mesa/src/intel/compiler/brw_shader.cpp
Lionel Landwerlin 0a5bdf1199 brw: add infra to make use of the address register in the IR
This limits the address register to simple cases inside a block.

Validation ensures that the address register is only written once and
read once.

Instruction scheduling makes sure that instructions using the address
register in the generator are not scheduled while there is an usage of
the register in the IR.

Signed-off-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Reviewed-by: Alyssa Rosenzweig <alyssa@rosenzweig.io>
Reviewed-by: Caio Oliveira <caio.oliveira@intel.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/28199>
2025-01-11 08:41:42 +00:00

325 lines
7.7 KiB
C++

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "brw_cfg.h"
#include "brw_fs.h"
#include "util/macros.h"
bool
fs_inst::is_commutative() const
{
switch (opcode) {
case BRW_OPCODE_AND:
case BRW_OPCODE_OR:
case BRW_OPCODE_XOR:
case BRW_OPCODE_ADD:
case BRW_OPCODE_ADD3:
case SHADER_OPCODE_MULH:
return true;
case BRW_OPCODE_MUL:
/* Integer multiplication of dword and word sources is not actually
* commutative. The DW source must be first.
*/
return !brw_type_is_int(src[0].type) ||
brw_type_size_bits(src[0].type) == brw_type_size_bits(src[1].type);
case BRW_OPCODE_SEL:
/* MIN and MAX are commutative. */
if (conditional_mod == BRW_CONDITIONAL_GE ||
conditional_mod == BRW_CONDITIONAL_L) {
return true;
}
FALLTHROUGH;
default:
return false;
}
}
bool
fs_inst::is_3src(const struct brw_compiler *compiler) const
{
return ::is_3src(&compiler->isa, opcode);
}
bool
fs_inst::is_math() const
{
return (opcode == SHADER_OPCODE_RCP ||
opcode == SHADER_OPCODE_RSQ ||
opcode == SHADER_OPCODE_SQRT ||
opcode == SHADER_OPCODE_EXP2 ||
opcode == SHADER_OPCODE_LOG2 ||
opcode == SHADER_OPCODE_SIN ||
opcode == SHADER_OPCODE_COS ||
opcode == SHADER_OPCODE_INT_QUOTIENT ||
opcode == SHADER_OPCODE_INT_REMAINDER ||
opcode == SHADER_OPCODE_POW);
}
bool
fs_inst::is_control_flow_begin() const
{
switch (opcode) {
case BRW_OPCODE_DO:
case BRW_OPCODE_IF:
case BRW_OPCODE_ELSE:
return true;
default:
return false;
}
}
bool
fs_inst::is_control_flow_end() const
{
switch (opcode) {
case BRW_OPCODE_ELSE:
case BRW_OPCODE_WHILE:
case BRW_OPCODE_ENDIF:
return true;
default:
return false;
}
}
bool
fs_inst::is_control_flow() const
{
switch (opcode) {
case BRW_OPCODE_DO:
case BRW_OPCODE_WHILE:
case BRW_OPCODE_IF:
case BRW_OPCODE_ELSE:
case BRW_OPCODE_ENDIF:
case BRW_OPCODE_BREAK:
case BRW_OPCODE_CONTINUE:
return true;
default:
return false;
}
}
bool
fs_inst::uses_indirect_addressing() const
{
switch (opcode) {
case SHADER_OPCODE_BROADCAST:
case SHADER_OPCODE_CLUSTER_BROADCAST:
case SHADER_OPCODE_MOV_INDIRECT:
return true;
default:
return false;
}
}
bool
fs_inst::can_do_saturate() const
{
switch (opcode) {
case BRW_OPCODE_ADD:
case BRW_OPCODE_ADD3:
case BRW_OPCODE_ASR:
case BRW_OPCODE_AVG:
case BRW_OPCODE_CSEL:
case BRW_OPCODE_DP2:
case BRW_OPCODE_DP3:
case BRW_OPCODE_DP4:
case BRW_OPCODE_DPH:
case BRW_OPCODE_DP4A:
case BRW_OPCODE_LINE:
case BRW_OPCODE_LRP:
case BRW_OPCODE_MAC:
case BRW_OPCODE_MAD:
case BRW_OPCODE_MATH:
case BRW_OPCODE_MOV:
case BRW_OPCODE_MUL:
case SHADER_OPCODE_MULH:
case BRW_OPCODE_PLN:
case BRW_OPCODE_RNDD:
case BRW_OPCODE_RNDE:
case BRW_OPCODE_RNDU:
case BRW_OPCODE_RNDZ:
case BRW_OPCODE_SEL:
case BRW_OPCODE_SHL:
case BRW_OPCODE_SHR:
case SHADER_OPCODE_COS:
case SHADER_OPCODE_EXP2:
case SHADER_OPCODE_LOG2:
case SHADER_OPCODE_POW:
case SHADER_OPCODE_RCP:
case SHADER_OPCODE_RSQ:
case SHADER_OPCODE_SIN:
case SHADER_OPCODE_SQRT:
return true;
default:
return false;
}
}
bool
fs_inst::reads_accumulator_implicitly() const
{
switch (opcode) {
case BRW_OPCODE_MAC:
case BRW_OPCODE_MACH:
return true;
default:
return false;
}
}
bool
fs_inst::writes_accumulator_implicitly(const struct intel_device_info *devinfo) const
{
return writes_accumulator ||
(eot && intel_needs_workaround(devinfo, 14010017096));
}
bool
fs_inst::has_side_effects() const
{
switch (opcode) {
case SHADER_OPCODE_SEND:
return send_has_side_effects;
case BRW_OPCODE_SYNC:
case SHADER_OPCODE_MEMORY_STORE_LOGICAL:
case SHADER_OPCODE_MEMORY_ATOMIC_LOGICAL:
case SHADER_OPCODE_MEMORY_FENCE:
case SHADER_OPCODE_INTERLOCK:
case SHADER_OPCODE_URB_WRITE_LOGICAL:
case FS_OPCODE_FB_WRITE_LOGICAL:
case SHADER_OPCODE_BARRIER:
case SHADER_OPCODE_RND_MODE:
case SHADER_OPCODE_FLOAT_CONTROL_MODE:
case FS_OPCODE_SCHEDULING_FENCE:
case SHADER_OPCODE_BTD_SPAWN_LOGICAL:
case SHADER_OPCODE_BTD_RETIRE_LOGICAL:
case RT_OPCODE_TRACE_RAY_LOGICAL:
return true;
default:
return eot;
}
}
bool
fs_inst::is_volatile() const
{
return opcode == SHADER_OPCODE_MEMORY_LOAD_LOGICAL ||
(opcode == SHADER_OPCODE_SEND && send_is_volatile);
}
#ifndef NDEBUG
static bool
inst_is_in_block(const bblock_t *block, const fs_inst *inst)
{
const exec_node *n = inst;
/* Find the tail sentinel. If the tail sentinel is the sentinel from the
* list header in the bblock_t, then this instruction is in that basic
* block.
*/
while (!n->is_tail_sentinel())
n = n->get_next();
return n == &block->instructions.tail_sentinel;
}
#endif
static void
adjust_later_block_ips(bblock_t *start_block, int ip_adjustment)
{
for (bblock_t *block_iter = start_block->next();
block_iter;
block_iter = block_iter->next()) {
block_iter->start_ip += ip_adjustment;
block_iter->end_ip += ip_adjustment;
}
}
void
fs_inst::insert_after(bblock_t *block, fs_inst *inst)
{
assert(this != inst);
assert(block->end_ip_delta == 0);
if (!this->is_head_sentinel())
assert(inst_is_in_block(block, this) || !"Instruction not in block");
block->end_ip++;
adjust_later_block_ips(block, 1);
exec_node::insert_after(inst);
}
void
fs_inst::insert_before(bblock_t *block, fs_inst *inst)
{
assert(this != inst);
assert(block->end_ip_delta == 0);
if (!this->is_tail_sentinel())
assert(inst_is_in_block(block, this) || !"Instruction not in block");
block->end_ip++;
adjust_later_block_ips(block, 1);
exec_node::insert_before(inst);
}
void
fs_inst::remove(bblock_t *block, bool defer_later_block_ip_updates)
{
assert(inst_is_in_block(block, this) || !"Instruction not in block");
if (exec_list_is_singular(&block->instructions)) {
this->opcode = BRW_OPCODE_NOP;
this->resize_sources(0);
this->dst = brw_reg();
this->size_written = 0;
return;
}
if (defer_later_block_ip_updates) {
block->end_ip_delta--;
} else {
assert(block->end_ip_delta == 0);
adjust_later_block_ips(block, -1);
}
if (block->start_ip == block->end_ip) {
if (block->end_ip_delta != 0) {
adjust_later_block_ips(block, block->end_ip_delta);
block->end_ip_delta = 0;
}
block->cfg->remove_block(block);
} else {
block->end_ip--;
}
exec_node::remove();
}