mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-20 22:30:12 +01:00
Signed-off-by: Rhys Perry <pendingchaos02@gmail.com>
Fixes: d1621834f3
('aco: combine VALU and SALU into various VOP3 instructions')
Closes: https://gitlab.freedesktop.org/mesa/mesa/-/issues/2822
Reviewed-by: Timur Kristóf <timur.kristof@gmail.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4717>
2878 lines
106 KiB
C++
2878 lines
106 KiB
C++
/*
|
|
* Copyright © 2018 Valve Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
|
|
*
|
|
*/
|
|
|
|
#include <algorithm>
|
|
#include <math.h>
|
|
|
|
#include "aco_ir.h"
|
|
#include "util/half_float.h"
|
|
#include "util/u_math.h"
|
|
|
|
namespace aco {
|
|
|
|
/**
|
|
* The optimizer works in 4 phases:
|
|
* (1) The first pass collects information for each ssa-def,
|
|
* propagates reg->reg operands of the same type, inline constants
|
|
* and neg/abs input modifiers.
|
|
* (2) The second pass combines instructions like mad, omod, clamp and
|
|
* propagates sgpr's on VALU instructions.
|
|
* This pass depends on information collected in the first pass.
|
|
* (3) The third pass goes backwards, and selects instructions,
|
|
* i.e. decides if a mad instruction is profitable and eliminates dead code.
|
|
* (4) The fourth pass cleans up the sequence: literals get applied and dead
|
|
* instructions are removed from the sequence.
|
|
*/
|
|
|
|
|
|
struct mad_info {
|
|
aco_ptr<Instruction> add_instr;
|
|
uint32_t mul_temp_id;
|
|
uint32_t literal_idx;
|
|
bool check_literal;
|
|
|
|
mad_info(aco_ptr<Instruction> instr, uint32_t id)
|
|
: add_instr(std::move(instr)), mul_temp_id(id), check_literal(false) {}
|
|
};
|
|
|
|
enum Label {
|
|
label_vec = 1 << 0,
|
|
label_constant = 1 << 1,
|
|
label_abs = 1 << 2,
|
|
label_neg = 1 << 3,
|
|
label_mul = 1 << 4,
|
|
label_temp = 1 << 5,
|
|
label_literal = 1 << 6,
|
|
label_mad = 1 << 7,
|
|
label_omod2 = 1 << 8,
|
|
label_omod4 = 1 << 9,
|
|
label_omod5 = 1 << 10,
|
|
label_omod_success = 1 << 11,
|
|
label_clamp = 1 << 12,
|
|
label_clamp_success = 1 << 13,
|
|
label_undefined = 1 << 14,
|
|
label_vcc = 1 << 15,
|
|
label_b2f = 1 << 16,
|
|
label_add_sub = 1 << 17,
|
|
label_bitwise = 1 << 18,
|
|
label_minmax = 1 << 19,
|
|
label_fcmp = 1 << 20,
|
|
label_uniform_bool = 1 << 21,
|
|
label_constant_64bit = 1 << 22,
|
|
label_uniform_bitwise = 1 << 23,
|
|
label_scc_invert = 1 << 24,
|
|
label_vcc_hint = 1 << 25,
|
|
label_scc_needed = 1 << 26,
|
|
};
|
|
|
|
static constexpr uint32_t instr_labels = label_vec | label_mul | label_mad | label_omod_success | label_clamp_success |
|
|
label_add_sub | label_bitwise | label_uniform_bitwise | label_minmax | label_fcmp;
|
|
static constexpr uint32_t temp_labels = label_abs | label_neg | label_temp | label_vcc | label_b2f | label_uniform_bool |
|
|
label_omod2 | label_omod4 | label_omod5 | label_clamp | label_scc_invert;
|
|
static constexpr uint32_t val_labels = label_constant | label_constant_64bit | label_literal | label_mad;
|
|
|
|
struct ssa_info {
|
|
uint32_t val;
|
|
union {
|
|
Temp temp;
|
|
Instruction* instr;
|
|
};
|
|
uint32_t label;
|
|
|
|
ssa_info() : label(0) {}
|
|
|
|
void add_label(Label new_label)
|
|
{
|
|
/* Since all labels which use "instr" use it for the same thing
|
|
* (indicating the defining instruction), there is no need to clear
|
|
* any other instr labels. */
|
|
if (new_label & instr_labels)
|
|
label &= ~temp_labels; /* instr and temp alias */
|
|
|
|
if (new_label & temp_labels) {
|
|
label &= ~temp_labels;
|
|
label &= ~instr_labels; /* instr and temp alias */
|
|
}
|
|
|
|
if (new_label & val_labels)
|
|
label &= ~val_labels;
|
|
|
|
label |= new_label;
|
|
}
|
|
|
|
void set_vec(Instruction* vec)
|
|
{
|
|
add_label(label_vec);
|
|
instr = vec;
|
|
}
|
|
|
|
bool is_vec()
|
|
{
|
|
return label & label_vec;
|
|
}
|
|
|
|
void set_constant(uint32_t constant)
|
|
{
|
|
add_label(label_constant);
|
|
val = constant;
|
|
}
|
|
|
|
bool is_constant()
|
|
{
|
|
return label & label_constant;
|
|
}
|
|
|
|
void set_constant_64bit(uint32_t constant)
|
|
{
|
|
add_label(label_constant_64bit);
|
|
val = constant;
|
|
}
|
|
|
|
bool is_constant_64bit()
|
|
{
|
|
return label & label_constant_64bit;
|
|
}
|
|
|
|
void set_abs(Temp abs_temp)
|
|
{
|
|
add_label(label_abs);
|
|
temp = abs_temp;
|
|
}
|
|
|
|
bool is_abs()
|
|
{
|
|
return label & label_abs;
|
|
}
|
|
|
|
void set_neg(Temp neg_temp)
|
|
{
|
|
add_label(label_neg);
|
|
temp = neg_temp;
|
|
}
|
|
|
|
bool is_neg()
|
|
{
|
|
return label & label_neg;
|
|
}
|
|
|
|
void set_neg_abs(Temp neg_abs_temp)
|
|
{
|
|
add_label((Label)((uint32_t)label_abs | (uint32_t)label_neg));
|
|
temp = neg_abs_temp;
|
|
}
|
|
|
|
void set_mul(Instruction* mul)
|
|
{
|
|
add_label(label_mul);
|
|
instr = mul;
|
|
}
|
|
|
|
bool is_mul()
|
|
{
|
|
return label & label_mul;
|
|
}
|
|
|
|
void set_temp(Temp tmp)
|
|
{
|
|
add_label(label_temp);
|
|
temp = tmp;
|
|
}
|
|
|
|
bool is_temp()
|
|
{
|
|
return label & label_temp;
|
|
}
|
|
|
|
void set_literal(uint32_t lit)
|
|
{
|
|
add_label(label_literal);
|
|
val = lit;
|
|
}
|
|
|
|
bool is_literal()
|
|
{
|
|
return label & label_literal;
|
|
}
|
|
|
|
void set_mad(Instruction* mad, uint32_t mad_info_idx)
|
|
{
|
|
add_label(label_mad);
|
|
val = mad_info_idx;
|
|
instr = mad;
|
|
}
|
|
|
|
bool is_mad()
|
|
{
|
|
return label & label_mad;
|
|
}
|
|
|
|
void set_omod2(Temp def)
|
|
{
|
|
add_label(label_omod2);
|
|
temp = def;
|
|
}
|
|
|
|
bool is_omod2()
|
|
{
|
|
return label & label_omod2;
|
|
}
|
|
|
|
void set_omod4(Temp def)
|
|
{
|
|
add_label(label_omod4);
|
|
temp = def;
|
|
}
|
|
|
|
bool is_omod4()
|
|
{
|
|
return label & label_omod4;
|
|
}
|
|
|
|
void set_omod5(Temp def)
|
|
{
|
|
add_label(label_omod5);
|
|
temp = def;
|
|
}
|
|
|
|
bool is_omod5()
|
|
{
|
|
return label & label_omod5;
|
|
}
|
|
|
|
void set_omod_success(Instruction* omod_instr)
|
|
{
|
|
add_label(label_omod_success);
|
|
instr = omod_instr;
|
|
}
|
|
|
|
bool is_omod_success()
|
|
{
|
|
return label & label_omod_success;
|
|
}
|
|
|
|
void set_clamp(Temp def)
|
|
{
|
|
add_label(label_clamp);
|
|
temp = def;
|
|
}
|
|
|
|
bool is_clamp()
|
|
{
|
|
return label & label_clamp;
|
|
}
|
|
|
|
void set_clamp_success(Instruction* clamp_instr)
|
|
{
|
|
add_label(label_clamp_success);
|
|
instr = clamp_instr;
|
|
}
|
|
|
|
bool is_clamp_success()
|
|
{
|
|
return label & label_clamp_success;
|
|
}
|
|
|
|
void set_undefined()
|
|
{
|
|
add_label(label_undefined);
|
|
}
|
|
|
|
bool is_undefined()
|
|
{
|
|
return label & label_undefined;
|
|
}
|
|
|
|
void set_vcc(Temp vcc)
|
|
{
|
|
add_label(label_vcc);
|
|
temp = vcc;
|
|
}
|
|
|
|
bool is_vcc()
|
|
{
|
|
return label & label_vcc;
|
|
}
|
|
|
|
bool is_constant_or_literal()
|
|
{
|
|
return is_constant() || is_literal();
|
|
}
|
|
|
|
void set_b2f(Temp val)
|
|
{
|
|
add_label(label_b2f);
|
|
temp = val;
|
|
}
|
|
|
|
bool is_b2f()
|
|
{
|
|
return label & label_b2f;
|
|
}
|
|
|
|
void set_add_sub(Instruction *add_sub_instr)
|
|
{
|
|
add_label(label_add_sub);
|
|
instr = add_sub_instr;
|
|
}
|
|
|
|
bool is_add_sub()
|
|
{
|
|
return label & label_add_sub;
|
|
}
|
|
|
|
void set_bitwise(Instruction *bitwise_instr)
|
|
{
|
|
add_label(label_bitwise);
|
|
instr = bitwise_instr;
|
|
}
|
|
|
|
bool is_bitwise()
|
|
{
|
|
return label & label_bitwise;
|
|
}
|
|
|
|
void set_uniform_bitwise()
|
|
{
|
|
add_label(label_uniform_bitwise);
|
|
}
|
|
|
|
bool is_uniform_bitwise()
|
|
{
|
|
return label & label_uniform_bitwise;
|
|
}
|
|
|
|
void set_minmax(Instruction *minmax_instr)
|
|
{
|
|
add_label(label_minmax);
|
|
instr = minmax_instr;
|
|
}
|
|
|
|
bool is_minmax()
|
|
{
|
|
return label & label_minmax;
|
|
}
|
|
|
|
void set_fcmp(Instruction *fcmp_instr)
|
|
{
|
|
add_label(label_fcmp);
|
|
instr = fcmp_instr;
|
|
}
|
|
|
|
bool is_fcmp()
|
|
{
|
|
return label & label_fcmp;
|
|
}
|
|
|
|
void set_scc_needed()
|
|
{
|
|
add_label(label_scc_needed);
|
|
}
|
|
|
|
bool is_scc_needed()
|
|
{
|
|
return label & label_scc_needed;
|
|
}
|
|
|
|
void set_scc_invert(Temp scc_inv)
|
|
{
|
|
add_label(label_scc_invert);
|
|
temp = scc_inv;
|
|
}
|
|
|
|
bool is_scc_invert()
|
|
{
|
|
return label & label_scc_invert;
|
|
}
|
|
|
|
void set_uniform_bool(Temp uniform_bool)
|
|
{
|
|
add_label(label_uniform_bool);
|
|
temp = uniform_bool;
|
|
}
|
|
|
|
bool is_uniform_bool()
|
|
{
|
|
return label & label_uniform_bool;
|
|
}
|
|
|
|
void set_vcc_hint()
|
|
{
|
|
add_label(label_vcc_hint);
|
|
}
|
|
|
|
bool is_vcc_hint()
|
|
{
|
|
return label & label_vcc_hint;
|
|
}
|
|
};
|
|
|
|
struct opt_ctx {
|
|
Program* program;
|
|
std::vector<aco_ptr<Instruction>> instructions;
|
|
ssa_info* info;
|
|
std::pair<uint32_t,Temp> last_literal;
|
|
std::vector<mad_info> mad_infos;
|
|
std::vector<uint16_t> uses;
|
|
};
|
|
|
|
bool can_swap_operands(aco_ptr<Instruction>& instr)
|
|
{
|
|
if (instr->operands[0].isConstant() ||
|
|
(instr->operands[0].isTemp() && instr->operands[0].getTemp().type() == RegType::sgpr))
|
|
return false;
|
|
|
|
switch (instr->opcode) {
|
|
case aco_opcode::v_add_f32:
|
|
case aco_opcode::v_mul_f32:
|
|
case aco_opcode::v_or_b32:
|
|
case aco_opcode::v_and_b32:
|
|
case aco_opcode::v_xor_b32:
|
|
case aco_opcode::v_max_f32:
|
|
case aco_opcode::v_min_f32:
|
|
case aco_opcode::v_max_i32:
|
|
case aco_opcode::v_min_i32:
|
|
case aco_opcode::v_max_u32:
|
|
case aco_opcode::v_min_u32:
|
|
case aco_opcode::v_cmp_eq_f32:
|
|
case aco_opcode::v_cmp_lg_f32:
|
|
return true;
|
|
case aco_opcode::v_sub_f32:
|
|
instr->opcode = aco_opcode::v_subrev_f32;
|
|
return true;
|
|
case aco_opcode::v_cmp_lt_f32:
|
|
instr->opcode = aco_opcode::v_cmp_gt_f32;
|
|
return true;
|
|
case aco_opcode::v_cmp_ge_f32:
|
|
instr->opcode = aco_opcode::v_cmp_le_f32;
|
|
return true;
|
|
case aco_opcode::v_cmp_lt_i32:
|
|
instr->opcode = aco_opcode::v_cmp_gt_i32;
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool can_use_VOP3(opt_ctx& ctx, aco_ptr<Instruction>& instr)
|
|
{
|
|
if (instr->isVOP3())
|
|
return true;
|
|
|
|
if (instr->operands.size() && instr->operands[0].isLiteral() && ctx.program->chip_class < GFX10)
|
|
return false;
|
|
|
|
if (instr->isDPP() || instr->isSDWA())
|
|
return false;
|
|
|
|
return instr->opcode != aco_opcode::v_madmk_f32 &&
|
|
instr->opcode != aco_opcode::v_madak_f32 &&
|
|
instr->opcode != aco_opcode::v_madmk_f16 &&
|
|
instr->opcode != aco_opcode::v_madak_f16 &&
|
|
instr->opcode != aco_opcode::v_fmamk_f32 &&
|
|
instr->opcode != aco_opcode::v_fmaak_f32 &&
|
|
instr->opcode != aco_opcode::v_fmamk_f16 &&
|
|
instr->opcode != aco_opcode::v_fmaak_f16 &&
|
|
instr->opcode != aco_opcode::v_readlane_b32 &&
|
|
instr->opcode != aco_opcode::v_writelane_b32 &&
|
|
instr->opcode != aco_opcode::v_readfirstlane_b32;
|
|
}
|
|
|
|
bool can_apply_sgprs(aco_ptr<Instruction>& instr)
|
|
{
|
|
return instr->opcode != aco_opcode::v_readfirstlane_b32 &&
|
|
instr->opcode != aco_opcode::v_readlane_b32 &&
|
|
instr->opcode != aco_opcode::v_readlane_b32_e64 &&
|
|
instr->opcode != aco_opcode::v_writelane_b32 &&
|
|
instr->opcode != aco_opcode::v_writelane_b32_e64;
|
|
}
|
|
|
|
void to_VOP3(opt_ctx& ctx, aco_ptr<Instruction>& instr)
|
|
{
|
|
if (instr->isVOP3())
|
|
return;
|
|
|
|
aco_ptr<Instruction> tmp = std::move(instr);
|
|
Format format = asVOP3(tmp->format);
|
|
instr.reset(create_instruction<VOP3A_instruction>(tmp->opcode, format, tmp->operands.size(), tmp->definitions.size()));
|
|
std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin());
|
|
for (unsigned i = 0; i < instr->definitions.size(); i++) {
|
|
instr->definitions[i] = tmp->definitions[i];
|
|
