mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-22 22:10:10 +01:00
Fixed the types in brw_inst::bits so the struct is packed correctly. Reviewed-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com> Reviewed-by: Kenneth Graunke <kenneth@whitecape.org> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/36730>
1426 lines
51 KiB
C++
1426 lines
51 KiB
C++
/*
|
||
* Copyright © 2010 Intel Corporation
|
||
*
|
||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||
* copy of this software and associated documentation files (the "Software"),
|
||
* to deal in the Software without restriction, including without limitation
|
||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
* and/or sell copies of the Software, and to permit persons to whom the
|
||
* Software is furnished to do so, subject to the following conditions:
|
||
*
|
||
* The above copyright notice and this permission notice (including the next
|
||
* paragraph) shall be included in all copies or substantial portions of the
|
||
* Software.
|
||
*
|
||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||
* IN THE SOFTWARE.
|
||
*
|
||
* Authors:
|
||
* Eric Anholt <eric@anholt.net>
|
||
*
|
||
*/
|
||
|
||
#include "brw_eu.h"
|
||
#include "brw_shader.h"
|
||
#include "brw_builder.h"
|
||
#include "brw_cfg.h"
|
||
#include "dev/intel_debug.h"
|
||
#include "util/set.h"
|
||
#include "util/register_allocate.h"
|
||
|
||
static void
|
||
assign_reg(const struct intel_device_info *devinfo,
|
||
unsigned *reg_hw_locations, brw_reg *reg)
|
||
{
|
||
if (reg->file == VGRF) {
|
||
reg->nr = reg_unit(devinfo) * reg_hw_locations[reg->nr] + reg->offset / REG_SIZE;
|
||
reg->offset %= REG_SIZE;
|
||
}
|
||
}
|
||
|
||
void
|
||
brw_assign_regs_trivial(brw_shader &s)
|
||
{
|
||
const struct intel_device_info *devinfo = s.devinfo;
|
||
unsigned *hw_reg_mapping = ralloc_array(NULL, unsigned, s.alloc.count + 1);
|
||
unsigned i;
|
||
int reg_width = s.dispatch_width / 8;
|
||
|
||
/* Note that compressed instructions require alignment to 2 registers. */
|
||
hw_reg_mapping[0] = ALIGN(s.first_non_payload_grf, reg_width);
|
||
for (i = 1; i <= s.alloc.count; i++) {
|
||
hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
|
||
DIV_ROUND_UP(s.alloc.sizes[i - 1],
|
||
reg_unit(devinfo)));
|
||
}
|
||
s.grf_used = hw_reg_mapping[s.alloc.count];
|
||
|
||
foreach_block_and_inst(block, brw_inst, inst, s.cfg) {
|
||
assign_reg(devinfo, hw_reg_mapping, &inst->dst);
|
||
for (i = 0; i < inst->sources; i++) {
|
||
assign_reg(devinfo, hw_reg_mapping, &inst->src[i]);
|
||
}
|
||
}
|
||
|
||
if (s.grf_used >= BRW_MAX_GRF) {
|
||
s.fail("Ran out of regs on trivial allocator (%d/%d)\n",
|
||
s.grf_used, BRW_MAX_GRF);
|
||
} else {
|
||
s.alloc.count = s.grf_used;
|
||
}
|
||
|
||
ralloc_free(hw_reg_mapping);
|
||
}
|
||
|
||
extern "C" void
|
||
brw_alloc_reg_sets(struct brw_compiler *compiler)
|
||
{
|
||
const struct intel_device_info *devinfo = compiler->devinfo;
|
||
int base_reg_count = (devinfo->ver >= 30 && !INTEL_DEBUG(DEBUG_NO_VRT) ?
|
||
XE3_MAX_GRF / reg_unit(devinfo) :
|
||
BRW_MAX_GRF);
|
||
|
||
/* The registers used to make up almost all values handled in the compiler
|
||
* are a scalar value occupying a single register (or 2 registers in the
|
||
* case of SIMD16, which is handled by dividing base_reg_count by 2 and
|
||
* multiplying allocated register numbers by 2). Things that were
|
||
* aggregates of scalar values at the GLSL level were split to scalar
|
||
* values by split_virtual_grfs().
|
||
*
|
||
* However, texture SEND messages return a series of contiguous registers
|
||
* to write into. We currently always ask for 4 registers, but we may
|
||
* convert that to use less some day.
|
||
*
|
||
* Additionally, on gfx5 we need aligned pairs of registers for the PLN
|
||
* instruction, and on gfx4 we need 8 contiguous regs for workaround simd16
|
||
* texturing.
|
||
*/
|
||
assert(REG_CLASS_COUNT == MAX_VGRF_SIZE(devinfo) / reg_unit(devinfo));
|
||
int class_sizes[REG_CLASS_COUNT];
|
||
for (unsigned i = 0; i < REG_CLASS_COUNT; i++)
|
||
class_sizes[i] = i + 1;
|
||
|
||
struct ra_regs *regs = ra_alloc_reg_set(compiler, base_reg_count, false);
|
||
if (devinfo->ver < 30)
|
||
ra_set_allocate_round_robin(regs);
|
||
struct ra_class **classes = ralloc_array(compiler, struct ra_class *,
|
||
REG_CLASS_COUNT);
|
||
|
||
/* Now, make the register classes for each size of contiguous register
|
||
* allocation we might need to make.
|
||
*/
|
||
for (int i = 0; i < REG_CLASS_COUNT; i++) {
|
||
classes[i] = ra_alloc_contig_reg_class(regs, class_sizes[i]);
|
||
|
||
for (int reg = 0; reg <= base_reg_count - class_sizes[i]; reg++)
|
||
ra_class_add_reg(classes[i], reg);
|
||
|
||
if (devinfo->ver >= 30 && !INTEL_DEBUG(DEBUG_NO_VRT))
|
||
ra_class_override_p(classes[i], 96 - class_sizes[i] + 1);
|
||
}
|
||
|
||
ra_set_finalize(regs, NULL);
|
||
|
||
compiler->reg_set.regs = regs;
|
||
for (unsigned i = 0; i < ARRAY_SIZE(compiler->reg_set.classes); i++)
|
||
compiler->reg_set.classes[i] = NULL;
|
||
for (int i = 0; i < REG_CLASS_COUNT; i++)
|
||
compiler->reg_set.classes[class_sizes[i] - 1] = classes[i];
|
||
}
|
||
|
||
static int
|
||
count_to_loop_end(const bblock_t *block, const brw_ip_ranges &ips)
|
||
{
|
||
if (block->end()->opcode == BRW_OPCODE_WHILE)
|
||
return ips.range(block).last();
|
||
|
||
int depth = 1;
|
||
/* Skip the first block, since we don't want to count the do the calling
|
||
* function found.
|
||
*/
|
||
for (block = block->next();
|
||
depth > 0;
|
||
block = block->next()) {
|
||
if (block->start()->opcode == BRW_OPCODE_DO)
|
||
depth++;
|
||
if (block->end()->opcode == BRW_OPCODE_WHILE) {
|
||
depth--;
|
||
if (depth == 0)
|
||
return ips.range(block).last();
|
||
}
|
||
}
|
||
UNREACHABLE("not reached");
|
||
}
|
||
|
||
void brw_shader::calculate_payload_ranges(bool allow_spilling,
|
||
unsigned payload_node_count,
|
||
int *payload_last_use_ip) const
|
||
{
|
||
const brw_ip_ranges &ips = this->ip_ranges_analysis.require();
|
||
|
||
int loop_depth = 0;
|
||
int loop_end_ip = 0;
|
||
|
||
for (unsigned i = 0; i < payload_node_count; i++)
|
||
payload_last_use_ip[i] = -1;
|
||
|
||
int ip = 0;
|
||
foreach_block_and_inst(block, brw_inst, inst, cfg) {
|
||
switch (inst->opcode) {
|
||
case BRW_OPCODE_DO:
|
||
loop_depth++;
|
||
|
||
/* Since payload regs are deffed only at the start of the shader
|
||
* execution, any uses of the payload within a loop mean the live
|
||
* interval extends to the end of the outermost loop. Find the ip of
|
||
* the end now.
