mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-21 20:10:14 +01:00
The general idea is to be able to validate that certain instructions were lowered and certain restrictions were already handled. Passes can now assert their expectations, i.e. if a pass is mean to run after certain lowerings or not. The actual phases are a initial stab and as we re-organized the passes, we may remove/add phases. This commit just add some phase steps, later commits will make use of them. Reviewed-by: Ian Romanick <ian.d.romanick@intel.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/30496>
480 lines
18 KiB
C++
480 lines
18 KiB
C++
/*
|
|
* Copyright © 2010 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
/** @file
|
|
*
|
|
* This file supports generating the FS LIR from the GLSL IR. The LIR
|
|
* makes it easier to do backend-specific optimizations than doing so
|
|
* in the GLSL IR or in the native code.
|
|
*/
|
|
#include "brw_eu.h"
|
|
#include "brw_fs.h"
|
|
#include "brw_fs_builder.h"
|
|
#include "brw_nir.h"
|
|
#include "compiler/glsl_types.h"
|
|
#include "dev/intel_device_info.h"
|
|
|
|
using namespace brw;
|
|
|
|
void
|
|
fs_visitor::emit_urb_writes(const brw_reg &gs_vertex_count)
|
|
{
|
|
int slot, urb_offset, length;
|
|
int starting_urb_offset = 0;
|
|
const struct brw_vue_prog_data *vue_prog_data =
|
|
brw_vue_prog_data(this->prog_data);
|
|
const GLbitfield64 psiz_mask =
|
|
VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ | VARYING_BIT_PRIMITIVE_SHADING_RATE;
|
|
const struct intel_vue_map *vue_map = &vue_prog_data->vue_map;
|
|
bool flush;
|
|
brw_reg sources[8];
|
|
brw_reg urb_handle;
|
|
|
|
switch (stage) {
|
|
case MESA_SHADER_VERTEX:
|
|
urb_handle = vs_payload().urb_handles;
|
|
break;
|
|
case MESA_SHADER_TESS_EVAL:
|
|
urb_handle = tes_payload().urb_output;
|
|
break;
|
|
case MESA_SHADER_GEOMETRY:
|
|
urb_handle = gs_payload().urb_handles;
|
|
break;
|
|
default:
|
|
unreachable("invalid stage");
|
|
}
|
|
|
|
const fs_builder bld = fs_builder(this).at_end();
|
|
|
|
brw_reg per_slot_offsets;
|
|
|
|
if (stage == MESA_SHADER_GEOMETRY) {
|
|
const struct brw_gs_prog_data *gs_prog_data =
|
|
brw_gs_prog_data(this->prog_data);
|
|
|
|
/* We need to increment the Global Offset to skip over the control data
|
|
* header and the extra "Vertex Count" field (1 HWord) at the beginning
|
|
* of the VUE. We're counting in OWords, so the units are doubled.
|
|
*/
|
|
starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
|
|
if (gs_prog_data->static_vertex_count == -1)
|
|
starting_urb_offset += 2;
|
|
|
|
/* The URB offset is in 128-bit units, so we need to multiply by 2 */
|
|
const int output_vertex_size_owords =
|
|
gs_prog_data->output_vertex_size_hwords * 2;
|
|
|
|
/* On Xe2+ platform, LSC can operate on the Dword data element with byte
|
|
* offset granularity, so convert per slot offset in bytes since it's in
|
|
* Owords (16-bytes) unit else keep per slot offset in oword unit for
|
|
* previous platforms.
|
|
*/
|
|
const int output_vertex_size = devinfo->ver >= 20 ?
|
|
output_vertex_size_owords * 16 :
|
|
output_vertex_size_owords;
|
|
if (gs_vertex_count.file == IMM) {
|
|
per_slot_offsets = brw_imm_ud(output_vertex_size *
|
|
gs_vertex_count.ud);
|
|
} else {
|
|
per_slot_offsets = bld.vgrf(BRW_TYPE_UD);
|
|
bld.MUL(per_slot_offsets, gs_vertex_count,
|
|
brw_imm_ud(output_vertex_size));
|
|
}
|
|
}
|
|
|
|
length = 0;
|
|
urb_offset = starting_urb_offset;
|
|
flush = false;
|
|
|
|
/* SSO shaders can have VUE slots allocated which are never actually
|
|
* written to, so ignore them when looking for the last (written) slot.