if (instr->definitions[i].isTemp()) {
|
|
ssa_info& info = ctx.info[instr->definitions[i].tempId()];
|
|
if (info.label & instr_labels && info.instr == tmp.get())
|
|
info.instr = instr.get();
|
|
}
|
|
}
|
|
}
|
|
|
|
/* only covers special cases */
|
|
bool alu_can_accept_constant(aco_opcode opcode, unsigned operand)
|
|
{
|
|
switch (opcode) {
|
|
case aco_opcode::v_interp_p2_f32:
|
|
case aco_opcode::v_mac_f32:
|
|
case aco_opcode::v_writelane_b32:
|
|
case aco_opcode::v_writelane_b32_e64:
|
|
case aco_opcode::v_cndmask_b32:
|
|
return operand != 2;
|
|
case aco_opcode::s_addk_i32:
|
|
case aco_opcode::s_mulk_i32:
|
|
case aco_opcode::p_wqm:
|
|
case aco_opcode::p_extract_vector:
|
|
case aco_opcode::p_split_vector:
|
|
case aco_opcode::v_readlane_b32:
|
|
case aco_opcode::v_readlane_b32_e64:
|
|
case aco_opcode::v_readfirstlane_b32:
|
|
return operand != 0;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool valu_can_accept_vgpr(aco_ptr<Instruction>& instr, unsigned operand)
|
|
{
|
|
if (instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_readlane_b32_e64 ||
|
|
instr->opcode == aco_opcode::v_writelane_b32 || instr->opcode == aco_opcode::v_writelane_b32_e64)
|
|
return operand != 1;
|
|
return true;
|
|
}
|
|
|
|
/* check constant bus and literal limitations */
|
|
bool check_vop3_operands(opt_ctx& ctx, unsigned num_operands, Operand *operands)
|
|
{
|
|
int limit = ctx.program->chip_class >= GFX10 ? 2 : 1;
|
|
Operand literal32(s1);
|
|
Operand literal64(s2);
|
|
unsigned num_sgprs = 0;
|
|
unsigned sgpr[] = {0, 0};
|
|
|
|
for (unsigned i = 0; i < num_operands; i++) {
|
|
Operand op = operands[i];
|
|
|
|
if (op.hasRegClass() && op.regClass().type() == RegType::sgpr) {
|
|
/* two reads of the same SGPR count as 1 to the limit */
|
|
if (op.tempId() != sgpr[0] && op.tempId() != sgpr[1]) {
|
|
if (num_sgprs < 2)
|
|
sgpr[num_sgprs++] = op.tempId();
|
|
limit--;
|
|
if (limit < 0)
|
|
return false;
|
|
}
|
|
} else if (op.isLiteral()) {
|
|
if (ctx.program->chip_class < GFX10)
|
|
return false;
|
|
|
|
if (!literal32.isUndefined() && literal32.constantValue() != op.constantValue())
|
|
return false;
|
|
if (!literal64.isUndefined() && literal64.constantValue() != op.constantValue())
|
|
return false;
|
|
|
|
/* Any number of 32-bit literals counts as only 1 to the limit. Same
|
|
* (but separately) for 64-bit literals. */
|
|
if (op.size() == 1 && literal32.isUndefined()) {
|
|
limit--;
|
|
literal32 = op;
|
|
} else if (op.size() == 2 && literal64.isUndefined()) {
|
|
limit--;
|
|
literal64 = op;
|
|
}
|
|
|
|
if (limit < 0)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool parse_base_offset(opt_ctx &ctx, Instruction* instr, unsigned op_index, Temp *base, uint32_t *offset)
|
|
{
|
|
Operand op = instr->operands[op_index];
|
|
|
|
if (!op.isTemp())
|
|
return false;
|
|
Temp tmp = op.getTemp();
|
|
if (!ctx.info[tmp.id()].is_add_sub())
|
|
return false;
|
|
|
|
Instruction *add_instr = ctx.info[tmp.id()].instr;
|
|
|
|
switch (add_instr->opcode) {
|
|
case aco_opcode::v_add_u32:
|
|
case aco_opcode::v_add_co_u32:
|
|
case aco_opcode::v_add_co_u32_e64:
|
|
case aco_opcode::s_add_i32:
|
|
case aco_opcode::s_add_u32:
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
if (add_instr->usesModifiers())
|
|
return false;
|
|
|
|
for (unsigned i = 0; i < 2; i++) {
|
|
if (add_instr->operands[i].isConstant()) {
|
|
*offset = add_instr->operands[i].constantValue();
|
|
} else if (add_instr->operands[i].isTemp() &&
|
|
ctx.info[add_instr->operands[i].tempId()].is_constant_or_literal()) {
|
|
*offset = ctx.info[add_instr->operands[i].tempId()].val;
|
|
} else {
|
|
continue;
|
|
}
|
|
if (!add_instr->operands[!i].isTemp())
|
|
continue;
|
|
|
|
uint32_t offset2 = 0;
|
|
if (parse_base_offset(ctx, add_instr, !i, base, &offset2)) {
|
|
*offset += offset2;
|
|
} else {
|
|
*base = add_instr->operands[!i].getTemp();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
Operand get_constant_op(opt_ctx &ctx, uint32_t val, bool is64bit = false)
|
|
{
|
|
// TODO: this functions shouldn't be needed if we store Operand instead of value.
|
|
Operand op(val, is64bit);
|
|
if (val == 0x3e22f983 && ctx.program->chip_class >= GFX8)
|
|
op.setFixed(PhysReg{248}); /* 1/2 PI can be an inline constant on GFX8+ */
|
|
return op;
|
|
}
|
|
|
|
bool fixed_to_exec(Operand op)
|
|
{
|
|
return op.isFixed() && op.physReg() == exec;
|
|
}
|
|
|
|
void label_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
|
|
{
|
|
if (instr->isSALU() || instr->isVALU() || instr->format == Format::PSEUDO) {
|
|
ASSERTED bool all_const = false;
|
|
for (Operand& op : instr->operands)
|
|
all_const = all_const && (!op.isTemp() || ctx.info[op.tempId()].is_constant_or_literal());
|
|
perfwarn(all_const, "All instruction operands are constant", instr.get());
|
|
}
|
|
|
|
for (unsigned i = 0; i < instr->operands.size(); i++)
|
|
{
|
|
if (!instr->operands[i].isTemp())
|
|
continue;
|
|
|
|
ssa_info info = ctx.info[instr->operands[i].tempId()];
|
|
/* propagate undef */
|
|
if (info.is_undefined() && is_phi(instr))
|
|
instr->operands[i] = Operand(instr->operands[i].regClass());
|
|
/* propagate reg->reg of same type */
|
|
if (info.is_temp() && info.temp.regClass() == instr->operands[i].getTemp().regClass()) {
|
|
instr->operands[i].setTemp(ctx.info[instr->operands[i].tempId()].temp);
|
|
info = ctx.info[info.temp.id()];
|
|
}
|
|
|
|
/* SALU / PSEUDO: propagate inline constants */
|
|
if (instr->isSALU() || instr->format == Format::PSEUDO) {
|
|
const bool is_subdword = std::any_of(instr->definitions.begin(), instr->definitions.end(),
|
|
[] (const Definition& def) { return def.regClass().is_subdword();});
|
|
// TODO: optimize SGPR and constant propagation for subdword pseudo instructions on gfx9+
|
|
if (is_subdword)
|
|
continue;
|
|
|
|
if (info.is_temp() && info.temp.type() == RegType::sgpr) {
|
|
instr->operands[i].setTemp(info.temp);
|
|
info = ctx.info[info.temp.id()];
|
|
} else if (info.is_temp() && info.temp.type() == RegType::vgpr) {
|
|
/* propagate vgpr if it can take it */
|
|
switch (instr->opcode) {
|
|
case aco_opcode::p_create_vector:
|
|
case aco_opcode::p_split_vector:
|
|
case aco_opcode::p_extract_vector:
|
|
case aco_opcode::p_phi: {
|
|
const bool all_vgpr = std::none_of(instr->definitions.begin(), instr->definitions.end(),
|
|
[] (const Definition& def) { return def.getTemp().type() != RegType::vgpr;});
|
|
if (all_vgpr) {
|
|
instr->operands[i] = Operand(info.temp);
|
|
info = ctx.info[info.temp.id()];
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
if ((info.is_constant() || info.is_constant_64bit() || (info.is_literal() && instr->format == Format::PSEUDO)) &&
|
|
!instr->operands[i].isFixed() && alu_can_accept_constant(instr->opcode, i)) {
|
|
instr->operands[i] = get_constant_op(ctx, info.val, info.is_constant_64bit());
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* VALU: propagate neg, abs & inline constants */
|
|
else if (instr->isVALU()) {
|
|
if (info.is_temp() && info.temp.type() == RegType::vgpr && valu_can_accept_vgpr(instr, i)) {
|
|
instr->operands[i].setTemp(info.temp);
|
|
info = ctx.info[info.temp.id()];
|
|
}
|
|
if (info.is_abs() && (can_use_VOP3(ctx, instr) || instr->isDPP()) && instr_info.can_use_input_modifiers[(int)instr->opcode]) {
|
|
if (!instr->isDPP())
|
|
to_VOP3(ctx, instr);
|
|
instr->operands[i] = Operand(info.temp);
|
|
if (instr->isDPP())
|
|
static_cast<DPP_instruction*>(instr.get())->abs[i] = true;
|
|
else
|
|
static_cast<VOP3A_instruction*>(instr.get())->abs[i] = true;
|
|
}
|
|
if (info.is_neg() && instr->opcode == aco_opcode::v_add_f32) {
|
|
instr->opcode = i ? aco_opcode::v_sub_f32 : aco_opcode::v_subrev_f32;
|
|
instr->operands[i].setTemp(info.temp);
|
|
continue;
|
|
} else if (info.is_neg() && (can_use_VOP3(ctx, instr) || instr->isDPP()) && instr_info.can_use_input_modifiers[(int)instr->opcode]) {
|
|
if (!instr->isDPP())
|
|
to_VOP3(ctx, instr);
|
|
instr->operands[i].setTemp(info.temp);
|
|
if (instr->isDPP())
|
|
static_cast<DPP_instruction*>(instr.get())->neg[i] = true;
|
|
else
|
|
static_cast<VOP3A_instruction*>(instr.get())->neg[i] = true;
|
|
continue;
|
|
}
|
|
if ((info.is_constant() || info.is_constant_64bit()) && alu_can_accept_constant(instr->opcode, i)) {
|
|
Operand op = get_constant_op(ctx, info.val, info.is_constant_64bit());
|
|
perfwarn(instr->opcode == aco_opcode::v_cndmask_b32 && i == 2, "v_cndmask_b32 with a constant selector", instr.get());
|
|
if (i == 0 || instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_writelane_b32) {
|
|
instr->operands[i] = op;
|
|
continue;
|
|
} else if (!instr->isVOP3() && can_swap_operands(instr)) {
|
|
instr->operands[i] = instr->operands[0];
|
|
instr->operands[0] = op;
|
|
continue;
|
|
} else if (can_use_VOP3(ctx, instr)) {
|
|
to_VOP3(ctx, instr);
|
|
instr->operands[i] = op;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* MUBUF: propagate constants and combine additions */
|
|
else if (instr->format == Format::MUBUF) {
|
|
MUBUF_instruction *mubuf = static_cast<MUBUF_instruction *>(instr.get());
|
|
Temp base;
|
|
uint32_t offset;
|
|
while (info.is_temp())
|
|
info = ctx.info[info.temp.id()];
|
|
|
|
if (mubuf->offen && i == 1 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) {
|
|
assert(!mubuf->idxen);
|
|
instr->operands[1] = Operand(v1);
|
|
mubuf->offset += info.val;
|
|
mubuf->offen = false;
|
|
continue;
|
|
} else if (i == 2 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) {
|
|
instr->operands[2] = Operand((uint32_t) 0);
|
|
mubuf->offset += info.val;
|
|
continue;
|
|
} else if (mubuf->offen && i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == v1 && mubuf->offset + offset < 4096) {
|
|
assert(!mubuf->idxen);
|
|
instr->operands[1].setTemp(base);
|
|
mubuf->offset += offset;
|
|
continue;
|
|
} else if (i == 2 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && mubuf->offset + offset < 4096) {
|
|
instr->operands[i].setTemp(base);
|
|
mubuf->offset += offset;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* DS: combine additions */
|
|
else if (instr->format == Format::DS) {
|
|
|
|
DS_instruction *ds = static_cast<DS_instruction *>(instr.get());
|
|
Temp base;
|
|
uint32_t offset;
|
|
bool has_usable_ds_offset = ctx.program->chip_class >= GFX7;
|
|
if (has_usable_ds_offset &&
|
|
i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset) &&
|
|
base.regClass() == instr->operands[i].regClass() &&
|
|
instr->opcode != aco_opcode::ds_swizzle_b32) {
|
|
if (instr->opcode == aco_opcode::ds_write2_b32 || instr->opcode == aco_opcode::ds_read2_b32 ||
|
|
instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) {
|
|
unsigned mask = (instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) ? 0x7 : 0x3;
|
|
unsigned shifts = (instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) ? 3 : 2;
|
|
|
|
if ((offset & mask) == 0 &&
|
|
ds->offset0 + (offset >> shifts) <= 255 &&
|
|
ds->offset1 + (offset >> shifts) <= 255) {
|
|
instr->operands[i].setTemp(base);
|
|
ds->offset0 += offset >> shifts;
|
|
ds->offset1 += offset >> shifts;
|
|
}
|
|
} else {
|
|
if (ds->offset0 + offset <= 65535) {
|
|
instr->operands[i].setTemp(base);
|
|
ds->offset0 += offset;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* SMEM: propagate constants and combine additions */
|
|
else if (instr->format == Format::SMEM) {
|
|
|
|
SMEM_instruction *smem = static_cast<SMEM_instruction *>(instr.get());
|
|
Temp base;
|
|
uint32_t offset;
|
|
if (i == 1 && info.is_constant_or_literal() &&
|
|
((ctx.program->chip_class == GFX6 && info.val <= 0x3FF) ||
|
|
(ctx.program->chip_class == GFX7 && info.val <= 0xFFFFFFFF) ||