|
||
*/
|
||
if (loop_depth == 1)
|
||
loop_end_ip = count_to_loop_end(block, ips);
|
||
break;
|
||
case BRW_OPCODE_WHILE:
|
||
loop_depth--;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
int use_ip;
|
||
if (loop_depth > 0)
|
||
use_ip = loop_end_ip;
|
||
else
|
||
use_ip = ip;
|
||
|
||
/* Note that UNIFORM args have been turned into FIXED_GRF by
|
||
* assign_curbe_setup(), and interpolation uses fixed hardware regs from
|
||
* the start (see interp_reg()).
|
||
*/
|
||
for (int i = 0; i < inst->sources; i++) {
|
||
if (inst->src[i].file == FIXED_GRF) {
|
||
unsigned reg_nr = inst->src[i].nr;
|
||
if (reg_nr / reg_unit(devinfo) >= payload_node_count)
|
||
continue;
|
||
|
||
for (unsigned j = reg_nr / reg_unit(devinfo);
|
||
j < DIV_ROUND_UP(reg_nr + regs_read(devinfo, inst, i),
|
||
reg_unit(devinfo));
|
||
j++) {
|
||
payload_last_use_ip[j] = use_ip;
|
||
assert(j < payload_node_count);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (inst->dst.file == FIXED_GRF) {
|
||
unsigned reg_nr = inst->dst.nr;
|
||
if (reg_nr / reg_unit(devinfo) < payload_node_count) {
|
||
for (unsigned j = reg_nr / reg_unit(devinfo);
|
||
j < DIV_ROUND_UP(reg_nr + regs_written(inst),
|
||
reg_unit(devinfo));
|
||
j++) {
|
||
payload_last_use_ip[j] = use_ip;
|
||
assert(j < payload_node_count);
|
||
}
|
||
}
|
||
}
|
||
|
||
ip++;
|
||
}
|
||
|
||
/* g0 is needed to construct scratch headers for spilling. While we could
|
||
* extend its live range each time we spill a register, and update the
|
||
* interference graph accordingly, this would get pretty messy. Instead,
|
||
* simply consider g0 live for the whole program if spilling is required.
|
||
*/
|
||
if (allow_spilling)
|
||
payload_last_use_ip[0] = ip - 1;
|
||
}
|
||
|
||
class brw_reg_alloc {
|
||
public:
|
||
brw_reg_alloc(brw_shader *fs):
|
||
fs(fs), devinfo(fs->devinfo), compiler(fs->compiler),
|
||
live(fs->live_analysis.require()), g(NULL),
|
||
have_spill_costs(false)
|
||
{
|
||
mem_ctx = ralloc_context(NULL);
|
||
|
||
/* Stash the number of instructions so we can sanity check that our
|
||
* counts still match liveness.
|
||
*/
|
||
live_instr_count = fs->cfg->total_instructions;
|
||
|
||
spill_insts = _mesa_pointer_set_create(mem_ctx);
|
||
|
||
/* Most of this allocation was written for a reg_width of 1
|
||
* (dispatch_width == 8). In extending to SIMD16, the code was
|
||
* left in place and it was converted to have the hardware
|
||
* registers it's allocating be contiguous physical pairs of regs
|
||
* for reg_width == 2.
|
||
*/
|
||
int reg_width = fs->dispatch_width / 8;
|
||
payload_node_count = ALIGN(fs->first_non_payload_grf, reg_width);
|
||
|
||
/* Get payload IP information */
|
||
payload_last_use_ip = ralloc_array(mem_ctx, int, payload_node_count);
|
||
|
||
node_count = 0;
|
||
first_payload_node = 0;
|
||
grf127_send_hack_node = 0;
|
||
first_vgrf_node = 0;
|
||
last_vgrf_node = 0;
|
||
first_spill_node = 0;
|
||
|
||
spill_vgrf_ip = NULL;
|
||
spill_vgrf_ip_alloc = 0;
|
||
spill_node_count = 0;
|
||
|
||
eot_reg = -1;
|
||
}
|
||
|
||
~brw_reg_alloc()
|
||
{
|
||
ralloc_free(mem_ctx);
|
||
}
|
||
|
||
bool assign_regs(bool allow_spilling, bool spill_all);
|
||
|
||
private:
|
||
void setup_live_interference(unsigned node, brw_range ip_range);
|
||
void setup_inst_interference(const brw_inst *inst);
|
||
|
||
bool build_interference_graph(bool allow_spilling);
|
||
|
||
brw_reg build_ex_desc(const brw_builder &bld, unsigned reg_size, bool unspill);
|
||
|
||
brw_reg build_lane_offsets(const brw_builder &bld,
|
||
uint32_t spill_offset, int ip);
|
||
brw_reg build_single_offset(const brw_builder &bld,
|
||
uint32_t spill_offset, int ip);
|
||
brw_reg build_legacy_scratch_header(const brw_builder &bld,
|
||
uint32_t spill_offset, int ip);
|
||
|
||
void emit_unspill(const brw_builder &bld, struct brw_shader_stats *stats,
|
||
brw_reg dst, uint32_t spill_offset, unsigned count, int ip);
|
||
void emit_spill(const brw_builder &bld, struct brw_shader_stats *stats,
|
||
brw_reg src, uint32_t spill_offset, unsigned count, int ip);
|
||
|
||
void set_spill_costs();
|
||
int choose_spill_reg();
|
||
brw_reg alloc_spill_reg(unsigned size, int ip);
|
||
void spill_reg(unsigned spill_reg);
|
||
|
||
void *mem_ctx;
|
||
brw_shader *fs;
|
||
const intel_device_info *devinfo;
|
||
const brw_compiler *compiler;
|
||
const brw_live_variables &live;
|
||
int live_instr_count;
|
||
|
||
set *spill_insts;
|
||
|
||
int eot_reg;
|
||
|
||
ra_graph *g;
|
||
bool have_spill_costs;
|
||
|
||
int payload_node_count;
|
||
int *payload_last_use_ip;
|
||
|
||
int node_count;
|
||
int first_payload_node;
|
||
int grf127_send_hack_node;
|
||
int first_vgrf_node;
|
||
int last_vgrf_node;
|
||
int first_spill_node;
|
||
|
||
int *spill_vgrf_ip;
|
||
int spill_vgrf_ip_alloc;
|
||
int spill_node_count;
|
||
};
|
||
|
||
namespace {
|
||
/**
|
||
* Maximum spill block size we expect to encounter in 32B units.
|
||
*
|
||
* This is somewhat arbitrary and doesn't necessarily limit the maximum
|
||
* variable size that can be spilled -- A higher value will allow a
|
||
* variable of a given size to be spilled more efficiently with a smaller
|
||
* number of scratch messages, but will increase the likelihood of a
|
||
* collision between the MRFs reserved for spilling and other MRFs used by
|
||
* the program (and possibly increase GRF register pressure on platforms
|
||
* without hardware MRFs), what could cause register allocation to fail.
|
||
*
|
||
* For the moment reserve just enough space so a register of 32 bit
|
||
* component type and natural region width can be spilled without splitting
|
||
* into multiple (force_writemask_all) scratch messages.
|
||
*/
|
||
unsigned
|
||
spill_max_size(const brw_shader *s)
|
||
{
|
||
/* LSC is limited to SIMD16 sends (SIMD32 on Xe2) */
|
||
if (s->devinfo->has_lsc)
|
||
return 2 * reg_unit(s->devinfo);
|
||
|
||
/* FINISHME - On Gfx7+ it should be possible to avoid this limit
|
||
* altogether by spilling directly from the temporary GRF
|
||
* allocated to hold the result of the instruction (and the
|
||
* scratch write header).
|
||
*/
|
||
return s->dispatch_width / 8;
|
||
}
|
||
}
|
||
|
||
void
|
||
brw_reg_alloc::setup_live_interference(unsigned node, brw_range ip_range)
|
||
{
|
||
/* Mark any virtual grf that is live between the start of the program and
|
||
* the last use of a payload node interfering with that payload node.
