Restrictions from BSpec 71168 (r55736). */
|
|
|
|
if (devinfo->ver >= 30) {
|
|
if (inst->dst.file == ARF && inst->dst.nr == BRW_ARF_SCALAR) {
|
|
switch (inst->opcode) {
|
|
case BRW_OPCODE_MOV: {
|
|
unsigned dst_size_bits = brw_type_size_bits(inst->dst.type);
|
|
ERROR_IF(inst->dst.type != inst->src[0].type,
|
|
"When destination is scalar register, "
|
|
"source and destination data-types must be the same.");
|
|
ERROR_IF(!brw_type_is_int(inst->dst.type) || (dst_size_bits != 16 &&
|
|
dst_size_bits != 32 &&
|
|
dst_size_bits != 64),
|
|
"When destination is scalar register, "
|
|
"it must be an integer with size 16, 32, or 64 bits.");
|
|
if (inst->src[0].file == IMM) {
|
|
ERROR_IF(inst->exec_size != 1,
|
|
"When destination is scalar register with immediate source, "
|
|
"execution size must be 1.");
|
|
ERROR_IF(inst->cond_modifier != BRW_CONDITIONAL_NONE,
|
|
"When destination is scalar register with immediate source, "
|
|
"conditional modifier must not be used.");
|
|
}
|
|
ERROR_IF((inst->dst.subnr / 32) != ((inst->dst.subnr + brw_type_size_bytes(inst->dst.type)) / 32),
|
|
"When destination is scalar register, it must not span across "
|
|
"the lower to upper 8 dword boundary of the register.");
|
|
break;
|
|
}
|
|
|
|
default:
|
|
ERROR("When destination is scalar register, opcode must be MOV.");
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (inst->src[0].file == ARF && inst->src[0].nr == BRW_ARF_SCALAR) {
|
|
switch (inst->opcode) {
|
|
case BRW_OPCODE_MOV: {
|
|
ERROR_IF(inst->dst.file == ARF && inst->dst.nr == BRW_ARF_SCALAR,
|
|
"When source is a scalar register, destination must not be a scalar register.");
|
|
ERROR_IF(!src_has_scalar_region(inst, 0),
|
|
"When source is a scalar register and opcode is MOV, the scalar (broadcast) regioning must be used.");
|
|
break;
|
|
}
|
|
|
|
case BRW_OPCODE_SEND:
|
|
case BRW_OPCODE_SENDC: {
|
|
ERROR_IF(!src1_is_null(inst),
|
|
"When source is a scalar and opcode is a SEND or SENDC, Src1 must be NULL.");
|
|
break;
|
|
}
|
|
|
|
default:
|
|
ERROR("When source is a scalar register, opcode must be MOV, SEND, or SENDC.");
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ((inst->src[1].file == ARF && inst->src[1].nr == BRW_ARF_SCALAR) ||
|
|
(inst->src[2].file == ARF && inst->src[2].nr == BRW_ARF_SCALAR)) {
|
|
ERROR("When source is a scalar register, it must be on Source 0.");
|
|
}
|
|
} else {
|
|
assert(devinfo->ver < 30);
|
|
if ((inst->dst.file == ARF && inst->dst.nr == BRW_ARF_SCALAR) ||
|
|
(inst->src[0].file == ARF && inst->src[0].nr == BRW_ARF_SCALAR) ||
|
|
(inst->src[1].file == ARF && inst->src[1].nr == BRW_ARF_SCALAR) ||
|
|
(inst->src[2].file == ARF && inst->src[2].nr == BRW_ARF_SCALAR))