|
|
(ctx.program->chip_class >= GFX8 && info.val <= 0xFFFFF))) {
|
|
instr->operands[i] = Operand(info.val);
|
|
continue;
|
|
} else if (i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && offset <= 0xFFFFF && ctx.program->chip_class >= GFX9) {
|
|
bool soe = smem->operands.size() >= (!smem->definitions.empty() ? 3 : 4);
|
|
if (soe &&
|
|
(!ctx.info[smem->operands.back().tempId()].is_constant_or_literal() ||
|
|
ctx.info[smem->operands.back().tempId()].val != 0)) {
|
|
continue;
|
|
}
|
|
if (soe) {
|
|
smem->operands[1] = Operand(offset);
|
|
smem->operands.back() = Operand(base);
|
|
} else {
|
|
SMEM_instruction *new_instr = create_instruction<SMEM_instruction>(smem->opcode, Format::SMEM, smem->operands.size() + 1, smem->definitions.size());
|
|
new_instr->operands[0] = smem->operands[0];
|
|
new_instr->operands[1] = Operand(offset);
|
|
if (smem->definitions.empty())
|
|
new_instr->operands[2] = smem->operands[2];
|
|
new_instr->operands.back() = Operand(base);
|
|
if (!smem->definitions.empty())
|
|
new_instr->definitions[0] = smem->definitions[0];
|
|
new_instr->can_reorder = smem->can_reorder;
|
|
new_instr->barrier = smem->barrier;
|
|
instr.reset(new_instr);
|
|
smem = static_cast<SMEM_instruction *>(instr.get());
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
else if (instr->format == Format::PSEUDO_BRANCH) {
|
|
if (ctx.info[instr->operands[0].tempId()].is_scc_invert()) {
|
|
/* Flip the branch instruction to get rid of the scc_invert instruction */
|
|
instr->opcode = instr->opcode == aco_opcode::p_cbranch_z ? aco_opcode::p_cbranch_nz : aco_opcode::p_cbranch_z;
|
|
instr->operands[0].setTemp(ctx.info[instr->operands[0].tempId()].temp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* if this instruction doesn't define anything, return */
|
|
if (instr->definitions.empty())
|
|
return;
|
|
|
|
switch (instr->opcode) {
|
|
case aco_opcode::p_create_vector: {
|
|
if (instr->operands.size() == 1 && instr->operands[0].isTemp())
|
|
ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
|
|
else
|
|
ctx.info[instr->definitions[0].tempId()].set_vec(instr.get());
|
|
|
|
unsigned num_ops = instr->operands.size();
|
|
for (const Operand& op : instr->operands) {
|
|
if (op.isTemp() && ctx.info[op.tempId()].is_vec())
|
|
num_ops += ctx.info[op.tempId()].instr->operands.size() - 1;
|
|
}
|
|
if (num_ops != instr->operands.size()) {
|
|
aco_ptr<Instruction> old_vec = std::move(instr);
|
|
instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_ops, 1));
|
|
instr->definitions[0] = old_vec->definitions[0];
|
|
unsigned k = 0;
|
|
for (Operand& old_op : old_vec->operands) {
|
|
if (old_op.isTemp() && ctx.info[old_op.tempId()].is_vec()) {
|
|
for (unsigned j = 0; j < ctx.info[old_op.tempId()].instr->operands.size(); j++) {
|
|
Operand op = ctx.info[old_op.tempId()].instr->operands[j];
|
|
if (op.isTemp() && ctx.info[op.tempId()].is_temp() &&
|
|
ctx.info[op.tempId()].temp.type() == instr->definitions[0].regClass().type())
|
|
op.setTemp(ctx.info[op.tempId()].temp);
|
|
instr->operands[k++] = op;
|
|
}
|
|
} else {
|
|
instr->operands[k++] = old_op;
|
|
}
|
|
}
|
|
assert(k == num_ops);
|
|
}
|
|
break;
|
|
}
|
|
case aco_opcode::p_split_vector: {
|
|
if (!ctx.info[instr->operands[0].tempId()].is_vec())
|
|
break;
|
|
Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
|
|
unsigned split_offset = 0;
|
|
unsigned vec_offset = 0;
|
|
unsigned vec_index = 0;
|
|
for (unsigned i = 0; i < instr->definitions.size(); split_offset += instr->definitions[i++].bytes()) {
|
|
while (vec_offset < split_offset && vec_index < vec->operands.size())
|
|
vec_offset += vec->operands[vec_index++].bytes();
|
|
|
|
if (vec_offset != split_offset || vec->operands[vec_index].bytes() != instr->definitions[i].bytes())
|
|
continue;
|
|
|
|
Operand vec_op = vec->operands[vec_index];
|
|
if (vec_op.isConstant()) {
|
|
if (vec_op.isLiteral())
|
|
ctx.info[instr->definitions[i].tempId()].set_literal(vec_op.constantValue());
|
|
else if (vec_op.size() == 1)
|
|
ctx.info[instr->definitions[i].tempId()].set_constant(vec_op.constantValue());
|
|
else if (vec_op.size() == 2)
|
|
ctx.info[instr->definitions[i].tempId()].set_constant_64bit(vec_op.constantValue());
|
|
} else {
|
|
assert(vec_op.isTemp());
|
|
ctx.info[instr->definitions[i].tempId()].set_temp(vec_op.getTemp());
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case aco_opcode::p_extract_vector: { /* mov */
|
|
if (!ctx.info[instr->operands[0].tempId()].is_vec())
|
|
break;
|
|
|
|
/* check if we index directly into a vector element */
|
|
Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
|
|
const unsigned index = instr->operands[1].constantValue();
|
|
const unsigned dst_offset = index * instr->definitions[0].bytes();
|
|
unsigned offset = 0;
|
|
|
|
for (const Operand& op : vec->operands) {
|
|
if (offset < dst_offset) {
|
|
offset += op.bytes();
|
|
continue;
|
|
} else if (offset != dst_offset || op.bytes() != instr->definitions[0].bytes()) {
|
|
break;
|
|
}
|
|
|
|
/* convert this extract into a copy instruction */
|
|
instr->opcode = aco_opcode::p_parallelcopy;
|
|
instr->operands.pop_back();
|
|
instr->operands[0] = op;
|
|
|
|
if (op.isConstant()) {
|
|
if (op.isLiteral())
|
|
ctx.info[instr->definitions[0].tempId()].set_literal(op.constantValue());
|
|
else if (op.size() == 1)
|
|
ctx.info[instr->definitions[0].tempId()].set_constant(op.constantValue());
|
|
else if (op.size() == 2)
|
|
ctx.info[instr->definitions[0].tempId()].set_constant_64bit(op.constantValue());
|
|
} else {
|
|
assert(op.isTemp());
|
|
ctx.info[instr->definitions[0].tempId()].set_temp(op.getTemp());
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case aco_opcode::s_mov_b32: /* propagate */
|
|
case aco_opcode::s_mov_b64:
|
|
case aco_opcode::v_mov_b32:
|
|
case aco_opcode::p_as_uniform:
|
|
if (instr->definitions[0].isFixed()) {
|
|
/* don't copy-propagate copies into fixed registers */
|
|
} else if (instr->usesModifiers()) {
|
|
// TODO
|
|
} else if (instr->operands[0].isConstant()) {
|
|
if (instr->operands[0].isLiteral())
|
|
ctx.info[instr->definitions[0].tempId()].set_literal(instr->operands[0].constantValue());
|
|
else if (instr->operands[0].size() == 1)
|
|
ctx.info[instr->definitions[0].tempId()].set_constant(instr->operands[0].constantValue());
|
|
else if (instr->operands[0].size() == 2)
|
|
ctx.info[instr->definitions[0].tempId()].set_constant_64bit(instr->operands[0].constantValue());
|
|
} else if (instr->operands[0].isTemp()) {
|
|
ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
|
|
} else {
|
|
assert(instr->operands[0].isFixed());
|
|
}
|
|
break;
|
|
case aco_opcode::p_is_helper:
|
|
if (!ctx.program->needs_wqm)
|
|
ctx.info[instr->definitions[0].tempId()].set_constant(0u);
|
|
break;
|
|
case aco_opcode::s_movk_i32: {
|
|
uint32_t v = static_cast<SOPK_instruction*>(instr.get())->imm;
|
|
v = v & 0x8000 ? (v | 0xffff0000) : v;
|
|
if (v <= 64 || v >= 0xfffffff0)
|
|
ctx.info[instr->definitions[0].tempId()].set_constant(v);
|
|
else
|
|
ctx.info[instr->definitions[0].tempId()].set_literal(v);
|
|
break;
|
|
}
|
|
case aco_opcode::v_bfrev_b32:
|
|
case aco_opcode::s_brev_b32: {
|
|
if (instr->operands[0].isConstant()) {
|
|
uint32_t v = util_bitreverse(instr->operands[0].constantValue());
|
|
if (v <= 64 || v >= 0xfffffff0)
|
|
ctx.info[instr->definitions[0].tempId()].set_constant(v);
|
|
else
|
|
ctx.info[instr->definitions[0].tempId()].set_literal(v);
|
|
}
|
|
break;
|
|
}
|
|
case aco_opcode::s_bfm_b32: {
|
|
if (instr->operands[0].isConstant() && instr->operands[1].isConstant()) {
|
|
unsigned size = instr->operands[0].constantValue() & 0x1f;
|
|
unsigned start = instr->operands[1].constantValue() & 0x1f;
|
|
uint32_t v = ((1u << size) - 1u) << start;
|
|
if (v <= 64 || v >= 0xfffffff0)
|
|
ctx.info[instr->definitions[0].tempId()].set_constant(v);
|
|
else
|
|
ctx.info[instr->definitions[0].tempId()].set_literal(v);
|
|
}
|
|
}
|
|
case aco_opcode::v_mul_f32: { /* omod */
|
|
/* TODO: try to move the negate/abs modifier to the consumer instead */
|
|
if (instr->usesModifiers())
|
|
break;
|
|
|
|
for (unsigned i = 0; i < 2; i++) {
|
|
if (instr->operands[!i].isConstant() && instr->operands[i].isTemp()) {
|
|
if (instr->operands[!i].constantValue() == 0x40000000) { /* 2.0 */
|
|
ctx.info[instr->operands[i].tempId()].set_omod2(instr->definitions[0].getTemp());
|
|
} else if (instr->operands[!i].constantValue() == 0x40800000) { /* 4.0 */
|
|
ctx.info[instr->operands[i].tempId()].set_omod4(instr->definitions[0].getTemp());
|
|
} else if (instr->operands[!i].constantValue() == 0x3f000000) { /* 0.5 */
|
|
ctx.info[instr->operands[i].tempId()].set_omod5(instr->definitions[0].getTemp());
|
|
} else if (instr->operands[!i].constantValue() == 0x3f800000 &&
|
|
!block.fp_mode.must_flush_denorms32) { /* 1.0 */
|
|
ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[i].getTemp());
|
|
} else {
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case aco_opcode::v_and_b32: /* abs */
|
|
if (!instr->usesModifiers() && instr->operands[0].constantEquals(0x7FFFFFFF) &&
|
|
instr->operands[1].isTemp() && instr->operands[1].getTemp().type() == RegType::vgpr)
|
|
ctx.info[instr->definitions[0].tempId()].set_abs(instr->operands[1].getTemp());
|
|
else
|
|
ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
|
|
break;
|
|
case aco_opcode::v_xor_b32: { /* neg */
|
|
if (!instr->usesModifiers() && instr->operands[0].constantEquals(0x80000000u) && instr->operands[1].isTemp()) {
|
|
if (ctx.info[instr->operands[1].tempId()].is_neg()) {
|
|
ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
|
|
} else if (instr->operands[1].getTemp().type() == RegType::vgpr) {
|
|
if (ctx.info[instr->operands[1].tempId()].is_abs()) { /* neg(abs(x)) */
|
|
instr->operands[1].setTemp(ctx.info[instr->operands[1].tempId()].temp);
|
|
instr->opcode = aco_opcode::v_or_b32;
|
|
ctx.info[instr->definitions[0].tempId()].set_neg_abs(instr->operands[1].getTemp());
|
|
} else {
|
|
ctx.info[instr->definitions[0].tempId()].set_neg(instr->operands[1].getTemp());
|
|
}
|
|
}
|
|
} else {
|
|
ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
|
|
}
|
|
break;
|
|
}
|
|
case aco_opcode::v_med3_f32: { /* clamp */
|
|
VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(instr.get());
|
|
if (vop3->abs[0] || vop3->abs[1] || vop3->abs[2] ||
|
|
vop3->neg[0] || vop3->neg[1] || vop3->neg[2] ||
|
|
vop3->omod != 0 || vop3->opsel != 0)
|
|
break;
|
|
|
|
unsigned idx = 0;
|
|
bool found_zero = false, found_one = false;
|
|
for (unsigned i = 0; i < 3; i++)
|
|
{
|
|
if (instr->operands[i].constantEquals(0))
|
|
found_zero = true;
|
|
else if (instr->operands[i].constantEquals(0x3f800000)) /* 1.0 */
|
|
found_one = true;
|
|
else
|
|
idx = i;
|
|
}
|
|
if (found_zero && found_one && instr->operands[idx].isTemp()) {
|
|
ctx.info[instr->operands[idx].tempId()].set_clamp(instr->definitions[0].getTemp());
|
|
}
|
|
break;
|
|
}
|
|
case aco_opcode::v_cndmask_b32:
|
|
if (instr->operands[0].constantEquals(0) &&
|
|
instr->operands[1].constantEquals(0xFFFFFFFF) &&
|
|
instr->operands[2].isTemp())
|
|
ctx.info[instr->definitions[0].tempId()].set_vcc(instr->operands[2].getTemp());
|
|
else if (instr->operands[0].constantEquals(0) &&
|
|
instr->operands[1].constantEquals(0x3f800000u) &&
|
|
instr->operands[2].isTemp())
|
|
ctx.info[instr->definitions[0].tempId()].set_b2f(instr->operands[2].getTemp());
|
|
|
|
ctx.info[instr->operands[2].tempId()].set_vcc_hint();
|
|
break;
|
|
case aco_opcode::v_cmp_lg_u32:
|
|
if (instr->format == Format::VOPC && /* don't optimize VOP3 / SDWA / DPP */
|
|