|
||
*/
|
||
for (int i = 0; i < payload_node_count; i++) {
|
||
if (payload_last_use_ip[i] == -1)
|
||
continue;
|
||
|
||
/* Note that we use a <= comparison, unlike vgrfs_interfere(),
|
||
* in order to not have to worry about the uniform issue described in
|
||
* calculate_live_intervals().
|
||
*/
|
||
if (ip_range.start <= payload_last_use_ip[i])
|
||
ra_add_node_interference(g, node, first_payload_node + i);
|
||
}
|
||
|
||
const brw_range clipped_ip_range = clip_end(ip_range, 1);
|
||
|
||
/* Add interference with every vgrf whose live range intersects this
|
||
* node's. We only need to look at nodes below this one as the reflexivity
|
||
* of interference will take care of the rest.
|
||
*/
|
||
for (unsigned n2 = first_vgrf_node;
|
||
n2 <= (unsigned)last_vgrf_node && n2 < node; n2++) {
|
||
unsigned vgrf = n2 - first_vgrf_node;
|
||
|
||
/* Clip the ranges so the end of a live range can overlap with
|
||
* the start of another live range. See details in vgrfs_interfere().
|
||
*/
|
||
if (overlaps(clip_end(live.vgrf_range[vgrf], 1),
|
||
clipped_ip_range))
|
||
ra_add_node_interference(g, node, n2);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Returns true if this instruction's sources and destinations cannot
|
||
* safely be the same register.
|
||
*
|
||
* In most cases, a register can be written over safely by the same
|
||
* instruction that is its last use. For a single instruction, the
|
||
* sources are dereferenced before writing of the destination starts
|
||
* (naturally).
|
||
*
|
||
* However, there are a few cases where this can be problematic:
|
||
*
|
||
* - Virtual opcodes that translate to multiple instructions in the
|
||
* code generator: if src == dst and one instruction writes the
|
||
* destination before a later instruction reads the source, then
|
||
* src will have been clobbered.
|
||
*
|
||
* - SIMD16 compressed instructions with certain regioning (see below).
|
||
*
|
||
* The register allocator uses this information to set up conflicts between
|
||
* GRF sources and the destination.
|
||
*/
|
||
static bool
|
||
brw_inst_has_source_and_destination_hazard(const struct intel_device_info *devinfo,
|
||
const brw_inst *inst, unsigned src)
|
||
{
|
||
switch (inst->opcode) {
|
||
case FS_OPCODE_PACK_HALF_2x16_SPLIT:
|
||
/* Multiple partial writes to the destination */
|
||
return true;
|
||
case SHADER_OPCODE_BROADCAST:
|
||
/* This instruction returns an arbitrary channel from the source. If the
|
||
* source is 64-bits and the platform does not support 64-bit integers,
|
||
* the instruction will be split in to multiple instructionsin the
|
||
* generator. It's possible that one of the instructions will read from
|
||
* a channel corresponding to an earlier instruction.
|
||
*
|
||
* Otherwise, if the SIMD size is larger than the fundamental SIMD size
|
||
* of the platform, the instruction will be implicitly SIMD split. It is
|
||
* possible for earlier "instructions" to overwrite the source needed
|
||
* later.
|
||
*/
|
||
return inst->exec_size > 8 * reg_unit(devinfo) ||
|
||
(brw_type_size_bytes(inst->src[src].type) > 4 && !devinfo->has_64bit_int);
|
||
case SHADER_OPCODE_SHUFFLE:
|
||
/* This instruction returns an arbitrary channel from the source and
|
||
* gets split into smaller instructions in the generator. It's possible
|
||
* that one of the instructions will read from a channel corresponding
|
||
* to an earlier instruction.
|
||
*/
|
||
case SHADER_OPCODE_SEL_EXEC:
|
||
/* This is implemented as
|
||
*
|
||
* mov(16) g4<1>D 0D { align1 WE_all 1H };
|
||
* mov(16) g4<1>D g5<8,8,1>D { align1 1H }
|
||
*
|
||
* Because the source is only read in the second instruction, the first
|
||
* may stomp all over it.
|
||
*/
|
||
return true;
|
||
case SHADER_OPCODE_QUAD_SWIZZLE:
|
||
switch (inst->src[1].ud) {
|
||
case BRW_SWIZZLE_XXXX:
|
||
case BRW_SWIZZLE_YYYY:
|
||
case BRW_SWIZZLE_ZZZZ:
|
||
case BRW_SWIZZLE_WWWW:
|
||
case BRW_SWIZZLE_XXZZ:
|
||
case BRW_SWIZZLE_YYWW:
|
||
case BRW_SWIZZLE_XYXY:
|
||
case BRW_SWIZZLE_ZWZW:
|
||
/* These can be implemented as a single Align1 region on all
|
||
* platforms, so there's never a hazard between source and
|
||
* destination. C.f. brw_generator::generate_quad_swizzle().
|
||
*/
|
||
return false;
|
||
default:
|
||
return !is_uniform(inst->src[0]);
|
||
}
|
||
case BRW_OPCODE_DPAS:
|
||
/* This is overly conservative. The actual hazard is more complicated to
|
||
* describe. When the repeat count is N, the single instruction behaves
|
||
* like N instructions with a repeat count of one, but the destination
|
||
* and source registers are incremented (in somewhat complex ways) for
|
||
* each instruction.
|
||
*
|
||
* This means the source and destination register is actually a range of
|
||
* registers. The hazard exists of an earlier iteration would write a
|
||
* register that should be read by a later iteration.
|
||
*
|
||
* There may be some advantage to properly modeling this, but for now,
|
||
* be overly conservative.
|
||
*/
|
||
return inst->as_dpas()->rcount > 1;
|
||
default:
|
||
/* The SIMD16 compressed instruction
|
||
*
|
||
* add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
|
||
*
|
||
* is actually decoded in hardware as:
|
||
*
|
||
* add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
|
||
* add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
|
||
*
|
||
* Which is safe. However, if we have uniform accesses
|
||
* happening, we get into trouble:
|
||
*
|
||
* add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
|
||
* add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
|
||
*
|
||
* Now our destination for the first instruction overwrote the
|
||
* second instruction's src0, and we get garbage for those 8
|
||
* pixels.
|
||
*/
|
||
if (inst->exec_size > 8 * reg_unit(devinfo)) {
|
||
if (inst->src[src].file == VGRF && (inst->src[src].stride == 0 ||
|
||
inst->src[src].type == BRW_TYPE_UW ||
|
||
inst->src[src].type == BRW_TYPE_W ||
|
||
inst->src[src].type == BRW_TYPE_UB ||
|
||
inst->src[src].type == BRW_TYPE_B)) {
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
}
|
||
|
||
void
|
||
brw_reg_alloc::setup_inst_interference(const brw_inst *inst)
|
||
{
|
||
/* Certain instructions can't safely use the same register for their
|
||
* sources and destination. Add interference.
|
||
*/
|
||
if (inst->dst.file == VGRF) {
|
||
for (unsigned i = 0; i < inst->sources; i++) {
|
||
if (inst->src[i].file == VGRF &&
|
||
brw_inst_has_source_and_destination_hazard(devinfo, inst, i)) {
|
||
ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
|
||
first_vgrf_node + inst->src[i].nr);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* A compressed instruction is actually two instructions executed
|
||
* simultaneously. If the source and destination registers are the same,
|
||
* each instruction overwrites its own source, and there's no problem. The
|
||
* real problem here is if the source and destination registers are off by
|
||
* one. Then you can end up in a scenario where the first instruction
|
||
* overwrites the source of the second instruction. Consider this
|
||
* instruction:
|
||
*
|
||
* and(16) g17<1>UD g16<1,1,0>UD g13<1,1,0>UD
|
||
*
|
||
* The EU processes this as
|
||
*
|
||
* and(8) g17<1>UD g16<1,1,0>UD g13<1,1,0>UD
|
||
* and(8) g18<1>UD g17<1,1,0>UD g14<1,1,0>UD
|
||
*
|
||
* The first SIMD8 part of the instruction overwrites the source used in
|
||
* the second SIMD8 part. Since there's no way to tell the register
|
||
* allocator "the destination register number can be src, but it can't be
|
||
* src+1," simply make the source and destination interfere.