|
|
*/
|
|
int last_slot = vue_map->num_slots - 1;
|
|
while (last_slot > 0 &&
|
|
(vue_map->slot_to_varying[last_slot] == BRW_VARYING_SLOT_PAD ||
|
|
outputs[vue_map->slot_to_varying[last_slot]].file == BAD_FILE)) {
|
|
last_slot--;
|
|
}
|
|
|
|
bool urb_written = false;
|
|
for (slot = 0; slot < vue_map->num_slots; slot++) {
|
|
int varying = vue_map->slot_to_varying[slot];
|
|
switch (varying) {
|
|
case VARYING_SLOT_PSIZ: {
|
|
/* The point size varying slot is the vue header and is always in the
|
|
* vue map. But often none of the special varyings that live there
|
|
* are written and in that case we can skip writing to the vue
|
|
* header, provided the corresponding state properly clamps the
|
|
* values further down the pipeline. */
|
|
if ((vue_map->slots_valid & psiz_mask) == 0) {
|
|
assert(length == 0);
|
|
urb_offset++;
|
|
break;
|
|
}
|
|
|
|
brw_reg zero = brw_vgrf(alloc.allocate(dispatch_width / 8),
|
|
BRW_TYPE_UD);
|
|
bld.MOV(zero, brw_imm_ud(0u));
|
|
|
|
if (vue_map->slots_valid & VARYING_BIT_PRIMITIVE_SHADING_RATE &&
|
|
this->outputs[VARYING_SLOT_PRIMITIVE_SHADING_RATE].file != BAD_FILE) {
|
|
sources[length++] = this->outputs[VARYING_SLOT_PRIMITIVE_SHADING_RATE];
|
|
} else if (devinfo->has_coarse_pixel_primitive_and_cb) {
|
|
uint32_t one_fp16 = 0x3C00;
|
|
brw_reg one_by_one_fp16 = brw_vgrf(alloc.allocate(dispatch_width / 8),
|
|
BRW_TYPE_UD);
|
|
bld.MOV(one_by_one_fp16, brw_imm_ud((one_fp16 << 16) | one_fp16));
|
|
sources[length++] = one_by_one_fp16;
|
|
} else {
|
|
sources[length++] = zero;
|
|
}
|
|
|
|
if (vue_map->slots_valid & VARYING_BIT_LAYER)
|
|
sources[length++] = this->outputs[VARYING_SLOT_LAYER];
|
|
else
|
|
sources[length++] = zero;
|
|
|
|
if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
|
|
sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
|
|
else
|
|
sources[length++] = zero;
|
|
|
|
if (vue_map->slots_valid & VARYING_BIT_PSIZ)
|
|
sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
|
|
else
|
|
sources[length++] = zero;
|
|
break;
|
|
}
|
|
case VARYING_SLOT_EDGE:
|
|
unreachable("unexpected scalar vs output");
|
|
break;
|
|
|
|
default:
|
|
/* gl_Position is always in the vue map, but isn't always written by
|
|
* the shader. Other varyings (clip distances) get added to the vue
|
|
* map but don't always get written. In those cases, the
|
|
* corresponding this->output[] slot will be invalid we and can skip
|
|
* the urb write for the varying. If we've already queued up a vue
|
|
* slot for writing we flush a mlen 5 urb write, otherwise we just
|
|
* advance the urb_offset.
|
|
*/
|
|
if (varying == BRW_VARYING_SLOT_PAD ||
|
|
this->outputs[varying].file == BAD_FILE) {
|
|
if (length > 0)
|
|
flush = true;
|
|
else
|
|
urb_offset++;
|
|
break;
|
|
}
|
|
|
|
int slot_offset = 0;
|
|
|
|
/* When using Primitive Replication, there may be multiple slots
|
|
* assigned to POS.
|
|
*/
|
|
if (varying == VARYING_SLOT_POS)
|
|
slot_offset = slot - vue_map->varying_to_slot[VARYING_SLOT_POS];
|
|
|
|
for (unsigned i = 0; i < 4; i++) {
|
|
sources[length++] = offset(this->outputs[varying], bld,
|
|
i + (slot_offset * 4));
|
|
}
|
|
break;
|
|
}
|
|
|
|
const fs_builder abld = bld.annotate("URB write");
|
|
|
|
/* If we've queued up 8 registers of payload (2 VUE slots), if this is
|
|
* the last slot or if we need to flush (see BAD_FILE varying case
|
|
* above), emit a URB write send now to flush out the data.