instr->operands[0].constantEquals(0) &&
|
|
instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_vcc())
|
|
ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
|
|
break;
|
|
case aco_opcode::p_phi:
|
|
case aco_opcode::p_linear_phi: {
|
|
/* lower_bool_phis() can create phis like this */
|
|
bool all_same_temp = instr->operands[0].isTemp();
|
|
/* this check is needed when moving uniform loop counters out of a divergent loop */
|
|
if (all_same_temp)
|
|
all_same_temp = instr->definitions[0].regClass() == instr->operands[0].regClass();
|
|
for (unsigned i = 1; all_same_temp && (i < instr->operands.size()); i++) {
|
|
if (!instr->operands[i].isTemp() || instr->operands[i].tempId() != instr->operands[0].tempId())
|
|
all_same_temp = false;
|
|
}
|
|
if (all_same_temp) {
|
|
ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
|
|
} else {
|
|
bool all_undef = instr->operands[0].isUndefined();
|
|
for (unsigned i = 1; all_undef && (i < instr->operands.size()); i++) {
|
|
if (!instr->operands[i].isUndefined())
|
|
all_undef = false;
|
|
}
|
|
if (all_undef)
|
|
ctx.info[instr->definitions[0].tempId()].set_undefined();
|
|
}
|
|
break;
|
|
}
|
|
case aco_opcode::v_add_u32:
|
|
case aco_opcode::v_add_co_u32:
|
|
case aco_opcode::v_add_co_u32_e64:
|
|
case aco_opcode::s_add_i32:
|
|
case aco_opcode::s_add_u32:
|
|
ctx.info[instr->definitions[0].tempId()].set_add_sub(instr.get());
|
|
break;
|
|
case aco_opcode::s_not_b32:
|
|
case aco_opcode::s_not_b64:
|
|
if (ctx.info[instr->operands[0].tempId()].is_uniform_bool()) {
|
|
ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
|
|
ctx.info[instr->definitions[1].tempId()].set_scc_invert(ctx.info[instr->operands[0].tempId()].temp);
|
|
} else if (ctx.info[instr->operands[0].tempId()].is_uniform_bitwise()) {
|
|
ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
|
|
ctx.info[instr->definitions[1].tempId()].set_scc_invert(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
|
|
}
|
|
ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
|
|
break;
|
|
case aco_opcode::s_and_b32:
|
|
case aco_opcode::s_and_b64:
|
|
if (fixed_to_exec(instr->operands[1]) && instr->operands[0].isTemp()) {
|
|
if (ctx.info[instr->operands[0].tempId()].is_uniform_bool()) {
|
|
/* Try to get rid of the superfluous s_cselect + s_and_b64 that comes from turning a uniform bool into divergent */
|
|
ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].temp);
|
|
ctx.info[instr->definitions[0].tempId()].set_uniform_bool(ctx.info[instr->operands[0].tempId()].temp);
|
|
break;
|
|
} else if (ctx.info[instr->operands[0].tempId()].is_uniform_bitwise()) {
|
|
/* Try to get rid of the superfluous s_and_b64, since the uniform bitwise instruction already produces the same SCC */
|
|
ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
|
|
ctx.info[instr->definitions[0].tempId()].set_uniform_bool(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
|
|
break;
|
|
}
|
|
}
|
|
/* fallthrough */
|
|
case aco_opcode::s_or_b32:
|
|
case aco_opcode::s_or_b64:
|
|
case aco_opcode::s_xor_b32:
|
|
case aco_opcode::s_xor_b64:
|
|
if (std::all_of(instr->operands.begin(), instr->operands.end(), [&ctx](const Operand& op) {
|
|
return op.isTemp() && (ctx.info[op.tempId()].is_uniform_bool() || ctx.info[op.tempId()].is_uniform_bitwise());
|
|
})) {
|
|
ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
|
|
}
|
|
/* fallthrough */
|
|
case aco_opcode::s_lshl_b32:
|
|
case aco_opcode::v_or_b32:
|
|
case aco_opcode::v_lshlrev_b32:
|
|
ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
|
|
break;
|
|
case aco_opcode::v_min_f32:
|
|
case aco_opcode::v_min_f16:
|
|
case aco_opcode::v_min_u32:
|
|
case aco_opcode::v_min_i32:
|
|
case aco_opcode::v_min_u16:
|
|
case aco_opcode::v_min_i16:
|
|
case aco_opcode::v_max_f32:
|
|
case aco_opcode::v_max_f16:
|
|
case aco_opcode::v_max_u32:
|
|
case aco_opcode::v_max_i32:
|
|
case aco_opcode::v_max_u16:
|
|
case aco_opcode::v_max_i16:
|
|
ctx.info[instr->definitions[0].tempId()].set_minmax(instr.get());
|
|
break;
|
|
case aco_opcode::v_cmp_lt_f32:
|
|
case aco_opcode::v_cmp_eq_f32:
|
|
case aco_opcode::v_cmp_le_f32:
|
|
case aco_opcode::v_cmp_gt_f32:
|
|
case aco_opcode::v_cmp_lg_f32:
|
|
case aco_opcode::v_cmp_ge_f32:
|
|
case aco_opcode::v_cmp_o_f32:
|
|
case aco_opcode::v_cmp_u_f32:
|
|
case aco_opcode::v_cmp_nge_f32:
|
|
case aco_opcode::v_cmp_nlg_f32:
|
|
case aco_opcode::v_cmp_ngt_f32:
|
|
case aco_opcode::v_cmp_nle_f32:
|
|
case aco_opcode::v_cmp_neq_f32:
|
|
case aco_opcode::v_cmp_nlt_f32:
|
|
ctx.info[instr->definitions[0].tempId()].set_fcmp(instr.get());
|
|
break;
|
|
case aco_opcode::s_cselect_b64:
|
|
case aco_opcode::s_cselect_b32:
|
|
if (instr->operands[0].constantEquals((unsigned) -1) &&
|
|
instr->operands[1].constantEquals(0)) {
|
|
/* Found a cselect that operates on a uniform bool that comes from eg. s_cmp */
|
|
ctx.info[instr->definitions[0].tempId()].set_uniform_bool(instr->operands[2].getTemp());
|
|
}
|
|
if (instr->operands[2].isTemp() && ctx.info[instr->operands[2].tempId()].is_scc_invert()) {
|
|
/* Flip the operands to get rid of the scc_invert instruction */
|
|
std::swap(instr->operands[0], instr->operands[1]);
|
|
instr->operands[2].setTemp(ctx.info[instr->operands[2].tempId()].temp);
|
|
}
|
|
break;
|
|
case aco_opcode::p_wqm:
|
|
if (instr->operands[0].isTemp() &&
|
|
ctx.info[instr->operands[0].tempId()].is_scc_invert()) {
|
|
ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
ALWAYS_INLINE bool get_cmp_info(aco_opcode op, aco_opcode *ordered, aco_opcode *unordered, aco_opcode *inverse)
|
|
{
|
|
*ordered = *unordered = op;
|
|
switch (op) {
|
|
#define CMP(ord, unord) \
|
|
case aco_opcode::v_cmp_##ord##_f32:\
|
|
case aco_opcode::v_cmp_n##unord##_f32:\
|
|
*ordered = aco_opcode::v_cmp_##ord##_f32;\
|
|
*unordered = aco_opcode::v_cmp_n##unord##_f32;\
|
|
*inverse = op == aco_opcode::v_cmp_n##unord##_f32 ? aco_opcode::v_cmp_##unord##_f32 : aco_opcode::v_cmp_n##ord##_f32;\
|
|
return true;
|
|
CMP(lt, /*n*/ge)
|
|
CMP(eq, /*n*/lg)
|
|
CMP(le, /*n*/gt)
|
|
CMP(gt, /*n*/le)
|
|
CMP(lg, /*n*/eq)
|
|
CMP(ge, /*n*/lt)
|
|
#undef CMP
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
aco_opcode get_ordered(aco_opcode op)
|
|
{
|
|
aco_opcode ordered, unordered, inverse;
|
|
return get_cmp_info(op, &ordered, &unordered, &inverse) ? ordered : aco_opcode::last_opcode;
|
|
}
|
|
|
|
aco_opcode get_unordered(aco_opcode op)
|
|
{
|
|
aco_opcode ordered, unordered, inverse;
|
|
return get_cmp_info(op, &ordered, &unordered, &inverse) ? unordered : aco_opcode::last_opcode;
|
|
}
|
|
|
|
aco_opcode get_inverse(aco_opcode op)
|
|
{
|
|
aco_opcode ordered, unordered, inverse;
|
|
return get_cmp_info(op, &ordered, &unordered, &inverse) ? inverse : aco_opcode::last_opcode;
|
|
}
|
|
|
|
bool is_cmp(aco_opcode op)
|
|
{
|
|
aco_opcode ordered, unordered, inverse;
|
|
return get_cmp_info(op, &ordered, &unordered, &inverse);
|
|
}
|
|
|
|
unsigned original_temp_id(opt_ctx &ctx, Temp tmp)
|
|
{
|
|
if (ctx.info[tmp.id()].is_temp())
|
|
return ctx.info[tmp.id()].temp.id();
|
|
else
|
|
return tmp.id();
|
|
}
|
|
|
|
void decrease_uses(opt_ctx &ctx, Instruction* instr)
|
|
{
|
|
if (!--ctx.uses[instr->definitions[0].tempId()]) {
|
|
for (const Operand& op : instr->operands) {
|
|
if (op.isTemp())
|
|
ctx.uses[op.tempId()]--;
|
|
}
|
|
}
|
|
}
|
|
|
|
Instruction *follow_operand(opt_ctx &ctx, Operand op, bool ignore_uses=false)
|
|
{
|
|
if (!op.isTemp() || !(ctx.info[op.tempId()].label & instr_labels))
|
|
return nullptr;
|
|
if (!ignore_uses && ctx.uses[op.tempId()] > 1)
|
|
return nullptr;
|
|
|
|
Instruction *instr = ctx.info[op.tempId()].instr;
|
|
|
|
if (instr->definitions.size() == 2) {
|
|
assert(instr->definitions[0].isTemp() && instr->definitions[0].tempId() == op.tempId());
|
|
if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
|
|
return nullptr;
|
|
}
|
|
|
|
return instr;
|
|
}
|
|
|
|
/* s_or_b64(neq(a, a), neq(b, b)) -> v_cmp_u_f32(a, b)
|
|
* s_and_b64(eq(a, a), eq(b, b)) -> v_cmp_o_f32(a, b) */
|
|
bool combine_ordering_test(opt_ctx &ctx, aco_ptr<Instruction>& instr)
|
|
{
|
|
if (instr->definitions[0].regClass() != ctx.program->lane_mask)
|
|
return false;
|
|
if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
|
|
return false;
|
|
|
|
bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
|
|
|
|
bool neg[2] = {false, false};
|
|
bool abs[2] = {false, false};
|
|
uint8_t opsel = 0;
|
|
Instruction *op_instr[2];
|
|
Temp op[2];
|
|
|
|
for (unsigned i = 0; i < 2; i++) {
|
|
op_instr[i] = follow_operand(ctx, instr->operands[i], true);
|
|
if (!op_instr[i])
|
|
return false;
|
|
|
|
aco_opcode expected_cmp = is_or ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
|
|
|
|
if (op_instr[i]->opcode != expected_cmp)
|
|
return false;
|
|
if (!op_instr[i]->operands[0].isTemp() || !op_instr[i]->operands[1].isTemp())
|
|
return false;
|
|
|
|
if (op_instr[i]->isVOP3()) {
|
|
VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(op_instr[i]);
|
|
if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel == 1 || vop3->opsel == 2)
|
|
return false;
|
|
neg[i] = vop3->neg[0];
|
|
abs[i] = vop3->abs[0];
|
|
opsel |= (vop3->opsel & 1) << i;
|
|
}
|
|
|
|
Temp op0 = op_instr[i]->operands[0].getTemp();
|
|
Temp op1 = op_instr[i]->operands[1].getTemp();
|
|
if (original_temp_id(ctx, op0) != original_temp_id(ctx, op1))
|
|
return false;
|
|
|
|
op[i] = op1;
|
|
}
|
|
|
|
if (op[1].type() == RegType::sgpr)
|
|
std::swap(op[0], op[1]);
|
|
unsigned num_sgprs = (op[0].type() == RegType::sgpr) + (op[1].type() == RegType::sgpr);
|
|
if (num_sgprs > (ctx.program->chip_class >= GFX10 ? 2 : 1))
|
|
return false;
|
|
|
|
ctx.uses[op[0].id()]++;
|
|
ctx.uses[op[1].id()]++;
|
|
decrease_uses(ctx, op_instr[0]);
|
|
decrease_uses(ctx, op_instr[1]);
|
|
|
|
aco_opcode new_op = is_or ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
|
|
Instruction *new_instr;
|
|
if (neg[0] || neg[1] || abs[0] || abs[1] || opsel || num_sgprs > 1) {
|
|
VOP3A_instruction *vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
|
|
for (unsigned i = 0; i < 2; i++) {
|
|
vop3->neg[i] = neg[i];
|
|
vop3->abs[i] = abs[i];
|
|
}
|
|
vop3->opsel = opsel;
|
|
new_instr = static_cast<Instruction *>(vop3);
|
|
} else {
|
|
new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
|
|
}
|
|
new_instr->operands[0] = Operand(op[0]);
|
|
new_instr->operands[1] = Operand(op[1]);
|
|
new_instr->definitions[0] = instr->definitions[0];
|
|
|
|
ctx.info[instr->definitions[0].tempId()].label = 0;
|
|
ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
|
|
|
|
instr.reset(new_instr);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* s_or_b64(v_cmp_u_f32(a, b), cmp(a, b)) -> get_unordered(cmp)(a, b)
|
|
* s_and_b64(v_cmp_o_f32(a, b), cmp(a, b)) -> get_ordered(cmp)(a, b) */
|
|
bool combine_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
|
|
{
|
|
if (instr->definitions[0].regClass() != ctx.program->lane_mask)
|
|
return false;
|
|
if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
|
|
return false;
|
|
|
|
bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
|
|
aco_opcode expected_nan_test = is_or ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
|
|
|
|
Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
|
|
Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
|
|
if (!nan_test || !cmp)
|
|
return false;
|
|
|
|
if (cmp->opcode == expected_nan_test)
|
|
std::swap(nan_test, cmp);
|
|
else if (nan_test->opcode != expected_nan_test)
|
|
return false;
|
|
|
|
if (!is_cmp(cmp->opcode))
|
|
return false;
|
|
|
|
if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
|
|
return false;
|
|