|
||
*
|
||
* Theoretically, the register_coalesce passes should have done the dest ==
|
||
* src merging.
|
||
*/
|
||
if (inst->dst.component_size(inst->exec_size) > (reg_unit(devinfo) * REG_SIZE) &&
|
||
inst->dst.file == VGRF) {
|
||
for (int i = 0; i < inst->sources; ++i) {
|
||
if (inst->src[i].file == VGRF) {
|
||
ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
|
||
first_vgrf_node + inst->src[i].nr);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (grf127_send_hack_node >= 0) {
|
||
/* Bspec says:
|
||
*
|
||
* [Pre-CNL] r127 must not be used for return address when there is a
|
||
* src and dest overlap in send instruction.
|
||
*
|
||
* The Intel Broadwell PRM, vol 07, section "Instruction Set Reference",
|
||
* subsection "EUISA Instructions", Send Message (page 990) contains the
|
||
* same text.
|
||
*
|
||
* We are avoiding using grf127 as part of the destination of send
|
||
* messages adding a node interference to the grf127_send_hack_node.
|
||
* This node has a fixed assignment to grf127.
|
||
*
|
||
* We don't apply it to SIMD16 instructions because previous code avoids
|
||
* any register overlap between sources and destination.
|
||
*/
|
||
if (inst->opcode == SHADER_OPCODE_SEND && inst->dst.file == VGRF &&
|
||
inst->exec_size < 16)
|
||
ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
|
||
grf127_send_hack_node);
|
||
}
|
||
|
||
/* From the Skylake PRM Vol. 2a docs for sends:
|
||
*
|
||
* "It is required that the second block of GRFs does not overlap with
|
||
* the first block."
|
||
*
|
||
* Normally, this is taken care of by fixup_sends_duplicate_payload() but
|
||
* in the case where one of the registers is an undefined value, the
|
||
* register allocator may decide that they don't interfere even though
|
||
* they're used as sources in the same instruction. We also need to add
|
||
* interference here.
|
||
*/
|
||
if (inst->opcode == SHADER_OPCODE_SEND && inst->as_send()->ex_mlen > 0 &&
|
||
inst->src[SEND_SRC_PAYLOAD1].file == VGRF &&
|
||
inst->src[SEND_SRC_PAYLOAD2].file == VGRF &&
|
||
inst->src[SEND_SRC_PAYLOAD1].nr != inst->src[SEND_SRC_PAYLOAD2].nr) {
|
||
ra_add_node_interference(g,
|
||
first_vgrf_node + inst->src[SEND_SRC_PAYLOAD1].nr,
|
||
first_vgrf_node + inst->src[SEND_SRC_PAYLOAD2].nr);
|
||
}
|
||
|
||
/* When we do send-from-GRF for FB writes, we need to ensure that the last
|
||
* write instruction sends from a high register. This is because the
|
||
* vertex fetcher wants to start filling the low payload registers while
|
||
* the pixel data port is still working on writing out the memory. If we
|
||
* don't do this, we get rendering artifacts.
|
||
*
|
||
* We could just do "something high". Instead, we just pick the highest
|
||
* register that works.
|
||
*/
|
||
if (inst->eot && devinfo->ver < 30) {
|
||
assert(inst->opcode == SHADER_OPCODE_SEND);
|
||
const brw_reg srcs[2] = {
|
||
inst->src[SEND_SRC_PAYLOAD1],
|
||
inst->as_send()->ex_mlen > 0 ? inst->src[SEND_SRC_PAYLOAD2] : brw_reg(),
|
||
};
|
||
const unsigned sizes[2] = {
|
||
DIV_ROUND_UP(fs->alloc.sizes[srcs[0].nr], reg_unit(devinfo)),
|
||
DIV_ROUND_UP(srcs[1].file != BAD_FILE ?
|
||
fs->alloc.sizes[srcs[1].nr] : 0, reg_unit(devinfo)),
|
||
};
|
||
int regs[2] = { BRW_MAX_GRF, BRW_MAX_GRF };
|
||
|
||
/* If we haven´t yet allocated a register for the EOT sources, allocate
|
||
* one large enough. Otherwise the assumption is that the backend
|
||
* generates EOT messages that consummes the same amount of source
|
||
* register so we can reuse the existing allocation.
|
||
*/
|
||
regs[0] = BRW_MAX_GRF - sizes[0];
|
||
if (grf127_send_hack_node >= 0) {
|
||
/* Avoid r127 which might be unusable if the node was previously
|
||
* written by a SIMD8 SEND message with source/destination overlap.
|
||
*/
|
||
regs[0]--;
|
||
}
|
||
assert(regs[0] >= 112);
|
||
|
||
ra_set_node_reg(g, first_vgrf_node + srcs[0].nr, regs[0]);
|
||
if (sizes[1] > 0) {
|
||
regs[1] = regs[0] - sizes[1];
|
||
assert(regs[1] >= 112);
|
||
ra_set_node_reg(g, first_vgrf_node + srcs[1].nr, regs[1]);
|
||
}
|
||
|
||
/* All the EOT messages should have the same amount of payload as we
|
||
* only use this for last render target write on Gfx11.
|
||
*/
|
||
assert(eot_reg == -1 || eot_reg == MIN2(regs[0], regs[1]));
|
||
eot_reg = MIN2(regs[0], regs[1]);
|
||
}
|
||
}
|
||
|
||
bool
|
||
brw_reg_alloc::build_interference_graph(bool allow_spilling)
|
||
{
|
||
/* Compute the RA node layout */
|
||
node_count = 0;
|
||
first_payload_node = node_count;
|
||
node_count += payload_node_count;
|
||
|
||
/* Bspec says:
|
||
*
|
||
* [Pre-CNL] r127 must not be used for return address when there is a
|
||
* src and dest overlap in send instruction.
|
||
*
|
||
* The Intel Broadwell PRM, vol 07, section "Instruction Set Reference",
|
||
* subsection "EUISA Instructions", Send Message (page 990) contains the
|
||
* same text.
|
||
*
|
||
* The workaround will only be applied to Gfx9.
|
||
*/
|
||
if (devinfo->ver < 10)
|
||
grf127_send_hack_node = node_count++;
|
||
else
|
||
grf127_send_hack_node = -1;
|
||
|
||
first_vgrf_node = node_count;
|
||
node_count += fs->alloc.count;
|
||
last_vgrf_node = node_count - 1;
|
||
first_spill_node = node_count;
|
||
|
||
fs->calculate_payload_ranges(allow_spilling, payload_node_count,
|
||
payload_last_use_ip);
|
||
|
||
assert(g == NULL);
|
||
g = ra_alloc_interference_graph(compiler->reg_set.regs, node_count);
|
||
ralloc_steal(mem_ctx, g);
|
||
|
||
/* Set up the payload nodes */
|
||
for (int i = 0; i < payload_node_count; i++)
|
||
ra_set_node_reg(g, first_payload_node + i, i);
|
||
|
||
if (grf127_send_hack_node >= 0)
|
||
ra_set_node_reg(g, grf127_send_hack_node, 127);
|
||
|
||
/* Specify the classes of each virtual register. */
|
||
for (unsigned i = 0; i < fs->alloc.count; i++) {
|
||
unsigned size = DIV_ROUND_UP(fs->alloc.sizes[i], reg_unit(devinfo));
|
||
|
||
#ifndef NDEBUG
|
||
assert(size <= ARRAY_SIZE(compiler->reg_set.classes) &&
|
||
"Register allocation relies on split_virtual_grfs()");
|
||
#else
|
||
if (size > ARRAY_SIZE(compiler->reg_set.classes))
|
||
return false;
|
||
#endif
|
||
|
||
ra_set_node_class(g, first_vgrf_node + i,
|
||
compiler->reg_set.classes[size - 1]);
|
||
}
|
||
|
||
/* Add interference based on the live range of the register */
|
||
for (unsigned i = 0; i < fs->alloc.count; i++)
|
||
setup_live_interference(first_vgrf_node + i, live.vgrf_range[i]);
|
||
|
||
/* Add interference based on the instructions in which a register is used.