|
|
ERROR("Scalar register not available before Gfx30.");
|
|
}
|
|
|
|
return error_msg;
|
|
}
|
|
|
|
static unsigned
|
|
DST_STRIDE_3SRC(unsigned hstride)
|
|
{
|
|
switch (hstride) {
|
|
case BRW_ALIGN1_3SRC_DST_HORIZONTAL_STRIDE_1: return 1;
|
|
case BRW_ALIGN1_3SRC_DST_HORIZONTAL_STRIDE_2: return 2;
|
|
}
|
|
unreachable("invalid hstride");
|
|
}
|
|
|
|
static unsigned
|
|
VSTRIDE_3SRC(unsigned vstride)
|
|
{
|
|
switch (vstride) {
|
|
case BRW_ALIGN1_3SRC_VERTICAL_STRIDE_0: return 0;
|
|
case BRW_ALIGN1_3SRC_VERTICAL_STRIDE_1: return 1;
|
|
case BRW_ALIGN1_3SRC_VERTICAL_STRIDE_4: return 4;
|
|
case BRW_ALIGN1_3SRC_VERTICAL_STRIDE_8: return 8;
|
|
}
|
|
unreachable("invalid vstride");
|
|
}
|
|
|
|
static inline unsigned
|
|
brw_implied_width_for_3src_a1(unsigned v, unsigned h)
|
|
{
|
|
/* "Regioning Rules for Align1 Ternary Operations" */
|
|
|
|
/* TODO: Add remaining rules and de-duplicate with brw_disasm.c */
|
|
|
|
if (v == 0) return 1;
|
|
if (h == 0) return v;
|
|
return v/h;
|
|
}
|
|
|
|
static struct string
|
|
brw_hw_decode_inst(const struct brw_isa_info *isa,
|
|
brw_hw_decoded_inst *inst,
|
|
const brw_eu_inst *raw)
|
|
{
|
|
const struct intel_device_info *devinfo = isa->devinfo;
|
|
struct string error_msg = { .str = NULL, .len = 0 };
|
|
|
|
inst->raw = raw;
|
|
inst->opcode = brw_eu_inst_opcode(isa, raw);
|
|
inst->num_sources = brw_num_sources_from_inst(isa, raw);
|
|
|
|
const struct opcode_desc *desc = brw_opcode_desc(isa, inst->opcode);
|
|
assert(desc->ndst == 0 || desc->ndst == 1);
|
|
inst->has_dst = desc->ndst == 1;
|
|
|
|
enum brw_execution_size exec_size = brw_eu_inst_exec_size(devinfo, raw);
|
|
switch (exec_size) {
|
|
case BRW_EXECUTE_1:
|
|
case BRW_EXECUTE_2:
|
|
case BRW_EXECUTE_4:
|
|
case BRW_EXECUTE_8:
|
|
case BRW_EXECUTE_16:
|
|
case BRW_EXECUTE_32:
|
|
inst->exec_size = 1 << exec_size;
|
|
break;
|
|
default:
|
|
RETURN_ERROR("invalid execution size");
|
|
break;
|
|
}
|
|
|
|
inst->access_mode = brw_eu_inst_access_mode(devinfo, raw);
|
|
inst->pred_control = brw_eu_inst_pred_control(devinfo, raw);
|
|
|
|
RETURN_ERROR_IF(inst->num_sources == 3 && inst->access_mode == BRW_ALIGN_1 && devinfo->ver == 9,
|
|
"Align1 mode not allowed on Gfx9 for 3-src instructions");
|
|
|
|
RETURN_ERROR_IF(inst->access_mode == BRW_ALIGN_16 && devinfo->ver >= 11,
|
|
"Align16 mode doesn't exist on Gfx11+");
|
|
|
|
switch (inst->opcode) {
|
|
case BRW_OPCODE_DPAS:
|
|
inst->format = FORMAT_DPAS_THREE_SRC;
|
|
break;
|
|
|
|
case BRW_OPCODE_SEND:
|
|
case BRW_OPCODE_SENDC:
|
|
inst->format = devinfo->ver >= 12 ? FORMAT_SEND : FORMAT_BASIC;
|
|
break;
|
|
|
|
case BRW_OPCODE_SENDS:
|
|
case BRW_OPCODE_SENDSC:
|
|
inst->format = FORMAT_SEND;
|