|
|
*/
|
|
if (length == 8 || (length > 0 && slot == last_slot))
|
|
flush = true;
|
|
if (flush) {
|
|
brw_reg srcs[URB_LOGICAL_NUM_SRCS];
|
|
|
|
srcs[URB_LOGICAL_SRC_HANDLE] = urb_handle;
|
|
srcs[URB_LOGICAL_SRC_PER_SLOT_OFFSETS] = per_slot_offsets;
|
|
srcs[URB_LOGICAL_SRC_DATA] = brw_vgrf(alloc.allocate((dispatch_width / 8) * length),
|
|
BRW_TYPE_F);
|
|
srcs[URB_LOGICAL_SRC_COMPONENTS] = brw_imm_ud(length);
|
|
abld.LOAD_PAYLOAD(srcs[URB_LOGICAL_SRC_DATA], sources, length, 0);
|
|
|
|
fs_inst *inst = abld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef,
|
|
srcs, ARRAY_SIZE(srcs));
|
|
|
|
/* For Wa_1805992985 one needs additional write in the end. */
|
|
if (intel_needs_workaround(devinfo, 1805992985) && stage == MESA_SHADER_TESS_EVAL)
|
|
inst->eot = false;
|
|
else
|
|
inst->eot = slot == last_slot && stage != MESA_SHADER_GEOMETRY;
|
|
|
|
inst->offset = urb_offset;
|
|
urb_offset = starting_urb_offset + slot + 1;
|
|
length = 0;
|
|
flush = false;
|
|
urb_written = true;
|
|
}
|
|
}
|
|
|
|
/* If we don't have any valid slots to write, just do a minimal urb write
|
|
* send to terminate the shader. This includes 1 slot of undefined data,
|
|
* because it's invalid to write 0 data:
|
|
*
|
|
* From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
|
|
* Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
|
|
* Write Data Payload:
|
|
*
|
|
* "The write data payload can be between 1 and 8 message phases long."
|
|
*/
|
|
if (!urb_written) {
|
|
/* For GS, just turn EmitVertex() into a no-op. We don't want it to
|
|
* end the thread, and emit_gs_thread_end() already emits a SEND with
|
|
* EOT at the end of the program for us.
|
|
*/
|
|
if (stage == MESA_SHADER_GEOMETRY)
|
|
return;
|
|
|
|
brw_reg uniform_urb_handle = brw_vgrf(alloc.allocate(dispatch_width / 8),
|
|
BRW_TYPE_UD);
|
|
brw_reg payload = brw_vgrf(alloc.allocate(dispatch_width / 8),
|
|
BRW_TYPE_UD);
|
|
|
|
bld.exec_all().MOV(uniform_urb_handle, urb_handle);
|
|
|
|
brw_reg srcs[URB_LOGICAL_NUM_SRCS];
|
|
srcs[URB_LOGICAL_SRC_HANDLE] = uniform_urb_handle;
|
|
srcs[URB_LOGICAL_SRC_DATA] = payload;
|
|
srcs[URB_LOGICAL_SRC_COMPONENTS] = brw_imm_ud(1);
|
|
|
|
fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef,
|
|
srcs, ARRAY_SIZE(srcs));
|
|
inst->eot = true;
|
|
inst->offset = 1;
|
|
return;
|
|
}
|
|
|
|
/* Wa_1805992985:
|
|
*
|
|
* GPU hangs on one of tessellation vkcts tests with DS not done. The
|
|
* send cycle, which is a urb write with an eot must be 4 phases long and
|
|
* all 8 lanes must valid.
|
|
*/
|
|
if (intel_needs_workaround(devinfo, 1805992985) && stage == MESA_SHADER_TESS_EVAL) {
|
|
assert(dispatch_width == 8);
|
|
brw_reg uniform_urb_handle = brw_vgrf(alloc.allocate(1), BRW_TYPE_UD);
|
|
brw_reg uniform_mask = brw_vgrf(alloc.allocate(1), BRW_TYPE_UD);
|
|
brw_reg payload = brw_vgrf(alloc.allocate(4), BRW_TYPE_UD);
|
|
|
|
/* Workaround requires all 8 channels (lanes) to be valid. This is
|
|
* understood to mean they all need to be alive. First trick is to find
|
|
* a live channel and copy its urb handle for all the other channels to
|
|
* make sure all handles are valid.
|
|
*/
|
|
bld.exec_all().MOV(uniform_urb_handle, bld.emit_uniformize(urb_handle));
|
|
|
|
/* Second trick is to use masked URB write where one can tell the HW to
|
|
* actually write data only for selected channels even though all are
|
|
* active.