if (!cmp->operands[0].isTemp() || !cmp->operands[1].isTemp())
|
|
return false;
|
|
|
|
unsigned prop_cmp0 = original_temp_id(ctx, cmp->operands[0].getTemp());
|
|
unsigned prop_cmp1 = original_temp_id(ctx, cmp->operands[1].getTemp());
|
|
unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
|
|
unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
|
|
if (prop_cmp0 != prop_nan0 && prop_cmp0 != prop_nan1)
|
|
return false;
|
|
if (prop_cmp1 != prop_nan0 && prop_cmp1 != prop_nan1)
|
|
return false;
|
|
|
|
ctx.uses[cmp->operands[0].tempId()]++;
|
|
ctx.uses[cmp->operands[1].tempId()]++;
|
|
decrease_uses(ctx, nan_test);
|
|
decrease_uses(ctx, cmp);
|
|
|
|
aco_opcode new_op = is_or ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
|
|
Instruction *new_instr;
|
|
if (cmp->isVOP3()) {
|
|
VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
|
|
VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
|
|
memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
|
|
memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
|
|
new_vop3->clamp = cmp_vop3->clamp;
|
|
new_vop3->omod = cmp_vop3->omod;
|
|
new_vop3->opsel = cmp_vop3->opsel;
|
|
new_instr = new_vop3;
|
|
} else {
|
|
new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
|
|
}
|
|
new_instr->operands[0] = cmp->operands[0];
|
|
new_instr->operands[1] = cmp->operands[1];
|
|
new_instr->definitions[0] = instr->definitions[0];
|
|
|
|
ctx.info[instr->definitions[0].tempId()].label = 0;
|
|
ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
|
|
|
|
instr.reset(new_instr);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* s_or_b64(v_cmp_neq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_unordered(cmp)(a, b)
|
|
* s_and_b64(v_cmp_eq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_ordered(cmp)(a, b) */
|
|
bool combine_constant_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
|
|
{
|
|
if (instr->definitions[0].regClass() != ctx.program->lane_mask)
|
|
return false;
|
|
if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
|
|
return false;
|
|
|
|
bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
|
|
|
|
Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
|
|
Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
|
|
|
|
if (!nan_test || !cmp)
|
|
return false;
|
|
|
|
aco_opcode expected_nan_test = is_or ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
|
|
if (cmp->opcode == expected_nan_test)
|
|
std::swap(nan_test, cmp);
|
|
else if (nan_test->opcode != expected_nan_test)
|
|
return false;
|
|
|
|
if (!is_cmp(cmp->opcode))
|
|
return false;
|
|
|
|
if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
|
|
return false;
|
|
if (!cmp->operands[0].isTemp() && !cmp->operands[1].isTemp())
|
|
return false;
|
|
|
|
unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
|
|
unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
|
|
if (prop_nan0 != prop_nan1)
|
|
return false;
|
|
|
|
if (nan_test->isVOP3()) {
|
|
VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(nan_test);
|
|
if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel == 1 || vop3->opsel == 2)
|
|
return false;
|
|
}
|
|
|
|
int constant_operand = -1;
|
|
for (unsigned i = 0; i < 2; i++) {
|
|
if (cmp->operands[i].isTemp() && original_temp_id(ctx, cmp->operands[i].getTemp()) == prop_nan0) {
|
|
constant_operand = !i;
|
|
break;
|
|
}
|
|
}
|
|
if (constant_operand == -1)
|
|
return false;
|
|
|
|
uint32_t constant;
|
|
if (cmp->operands[constant_operand].isConstant()) {
|
|
constant = cmp->operands[constant_operand].constantValue();
|
|
} else if (cmp->operands[constant_operand].isTemp()) {
|
|
Temp tmp = cmp->operands[constant_operand].getTemp();
|
|
unsigned id = original_temp_id(ctx, tmp);
|
|
if (!ctx.info[id].is_constant() && !ctx.info[id].is_literal())
|
|
return false;
|
|
constant = ctx.info[id].val;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
float constantf;
|
|
memcpy(&constantf, &constant, 4);
|
|
if (isnan(constantf))
|
|
return false;
|
|
|
|
if (cmp->operands[0].isTemp())
|
|
ctx.uses[cmp->operands[0].tempId()]++;
|
|
if (cmp->operands[1].isTemp())
|
|
ctx.uses[cmp->operands[1].tempId()]++;
|
|
decrease_uses(ctx, nan_test);
|
|
decrease_uses(ctx, cmp);
|
|
|
|
aco_opcode new_op = is_or ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
|
|
Instruction *new_instr;
|
|
if (cmp->isVOP3()) {
|
|
VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
|
|
VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
|
|
memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
|
|
memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
|
|
new_vop3->clamp = cmp_vop3->clamp;
|
|
new_vop3->omod = cmp_vop3->omod;
|
|
new_vop3->opsel = cmp_vop3->opsel;
|
|
new_instr = new_vop3;
|
|
} else {
|
|
new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
|
|
}
|
|
new_instr->operands[0] = cmp->operands[0];
|
|
new_instr->operands[1] = cmp->operands[1];
|
|
new_instr->definitions[0] = instr->definitions[0];
|
|
|
|
ctx.info[instr->definitions[0].tempId()].label = 0;
|
|
ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
|
|
|
|
instr.reset(new_instr);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* s_not_b64(cmp(a, b) -> get_inverse(cmp)(a, b) */
|
|
bool combine_inverse_comparison(opt_ctx &ctx, aco_ptr<Instruction>& instr)
|
|
{
|
|
if (instr->opcode != aco_opcode::s_not_b64)
|
|
return false;
|
|
if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
|
|
return false;
|
|
if (!instr->operands[0].isTemp())
|
|
return false;
|
|
|
|
Instruction *cmp = follow_operand(ctx, instr->operands[0]);
|
|
if (!cmp)
|
|
return false;
|
|
|
|
aco_opcode new_opcode = get_inverse(cmp->opcode);
|
|
if (new_opcode == aco_opcode::last_opcode)
|
|
return false;
|
|
|
|
if (cmp->operands[0].isTemp())
|
|
ctx.uses[cmp->operands[0].tempId()]++;
|
|
if (cmp->operands[1].isTemp())
|
|
ctx.uses[cmp->operands[1].tempId()]++;
|
|
decrease_uses(ctx, cmp);
|
|
|
|
Instruction *new_instr;
|
|
if (cmp->isVOP3()) {
|
|
VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_opcode, asVOP3(Format::VOPC), 2, 1);
|
|
VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
|
|
memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
|
|
memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
|
|
new_vop3->clamp = cmp_vop3->clamp;
|
|
new_vop3->omod = cmp_vop3->omod;
|
|
new_vop3->opsel = cmp_vop3->opsel;
|
|
new_instr = new_vop3;
|
|
} else {
|
|
new_instr = create_instruction<VOPC_instruction>(new_opcode, Format::VOPC, 2, 1);
|
|
}
|
|
new_instr->operands[0] = cmp->operands[0];
|
|
new_instr->operands[1] = cmp->operands[1];
|
|
new_instr->definitions[0] = instr->definitions[0];
|
|
|
|
ctx.info[instr->definitions[0].tempId()].label = 0;
|
|
ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
|
|
|
|
instr.reset(new_instr);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* op1(op2(1, 2), 0) if swap = false
|
|
* op1(0, op2(1, 2)) if swap = true */
|
|
bool match_op3_for_vop3(opt_ctx &ctx, aco_opcode op1, aco_opcode op2,
|
|
Instruction* op1_instr, bool swap, const char *shuffle_str,
|
|
Operand operands[3], bool neg[3], bool abs[3], uint8_t *opsel,
|
|
bool *op1_clamp, uint8_t *op1_omod,
|
|
bool *inbetween_neg, bool *inbetween_abs, bool *inbetween_opsel)
|
|
{
|
|
/* checks */
|
|
if (op1_instr->opcode != op1)
|
|
return false;
|
|
|
|
Instruction *op2_instr = follow_operand(ctx, op1_instr->operands[swap]);
|
|
if (!op2_instr || op2_instr->opcode != op2)
|
|
return false;
|
|
if (fixed_to_exec(op2_instr->operands[0]) || fixed_to_exec(op2_instr->operands[1]))
|
|
return false;
|
|
|
|
VOP3A_instruction *op1_vop3 = op1_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op1_instr) : NULL;
|
|
VOP3A_instruction *op2_vop3 = op2_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op2_instr) : NULL;
|
|
|
|
/* don't support inbetween clamp/omod */
|
|
if (op2_vop3 && (op2_vop3->clamp || op2_vop3->omod))
|
|
return false;
|
|
|
|
/* get operands and modifiers and check inbetween modifiers */
|
|
*op1_clamp = op1_vop3 ? op1_vop3->clamp : false;
|
|
*op1_omod = op1_vop3 ? op1_vop3->omod : 0u;
|
|
|
|
if (inbetween_neg)
|
|
*inbetween_neg = op1_vop3 ? op1_vop3->neg[swap] : false;
|
|
else if (op1_vop3 && op1_vop3->neg[swap])
|
|
return false;
|
|
|
|
if (inbetween_abs)
|
|
*inbetween_abs = op1_vop3 ? op1_vop3->abs[swap] : false;
|
|
else if (op1_vop3 && op1_vop3->abs[swap])
|
|
return false;
|
|
|
|
if (inbetween_opsel)
|
|
*inbetween_opsel = op1_vop3 ? op1_vop3->opsel & (1 << swap) : false;
|
|
else if (op1_vop3 && op1_vop3->opsel & (1 << swap))
|
|
return false;
|
|
|
|
int shuffle[3];
|
|
shuffle[shuffle_str[0] - '0'] = 0;
|
|
shuffle[shuffle_str[1] - '0'] = 1;
|
|
shuffle[shuffle_str[2] - '0'] = 2;
|
|
|
|
operands[shuffle[0]] = op1_instr->operands[!swap];
|
|
neg[shuffle[0]] = op1_vop3 ? op1_vop3->neg[!swap] : false;
|
|
abs[shuffle[0]] = op1_vop3 ? op1_vop3->abs[!swap] : false;
|
|
if (op1_vop3 && op1_vop3->opsel & (1 << !swap))
|
|
*opsel |= 1 << shuffle[0];
|
|
|
|
for (unsigned i = 0; i < 2; i++) {
|
|
operands[shuffle[i + 1]] = op2_instr->operands[i];
|
|
neg[shuffle[i + 1]] = op2_vop3 ? op2_vop3->neg[i] : false;
|
|
abs[shuffle[i + 1]] = op2_vop3 ? op2_vop3->abs[i] : false;
|
|
if (op2_vop3 && op2_vop3->opsel & (1 << i))
|
|
*opsel |= 1 << shuffle[i + 1];
|
|
}
|
|
|
|
/* check operands */
|
|
if (!check_vop3_operands(ctx, 3, operands))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void create_vop3_for_op3(opt_ctx& ctx, aco_opcode opcode, aco_ptr<Instruction>& instr,
|
|
Operand operands[3], bool neg[3], bool abs[3], uint8_t opsel,
|
|
bool clamp, unsigned omod)
|
|
{
|
|
VOP3A_instruction *new_instr = create_instruction<VOP3A_instruction>(opcode, Format::VOP3A, 3, 1);
|
|
memcpy(new_instr->abs, abs, sizeof(bool[3]));
|
|
memcpy(new_instr->neg, neg, sizeof(bool[3]));
|
|
new_instr->clamp = clamp;
|
|
new_instr->omod = omod;
|
|
new_instr->opsel = opsel;
|
|
new_instr->operands[0] = operands[0];
|
|
new_instr->operands[1] = operands[1];
|
|
new_instr->operands[2] = operands[2];
|
|
new_instr->definitions[0] = instr->definitions[0];
|
|
ctx.info[instr->definitions[0].tempId()].label = 0;
|
|
|
|
instr.reset(new_instr);
|
|
}
|
|
|
|
bool combine_three_valu_op(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode op2, aco_opcode new_op, const char *shuffle, uint8_t ops)
|
|
{
|
|
uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
|
|
(label_omod_success | label_clamp_success);
|
|
|
|
for (unsigned swap = 0; swap < 2; swap++) {
|
|
if (!((1 << swap) & ops))
|
|
continue;
|
|
|
|
Operand operands[3];
|
|
bool neg[3], abs[3], clamp;
|
|
uint8_t opsel = 0, omod = 0;
|
|
if (match_op3_for_vop3(ctx, instr->opcode, op2,
|
|
instr.get(), swap, shuffle,
|
|
operands, neg, abs, &opsel,
|
|
&clamp, &omod, NULL, NULL, NULL)) {
|
|
ctx.uses[instr->operands[swap].tempId()]--;
|
|
create_vop3_for_op3(ctx, new_op, instr, operands, neg, abs, opsel, clamp, omod);
|
|
if (omod_clamp & label_omod_success)
|
|
ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
|
|
if (omod_clamp & label_clamp_success)
|
|
ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool combine_minmax(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode opposite, aco_opcode minmax3)
|
|
{
|
|
if (combine_three_valu_op(ctx, instr, instr->opcode, minmax3, "012", 1 | 2))
|
|
return true;
|
|
|
|
uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
|
|
(label_omod_success | label_clamp_success);
|
|
|
|
/* min(-max(a, b), c) -> min3(-a, -b, c) *
|
|
* max(-min(a, b), c) -> max3(-a, -b, c) */
|
|
for (unsigned swap = 0; swap < 2; swap++) {
|
|
Operand operands[3];
|
|
bool neg[3], abs[3], clamp;
|
|