|
break;
|
|
|
|
case BRW_OPCODE_DO:
|
|
case BRW_OPCODE_WHILE:
|
|
case BRW_OPCODE_IF:
|
|
case BRW_OPCODE_ELSE:
|
|
case BRW_OPCODE_ENDIF:
|
|
case BRW_OPCODE_BREAK:
|
|
case BRW_OPCODE_CONTINUE:
|
|
case BRW_OPCODE_JMPI:
|
|
case BRW_OPCODE_BRD:
|
|
case BRW_OPCODE_BRC:
|
|
case BRW_OPCODE_HALT:
|
|
case BRW_OPCODE_CALLA:
|
|
case BRW_OPCODE_CALL:
|
|
case BRW_OPCODE_GOTO:
|
|
case BRW_OPCODE_JOIN:
|
|
inst->format = FORMAT_BRANCH;
|
|
break;
|
|
|
|
case BRW_OPCODE_NOP:
|
|
inst->format = FORMAT_NOP;
|
|
break;
|
|
|
|
case BRW_OPCODE_ILLEGAL:
|
|
inst->format = FORMAT_ILLEGAL;
|
|
break;
|
|
|
|
default:
|
|
if (inst->num_sources == 3) {
|
|
inst->format = FORMAT_BASIC_THREE_SRC;
|
|
} else {
|
|
inst->format = FORMAT_BASIC;
|
|
}
|
|
break;
|
|
}
|
|
|
|
switch (inst->format) {
|
|
case FORMAT_BASIC: {
|
|
assert(inst->num_sources == 1 ||
|
|
inst->num_sources == 2 ||
|
|
inst->opcode == BRW_OPCODE_WAIT);
|
|
assert(inst->has_dst ||
|
|
inst->opcode == BRW_OPCODE_SYNC);
|
|
|
|
if (inst->has_dst) {
|
|
inst->dst.file = brw_eu_inst_dst_reg_file(devinfo, raw);
|
|
inst->dst.type = brw_eu_inst_dst_type(devinfo, raw);
|
|
inst->dst.address_mode = brw_eu_inst_dst_address_mode(devinfo, raw);
|
|
if (inst->dst.address_mode == BRW_ADDRESS_DIRECT) {
|
|
inst->dst.nr = brw_eu_inst_dst_da_reg_nr(devinfo, raw);
|
|
if (inst->access_mode == BRW_ALIGN_1) {
|
|
inst->dst.subnr = brw_eu_inst_dst_da1_subreg_nr(devinfo, raw);
|
|
} else {
|
|
inst->dst.subnr = brw_eu_inst_dst_da16_subreg_nr(devinfo, raw);
|
|
}
|
|
} else {
|
|
inst->dst.subnr = brw_eu_inst_dst_ia_subreg_nr(devinfo, raw);
|
|
}
|
|
inst->dst.hstride = STRIDE(brw_eu_inst_dst_hstride(devinfo, raw));
|
|
}
|
|
|
|
inst->src[0].file = brw_eu_inst_src0_reg_file(devinfo, raw);
|
|
inst->src[0].type = brw_eu_inst_src0_type(devinfo, raw);
|
|
inst->src[0].address_mode = brw_eu_inst_src0_address_mode(devinfo, raw);
|
|
inst->src[0].negate = brw_eu_inst_src0_negate(devinfo, raw);
|
|
inst->src[0].abs = brw_eu_inst_src0_abs(devinfo, raw);
|
|
if (inst->src[0].file != IMM) {
|
|
if (inst->src[0].address_mode == BRW_ADDRESS_DIRECT) {
|
|
inst->src[0].nr = brw_eu_inst_src0_da_reg_nr(devinfo, raw);
|
|
if (inst->access_mode == BRW_ALIGN_1) {
|
|
inst->src[0].subnr = brw_eu_inst_src0_da1_subreg_nr(devinfo, raw);
|
|
} else {
|
|
inst->src[0].subnr = brw_eu_inst_src0_da16_subreg_nr(devinfo, raw) * 16;
|
|
}
|
|
} else {
|
|
inst->src[0].subnr = brw_eu_inst_src0_ia_subreg_nr(devinfo, raw);
|
|
}
|
|
|
|
inst->src[0].vstride = STRIDE(brw_eu_inst_src0_vstride(devinfo, raw));
|
|
if (inst->access_mode == BRW_ALIGN_1) {
|
|
inst->src[0].width = WIDTH(brw_eu_inst_src0_width(devinfo, raw));
|
|
inst->src[0].hstride = STRIDE(brw_eu_inst_src0_hstride(devinfo, raw));