|
|
* Third trick is to take advantage of the must-be-zero (MBZ) area in
|
|
* the very beginning of the URB.
|
|
*
|
|
* One masks data to be written only for the first channel and uses
|
|
* offset zero explicitly to land data to the MBZ area avoiding trashing
|
|
* any other part of the URB.
|
|
*
|
|
* Since the WA says that the write needs to be 4 phases long one uses
|
|
* 4 slots data. All are explicitly zeros in order to to keep the MBZ
|
|
* area written as zeros.
|
|
*/
|
|
bld.exec_all().MOV(uniform_mask, brw_imm_ud(0x10000u));
|
|
bld.exec_all().MOV(offset(payload, bld, 0), brw_imm_ud(0u));
|
|
bld.exec_all().MOV(offset(payload, bld, 1), brw_imm_ud(0u));
|
|
bld.exec_all().MOV(offset(payload, bld, 2), brw_imm_ud(0u));
|
|
bld.exec_all().MOV(offset(payload, bld, 3), brw_imm_ud(0u));
|
|
|
|
brw_reg srcs[URB_LOGICAL_NUM_SRCS];
|
|
srcs[URB_LOGICAL_SRC_HANDLE] = uniform_urb_handle;
|
|
srcs[URB_LOGICAL_SRC_CHANNEL_MASK] = uniform_mask;
|
|
srcs[URB_LOGICAL_SRC_DATA] = payload;
|
|
srcs[URB_LOGICAL_SRC_COMPONENTS] = brw_imm_ud(4);
|
|
|
|
fs_inst *inst = bld.exec_all().emit(SHADER_OPCODE_URB_WRITE_LOGICAL,
|
|
reg_undef, srcs, ARRAY_SIZE(srcs));
|
|
inst->eot = true;
|
|
inst->offset = 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
fs_visitor::emit_cs_terminate()
|
|
{
|
|
const fs_builder ubld = fs_builder(this).at_end().exec_all();
|
|
|
|
/* We can't directly send from g0, since sends with EOT have to use
|
|
* g112-127. So, copy it to a virtual register, The register allocator will
|
|
* make sure it uses the appropriate register range.
|
|
*/
|
|
struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_TYPE_UD);
|
|
brw_reg payload = brw_vgrf(alloc.allocate(reg_unit(devinfo)),
|
|
BRW_TYPE_UD);
|
|
ubld.group(8 * reg_unit(devinfo), 0).MOV(payload, g0);
|
|
|
|
/* Set the descriptor to "Dereference Resource" and "Root Thread" */
|
|
unsigned desc = 0;
|
|
|
|
/* Set Resource Select to "Do not dereference URB" on Gfx < 11.
|
|
*
|
|
* Note that even though the thread has a URB resource associated with it,
|
|
* we set the "do not dereference URB" bit, because the URB resource is
|
|
* managed by the fixed-function unit, so it will free it automatically.
|
|
*/
|
|
if (devinfo->ver < 11)
|
|
desc |= (1 << 4); /* Do not dereference URB */
|
|
|
|
brw_reg srcs[4] = {
|
|
brw_imm_ud(desc), /* desc */
|
|
brw_imm_ud(0), /* ex_desc */
|
|
payload, /* payload */
|
|
brw_reg(), /* payload2 */
|
|
};
|
|
|
|
fs_inst *send = ubld.emit(SHADER_OPCODE_SEND, reg_undef, srcs, 4);
|
|
|
|
/* On Alchemist and later, send an EOT message to the message gateway to
|
|
* terminate a compute shader. For older GPUs, send to the thread spawner.