uint8_t opsel = 0, omod = 0;
|
|
bool inbetween_neg;
|
|
if (match_op3_for_vop3(ctx, instr->opcode, opposite,
|
|
instr.get(), swap, "012",
|
|
operands, neg, abs, &opsel,
|
|
&clamp, &omod, &inbetween_neg, NULL, NULL) &&
|
|
inbetween_neg) {
|
|
ctx.uses[instr->operands[swap].tempId()]--;
|
|
neg[1] = true;
|
|
neg[2] = true;
|
|
create_vop3_for_op3(ctx, minmax3, instr, operands, neg, abs, opsel, clamp, omod);
|
|
if (omod_clamp & label_omod_success)
|
|
ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
|
|
if (omod_clamp & label_clamp_success)
|
|
ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* s_not_b32(s_and_b32(a, b)) -> s_nand_b32(a, b)
|
|
* s_not_b32(s_or_b32(a, b)) -> s_nor_b32(a, b)
|
|
* s_not_b32(s_xor_b32(a, b)) -> s_xnor_b32(a, b)
|
|
* s_not_b64(s_and_b64(a, b)) -> s_nand_b64(a, b)
|
|
* s_not_b64(s_or_b64(a, b)) -> s_nor_b64(a, b)
|
|
* s_not_b64(s_xor_b64(a, b)) -> s_xnor_b64(a, b) */
|
|
bool combine_salu_not_bitwise(opt_ctx& ctx, aco_ptr<Instruction>& instr)
|
|
{
|
|
/* checks */
|
|
if (!instr->operands[0].isTemp())
|
|
return false;
|
|
if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
|
|
return false;
|
|
|
|
Instruction *op2_instr = follow_operand(ctx, instr->operands[0]);
|
|
if (!op2_instr)
|
|
return false;
|
|
switch (op2_instr->opcode) {
|
|
case aco_opcode::s_and_b32:
|
|
case aco_opcode::s_or_b32:
|
|
case aco_opcode::s_xor_b32:
|
|
case aco_opcode::s_and_b64:
|
|
case aco_opcode::s_or_b64:
|
|
case aco_opcode::s_xor_b64:
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
/* create instruction */
|
|
std::swap(instr->definitions[0], op2_instr->definitions[0]);
|
|
std::swap(instr->definitions[1], op2_instr->definitions[1]);
|
|
ctx.uses[instr->operands[0].tempId()]--;
|
|
ctx.info[op2_instr->definitions[0].tempId()].label = 0;
|
|
|
|
switch (op2_instr->opcode) {
|
|
case aco_opcode::s_and_b32:
|
|
op2_instr->opcode = aco_opcode::s_nand_b32;
|
|
break;
|
|
case aco_opcode::s_or_b32:
|
|
op2_instr->opcode = aco_opcode::s_nor_b32;
|
|
break;
|
|
case aco_opcode::s_xor_b32:
|
|
op2_instr->opcode = aco_opcode::s_xnor_b32;
|
|
break;
|
|
case aco_opcode::s_and_b64:
|
|
op2_instr->opcode = aco_opcode::s_nand_b64;
|
|
break;
|
|
case aco_opcode::s_or_b64:
|
|
op2_instr->opcode = aco_opcode::s_nor_b64;
|
|
break;
|
|
case aco_opcode::s_xor_b64:
|
|
op2_instr->opcode = aco_opcode::s_xnor_b64;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* s_and_b32(a, s_not_b32(b)) -> s_andn2_b32(a, b)
|
|
* s_or_b32(a, s_not_b32(b)) -> s_orn2_b32(a, b)
|
|
* s_and_b64(a, s_not_b64(b)) -> s_andn2_b64(a, b)
|
|
* s_or_b64(a, s_not_b64(b)) -> s_orn2_b64(a, b) */
|
|
bool combine_salu_n2(opt_ctx& ctx, aco_ptr<Instruction>& instr)
|
|
{
|
|
if (instr->definitions[0].isTemp() && ctx.info[instr->definitions[0].tempId()].is_uniform_bool())
|
|
return false;
|
|
|
|
for (unsigned i = 0; i < 2; i++) {
|
|
Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
|
|
if (!op2_instr || (op2_instr->opcode != aco_opcode::s_not_b32 && op2_instr->opcode != aco_opcode::s_not_b64))
|
|
continue;
|
|
if (ctx.uses[op2_instr->definitions[1].tempId()] || fixed_to_exec(op2_instr->operands[0]))
|
|
continue;
|
|
|
|
if (instr->operands[!i].isLiteral() && op2_instr->operands[0].isLiteral() &&
|
|
instr->operands[!i].constantValue() != op2_instr->operands[0].constantValue())
|
|
continue;
|
|
|
|
ctx.uses[instr->operands[i].tempId()]--;
|
|
instr->operands[0] = instr->operands[!i];
|
|
instr->operands[1] = op2_instr->operands[0];
|
|
ctx.info[instr->definitions[0].tempId()].label = 0;
|
|
|
|
switch (instr->opcode) {
|
|
case aco_opcode::s_and_b32:
|
|
instr->opcode = aco_opcode::s_andn2_b32;
|
|
break;
|
|
case aco_opcode::s_or_b32:
|
|
instr->opcode = aco_opcode::s_orn2_b32;
|
|
break;
|
|
case aco_opcode::s_and_b64:
|
|
instr->opcode = aco_opcode::s_andn2_b64;
|
|
break;
|
|
case aco_opcode::s_or_b64:
|
|
instr->opcode = aco_opcode::s_orn2_b64;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* s_add_{i32,u32}(a, s_lshl_b32(b, <n>)) -> s_lshl<n>_add_u32(a, b) */
|
|
bool combine_salu_lshl_add(opt_ctx& ctx, aco_ptr<Instruction>& instr)
|
|
{
|
|
if (instr->opcode == aco_opcode::s_add_i32 && ctx.uses[instr->definitions[1].tempId()])
|
|
return false;
|
|
|
|
for (unsigned i = 0; i < 2; i++) {
|
|
Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
|
|
if (!op2_instr || op2_instr->opcode != aco_opcode::s_lshl_b32 ||
|
|
ctx.uses[op2_instr->definitions[1].tempId()])
|
|
continue;
|
|
if (!op2_instr->operands[1].isConstant() || fixed_to_exec(op2_instr->operands[0]))
|
|
continue;
|
|
|
|
uint32_t shift = op2_instr->operands[1].constantValue();
|
|
if (shift < 1 || shift > 4)
|
|
continue;
|
|
|
|
if (instr->operands[!i].isLiteral() && op2_instr->operands[0].isLiteral() &&
|
|
instr->operands[!i].constantValue() != op2_instr->operands[0].constantValue())
|
|
continue;
|
|
|
|
ctx.uses[instr->operands[i].tempId()]--;
|
|
instr->operands[1] = instr->operands[!i];
|
|
instr->operands[0] = op2_instr->operands[0];
|
|
ctx.info[instr->definitions[0].tempId()].label = 0;
|
|
|
|
instr->opcode = ((aco_opcode[]){aco_opcode::s_lshl1_add_u32,
|
|
aco_opcode::s_lshl2_add_u32,
|
|
aco_opcode::s_lshl3_add_u32,
|
|
aco_opcode::s_lshl4_add_u32})[shift - 1];
|
|
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool get_minmax_info(aco_opcode op, aco_opcode *min, aco_opcode *max, aco_opcode *min3, aco_opcode *max3, aco_opcode *med3, bool *some_gfx9_only)
|
|
{
|
|
switch (op) {
|
|
#define MINMAX(type, gfx9) \
|
|
case aco_opcode::v_min_##type:\
|
|
case aco_opcode::v_max_##type:\
|
|
case aco_opcode::v_med3_##type:\
|
|
*min = aco_opcode::v_min_##type;\
|
|
*max = aco_opcode::v_max_##type;\
|
|
*med3 = aco_opcode::v_med3_##type;\
|
|
*min3 = aco_opcode::v_min3_##type;\
|
|
*max3 = aco_opcode::v_max3_##type;\
|
|
*some_gfx9_only = gfx9;\
|
|
return true;
|
|
MINMAX(f32, false)
|
|
MINMAX(u32, false)
|
|
MINMAX(i32, false)
|
|
MINMAX(f16, true)
|
|
MINMAX(u16, true)
|
|
MINMAX(i16, true)
|
|
#undef MINMAX
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* v_min_{f,u,i}{16,32}(v_max_{f,u,i}{16,32}(a, lb), ub) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb
|
|
* v_max_{f,u,i}{16,32}(v_min_{f,u,i}{16,32}(a, ub), lb) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb */
|
|
bool combine_clamp(opt_ctx& ctx, aco_ptr<Instruction>& instr,
|
|
aco_opcode min, aco_opcode max, aco_opcode med)
|
|
{
|
|
/* TODO: GLSL's clamp(x, minVal, maxVal) and SPIR-V's
|
|
* FClamp(x, minVal, maxVal)/NClamp(x, minVal, maxVal) are undefined if
|
|
* minVal > maxVal, which means we can always select it to a v_med3_f32 */
|
|
aco_opcode other_op;
|
|
if (instr->opcode == min)
|
|
other_op = max;
|
|
else if (instr->opcode == max)
|
|
other_op = min;
|
|
else
|
|
return false;
|
|
|
|
uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
|
|
(label_omod_success | label_clamp_success);
|
|
|
|
for (unsigned swap = 0; swap < 2; swap++) {
|
|
Operand operands[3];
|
|
bool neg[3], abs[3], clamp;
|
|
uint8_t opsel = 0, omod = 0;
|
|
if (match_op3_for_vop3(ctx, instr->opcode, other_op, instr.get(), swap,
|
|
"012", operands, neg, abs, &opsel,
|
|
&clamp, &omod, NULL, NULL, NULL)) {
|
|
int const0_idx = -1, const1_idx = -1;
|
|
uint32_t const0 = 0, const1 = 0;
|
|
for (int i = 0; i < 3; i++) {
|
|
uint32_t val;
|
|
if (operands[i].isConstant()) {
|
|
val = operands[i].constantValue();
|
|
} else if (operands[i].isTemp() && ctx.info[operands[i].tempId()].is_constant_or_literal()) {
|
|
val = ctx.info[operands[i].tempId()].val;
|
|
} else {
|
|
continue;
|
|
}
|
|
if (const0_idx >= 0) {
|
|
const1_idx = i;
|
|
const1 = val;
|
|
} else {
|
|
const0_idx = i;
|
|
const0 = val;
|
|
}
|
|
}
|
|
if (const0_idx < 0 || const1_idx < 0)
|
|
continue;
|
|
|
|
if (opsel & (1 << const0_idx))
|
|
const0 >>= 16;
|
|
if (opsel & (1 << const1_idx))
|
|
const1 >>= 16;
|
|
|
|
int lower_idx = const0_idx;
|
|
switch (min) {
|
|
case aco_opcode::v_min_f32:
|
|
case aco_opcode::v_min_f16: {
|
|
float const0_f, const1_f;
|
|
if (min == aco_opcode::v_min_f32) {
|
|
memcpy(&const0_f, &const0, 4);
|
|
memcpy(&const1_f, &const1, 4);
|
|
} else {
|
|
const0_f = _mesa_half_to_float(const0);
|
|
const1_f = _mesa_half_to_float(const1);
|
|
}
|
|
if (abs[const0_idx]) const0_f = fabsf(const0_f);
|
|
if (abs[const1_idx]) const1_f = fabsf(const1_f);
|
|
if (neg[const0_idx]) const0_f = -const0_f;
|
|
if (neg[const1_idx]) const1_f = -const1_f;
|
|
lower_idx = const0_f < const1_f ? const0_idx : const1_idx;
|
|
break;
|
|
}
|
|
case aco_opcode::v_min_u32: {
|
|
lower_idx = const0 < const1 ? const0_idx : const1_idx;
|
|
break;
|
|
}
|
|
case aco_opcode::v_min_u16: {
|
|
lower_idx = (uint16_t)const0 < (uint16_t)const1 ? const0_idx : const1_idx;
|
|
break;
|
|
}
|
|
case aco_opcode::v_min_i32: {
|
|
int32_t const0_i = const0 & 0x80000000u ? -2147483648 + (int32_t)(const0 & 0x7fffffffu) : const0;
|
|
int32_t const1_i = const1 & 0x80000000u ? -2147483648 + (int32_t)(const1 & 0x7fffffffu) : const1;
|
|
lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
|
|
break;
|
|
}
|
|
case aco_opcode::v_min_i16: {
|
|
int16_t const0_i = const0 & 0x8000u ? -32768 + (int16_t)(const0 & 0x7fffu) : const0;
|
|
int16_t const1_i = const1 & 0x8000u ? -32768 + (int16_t)(const1 & 0x7fffu) : const1;
|
|
lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
int upper_idx = lower_idx == const0_idx ? const1_idx : const0_idx;
|
|
|
|
if (instr->opcode == min) {
|
|
if (upper_idx != 0 || lower_idx == 0)
|
|
return false;
|
|
} else {
|
|
if (upper_idx == 0 || lower_idx != 0)
|
|
return false;
|
|
}
|
|
|
|
ctx.uses[instr->operands[swap].tempId()]--;
|
|
create_vop3_for_op3(ctx, med, instr, operands, neg, abs, opsel, clamp, omod);
|
|
if (omod_clamp & label_omod_success)
|
|
ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
|
|
if (omod_clamp & label_clamp_success)
|
|
ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
void apply_sgprs(opt_ctx &ctx, aco_ptr<Instruction>& instr)
|
|
{
|
|
bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 ||
|
|
instr->opcode == aco_opcode::v_lshrrev_b64 ||
|
|
instr->opcode == aco_opcode::v_ashrrev_i64;
|
|
|
|
/* find candidates and create the set of sgprs already read */
|
|
unsigned sgpr_ids[2] = {0, 0};
|
|
uint32_t operand_mask = 0;
|
|
bool has_literal = false;
|
|
for (unsigned i = 0; i < instr->operands.size(); i++) {
|
|
if (instr->operands[i].isLiteral())
|
|
has_literal = true;
|
|
if (!instr->operands[i].isTemp())
|
|
continue;
|
|
if (instr->operands[i].getTemp().type() == RegType::sgpr) {
|
|
if (instr->operands[i].tempId() != sgpr_ids[0])
|
|
sgpr_ids[!!sgpr_ids[0]] = instr->operands[i].tempId();
|
|
}
|
|
ssa_info& info = ctx.info[instr->operands[i].tempId()];
|
|
if (info.is_temp() && info.temp.type() == RegType::sgpr)
|
|
operand_mask |= 1u << i;
|
|
}
|
|
unsigned max_sgprs = 1;
|
|
if (ctx.program->chip_class >= GFX10 && !is_shift64)
|
|
max_sgprs = 2;
|
|
if (has_literal)
|
|
max_sgprs--;
|
|
|
|
unsigned num_sgprs = !!sgpr_ids[0] + !!sgpr_ids[1];
|
|
|
|
/* keep on applying sgprs until there is nothing left to be done */
|
|
while (operand_mask) {
|
|
uint32_t sgpr_idx = 0;
|
|
uint32_t sgpr_info_id = 0;
|
|
uint32_t mask = operand_mask;
|
|
/* choose a sgpr */
|
|
while (mask) {
|
|
unsigned i = u_bit_scan(&mask);
|
|
uint16_t uses = ctx.uses[instr->operands[i].tempId()];
|
|
if (sgpr_info_id == 0 || uses < ctx.uses[sgpr_info_id]) {
|
|
sgpr_idx = i;
|
|
sgpr_info_id = instr->operands[i].tempId();
|
|
}
|
|
}
|
|
operand_mask &= ~(1u << sgpr_idx);
|
|
|
|
/* Applying two sgprs require making it VOP3, so don't do it unless it's
|
|
* definitively beneficial.