|
|
}
|
|
}
|
|
|
|
if (inst->num_sources > 1) {
|
|
inst->src[1].file = brw_eu_inst_src1_reg_file(devinfo, raw);
|
|
inst->src[1].type = brw_eu_inst_src1_type(devinfo, raw);
|
|
inst->src[1].negate = brw_eu_inst_src1_negate(devinfo, raw);
|
|
inst->src[1].abs = brw_eu_inst_src1_abs(devinfo, raw);
|
|
if (inst->src[1].file != IMM) {
|
|
if (inst->src[1].address_mode == BRW_ADDRESS_DIRECT) {
|
|
inst->src[1].nr = brw_eu_inst_src1_da_reg_nr(devinfo, raw);
|
|
if (inst->access_mode == BRW_ALIGN_1) {
|
|
inst->src[1].subnr = brw_eu_inst_src1_da1_subreg_nr(devinfo, raw);
|
|
} else {
|
|
inst->src[1].subnr = brw_eu_inst_src1_da16_subreg_nr(devinfo, raw) * 16;
|
|
}
|
|
} else {
|
|
inst->src[1].subnr = brw_eu_inst_src1_ia_subreg_nr(devinfo, raw);
|
|
}
|
|
|
|
inst->src[1].vstride = STRIDE(brw_eu_inst_src1_vstride(devinfo, raw));
|
|
if (inst->access_mode == BRW_ALIGN_1) {
|
|
inst->src[1].width = WIDTH(brw_eu_inst_src1_width(devinfo, raw));
|
|
inst->src[1].hstride = STRIDE(brw_eu_inst_src1_hstride(devinfo, raw));
|
|
}
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case FORMAT_BASIC_THREE_SRC: {
|
|
assert(inst->num_sources == 3);
|
|
assert(inst->has_dst);
|
|
|
|
if (inst->access_mode == BRW_ALIGN_1) {
|
|
inst->dst.file = brw_eu_inst_3src_a1_dst_reg_file(devinfo, raw);
|
|
inst->dst.type = brw_eu_inst_3src_a1_dst_type(devinfo, raw);
|
|
inst->dst.nr = brw_eu_inst_3src_dst_reg_nr(devinfo, raw);
|
|
inst->dst.subnr = brw_eu_inst_3src_a1_dst_subreg_nr(devinfo, raw) * 8;
|
|
inst->dst.hstride = DST_STRIDE_3SRC(brw_eu_inst_3src_a1_dst_hstride(devinfo, raw));
|
|
|
|
inst->src[0].file = brw_eu_inst_3src_a1_src0_reg_file(devinfo, raw);
|
|
inst->src[0].type = brw_eu_inst_3src_a1_src0_type(devinfo, raw);
|
|
inst->src[0].negate = brw_eu_inst_3src_src0_negate(devinfo, raw);
|
|
inst->src[0].abs = brw_eu_inst_3src_src0_abs(devinfo, raw);
|
|
if (inst->src[0].file != IMM) {
|
|
inst->src[0].nr = brw_eu_inst_3src_src0_reg_nr(devinfo, raw);
|
|
inst->src[0].subnr = brw_eu_inst_3src_a1_src0_subreg_nr(devinfo, raw);
|
|
inst->src[0].vstride = VSTRIDE_3SRC(brw_eu_inst_3src_a1_src0_vstride(devinfo, raw));
|
|
inst->src[0].hstride = STRIDE(brw_eu_inst_3src_a1_src0_hstride(devinfo, raw));
|
|
inst->src[0].width = brw_implied_width_for_3src_a1(inst->src[0].vstride, inst->src[0].hstride);
|
|
}
|
|
|
|
inst->src[1].file = brw_eu_inst_3src_a1_src1_reg_file(devinfo, raw);
|
|
inst->src[1].type = brw_eu_inst_3src_a1_src1_type(devinfo, raw);
|
|
inst->src[1].negate = brw_eu_inst_3src_src1_negate(devinfo, raw);
|
|
inst->src[1].abs = brw_eu_inst_3src_src1_abs(devinfo, raw);
|
|
inst->src[1].nr = brw_eu_inst_3src_src1_reg_nr(devinfo, raw);
|
|
