mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-25 00:00:11 +01:00
read-only mirror of https://gitlab.freedesktop.org/mesa/mesa
srgb-to-linear is using 3rd degree polynomial for now which should be _just_ good enough. Reverse is using some rational polynomials and is quite accurate, though not hooked into llvmpipe's blend code yet and hence unused (untested). Using a table might also be an option (for srgb-to-linear especially). This does not enable any new features yet because EXT_texture_srgb was already supported via util_format fallbacks, but performance was lacking probably due to the external function call (the table used by the util_format_srgb code may not be all that much slower on its own). Some performance figures (taken from modified gloss, replaced both base and sphere texture to use GL_SRGB instead of GL_RGB, measured on 1Ghz Sandy Bridge, the numbers aren't terribly accurate): normal gloss, aos, 8-wide: 47 fps normal gloss, aos, 4-wide: 48 fps normal gloss, forced to soa, 8-wide: 48 fps normal gloss, forced to soa, 4-wide: 47 fps patched gloss, old code, soa, 8-wide: 21 fps patched gloss, old code, soa, 4-wide: 24 fps patched gloss, new code, soa, 8-wide: 41 fps patched gloss, new code, soa, 4-wide: 38 fps So there's a performance hit but it seems acceptable, certainly better than using the fallback. Note the new code only works for 4x8bit srgb formats, others (L8/L8A8) will continue to use the old util_format fallback, because I can't be bothered to write code for formats noone uses anyway (as decoding is done as part of lp_build_unpack_rgba_soa which can only handle block type width of 32). Compressed srgb formats should get their own path though eventually (it is going to be expensive in any case, first decompress, then convert). No piglit regressions. v2: use lp_build_polynomial instead of ad-hoc polynomial construction, also since keeping both linear to srgb functions for now make sure both are compiled (since they share quite some code just integrate into the same function). v3: formatting fixes and bugfix in the complicated (disabled) linear-to-srgb path. Reviewed-by: Jose Fonseca <jfonseca@vmware.com> |
||
|---|---|---|
| bin | ||
| docs | ||
| doxygen | ||
| include | ||
| m4 | ||
| scons | ||
| src | ||
| .dir-locals.el | ||
| .gitattributes | ||
| .gitignore | ||
| Android.common.mk | ||
| Android.mk | ||
| autogen.sh | ||
| common.py | ||
| configure.ac | ||
| Makefile.am | ||
| SConstruct | ||
File: docs/README.WIN32 Last updated: 21 June 2013 Quick Start ----- ----- Windows drivers are build with SCons. Makefiles or Visual Studio projects are no longer shipped or supported. Run scons osmesa mesagdi to build classic mesa Windows GDI drivers; or scons libgl-gdi to build gallium based GDI driver. This will work both with MSVS or Mingw. Windows Drivers ------- ------- At this time, only the gallium GDI driver is known to work. Source code also exists in the tree for other drivers in src/mesa/drivers/windows, but the status of this code is unknown. Recipe ------ Building on windows requires several open-source packages. These are steps that work as of this writing. 1) install python 2.7 2) install scons (latest) 3) install mingw, flex, and bison 4) install libxml2 from here: http://www.lfd.uci.edu/~gohlke/pythonlibs get libxml2-python-2.9.1.win-amd64-py2.7.exe 5) install pywin32 from here: http://www.lfd.uci.edu/~gohlke/pythonlibs get pywin32-218.4.win-amd64-py2.7.exe 6) install git 7) download mesa from git see http://www.mesa3d.org/repository.html 8) run scons General ------- After building, you can copy the above DLL files to a place in your PATH such as $SystemRoot/SYSTEM32. If you don't like putting things in a system directory, place them in the same directory as the executable(s). Be careful about accidentially overwriting files of the same name in the SYSTEM32 directory. The DLL files are built so that the external entry points use the stdcall calling convention. Static LIB files are not built. The LIB files that are built with are the linker import files associated with the DLL files. The si-glu sources are used to build the GLU libs. This was done mainly to get the better tessellator code. If you have a Windows-related build problem or question, please post to the mesa-dev or mesa-users list.