|
||
*/
|
||
foreach_block_and_inst(block, brw_inst, inst, fs->cfg)
|
||
setup_inst_interference(inst);
|
||
|
||
return true;
|
||
}
|
||
|
||
brw_reg
|
||
brw_reg_alloc::build_single_offset(const brw_builder &bld, uint32_t spill_offset, int ip)
|
||
{
|
||
brw_reg offset = retype(alloc_spill_reg(1, ip), BRW_TYPE_UD);
|
||
brw_inst *inst = bld.MOV(offset, brw_imm_ud(spill_offset));
|
||
_mesa_set_add(spill_insts, inst);
|
||
return offset;
|
||
}
|
||
|
||
brw_reg
|
||
brw_reg_alloc::build_ex_desc(const brw_builder &bld, unsigned reg_size, bool unspill)
|
||
{
|
||
/* Use a different area of the address register than what is used in
|
||
* brw_lower_logical_sends.c (brw_address_reg(2)) so we don't have
|
||
* interactions between the spill/fill instructions and the other send
|
||
* messages.
|
||
*/
|
||
brw_reg ex_desc = bld.vaddr(BRW_TYPE_UD,
|
||
BRW_ADDRESS_SUBREG_INDIRECT_SPILL_DESC);
|
||
|
||
brw_builder ubld = bld.uniform();
|
||
|
||
brw_inst *inst = ubld.AND(ex_desc,
|
||
retype(brw_vec1_grf(0, 5), BRW_TYPE_UD),
|
||
brw_imm_ud(INTEL_MASK(31, 10)));
|
||
_mesa_set_add(spill_insts, inst);
|
||
|
||
const intel_device_info *devinfo = bld.shader->devinfo;
|
||
if (devinfo->verx10 >= 200) {
|
||
inst = ubld.SHR(ex_desc, ex_desc, brw_imm_ud(4));
|
||
_mesa_set_add(spill_insts, inst);
|
||
} else {
|
||
if (unspill) {
|
||
inst = ubld.OR(ex_desc, ex_desc, brw_imm_ud(BRW_SFID_UGM));
|
||
_mesa_set_add(spill_insts, inst);
|
||
} else {
|
||
inst = ubld.OR(ex_desc,
|
||
ex_desc,
|
||
brw_imm_ud(brw_message_ex_desc(devinfo, reg_size) | BRW_SFID_UGM));
|
||
_mesa_set_add(spill_insts, inst);
|
||
}
|
||
}
|
||
|
||
return ex_desc;
|
||
}
|
||
|
||
brw_reg
|
||
brw_reg_alloc::build_lane_offsets(const brw_builder &bld, uint32_t spill_offset, int ip)
|
||
{
|
||
assert(bld.dispatch_width() <= 16 * reg_unit(bld.shader->devinfo));
|
||
|
||
const brw_builder ubld = bld.exec_all();
|
||
const unsigned reg_count = ubld.dispatch_width() / 8;
|
||
|
||
brw_reg offset = retype(alloc_spill_reg(reg_count, ip), BRW_TYPE_UD);
|
||
brw_inst *inst;
|
||
|
||
/* Build an offset per lane in SIMD8 */
|
||
inst = ubld.group(8, 0).MOV(retype(offset, BRW_TYPE_UW),
|
||
brw_imm_uv(0x76543210));
|
||
_mesa_set_add(spill_insts, inst);
|
||
|
||
if (spill_offset > 0 && spill_offset <= 0xffffu) {
|
||
inst = ubld.group(8, 0).MAD(offset,
|
||
brw_imm_uw(spill_offset),
|
||
retype(offset, BRW_TYPE_UW),
|
||
brw_imm_uw(4));
|
||
_mesa_set_add(spill_insts, inst);
|
||
} else {
|
||
/* Make the offset a dword */
|
||
inst = ubld.group(8, 0).SHL(offset, retype(offset, BRW_TYPE_UW), brw_imm_uw(2));
|
||
_mesa_set_add(spill_insts, inst);
|
||
|
||
/* Add the base offset */
|
||
if (spill_offset) {
|
||
inst = ubld.group(8, 0).ADD(offset, offset, brw_imm_ud(spill_offset));
|
||
_mesa_set_add(spill_insts, inst);
|
||
}
|
||
}
|
||
|
||
/* Build offsets in the upper 8 lanes of SIMD16 */
|
||
if (ubld.dispatch_width() > 8) {
|
||
inst = ubld.group(8, 0).ADD(
|
||
byte_offset(offset, REG_SIZE),
|
||
byte_offset(offset, 0),
|
||
brw_imm_ud(8 << 2));
|
||
_mesa_set_add(spill_insts, inst);
|
||
}
|
||
|
||
/* Build offsets in the upper 16 lanes of SIMD32 */
|
||
if (ubld.dispatch_width() > 16) {
|
||
inst = ubld.group(16, 0).ADD(
|
||
byte_offset(offset, 2 * REG_SIZE),
|
||
byte_offset(offset, 0),
|
||
brw_imm_ud(16 << 2));
|
||
_mesa_set_add(spill_insts, inst);
|
||
}
|
||
|
||
return offset;
|
||
}
|
||
|
||
/**
|
||
* Generate a scratch header for pre-LSC platforms.
|
||
*/
|
||
brw_reg
|
||
brw_reg_alloc::build_legacy_scratch_header(const brw_builder &bld,
|
||
uint32_t spill_offset, int ip)
|
||
{
|
||
const brw_builder ubld8 = bld.exec_all().group(8, 0);
|
||
const brw_builder ubld1 = bld.exec_all().group(1, 0);
|
||
|
||
/* Allocate a spill header and make it interfere with g0 */
|
||
brw_reg header = retype(alloc_spill_reg(1, ip), BRW_TYPE_UD);
|
||
ra_add_node_interference(g, first_vgrf_node + header.nr, first_payload_node);
|
||
|
||
brw_inst *inst =
|
||
ubld8.emit(SHADER_OPCODE_SCRATCH_HEADER, header, brw_ud8_grf(0, 0));
|
||
_mesa_set_add(spill_insts, inst);
|
||
|
||
/* Write the scratch offset */
|
||
assert(spill_offset % 16 == 0);
|
||
inst = ubld1.MOV(component(header, 2), brw_imm_ud(spill_offset / 16));
|
||
_mesa_set_add(spill_insts, inst);
|
||
|
||
return header;
|
||
}
|
||
|
||
void
|
||
brw_reg_alloc::emit_unspill(const brw_builder &bld,
|
||
struct brw_shader_stats *stats,
|
||
brw_reg dst,
|
||
uint32_t spill_offset, unsigned count, int ip)
|
||
{
|
||
const intel_device_info *devinfo = bld.shader->devinfo;
|
||
const unsigned reg_size = dst.component_size(bld.dispatch_width()) /
|
||
REG_SIZE;
|
||
|
||
for (unsigned i = 0; i < DIV_ROUND_UP(count, reg_size); i++) {
|
||
++stats->fill_count;
|
||
|
||
brw_send_inst *unspill_inst;
|
||
if (devinfo->verx10 >= 125) {
|
||
/* LSC is limited to SIMD16 (SIMD32 on Xe2) load/store but we can
|
||
* load more using transpose messages.