inst->src[1].subnr = brw_eu_inst_3src_a1_src1_subreg_nr(devinfo, raw);
|
|
inst->src[1].vstride = VSTRIDE_3SRC(brw_eu_inst_3src_a1_src1_vstride(devinfo, raw));
|
|
inst->src[1].hstride = STRIDE(brw_eu_inst_3src_a1_src1_hstride(devinfo, raw));
|
|
inst->src[1].width = brw_implied_width_for_3src_a1(inst->src[1].vstride, inst->src[1].hstride);
|
|
|
|
inst->src[2].file = brw_eu_inst_3src_a1_src2_reg_file(devinfo, raw);
|
|
inst->src[2].type = brw_eu_inst_3src_a1_src2_type(devinfo, raw);
|
|
inst->src[2].negate = brw_eu_inst_3src_src2_negate(devinfo, raw);
|
|
inst->src[2].abs = brw_eu_inst_3src_src2_abs(devinfo, raw);
|
|
if (inst->src[2].file != IMM) {
|
|
inst->src[2].nr = brw_eu_inst_3src_src2_reg_nr(devinfo, raw);
|
|
inst->src[2].subnr = brw_eu_inst_3src_a1_src2_subreg_nr(devinfo, raw);
|
|
inst->src[2].hstride = STRIDE(brw_eu_inst_3src_a1_src2_hstride(devinfo, raw));
|
|
inst->src[2].width = brw_implied_width_for_3src_a1(inst->src[2].vstride, inst->src[2].hstride);
|
|
}
|
|
|
|
} else {
|
|
inst->dst.file = FIXED_GRF;
|
|
inst->dst.type = brw_eu_inst_3src_a16_dst_type(devinfo, raw);
|
|
inst->dst.nr = brw_eu_inst_3src_dst_reg_nr(devinfo, raw);
|
|
inst->dst.subnr = brw_eu_inst_3src_a16_dst_subreg_nr(devinfo, raw) * 4;
|
|
|
|
enum brw_reg_type src_type = brw_eu_inst_3src_a16_src_type(devinfo, raw);
|
|
|
|
inst->src[0].file = FIXED_GRF;
|
|
inst->src[0].type = src_type;
|
|
inst->src[0].nr = brw_eu_inst_3src_src0_reg_nr(devinfo, raw);
|
|
inst->src[0].subnr = brw_eu_inst_3src_a16_src0_subreg_nr(devinfo, raw) * 4;
|
|
|
|
inst->src[1].file = FIXED_GRF;
|
|
inst->src[1].type = src_type;
|
|
inst->src[1].nr = brw_eu_inst_3src_src1_reg_nr(devinfo, raw);
|
|
inst->src[1].subnr = brw_eu_inst_3src_a16_src1_subreg_nr(devinfo, raw) * 4;
|
|
|
|
inst->src[2].file = FIXED_GRF;
|
|
inst->src[2].type = src_type;
|
|
inst->src[2].nr = brw_eu_inst_3src_src2_reg_nr(devinfo, raw);
|
|
inst->src[2].subnr = brw_eu_inst_3src_a16_src2_subreg_nr(devinfo, raw) * 4;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case FORMAT_DPAS_THREE_SRC: {
|
|
assert(inst->num_sources == 3);
|
|
assert(inst->has_dst);
|
|
|
|
inst->dst.file = brw_eu_inst_dpas_3src_dst_reg_file(devinfo, raw);
|
|
inst->dst.type = brw_eu_inst_dpas_3src_dst_type(devinfo, raw);
|
|
inst->dst.nr = brw_eu_inst_dpas_3src_dst_reg_nr(devinfo, raw);
|
|
inst->dst.subnr = brw_eu_inst_dpas_3src_dst_subreg_nr(devinfo, raw);
|
|
|
|
inst->src[0].file = brw_eu_inst_dpas_3src_src0_reg_file(devinfo, raw);
|
|
inst->src[0].type = brw_eu_inst_dpas_3src_src0_type(devinfo, raw);
|
|
inst->src[0].nr = brw_eu_inst_dpas_3src_src0_reg_nr(devinfo, raw);
|
|
inst->src[0].subnr = brw_eu_inst_dpas_3src_src0_subreg_nr(devinfo, raw);
|
|
|
|