|
|
* TODO: this is too conservative because later the use count could be reduced to 1 */
|
|
if (num_sgprs && ctx.uses[sgpr_info_id] > 1 && !instr->isVOP3())
|
|
break;
|
|
|
|
Temp sgpr = ctx.info[sgpr_info_id].temp;
|
|
bool new_sgpr = sgpr.id() != sgpr_ids[0] && sgpr.id() != sgpr_ids[1];
|
|
if (new_sgpr && num_sgprs >= max_sgprs)
|
|
continue;
|
|
|
|
if (sgpr_idx == 0 || instr->isVOP3()) {
|
|
instr->operands[sgpr_idx] = Operand(sgpr);
|
|
} else if (can_swap_operands(instr)) {
|
|
instr->operands[sgpr_idx] = instr->operands[0];
|
|
instr->operands[0] = Operand(sgpr);
|
|
/* swap bits using a 4-entry LUT */
|
|
uint32_t swapped = (0x3120 >> (operand_mask & 0x3)) & 0xf;
|
|
operand_mask = (operand_mask & ~0x3) | swapped;
|
|
} else if (can_use_VOP3(ctx, instr)) {
|
|
to_VOP3(ctx, instr);
|
|
instr->operands[sgpr_idx] = Operand(sgpr);
|
|
} else {
|
|
continue;
|
|
}
|
|
|
|
if (new_sgpr)
|
|
sgpr_ids[num_sgprs++] = sgpr.id();
|
|
ctx.uses[sgpr_info_id]--;
|
|
ctx.uses[sgpr.id()]++;
|
|
}
|
|
}
|
|
|
|
bool apply_omod_clamp(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
|
|
{
|
|
/* check if we could apply omod on predecessor */
|
|
if (instr->opcode == aco_opcode::v_mul_f32) {
|
|
bool op0 = instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_omod_success();
|
|
bool op1 = instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_omod_success();
|
|
if (op0 || op1) {
|
|
unsigned idx = op0 ? 0 : 1;
|
|
/* omod was successfully applied */
|
|
/* if the omod instruction is v_mad, we also have to change the original add */
|
|
if (ctx.info[instr->operands[idx].tempId()].is_mad()) {
|
|
Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].val].add_instr.get();
|
|
if (ctx.info[instr->definitions[0].tempId()].is_clamp())
|
|
static_cast<VOP3A_instruction*>(add_instr)->clamp = true;
|
|
add_instr->definitions[0] = instr->definitions[0];
|
|
}
|
|
|
|
Instruction* omod_instr = ctx.info[instr->operands[idx].tempId()].instr;
|
|
/* check if we have an additional clamp modifier */
|
|
if (ctx.info[instr->definitions[0].tempId()].is_clamp() && ctx.uses[instr->definitions[0].tempId()] == 1 &&
|
|
ctx.uses[ctx.info[instr->definitions[0].tempId()].temp.id()]) {
|
|
static_cast<VOP3A_instruction*>(omod_instr)->clamp = true;
|
|
ctx.info[instr->definitions[0].tempId()].set_clamp_success(omod_instr);
|
|
}
|
|
/* change definition ssa-id of modified instruction */
|
|
omod_instr->definitions[0] = instr->definitions[0];
|
|
|
|
/* change the definition of instr to something unused, e.g. the original omod def */
|
|
instr->definitions[0] = Definition(instr->operands[idx].getTemp());
|
|
ctx.uses[instr->definitions[0].tempId()] = 0;
|
|
return true;
|
|
}
|
|
if (!ctx.info[instr->definitions[0].tempId()].label) {
|
|
/* in all other cases, label this instruction as option for multiply-add */
|
|
ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
|
|
}
|
|
}
|
|
|
|
/* check if we could apply clamp on predecessor */
|
|
if (instr->opcode == aco_opcode::v_med3_f32) {
|
|
unsigned idx = 0;
|
|
bool found_zero = false, found_one = false;
|
|
for (unsigned i = 0; i < 3; i++)
|
|
{
|
|
if (instr->operands[i].constantEquals(0))
|
|
found_zero = true;
|
|
else if (instr->operands[i].constantEquals(0x3f800000)) /* 1.0 */
|
|
found_one = true;
|
|
else
|
|
idx = i;
|
|
}
|
|
if (found_zero && found_one && instr->operands[idx].isTemp() &&
|
|
ctx.info[instr->operands[idx].tempId()].is_clamp_success()) {
|
|
/* clamp was successfully applied */
|
|
/* if the clamp instruction is v_mad, we also have to change the original add */
|
|
if (ctx.info[instr->operands[idx].tempId()].is_mad()) {
|
|
Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].val].add_instr.get();
|
|
add_instr->definitions[0] = instr->definitions[0];
|
|
}
|
|
Instruction* clamp_instr = ctx.info[instr->operands[idx].tempId()].instr;
|
|
/* change definition ssa-id of modified instruction */
|
|
clamp_instr->definitions[0] = instr->definitions[0];
|
|
|
|
/* change the definition of instr to something unused, e.g. the original omod def */
|
|
instr->definitions[0] = Definition(instr->operands[idx].getTemp());
|
|
ctx.uses[instr->definitions[0].tempId()] = 0;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/* omod has no effect if denormals are enabled */
|
|
bool can_use_omod = block.fp_mode.denorm32 == 0;
|
|
|
|
/* apply omod / clamp modifiers if the def is used only once and the instruction can have modifiers */
|
|
if (!instr->definitions.empty() && ctx.uses[instr->definitions[0].tempId()] == 1 &&
|
|
can_use_VOP3(ctx, instr) && instr_info.can_use_output_modifiers[(int)instr->opcode]) {
|
|
ssa_info& def_info = ctx.info[instr->definitions[0].tempId()];
|
|
if (can_use_omod && def_info.is_omod2() && ctx.uses[def_info.temp.id()]) {
|
|
to_VOP3(ctx, instr);
|
|
static_cast<VOP3A_instruction*>(instr.get())->omod = 1;
|
|
def_info.set_omod_success(instr.get());
|
|
} else if (can_use_omod && def_info.is_omod4() && ctx.uses[def_info.temp.id()]) {
|
|
to_VOP3(ctx, instr);
|
|
static_cast<VOP3A_instruction*>(instr.get())->omod = 2;
|
|
def_info.set_omod_success(instr.get());
|
|
} else if (can_use_omod && def_info.is_omod5() && ctx.uses[def_info.temp.id()]) {
|
|
to_VOP3(ctx, instr);
|
|
static_cast<VOP3A_instruction*>(instr.get())->omod = 3;
|
|
def_info.set_omod_success(instr.get());
|
|
} else if (def_info.is_clamp() && ctx.uses[def_info.temp.id()]) {
|
|
to_VOP3(ctx, instr);
|
|
static_cast<VOP3A_instruction*>(instr.get())->clamp = true;
|
|
def_info.set_clamp_success(instr.get());
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// TODO: we could possibly move the whole label_instruction pass to combine_instruction:
|
|
// this would mean that we'd have to fix the instruction uses while value propagation
|
|
|
|
void combine_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
|
|
{
|
|
if (instr->definitions.empty() || is_dead(ctx.uses, instr.get()))
|
|
return;
|
|
|
|
if (instr->isVALU()) {
|
|
if (can_apply_sgprs(instr))
|
|
apply_sgprs(ctx, instr);
|
|
if (apply_omod_clamp(ctx, block, instr))
|
|
return;
|
|
}
|
|
|
|
if (ctx.info[instr->definitions[0].tempId()].is_vcc_hint()) {
|
|
instr->definitions[0].setHint(vcc);
|
|
}
|
|
|
|
/* TODO: There are still some peephole optimizations that could be done:
|
|
* - abs(a - b) -> s_absdiff_i32
|
|
* - various patterns for s_bitcmp{0,1}_b32 and s_bitset{0,1}_b32
|
|
* - patterns for v_alignbit_b32 and v_alignbyte_b32
|
|
* These aren't probably too interesting though.
|
|
* There are also patterns for v_cmp_class_f{16,32,64}. This is difficult but
|
|
* probably more useful than the previously mentioned optimizations.
|
|
* The various comparison optimizations also currently only work with 32-bit
|
|
* floats. */
|
|
|
|
/* neg(mul(a, b)) -> mul(neg(a), b) */
|
|
if (ctx.info[instr->definitions[0].tempId()].is_neg() && ctx.uses[instr->operands[1].tempId()] == 1) {
|
|
Temp val = ctx.info[instr->definitions[0].tempId()].temp;
|
|
|
|
if (!ctx.info[val.id()].is_mul())
|
|
return;
|
|
|
|
Instruction* mul_instr = ctx.info[val.id()].instr;
|
|
|
|
if (mul_instr->operands[0].isLiteral())
|
|
return;
|
|
if (mul_instr->isVOP3() && static_cast<VOP3A_instruction*>(mul_instr)->clamp)
|
|
return;
|
|
|
|
/* convert to mul(neg(a), b) */
|
|
ctx.uses[mul_instr->definitions[0].tempId()]--;
|
|
Definition def = instr->definitions[0];
|
|
/* neg(abs(mul(a, b))) -> mul(neg(abs(a)), abs(b)) */
|
|
bool is_abs = ctx.info[instr->definitions[0].tempId()].is_abs();
|
|
instr.reset(create_instruction<VOP3A_instruction>(aco_opcode::v_mul_f32, asVOP3(Format::VOP2), 2, 1));
|
|
instr->operands[0] = mul_instr->operands[0];
|
|
instr->operands[1] = mul_instr->operands[1];
|
|
instr->definitions[0] = def;
|
|
VOP3A_instruction* new_mul = static_cast<VOP3A_instruction*>(instr.get());
|
|
if (mul_instr->isVOP3()) {
|
|
VOP3A_instruction* mul = static_cast<VOP3A_instruction*>(mul_instr);
|
|
new_mul->neg[0] = mul->neg[0] && !is_abs;
|
|
new_mul->neg[1] = mul->neg[1] && !is_abs;
|
|
new_mul->abs[0] = mul->abs[0] || is_abs;
|
|
new_mul->abs[1] = mul->abs[1] || is_abs;
|
|
new_mul->omod = mul->omod;
|
|
}
|
|
new_mul->neg[0] ^= true;
|
|
new_mul->clamp = false;
|
|
|
|
ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
|
|
return;
|
|
}
|
|
/* combine mul+add -> mad */
|
|
else if ((instr->opcode == aco_opcode::v_add_f32 ||
|
|
instr->opcode == aco_opcode::v_sub_f32 ||
|
|
instr->opcode == aco_opcode::v_subrev_f32) &&
|
|
block.fp_mode.denorm32 == 0 && !block.fp_mode.preserve_signed_zero_inf_nan32) {
|
|
//TODO: we could use fma instead when denormals are enabled if the NIR isn't marked as precise
|
|
|
|
uint32_t uses_src0 = UINT32_MAX;
|
|
uint32_t uses_src1 = UINT32_MAX;
|
|
Instruction* mul_instr = nullptr;
|
|
unsigned add_op_idx;
|
|
/* check if any of the operands is a multiplication */
|
|
if (instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_mul())
|
|
uses_src0 = ctx.uses[instr->operands[0].tempId()];
|
|
if (instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_mul())
|
|
uses_src1 = ctx.uses[instr->operands[1].tempId()];
|
|
|
|
/* find the 'best' mul instruction to combine with the add */
|
|
if (uses_src0 < uses_src1) {
|
|
mul_instr = ctx.info[instr->operands[0].tempId()].instr;
|
|
add_op_idx = 1;
|
|
} else if (uses_src1 < uses_src0) {
|
|
mul_instr = ctx.info[instr->operands[1].tempId()].instr;
|
|
add_op_idx = 0;
|
|
} else if (uses_src0 != UINT32_MAX) {
|
|
/* tiebreaker: quite random what to pick */
|
|
if (ctx.info[instr->operands[0].tempId()].instr->operands[0].isLiteral()) {
|
|
mul_instr = ctx.info[instr->operands[1].tempId()].instr;
|
|
add_op_idx = 0;
|
|
} else {
|
|
mul_instr = ctx.info[instr->operands[0].tempId()].instr;
|
|
add_op_idx = 1;
|
|
}
|
|
}
|
|
if (mul_instr) {
|
|
Operand op[3] = {Operand(v1), Operand(v1), Operand(v1)};
|
|
bool neg[3] = {false, false, false};
|
|
bool abs[3] = {false, false, false};
|
|
unsigned omod = 0;
|
|
bool clamp = false;
|
|
op[0] = mul_instr->operands[0];
|
|
op[1] = mul_instr->operands[1];
|
|
op[2] = instr->operands[add_op_idx];
|
|
// TODO: would be better to check this before selecting a mul instr?
|
|
if (!check_vop3_operands(ctx, 3, op))
|
|
return;
|
|
|
|
if (mul_instr->isVOP3()) {
|
|
VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (mul_instr);
|
|
neg[0] = vop3->neg[0];
|
|
neg[1] = vop3->neg[1];
|
|
abs[0] = vop3->abs[0];
|
|
abs[1] = vop3->abs[1];
|
|
/* we cannot use these modifiers between mul and add */
|
|
if (vop3->clamp || vop3->omod)
|
|
return;
|
|
}
|
|
|
|
/* convert to mad */
|
|
ctx.uses[mul_instr->definitions[0].tempId()]--;
|
|
if (ctx.uses[mul_instr->definitions[0].tempId()]) {
|
|
if (op[0].isTemp())
|
|
ctx.uses[op[0].tempId()]++;
|
|
if (op[1].isTemp())
|
|
ctx.uses[op[1].tempId()]++;
|
|
}
|
|
|
|
if (instr->isVOP3()) {
|
|
VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (instr.get());
|
|
neg[2] = vop3->neg[add_op_idx];
|
|
abs[2] = vop3->abs[add_op_idx];
|
|
omod = vop3->omod;
|
|
clamp = vop3->clamp;
|
|
/* abs of the multiplication result */
|
|
if (vop3->abs[1 - add_op_idx]) {
|
|
neg[0] = false;
|
|
neg[1] = false;
|
|
abs[0] = true;
|
|
abs[1] = true;
|
|
}
|
|
/* neg of the multiplication result */
|
|
neg[1] = neg[1] ^ vop3->neg[1 - add_op_idx];
|
|
}
|
|
if (instr->opcode == aco_opcode::v_sub_f32)
|
|
neg[1 + add_op_idx] = neg[1 + add_op_idx] ^ true;
|
|
else if (instr->opcode == aco_opcode::v_subrev_f32)
|
|
neg[2 - add_op_idx] = neg[2 - add_op_idx] ^ true;
|
|
|
|
aco_ptr<VOP3A_instruction> mad{create_instruction<VOP3A_instruction>(aco_opcode::v_mad_f32, Format::VOP3A, 3, 1)};
|
|
for (unsigned i = 0; i < 3; i++)
|
|
{
|
|
mad->operands[i] = op[i];
|
|
mad->neg[i] = neg[i];
|
|
mad->abs[i] = abs[i];
|
|
}
|
|
mad->omod = omod;
|
|
mad->clamp = clamp;
|
|
mad->definitions[0] = instr->definitions[0];
|
|
|
|
/* mark this ssa_def to be re-checked for profitability and literals */
|
|
ctx.mad_infos.emplace_back(std::move(instr), mul_instr->definitions[0].tempId());
|
|
ctx.info[mad->definitions[0].tempId()].set_mad(mad.get(), ctx.mad_infos.size() - 1);
|
|
instr.reset(mad.release());
|
|
return;
|
|
}
|
|
}
|
|
/* v_mul_f32(v_cndmask_b32(0, 1.0, cond), a) -> v_cndmask_b32(0, a, cond) */
|
|
else if (instr->opcode == aco_opcode::v_mul_f32 && !instr->isVOP3()) {
|
|
for (unsigned i = 0; i < 2; i++) {
|
|
if (instr->operands[i].isTemp() && ctx.info[instr->operands[i].tempId()].is_b2f() &&
|
|
ctx.uses[instr->operands[i].tempId()] == 1 &&
|
|
instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) {
|
|
ctx.uses[instr->operands[i].tempId()]--;
|
|
ctx.uses[ctx.info[instr->operands[i].tempId()].temp.id()]++;
|
|
|
|
aco_ptr<VOP2_instruction> new_instr{create_instruction<VOP2_instruction>(aco_opcode::v_cndmask_b32, Format::VOP2, 3, 1)};
|
|
new_instr->operands[0] = Operand(0u);
|
|
new_instr->operands[1] = instr->operands[!i];
|
|
new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp);
|
|
new_instr->definitions[0] = instr->definitions[0];
|
|
instr.reset(new_instr.release());
|
|
ctx.info[instr->definitions[0].tempId()].label = 0;
|
|
return;
|
|
}
|
|
}
|
|
} else if (instr->opcode == aco_opcode::v_or_b32 && ctx.program->chip_class >= GFX9) {
|
|
if (combine_three_valu_op(ctx, instr, aco_opcode::s_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) ;
|
|
else if (combine_three_valu_op(ctx, instr, aco_opcode::v_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) ;
|
|
else if (combine_three_valu_op(ctx, instr, aco_opcode::s_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) ;
|
|
else if (combine_three_valu_op(ctx, instr, aco_opcode::v_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) ;
|
|
else if (combine_three_valu_op(ctx, instr, aco_opcode::s_lshl_b32, aco_opcode::v_lshl_or_b32, "120", 1 | 2)) ;
|
|
else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_or_b32, "210", 1 | 2);
|
|
} else if (instr->opcode == aco_opcode::v_add_u32 && ctx.program->chip_class >= GFX9) {
|
|
if (combine_three_valu_op(ctx, instr, aco_opcode::s_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) ;
|
|
else if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) ;
|
|
else if (combine_three_valu_op(ctx, instr, aco_opcode::s_add_i32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
|
|
else if (combine_three_valu_op(ctx, instr, aco_opcode::s_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
|
|
else if (combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
|
|
else if (combine_three_valu_op(ctx, instr, aco_opcode::s_lshl_b32, aco_opcode::v_lshl_add_u32, "120", 1 | 2)) ;
|
|
else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_add_u32, "210", 1 | 2);
|
|
} else if (instr->opcode == aco_opcode::v_lshlrev_b32 && ctx.program->chip_class >= GFX9) {
|
|
combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add_lshl_u32, "120", 2);
|
|
} else if ((instr->opcode == aco_opcode::s_add_u32 || instr->opcode == aco_opcode::s_add_i32) && ctx.program->chip_class >= GFX9) {
|
|
combine_salu_lshl_add(ctx, instr);
|
|
} else if (instr->opcode == aco_opcode::s_not_b32) {
|
|
combine_salu_not_bitwise(ctx, instr);
|
|
} else if (instr->opcode == aco_opcode::s_not_b64) {
|
|
if (combine_inverse_comparison(ctx, instr)) ;
|
|
else combine_salu_not_bitwise(ctx, instr);
|
|
} else if (instr->opcode == aco_opcode::s_and_b32 || instr->opcode == aco_opcode::s_or_b32 ||
|
|
instr->opcode == aco_opcode::s_and_b64 || instr->opcode == aco_opcode::s_or_b64) {
|
|
if (combine_ordering_test(ctx, instr)) ;
|
|
else if (combine_comparison_ordering(ctx, instr)) ;
|
|
else if (combine_constant_comparison_ordering(ctx, instr)) ;
|
|
else combine_salu_n2(ctx, instr);
|
|
} else {
|
|
aco_opcode min, max, min3, max3, med3;
|
|
bool some_gfx9_only;
|
|
if (get_minmax_info(instr->opcode, &min, &max, &min3, &max3, &med3, &some_gfx9_only) &&
|
|
(!some_gfx9_only || ctx.program->chip_class >= GFX9)) {
|
|
if (combine_minmax(ctx, instr, instr->opcode == min ? max : min, instr->opcode == min ? min3 : max3)) ;
|
|
else combine_clamp(ctx, instr, min, max, med3);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool to_uniform_bool_instr(opt_ctx &ctx, aco_ptr<Instruction> &instr)
|
|
{
|
|
switch (instr->opcode) {
|
|
case aco_opcode::s_and_b32:
|
|
case aco_opcode::s_and_b64:
|
|
instr->opcode = aco_opcode::s_and_b32;
|
|
break;
|
|
case aco_opcode::s_or_b32:
|
|
case aco_opcode::s_or_b64:
|
|
instr->opcode = aco_opcode::s_or_b32;
|
|
break;
|
|
case aco_opcode::s_xor_b32:
|
|
case aco_opcode::s_xor_b64:
|
|
instr->opcode = aco_opcode::s_absdiff_i32;
|
|
break;
|
|
default:
|
|
/* Don't transform other instructions. They are very unlikely to appear here. */
|
|
return false;
|
|
}
|
|
|
|
for (Operand &op : instr->operands) {
|
|
ctx.uses[op.tempId()]--;
|
|
|
|
if (ctx.info[op.tempId()].is_uniform_bool()) {
|
|
/* Just use the uniform boolean temp. */
|
|
op.setTemp(ctx.info[op.tempId()].temp);
|
|
} else if (ctx.info[op.tempId()].is_uniform_bitwise()) {
|
|
/* Use the SCC definition of the predecessor instruction.