|
||
*/
|
||
const bool use_transpose =
|
||
bld.dispatch_width() > 16 * reg_unit(devinfo) ||
|
||
bld.has_writemask_all();
|
||
const brw_builder ubld = use_transpose ? bld.uniform() : bld;
|
||
brw_reg offset;
|
||
if (use_transpose) {
|
||
offset = build_single_offset(ubld, spill_offset, ip);
|
||
} else {
|
||
offset = build_lane_offsets(ubld, spill_offset, ip);
|
||
}
|
||
|
||
uint32_t desc = lsc_msg_desc(devinfo, LSC_OP_LOAD,
|
||
LSC_ADDR_SURFTYPE_SS,
|
||
LSC_ADDR_SIZE_A32,
|
||
LSC_DATA_SIZE_D32,
|
||
use_transpose ? reg_size * 8 : 1 /* num_channels */,
|
||
use_transpose,
|
||
LSC_CACHE(devinfo, LOAD, L1STATE_L3MOCS));
|
||
|
||
const brw_reg ex_desc_reg = build_ex_desc(bld, reg_size, true);
|
||
|
||
unspill_inst = ubld.SEND();
|
||
unspill_inst->dst = dst;
|
||
|
||
unspill_inst->src[SEND_SRC_DESC] = brw_imm_ud(0);
|
||
unspill_inst->src[SEND_SRC_EX_DESC] = ex_desc_reg;
|
||
unspill_inst->src[SEND_SRC_PAYLOAD1] = offset;
|
||
unspill_inst->src[SEND_SRC_PAYLOAD2] = brw_reg();
|
||
|
||
unspill_inst->sfid = BRW_SFID_UGM;
|
||
unspill_inst->header_size = 0;
|
||
unspill_inst->mlen = lsc_msg_addr_len(devinfo, LSC_ADDR_SIZE_A32,
|
||
unspill_inst->exec_size);
|
||
unspill_inst->ex_mlen = 0;
|
||
unspill_inst->size_written =
|
||
lsc_msg_dest_len(devinfo, LSC_DATA_SIZE_D32, bld.dispatch_width()) * REG_SIZE;
|
||
unspill_inst->has_side_effects = false;
|
||
unspill_inst->is_volatile = true;
|
||
|
||
unspill_inst->src[0] = brw_imm_ud(
|
||
desc |
|
||
brw_message_desc(devinfo,
|
||
unspill_inst->mlen,
|
||
unspill_inst->size_written / REG_SIZE,
|
||
unspill_inst->header_size));
|
||
} else {
|
||
brw_reg header = build_legacy_scratch_header(bld, spill_offset, ip);
|
||
|
||
const unsigned bti = GFX8_BTI_STATELESS_NON_COHERENT;
|
||
|
||
unspill_inst = bld.SEND();
|
||
unspill_inst->dst = dst;
|
||
|
||
unspill_inst->src[SEND_SRC_DESC] = brw_imm_ud(0);
|
||
unspill_inst->src[SEND_SRC_EX_DESC] = brw_imm_ud(0);
|
||
unspill_inst->src[SEND_SRC_PAYLOAD1] = header;
|
||
unspill_inst->src[SEND_SRC_PAYLOAD2] = brw_reg();
|
||
|
||
unspill_inst->mlen = 1;
|
||
unspill_inst->header_size = 1;
|
||
unspill_inst->size_written = reg_size * REG_SIZE;
|
||
unspill_inst->has_side_effects = false;
|
||
unspill_inst->is_volatile = true;
|
||
unspill_inst->sfid = BRW_SFID_HDC0;
|
||
|
||
unspill_inst->src[0] = brw_imm_ud(
|
||
brw_dp_desc(devinfo, bti,
|
||
BRW_DATAPORT_READ_MESSAGE_OWORD_BLOCK_READ,
|
||
BRW_DATAPORT_OWORD_BLOCK_DWORDS(reg_size * 8)) |
|
||
brw_message_desc(devinfo,
|
||
unspill_inst->mlen,
|
||
unspill_inst->size_written / REG_SIZE,
|
||
unspill_inst->header_size));
|
||
}
|
||
_mesa_set_add(spill_insts, unspill_inst);
|
||
assert(unspill_inst->force_writemask_all || count % reg_size == 0);
|
||
|
||
dst.offset += reg_size * REG_SIZE;
|
||
spill_offset += reg_size * REG_SIZE;
|
||
}
|
||
}
|
||
|
||
void
|
||
brw_reg_alloc::emit_spill(const brw_builder &bld,
|
||
struct brw_shader_stats *stats,
|
||
brw_reg src,
|
||
uint32_t spill_offset, unsigned count, int ip)
|
||
{
|
||
const intel_device_info *devinfo = bld.shader->devinfo;
|
||
const unsigned reg_size = src.component_size(bld.dispatch_width()) /
|
||
REG_SIZE;
|
||
|
||
for (unsigned i = 0; i < DIV_ROUND_UP(count, reg_size); i++) {
|
||
++stats->spill_count;
|
||
|
||
brw_send_inst *spill_inst;
|
||
if (devinfo->verx10 >= 125) {
|
||
brw_reg offset = build_lane_offsets(bld, spill_offset, ip);
|
||
|
||
const brw_reg ex_desc_reg = build_ex_desc(bld, reg_size, false);
|
||
|
||
spill_inst = bld.SEND();
|
||
spill_inst->dst = bld.null_reg_f();
|
||
|
||
spill_inst->src[SEND_SRC_DESC] = brw_imm_ud(0);
|
||
spill_inst->src[SEND_SRC_EX_DESC] = ex_desc_reg;
|
||
spill_inst->src[SEND_SRC_PAYLOAD1] = offset;
|
||
spill_inst->src[SEND_SRC_PAYLOAD2] = src;
|
||
|
||
spill_inst->sfid = BRW_SFID_UGM;
|
||
uint32_t desc = lsc_msg_desc(devinfo, LSC_OP_STORE,
|
||
LSC_ADDR_SURFTYPE_SS,
|
||
LSC_ADDR_SIZE_A32,
|
||
LSC_DATA_SIZE_D32,
|
||
1 /* num_channels */,
|
||
false /* transpose */,
|
||
LSC_CACHE(devinfo, LOAD, L1STATE_L3MOCS));
|
||
spill_inst->header_size = 0;
|
||
spill_inst->mlen = lsc_msg_addr_len(devinfo, LSC_ADDR_SIZE_A32,
|
||
bld.dispatch_width());
|
||
spill_inst->ex_mlen = reg_size;
|
||
spill_inst->size_written = 0;
|
||
spill_inst->has_side_effects = true;
|
||
spill_inst->is_volatile = false;
|
||
|
||
spill_inst->src[0] = brw_imm_ud(
|
||
desc |
|
||
brw_message_desc(devinfo,
|
||
spill_inst->mlen,
|
||
spill_inst->size_written / REG_SIZE,
|
||
spill_inst->header_size));
|
||
} else {
|
||
brw_reg header = build_legacy_scratch_header(bld, spill_offset, ip);
|
||
|
||
const unsigned bti = GFX8_BTI_STATELESS_NON_COHERENT;
|
||
|
||
spill_inst = bld.SEND();
|
||
spill_inst->dst = bld.null_reg_f();
|
||
|
||
spill_inst->src[SEND_SRC_DESC] = brw_imm_ud(0);
|
||
spill_inst->src[SEND_SRC_EX_DESC] = brw_imm_ud(0);
|
||
spill_inst->src[SEND_SRC_PAYLOAD1] = header;
|
||
spill_inst->src[SEND_SRC_PAYLOAD2] = src;
|
||
|
||
spill_inst->mlen = 1;
|
||
spill_inst->ex_mlen = reg_size;
|
||
spill_inst->size_written = 0;
|
||
spill_inst->header_size = 1;
|
||
spill_inst->has_side_effects = true;
|
||
spill_inst->is_volatile = false;
|
||
spill_inst->sfid = BRW_SFID_HDC0;
|
||
|
||
spill_inst->src[0] = brw_imm_ud(
|
||
brw_dp_desc(devinfo, bti,
|
||
GFX6_DATAPORT_WRITE_MESSAGE_OWORD_BLOCK_WRITE,
|
||
BRW_DATAPORT_OWORD_BLOCK_DWORDS(reg_size * 8)) |
|
||
brw_message_desc(devinfo,
|
||
spill_inst->mlen,
|
||
spill_inst->size_written / REG_SIZE,
|
||
spill_inst->header_size));
|
||
spill_inst->src[1] = brw_imm_ud(
|
||
brw_message_ex_desc(devinfo, spill_inst->ex_mlen));
|
||
}
|
||
_mesa_set_add(spill_insts, spill_inst);
|
||
assert(spill_inst->force_writemask_all || count % reg_size == 0);
|
||
|
||
src.offset += reg_size * REG_SIZE;
|
||
spill_offset += reg_size * REG_SIZE;
|
||
}
|
||
}
|
||
|
||
void
|
||
brw_reg_alloc::set_spill_costs()
|
||
{
|
||
float block_scale = 1.0;
|
||
float *spill_costs = rzalloc_array(NULL, float, fs->alloc.count);
|
||
|
||
/* Calculate costs for spilling nodes. Call it a cost of 1 per
|
||
* spill/unspill we'll have to do, and guess that the insides of
|
||
* loops run 10 times.
