mesa/src/compiler/nir/nir_builtin_builder.c
Jason Ekstrand ddd08e1888 nir/builder: Remove the use_fmov parameter from nir_swizzle
This flag has caused more confusion than good in most cases.  You can
validly use imov for floats or fmov for integers because, without source
modifiers, neither modify their input in any way.  Using imov for floats
is more reliable so we go that direction.

Reviewed-by: Kristian H. Kristensen <hoegsberg@google.com>
Acked-by: Alyssa Rosenzweig <alyssa@rosenzweig.io>
2019-05-24 08:38:11 -05:00

175 lines
5.7 KiB
C

/*
* Copyright © 2018 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <math.h>
#include "nir.h"
#include "nir_builtin_builder.h"
nir_ssa_def*
nir_cross3(nir_builder *b, nir_ssa_def *x, nir_ssa_def *y)
{
unsigned yzx[3] = { 1, 2, 0 };
unsigned zxy[3] = { 2, 0, 1 };
return nir_fsub(b, nir_fmul(b, nir_swizzle(b, x, yzx, 3),
nir_swizzle(b, y, zxy, 3)),
nir_fmul(b, nir_swizzle(b, x, zxy, 3),
nir_swizzle(b, y, yzx, 3)));
}
nir_ssa_def*
nir_cross4(nir_builder *b, nir_ssa_def *x, nir_ssa_def *y)
{
nir_ssa_def *cross = nir_cross3(b, x, y);
return nir_vec4(b,
nir_channel(b, cross, 0),
nir_channel(b, cross, 1),
nir_channel(b, cross, 2),
nir_imm_intN_t(b, 0, cross->bit_size));
}
nir_ssa_def*
nir_length(nir_builder *b, nir_ssa_def *vec)
{
nir_ssa_def *finf = nir_imm_floatN_t(b, INFINITY, vec->bit_size);
nir_ssa_def *abs = nir_fabs(b, vec);
if (vec->num_components == 1)
return abs;
nir_ssa_def *maxc = nir_fmax_abs_vec_comp(b, abs);
abs = nir_fdiv(b, abs, maxc);
nir_ssa_def *res = nir_fmul(b, nir_fsqrt(b, nir_fdot(b, abs, abs)), maxc);
return nir_bcsel(b, nir_feq(b, maxc, finf), maxc, res);
}
nir_ssa_def*
nir_fast_length(nir_builder *b, nir_ssa_def *vec)
{
switch (vec->num_components) {
case 1: return nir_fsqrt(b, nir_fmul(b, vec, vec));
case 2: return nir_fsqrt(b, nir_fdot2(b, vec, vec));
case 3: return nir_fsqrt(b, nir_fdot3(b, vec, vec));
case 4: return nir_fsqrt(b, nir_fdot4(b, vec, vec));
default:
unreachable("Invalid number of components");
}
}
nir_ssa_def*
nir_nextafter(nir_builder *b, nir_ssa_def *x, nir_ssa_def *y)
{
nir_ssa_def *zero = nir_imm_intN_t(b, 0, x->bit_size);
nir_ssa_def *one = nir_imm_intN_t(b, 1, x->bit_size);
nir_ssa_def *condeq = nir_feq(b, x, y);
nir_ssa_def *conddir = nir_flt(b, x, y);
nir_ssa_def *condzero = nir_feq(b, x, zero);
/* beware of: +/-0.0 - 1 == NaN */
nir_ssa_def *xn =
nir_bcsel(b,
condzero,
nir_imm_intN_t(b, (1 << (x->bit_size - 1)) + 1, x->bit_size),
nir_isub(b, x, one));
/* beware of -0.0 + 1 == -0x1p-149 */
nir_ssa_def *xp = nir_bcsel(b, condzero, one, nir_iadd(b, x, one));
/* nextafter can be implemented by just +/- 1 on the int value */
nir_ssa_def *res =
nir_bcsel(b, nir_ixor(b, conddir, nir_flt(b, x, zero)), xp, xn);
return nir_nan_check2(b, x, y, nir_bcsel(b, condeq, x, res));
}
nir_ssa_def*
nir_normalize(nir_builder *b, nir_ssa_def *vec)
{
if (vec->num_components == 1)
return nir_fsign(b, vec);
nir_ssa_def *f0 = nir_imm_floatN_t(b, 0.0, vec->bit_size);
nir_ssa_def *f1 = nir_imm_floatN_t(b, 1.0, vec->bit_size);
nir_ssa_def *finf = nir_imm_floatN_t(b, INFINITY, vec->bit_size);
/* scale the input to increase precision */
nir_ssa_def *maxc = nir_fmax_abs_vec_comp(b, vec);
nir_ssa_def *svec = nir_fdiv(b, vec, maxc);
/* for inf */
nir_ssa_def *finfvec = nir_copysign(b, nir_bcsel(b, nir_feq(b, vec, finf), f1, f0), f1);
nir_ssa_def *temp = nir_bcsel(b, nir_feq(b, maxc, finf), finfvec, svec);
nir_ssa_def *res = nir_fmul(b, temp, nir_frsq(b, nir_fdot(b, temp, temp)));
return nir_bcsel(b, nir_feq(b, maxc, f0), vec, res);
}
nir_ssa_def*
nir_rotate(nir_builder *b, nir_ssa_def *x, nir_ssa_def *y)
{
nir_ssa_def *shift_mask = nir_imm_int(b, x->bit_size - 1);
if (y->bit_size != 32)
y = nir_u2u32(b, y);
nir_ssa_def *lshift = nir_iand(b, y, shift_mask);
nir_ssa_def *rshift = nir_isub(b, nir_imm_int(b, x->bit_size), lshift);
nir_ssa_def *hi = nir_ishl(b, x, lshift);
nir_ssa_def *lo = nir_ushr(b, x, rshift);
return nir_ior(b, hi, lo);
}
nir_ssa_def*
nir_smoothstep(nir_builder *b, nir_ssa_def *edge0, nir_ssa_def *edge1, nir_ssa_def *x)
{
nir_ssa_def *f2 = nir_imm_floatN_t(b, 2.0, x->bit_size);
nir_ssa_def *f3 = nir_imm_floatN_t(b, 3.0, x->bit_size);
/* t = clamp((x - edge0) / (edge1 - edge0), 0, 1) */
nir_ssa_def *t =
nir_fsat(b, nir_fdiv(b, nir_fsub(b, x, edge0),
nir_fsub(b, edge1, edge0)));
/* result = t * t * (3 - 2 * t) */
return nir_fmul(b, t, nir_fmul(b, t, nir_fsub(b, f3, nir_fmul(b, f2, t))));
}
nir_ssa_def*
nir_upsample(nir_builder *b, nir_ssa_def *hi, nir_ssa_def *lo)
{
assert(lo->num_components == hi->num_components);
assert(lo->bit_size == hi->bit_size);
nir_ssa_def *res[NIR_MAX_VEC_COMPONENTS];
for (unsigned i = 0; i < lo->num_components; ++i) {
nir_ssa_def *vec = nir_vec2(b, nir_channel(b, lo, i), nir_channel(b, hi, i));
res[i] = nir_pack_bits(b, vec, vec->bit_size * 2);
}
return nir_vec(b, res, lo->num_components);
}