inst->src[1].file = brw_eu_inst_dpas_3src_src1_reg_file(devinfo, raw);
|
|
inst->src[1].type = brw_eu_inst_dpas_3src_src1_type(devinfo, raw);
|
|
inst->src[1].nr = brw_eu_inst_dpas_3src_src1_reg_nr(devinfo, raw);
|
|
inst->src[1].subnr = brw_eu_inst_dpas_3src_src1_subreg_nr(devinfo, raw);
|
|
|
|
inst->src[2].file = brw_eu_inst_dpas_3src_src2_reg_file(devinfo, raw);
|
|
inst->src[2].type = brw_eu_inst_dpas_3src_src2_type(devinfo, raw);
|
|
inst->src[2].nr = brw_eu_inst_dpas_3src_src2_reg_nr(devinfo, raw);
|
|
inst->src[2].subnr = brw_eu_inst_dpas_3src_src2_subreg_nr(devinfo, raw);
|
|
break;
|
|
}
|
|
|
|
case FORMAT_SEND: {
|
|
if (inst->opcode == BRW_OPCODE_SENDS || inst->opcode == BRW_OPCODE_SENDSC) {
|
|
assert(devinfo->ver < 12);
|
|
|
|
inst->dst.file = brw_eu_inst_send_dst_reg_file(devinfo, raw);
|
|
inst->dst.type = BRW_TYPE_D;
|
|
inst->dst.nr = brw_eu_inst_dst_da_reg_nr(devinfo, raw);
|
|
inst->dst.subnr = brw_eu_inst_dst_da16_subreg_nr(devinfo, raw) * 16;
|
|
|
|
inst->src[0].file = FIXED_GRF;
|
|
inst->src[0].type = BRW_TYPE_D;
|
|
inst->src[0].nr = brw_eu_inst_src0_da_reg_nr(devinfo, raw);
|
|
inst->src[0].subnr = brw_eu_inst_src0_da16_subreg_nr(devinfo, raw) * 16;
|
|
|
|
if (inst->num_sources > 1) {
|
|
inst->src[1].file = brw_eu_inst_send_src1_reg_file(devinfo, raw);
|
|
inst->src[1].type = BRW_TYPE_D;
|
|
inst->src[1].nr = brw_eu_inst_send_src1_reg_nr(devinfo, raw);
|
|
}
|
|
} else {
|
|
assert(devinfo->ver >= 12);
|
|
|
|
inst->dst.file = brw_eu_inst_dst_reg_file(devinfo, raw);
|
|
inst->dst.type = BRW_TYPE_D;
|
|
inst->dst.nr = brw_eu_inst_dst_da_reg_nr(devinfo, raw);
|
|
|
|
inst->src[0].file = brw_eu_inst_send_src0_reg_file(devinfo, raw);
|
|
inst->src[0].type = BRW_TYPE_D;
|
|
inst->src[0].nr = brw_eu_inst_src0_da_reg_nr(devinfo, raw);
|
|
|
|
if (inst->num_sources > 1) {
|
|
inst->src[1].file = brw_eu_inst_send_src1_reg_file(devinfo, raw);
|
|
inst->src[1].type = BRW_TYPE_D;
|
|
inst->src[1].nr = brw_eu_inst_send_src1_reg_nr(devinfo, raw);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case FORMAT_BRANCH: {
|
|
assert(!inst->has_dst);
|
|
break;
|
|
}
|
|
|
|
case FORMAT_ILLEGAL:
|
|
case FORMAT_NOP: {
|
|
assert(!inst->has_dst);
|
|
assert(inst->num_sources == 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (inst->has_dst) {
|
|
ERROR_IF(inst->dst.type == BRW_TYPE_INVALID,
|
|
"Invalid destination register type encoding.");
|
|
}
|
|
|
|
for (unsigned i = 0; i < inst->num_sources; i++) {
|
|
ERROR_IF(inst->src[i].type == BRW_TYPE_INVALID,
|
|
"Invalid source register type encoding.");
|
|
}
|
|
|
|
if ((inst->format == FORMAT_BASIC ||
|
|
inst->format == FORMAT_BASIC_THREE_SRC ||
|
|
inst->format == FORMAT_DPAS_THREE_SRC) &&
|
|
!inst_is_send(inst)) {
|
|