|
||
*/
|
||
foreach_block_and_inst(block, brw_inst, inst, fs->cfg) {
|
||
for (unsigned int i = 0; i < inst->sources; i++) {
|
||
if (inst->src[i].file == VGRF)
|
||
spill_costs[inst->src[i].nr] += regs_read(devinfo, inst, i) * block_scale;
|
||
}
|
||
|
||
if (inst->dst.file == VGRF)
|
||
spill_costs[inst->dst.nr] += regs_written(inst) * block_scale;
|
||
|
||
/* Don't spill anything we generated while spilling */
|
||
if (_mesa_set_search(spill_insts, inst)) {
|
||
for (unsigned int i = 0; i < inst->sources; i++) {
|
||
if (inst->src[i].file == VGRF)
|
||
spill_costs[inst->src[i].nr] = INFINITY;
|
||
}
|
||
if (inst->dst.file == VGRF)
|
||
spill_costs[inst->dst.nr] = INFINITY;
|
||
}
|
||
|
||
switch (inst->opcode) {
|
||
|
||
case BRW_OPCODE_DO:
|
||
block_scale *= 10;
|
||
break;
|
||
|
||
case BRW_OPCODE_WHILE:
|
||
block_scale /= 10;
|
||
break;
|
||
|
||
case BRW_OPCODE_IF:
|
||
block_scale *= 0.5;
|
||
break;
|
||
|
||
case BRW_OPCODE_ENDIF:
|
||
block_scale /= 0.5;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
for (unsigned i = 0; i < fs->alloc.count; i++) {
|
||
/* Do the no_spill check first. Registers that are used as spill
|
||
* temporaries may have been allocated after we calculated liveness so
|
||
* we shouldn't look their liveness up. Fortunately, they're always
|
||
* used in SCRATCH_READ/WRITE instructions so they'll always be flagged
|
||
* no_spill.
|
||
*/
|
||
if (isinf(spill_costs[i]))
|
||
continue;
|
||
|
||
int live_length = live.vgrf_range[i].last() - live.vgrf_range[i].start;
|
||
if (live_length <= 0)
|
||
continue;
|
||
|
||
/* Divide the cost (in number of spills/fills) by the log of the length
|
||
* of the live range of the register. This will encourage spill logic
|
||
* to spill long-living things before spilling short-lived things where
|
||
* spilling is less likely to actually do us any good. We use the log
|
||
* of the length because it will fall off very quickly and not cause us
|
||
* to spill medium length registers with more uses.
|
||
*/
|
||
float adjusted_cost = spill_costs[i] / logf(live_length);
|
||
ra_set_node_spill_cost(g, first_vgrf_node + i, adjusted_cost);
|
||
}
|
||
|
||
have_spill_costs = true;
|
||
|
||
ralloc_free(spill_costs);
|
||
}
|
||
|
||
int
|
||
brw_reg_alloc::choose_spill_reg()
|
||
{
|
||
if (!have_spill_costs)
|
||
set_spill_costs();
|
||
|
||
int node = ra_get_best_spill_node(g);
|
||
if (node < 0)
|
||
return -1;
|
||
|
||
assert(node >= first_vgrf_node);
|
||
return node - first_vgrf_node;
|
||
}
|
||
|
||
brw_reg
|
||
brw_reg_alloc::alloc_spill_reg(unsigned size, int ip)
|
||
{
|
||
int vgrf = brw_allocate_vgrf_units(*fs, ALIGN(size, reg_unit(devinfo))).nr;
|
||
int class_idx = DIV_ROUND_UP(size, reg_unit(devinfo)) - 1;
|
||
int n = ra_add_node(g, compiler->reg_set.classes[class_idx]);
|
||
assert(n == first_vgrf_node + vgrf);
|
||
assert(n == first_spill_node + spill_node_count);
|
||
|
||
brw_range spill_reg_range{ ip - 1, ip + 2 };
|
||
setup_live_interference(n, spill_reg_range);
|
||
|
||
/* Add interference between this spill node and any other spill nodes for
|
||
* the same instruction.
|
||
*/
|
||
for (int s = 0; s < spill_node_count; s++) {
|
||
if (spill_vgrf_ip[s] == ip)
|
||
ra_add_node_interference(g, n, first_spill_node + s);
|
||
}
|
||
|
||
/* Add this spill node to the list for next time */
|
||
if (spill_node_count >= spill_vgrf_ip_alloc) {
|
||
if (spill_vgrf_ip_alloc == 0)
|
||
spill_vgrf_ip_alloc = 16;
|
||
else
|
||
spill_vgrf_ip_alloc *= 2;
|
||
spill_vgrf_ip = reralloc(mem_ctx, spill_vgrf_ip, int,
|
||
spill_vgrf_ip_alloc);
|
||
}
|
||
spill_vgrf_ip[spill_node_count++] = ip;
|
||
|
||
return brw_vgrf(vgrf, BRW_TYPE_F);
|
||
}
|
||
|
||
void
|
||
brw_reg_alloc::spill_reg(unsigned spill_reg)
|
||
{
|
||
int size = fs->alloc.sizes[spill_reg];
|
||
unsigned int spill_offset = fs->last_scratch;
|
||
assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */
|
||
|
||
fs->spilled_any_registers = true;
|
||
|
||
fs->last_scratch += align(size * REG_SIZE, REG_SIZE * reg_unit(devinfo));
|
||
|
||
/* We're about to replace all uses of this register. It no longer
|
||
* conflicts with anything so we can get rid of its interference.
|
||
*/
|
||
ra_set_node_spill_cost(g, first_vgrf_node + spill_reg, 0);
|
||
ra_reset_node_interference(g, first_vgrf_node + spill_reg);
|
||
|
||
/* Generate spill/unspill instructions for the objects being
|
||
* spilled. Right now, we spill or unspill the whole thing to a
|
||
* virtual grf of the same size. For most instructions, though, we
|
||
* could just spill/unspill the GRF being accessed.
|
||
*/
|
||
int ip = 0;
|
||
foreach_block_and_inst (block, brw_inst, inst, fs->cfg) {
|
||
const brw_builder ibld = brw_builder(inst);
|
||
brw_exec_node *before = inst->prev;
|
||
brw_exec_node *after = inst->next;
|
||
|
||
for (unsigned int i = 0; i < inst->sources; i++) {
|
||
if (inst->src[i].file == VGRF &&
|
||
inst->src[i].nr == spill_reg) {
|
||
/* Count registers needed in units of physical registers */
|
||
int count = align(regs_read(devinfo, inst, i), reg_unit(devinfo));
|
||
/* Align the spilling offset the physical register size */
|
||
int subset_spill_offset = spill_offset +
|
||
ROUND_DOWN_TO(inst->src[i].offset, REG_SIZE * reg_unit(devinfo));
|
||
brw_reg unspill_dst = alloc_spill_reg(count, ip);
|
||
|
||
inst->src[i].nr = unspill_dst.nr;
|
||
/* The unspilled register is aligned to physical register, so
|
||
* adjust the offset to the remaining within the physical register
|
||
* size.