|
|
*/
|
|
send->sfid = devinfo->verx10 >= 125 ? BRW_SFID_MESSAGE_GATEWAY
|
|
: BRW_SFID_THREAD_SPAWNER;
|
|
send->mlen = reg_unit(devinfo);
|
|
send->eot = true;
|
|
}
|
|
|
|
fs_visitor::fs_visitor(const struct brw_compiler *compiler,
|
|
const struct brw_compile_params *params,
|
|
const brw_base_prog_key *key,
|
|
struct brw_stage_prog_data *prog_data,
|
|
const nir_shader *shader,
|
|
unsigned dispatch_width,
|
|
bool needs_register_pressure,
|
|
bool debug_enabled)
|
|
: compiler(compiler), log_data(params->log_data),
|
|
devinfo(compiler->devinfo), nir(shader),
|
|
mem_ctx(params->mem_ctx),
|
|
cfg(NULL), stage(shader->info.stage),
|
|
debug_enabled(debug_enabled),
|
|
key(key), gs_compile(NULL), prog_data(prog_data),
|
|
live_analysis(this), regpressure_analysis(this),
|
|
performance_analysis(this), idom_analysis(this), def_analysis(this),
|
|
needs_register_pressure(needs_register_pressure),
|
|
dispatch_width(dispatch_width),
|
|
max_polygons(0),
|
|
api_subgroup_size(brw_nir_api_subgroup_size(shader, dispatch_width))
|
|
{
|
|
init();
|
|
}
|
|
|
|
fs_visitor::fs_visitor(const struct brw_compiler *compiler,
|
|
const struct brw_compile_params *params,
|
|
const brw_wm_prog_key *key,
|
|
struct brw_wm_prog_data *prog_data,
|
|
const nir_shader *shader,
|
|
unsigned dispatch_width, unsigned max_polygons,
|
|
bool needs_register_pressure,
|
|
bool debug_enabled)
|
|
: compiler(compiler), log_data(params->log_data),
|
|
devinfo(compiler->devinfo), nir(shader),
|
|
mem_ctx(params->mem_ctx),
|
|
cfg(NULL), stage(shader->info.stage),
|
|
debug_enabled(debug_enabled),
|
|
key(&key->base), gs_compile(NULL), prog_data(&prog_data->base),
|
|
live_analysis(this), regpressure_analysis(this),
|
|
performance_analysis(this), idom_analysis(this), def_analysis(this),
|
|
needs_register_pressure(needs_register_pressure),
|
|
dispatch_width(dispatch_width),
|
|
max_polygons(max_polygons),
|
|
api_subgroup_size(brw_nir_api_subgroup_size(shader, dispatch_width))
|
|
{
|
|
init();
|
|
assert(api_subgroup_size == 0 ||
|
|
api_subgroup_size == 8 ||
|
|
api_subgroup_size == 16 ||
|
|
api_subgroup_size == 32);
|
|
}
|
|
|
|
fs_visitor::fs_visitor(const struct brw_compiler *compiler,
|
|
const struct brw_compile_params *params,
|
|
struct brw_gs_compile *c,
|
|
struct brw_gs_prog_data *prog_data,
|
|
const nir_shader *shader,
|
|
bool needs_register_pressure,
|
|
bool debug_enabled)
|
|
: compiler(compiler), log_data(params->log_data),
|
|
devinfo(compiler->devinfo), nir(shader),
|
|
mem_ctx(params->mem_ctx),
|
|
cfg(NULL), stage(shader->info.stage),
|
|
debug_enabled(debug_enabled),
|
|
key(&c->key.base), gs_compile(c),
|
|
prog_data(&prog_data->base.base),
|
|
live_analysis(this), regpressure_analysis(this),
|
|
performance_analysis(this), idom_analysis(this), def_analysis(this),
|
|
needs_register_pressure(needs_register_pressure),
|
|
dispatch_width(compiler->devinfo->ver >= 20 ? 16 : 8),
|
|
max_polygons(0),
|
|
api_subgroup_size(brw_nir_api_subgroup_size(shader, dispatch_width))
|
|
{
|
|
init();
|
|
assert(api_subgroup_size == 0 ||
|
|
api_subgroup_size == 8 ||
|
|
api_subgroup_size == 16 ||
|
|
api_subgroup_size == 32);
|
|
}
|
|
|
|
void
|
|
fs_visitor::init()
|
|
{
|
|
this->max_dispatch_width = 32;
|
|
|
|
this->failed = false;
|
|
this->fail_msg = NULL;
|
|
|
|
this->payload_ = NULL;
|
|
this->source_depth_to_render_target = false;
|
|
this->first_non_payload_grf = 0;
|
|
|
|
this->uniforms = 0;
|
|
this->last_scratch = 0;
|
|
this->push_constant_loc = NULL;
|
|
|
|
memset(&this->shader_stats, 0, sizeof(this->shader_stats));
|
|
|
|
this->grf_used = 0;
|
|
this->spilled_any_registers = false;
|
|
|
|
this->phase = BRW_SHADER_PHASE_INITIAL;
|
|
}
|
|
|
|
fs_visitor::~fs_visitor()
|
|
{
|
|
delete this->payload_;
|
|
}
|