inst->saturate = brw_eu_inst_saturate(devinfo, raw);
|
|
|
|
if (inst->num_sources > 1 ||
|
|
devinfo->ver < 12 ||
|
|
inst->src[0].file != IMM ||
|
|
brw_type_size_bytes(inst->src[0].type) < 8) {
|
|
inst->cond_modifier = brw_eu_inst_cond_modifier(devinfo, raw);
|
|
}
|
|
}
|
|
|
|
return error_msg;
|
|
}
|
|
|
|
bool
|
|
brw_validate_instruction(const struct brw_isa_info *isa,
|
|
const brw_eu_inst *inst, int offset,
|
|
unsigned inst_size,
|
|
struct disasm_info *disasm)
|
|
{
|
|
struct string error_msg = { .str = NULL, .len = 0 };
|
|
|
|
if (is_unsupported_inst(isa, inst)) {
|
|
ERROR("Instruction not supported on this Gen");
|
|
} else {
|
|
brw_hw_decoded_inst decoded = {};
|
|
error_msg = brw_hw_decode_inst(isa, &decoded, inst);
|
|
|
|
#define CHECK(func, args...) \
|
|
do { \
|
|
struct string __msg = func(isa, &decoded, ##args); \
|
|
if (__msg.str) { \
|
|
cat(&error_msg, __msg); \
|
|
free(__msg.str); \
|
|
} \
|
|
} while (0)
|
|
|
|
if (error_msg.str == NULL)
|
|
CHECK(invalid_values);
|
|
|
|
if (error_msg.str == NULL) {
|
|
CHECK(sources_not_null);
|
|
CHECK(send_restrictions);
|
|
CHECK(general_restrictions_based_on_operand_types);
|
|
CHECK(general_restrictions_on_region_parameters);
|
|
CHECK(special_restrictions_for_mixed_float_mode);
|
|
CHECK(region_alignment_rules);
|
|
CHECK(vector_immediate_restrictions);
|
|
CHECK(special_requirements_for_handling_double_precision_data_types);
|
|
CHECK(instruction_restrictions);
|
|
CHECK(send_descriptor_restrictions);
|
|
CHECK(register_region_special_restrictions);
|
|
CHECK(scalar_register_restrictions);
|
|
}
|
|
|
|
#undef CHECK
|
|
}
|
|
|
|
if (error_msg.str && disasm) {
|
|
disasm_insert_error(disasm, offset, inst_size, error_msg.str);
|
|
}
|
|
free(error_msg.str);
|
|
|
|
return error_msg.len == 0;
|
|
}
|
|
|
|
bool
|
|
brw_validate_instructions(const struct brw_isa_info *isa,
|
|
const void *assembly, int start_offset, int end_offset,
|
|
struct disasm_info *disasm)
|
|
{
|
|
const struct intel_device_info *devinfo = isa->devinfo;
|
|
bool valid = true;
|
|
|
|
for (int src_offset = start_offset; src_offset < end_offset;) {
|
|
const brw_eu_inst *inst = assembly + src_offset;
|
|
bool is_compact = brw_eu_inst_cmpt_control(devinfo, inst);
|
|
unsigned inst_size = is_compact ? sizeof(brw_eu_compact_inst)
|
|
: sizeof(brw_eu_inst);
|
|
brw_eu_inst uncompacted;
|
|
|
|
if (is_compact) {
|
|
brw_eu_compact_inst *compacted = (void *)inst;
|
|
brw_uncompact_instruction(isa, &uncompacted, compacted);
|
|
inst = &uncompacted;
|
|
}
|
|
|
|
bool v = brw_validate_instruction(isa, inst, src_offset,
|
|
inst_size, disasm);
|
|
valid = valid && v;
|
|
|
|
src_offset += inst_size;
|
|
}
|
|
|
|
return valid;
|
|
}
|