|
||
*/
|
||
inst->src[i].offset %= REG_SIZE * reg_unit(devinfo);
|
||
|
||
/* We read the largest power-of-two divisor of the register count
|
||
* (because only POT scratch read blocks are allowed by the
|
||
* hardware) up to the maximum supported block size.
|
||
*/
|
||
const unsigned width =
|
||
MIN2(32, 1u << (ffs(MAX2(1, count) * 8) - 1));
|
||
|
||
/* Set exec_all() on unspill messages under the (rather
|
||
* pessimistic) assumption that there is no one-to-one
|
||
* correspondence between channels of the spilled variable in
|
||
* scratch space and the scratch read message, which operates on
|
||
* 32 bit channels. It shouldn't hurt in any case because the
|
||
* unspill destination is a block-local temporary.
|
||
*/
|
||
emit_unspill(ibld.exec_all().group(width, 0), &fs->shader_stats,
|
||
unspill_dst, subset_spill_offset, count, ip);
|
||
}
|
||
}
|
||
|
||
if (inst->dst.file == VGRF &&
|
||
inst->dst.nr == spill_reg &&
|
||
inst->opcode != SHADER_OPCODE_UNDEF) {
|
||
/* Count registers needed in units of physical registers */
|
||
int count = align(regs_written(inst), reg_unit(devinfo));
|
||
/* Align the spilling offset the physical register size */
|
||
int subset_spill_offset = spill_offset +
|
||
ROUND_DOWN_TO(inst->dst.offset, reg_unit(devinfo) * REG_SIZE);
|
||
brw_reg spill_src = alloc_spill_reg(count, ip);
|
||
|
||
inst->dst.nr = spill_src.nr;
|
||
/* The spilled register is aligned to physical register, so adjust
|
||
* the offset to the remaining within the physical register size.
|
||
*/
|
||
inst->dst.offset %= REG_SIZE * reg_unit(devinfo);
|
||
|
||
/* Calculate the execution width of the scratch messages (which work
|
||
* in terms of 32 bit components so we have a fixed number of eight
|
||
* channels per spilled register). We attempt to write one
|
||
* exec_size-wide component of the variable at a time without
|
||
* exceeding the maximum number of (fake) MRF registers reserved for
|
||
* spills.
|
||
*/
|
||
const unsigned width = 8 * reg_unit(devinfo) *
|
||
DIV_ROUND_UP(MIN2(inst->dst.component_size(inst->exec_size),
|
||
spill_max_size(fs) * REG_SIZE),
|
||
reg_unit(devinfo) * REG_SIZE);
|
||
|
||
/* Spills should only write data initialized by the instruction for
|
||
* whichever channels are enabled in the execution mask. If that's
|
||
* not possible we'll have to emit a matching unspill before the
|
||
* instruction and set force_writemask_all on the spill.
|
||
*/
|
||
const bool per_channel =
|
||
inst->dst.is_contiguous() &&
|
||
brw_type_size_bytes(inst->dst.type) == 4 &&
|
||
inst->exec_size == width;
|
||
|
||
/* Builder used to emit the scratch messages. */
|
||
const brw_builder ubld = ibld.exec_all(!per_channel).group(width, 0);
|
||
|
||
/* If our write is going to affect just part of the
|
||
* regs_written(inst), then we need to unspill the destination since
|
||
* we write back out all of the regs_written(). If the original
|
||
* instruction had force_writemask_all set and is not a partial
|
||
* write, there should be no need for the unspill since the
|
||
* instruction will be overwriting the whole destination in any case.
|
||
*/
|
||
if (inst->is_partial_write(reg_unit(devinfo) * REG_SIZE) ||
|
||
(!inst->force_writemask_all && !per_channel))
|
||
emit_unspill(ubld, &fs->shader_stats, spill_src,
|
||
subset_spill_offset, regs_written(inst), ip);
|
||
|
||
emit_spill(ubld.after(inst), &fs->shader_stats, spill_src,
|
||
subset_spill_offset, regs_written(inst), ip);
|
||
}
|
||
|
||
for (brw_inst *inst = (brw_inst *)before->next;
|
||
inst != after; inst = (brw_inst *)inst->next)
|
||
setup_inst_interference(inst);
|
||
|
||
/* We don't advance the ip for scratch read/write instructions
|
||
* because we consider them to have the same ip as instruction we're
|
||
* spilling around for the purposes of interference. Also, we're
|
||
* inserting spill instructions without re-running liveness analysis
|
||
* and we don't want to mess up our IPs.
|
||
*/
|
||
if (!_mesa_set_search(spill_insts, inst))
|
||
ip++;
|
||
}
|
||
|
||
assert(ip == live_instr_count);
|
||
}
|
||
|
||
bool
|
||
brw_reg_alloc::assign_regs(bool allow_spilling, bool spill_all)
|
||
{
|
||
if (!build_interference_graph(allow_spilling))
|
||
return false;
|
||
|
||
unsigned spilled = 0;
|
||
while (1) {
|
||
/* Debug of register spilling: Go spill everything. */
|
||
if (unlikely(spill_all)) {
|
||
int reg = choose_spill_reg();
|
||
if (reg != -1) {
|
||
spill_reg(reg);
|
||
spilled++;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
if (ra_allocate(g))
|
||
break;
|
||
|
||
if (!allow_spilling)
|
||
return false;
|
||
|
||
/* Failed to allocate registers. Spill some regs, and the caller will
|
||
* loop back into here to try again.
|
||
*/
|
||
unsigned nr_spills = 1;
|
||
if (compiler->spilling_rate)
|
||
nr_spills = MAX2(1, spilled / compiler->spilling_rate);
|
||
|
||
for (unsigned j = 0; j < nr_spills; j++) {
|
||
int reg = choose_spill_reg();
|
||
if (reg == -1) {
|
||
if (j == 0)
|
||
return false; /* Nothing to spill */
|
||
break;
|
||
}
|
||
|
||
spill_reg(reg);
|
||
spilled++;
|
||
}
|
||
}
|
||
|
||
if (spilled)
|
||
fs->invalidate_analysis(BRW_DEPENDENCY_INSTRUCTIONS |
|
||
BRW_DEPENDENCY_VARIABLES);
|
||
|
||
/* Get the chosen virtual registers for each node, and map virtual
|
||
* regs in the register classes back down to real hardware reg
|
||
* numbers.
|
||
*/
|
||
unsigned *hw_reg_mapping = ralloc_array(NULL, unsigned, fs->alloc.count);
|
||
fs->grf_used = fs->first_non_payload_grf;
|
||
for (unsigned i = 0; i < fs->alloc.count; i++) {
|
||
int reg = ra_get_node_reg(g, first_vgrf_node + i);
|
||
|
||
hw_reg_mapping[i] = reg;
|
||
fs->grf_used = MAX2(fs->grf_used,
|
||
hw_reg_mapping[i] + DIV_ROUND_UP(fs->alloc.sizes[i],
|
||
reg_unit(devinfo)));
|
||
}
|
||
|
||
foreach_block_and_inst(block, brw_inst, inst, fs->cfg) {
|
||
assign_reg(devinfo, hw_reg_mapping, &inst->dst);
|
||
for (int i = 0; i < inst->sources; i++) {
|
||
assign_reg(devinfo, hw_reg_mapping, &inst->src[i]);
|
||
}
|
||
}
|
||
|
||
fs->alloc.count = fs->grf_used;
|
||
|
||
ralloc_free(hw_reg_mapping);
|
||
|
||
return true;
|
||
}
|
||
|
||
bool
|
||
brw_assign_regs(brw_shader &s, bool allow_spilling, bool spill_all)
|
||
{
|
||
brw_reg_alloc alloc(&s);
|
||
bool success = alloc.assign_regs(allow_spilling, spill_all);
|
||
if (!success && allow_spilling) {
|
||
s.fail("no register to spill:\n");
|
||
brw_print_instructions(s);
|
||
}
|
||
return success;
|
||
}
|