|
|
* This allows the predecessor to get picked up by the same optimization (if it has no divergent users),
|
|
* and it also makes sure that the current instruction will keep working even if the predecessor won't be transformed.
|
|
*/
|
|
Instruction *pred_instr = ctx.info[op.tempId()].instr;
|
|
assert(pred_instr->definitions.size() >= 2);
|
|
assert(pred_instr->definitions[1].isFixed() && pred_instr->definitions[1].physReg() == scc);
|
|
op.setTemp(pred_instr->definitions[1].getTemp());
|
|
} else {
|
|
unreachable("Invalid operand on uniform bitwise instruction.");
|
|
}
|
|
|
|
ctx.uses[op.tempId()]++;
|
|
}
|
|
|
|
instr->definitions[0].setTemp(Temp(instr->definitions[0].tempId(), s1));
|
|
assert(instr->operands[0].regClass() == s1);
|
|
assert(instr->operands[1].regClass() == s1);
|
|
return true;
|
|
}
|
|
|
|
void select_instruction(opt_ctx &ctx, aco_ptr<Instruction>& instr)
|
|
{
|
|
const uint32_t threshold = 4;
|
|
|
|
if (is_dead(ctx.uses, instr.get())) {
|
|
instr.reset();
|
|
return;
|
|
}
|
|
|
|
/* convert split_vector into a copy or extract_vector if only one definition is ever used */
|
|
if (instr->opcode == aco_opcode::p_split_vector) {
|
|
unsigned num_used = 0;
|
|
unsigned idx = 0;
|
|
unsigned split_offset = 0;
|
|
for (unsigned i = 0, offset = 0; i < instr->definitions.size(); offset += instr->definitions[i++].bytes()) {
|
|
if (ctx.uses[instr->definitions[i].tempId()]) {
|
|
num_used++;
|
|
idx = i;
|
|
split_offset = offset;
|
|
}
|
|
}
|
|
bool done = false;
|
|
if (num_used == 1 && ctx.info[instr->operands[0].tempId()].is_vec() &&
|
|
ctx.uses[instr->operands[0].tempId()] == 1) {
|
|
Instruction *vec = ctx.info[instr->operands[0].tempId()].instr;
|
|
|
|
unsigned off = 0;
|
|
Operand op;
|
|
for (Operand& vec_op : vec->operands) {
|
|
if (off == split_offset) {
|
|
op = vec_op;
|
|
break;
|
|
}
|
|
off += vec_op.bytes();
|
|
}
|
|
if (off != instr->operands[0].bytes() && op.bytes() == instr->definitions[idx].bytes()) {
|
|
ctx.uses[instr->operands[0].tempId()]--;
|
|
for (Operand& vec_op : vec->operands) {
|
|
if (vec_op.isTemp())
|
|
ctx.uses[vec_op.tempId()]--;
|
|
}
|
|
if (op.isTemp())
|
|
ctx.uses[op.tempId()]++;
|
|
|
|
aco_ptr<Pseudo_instruction> extract{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 1, 1)};
|
|
extract->operands[0] = op;
|
|
extract->definitions[0] = instr->definitions[idx];
|
|
instr.reset(extract.release());
|
|
|
|
done = true;
|
|
}
|
|
}
|
|
|
|
if (!done && num_used == 1 &&
|
|
instr->operands[0].bytes() % instr->definitions[idx].bytes() == 0 &&
|
|
split_offset % instr->definitions[idx].bytes() == 0) {
|
|
aco_ptr<Pseudo_instruction> extract{create_instruction<Pseudo_instruction>(aco_opcode::p_extract_vector, Format::PSEUDO, 2, 1)};
|
|
extract->operands[0] = instr->operands[0];
|
|
extract->operands[1] = Operand((uint32_t) split_offset / instr->definitions[idx].bytes());
|
|
extract->definitions[0] = instr->definitions[idx];
|
|
instr.reset(extract.release());
|
|
}
|
|
}
|
|
|
|
mad_info* mad_info = NULL;
|
|
if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
|
|
mad_info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
|
|
/* re-check mad instructions */
|
|
if (ctx.uses[mad_info->mul_temp_id]) {
|
|
ctx.uses[mad_info->mul_temp_id]++;
|
|
if (instr->operands[0].isTemp())
|
|
ctx.uses[instr->operands[0].tempId()]--;
|
|
if (instr->operands[1].isTemp())
|
|
ctx.uses[instr->operands[1].tempId()]--;
|
|
instr.swap(mad_info->add_instr);
|
|
mad_info = NULL;
|
|
}
|
|
/* check literals */
|
|
else if (!instr->usesModifiers()) {
|
|
bool sgpr_used = false;
|
|
uint32_t literal_idx = 0;
|
|
uint32_t literal_uses = UINT32_MAX;
|
|
for (unsigned i = 0; i < instr->operands.size(); i++)
|
|
{
|
|
if (instr->operands[i].isConstant() && i > 0) {
|
|
literal_uses = UINT32_MAX;
|
|
break;
|
|
}
|
|
if (!instr->operands[i].isTemp())
|
|
continue;
|
|
/* if one of the operands is sgpr, we cannot add a literal somewhere else on pre-GFX10 or operands other than the 1st */
|
|
if (instr->operands[i].getTemp().type() == RegType::sgpr && (i > 0 || ctx.program->chip_class < GFX10)) {
|
|
if (!sgpr_used && ctx.info[instr->operands[i].tempId()].is_literal()) {
|
|
literal_uses = ctx.uses[instr->operands[i].tempId()];
|
|
literal_idx = i;
|
|
} else {
|
|
literal_uses = UINT32_MAX;
|
|
}
|
|
sgpr_used = true;
|
|
/* don't break because we still need to check constants */
|
|
} else if (!sgpr_used &&
|
|
ctx.info[instr->operands[i].tempId()].is_literal() &&
|
|
ctx.uses[instr->operands[i].tempId()] < literal_uses) {
|
|
literal_uses = ctx.uses[instr->operands[i].tempId()];
|
|
literal_idx = i;
|
|
}
|
|
}
|
|
|
|
/* Limit the number of literals to apply to not increase the code
|
|
* size too much, but always apply literals for v_mad->v_madak
|
|
* because both instructions are 64-bit and this doesn't increase
|
|
* code size.
|
|
* TODO: try to apply the literals earlier to lower the number of
|
|
* uses below threshold
|
|
*/
|
|
if (literal_uses < threshold || literal_idx == 2) {
|
|
ctx.uses[instr->operands[literal_idx].tempId()]--;
|
|
mad_info->check_literal = true;
|
|
mad_info->literal_idx = literal_idx;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Mark SCC needed, so the uniform boolean transformation won't swap the definitions when it isn't beneficial */
|
|
if (instr->format == Format::PSEUDO_BRANCH &&
|
|
instr->operands.size() &&
|
|
instr->operands[0].isTemp()) {
|
|
ctx.info[instr->operands[0].tempId()].set_scc_needed();
|
|
return;
|
|
} else if ((instr->opcode == aco_opcode::s_cselect_b64 ||
|
|
instr->opcode == aco_opcode::s_cselect_b32) &&
|
|
instr->operands[2].isTemp()) {
|
|
ctx.info[instr->operands[2].tempId()].set_scc_needed();
|
|
}
|
|
|
|
/* check for literals */
|
|
if (!instr->isSALU() && !instr->isVALU())
|
|
return;
|
|
|
|
/* Transform uniform bitwise boolean operations to 32-bit when there are no divergent uses. */
|
|
if (instr->definitions.size() &&
|
|
ctx.uses[instr->definitions[0].tempId()] == 0 &&
|
|
ctx.info[instr->definitions[0].tempId()].is_uniform_bitwise()) {
|
|
bool transform_done = to_uniform_bool_instr(ctx, instr);
|
|
|
|
if (transform_done && !ctx.info[instr->definitions[1].tempId()].is_scc_needed()) {
|
|
/* Swap the two definition IDs in order to avoid overusing the SCC. This reduces extra moves generated by RA. */
|
|
uint32_t def0_id = instr->definitions[0].getTemp().id();
|
|
uint32_t def1_id = instr->definitions[1].getTemp().id();
|
|
instr->definitions[0].setTemp(Temp(def1_id, s1));
|
|
instr->definitions[1].setTemp(Temp(def0_id, s1));
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (instr->isSDWA() || instr->isDPP() || (instr->isVOP3() && ctx.program->chip_class < GFX10))
|
|
return; /* some encodings can't ever take literals */
|
|
|
|
/* we do not apply the literals yet as we don't know if it is profitable */
|
|
Operand current_literal(s1);
|
|
|
|
unsigned literal_id = 0;
|
|
unsigned literal_uses = UINT32_MAX;
|
|
Operand literal(s1);
|
|
unsigned num_operands = 1;
|
|
if (instr->isSALU() || (ctx.program->chip_class >= GFX10 && can_use_VOP3(ctx, instr)))
|
|
num_operands = instr->operands.size();
|
|
/* catch VOP2 with a 3rd SGPR operand (e.g. v_cndmask_b32, v_addc_co_u32) */
|
|
else if (instr->isVALU() && instr->operands.size() >= 3)
|
|
return;
|
|
|
|
unsigned sgpr_ids[2] = {0, 0};
|
|
bool is_literal_sgpr = false;
|
|
uint32_t mask = 0;
|
|
|
|
/* choose a literal to apply */
|
|
for (unsigned i = 0; i < num_operands; i++) {
|
|
Operand op = instr->operands[i];
|
|
|
|
if (instr->isVALU() && op.isTemp() && op.getTemp().type() == RegType::sgpr &&
|
|
op.tempId() != sgpr_ids[0])
|
|
sgpr_ids[!!sgpr_ids[0]] = op.tempId();
|
|
|
|
if (op.isLiteral()) {
|
|
current_literal = op;
|
|
continue;
|
|
} else if (!op.isTemp() || !ctx.info[op.tempId()].is_literal()) {
|
|
continue;
|
|
}
|
|
|
|
if (!alu_can_accept_constant(instr->opcode, i))
|
|
continue;
|
|
|
|
if (ctx.uses[op.tempId()] < literal_uses) {
|
|
is_literal_sgpr = op.getTemp().type() == RegType::sgpr;
|
|
mask = 0;
|
|
literal = Operand(ctx.info[op.tempId()].val);
|
|
literal_uses = ctx.uses[op.tempId()];
|
|
literal_id = op.tempId();
|
|
}
|
|
|
|
mask |= (op.tempId() == literal_id) << i;
|
|
}
|
|
|
|
|
|
/* don't go over the constant bus limit */
|
|
bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 ||
|
|
instr->opcode == aco_opcode::v_lshrrev_b64 ||
|
|
instr->opcode == aco_opcode::v_ashrrev_i64;
|
|
unsigned const_bus_limit = instr->isVALU() ? 1 : UINT32_MAX;
|
|
if (ctx.program->chip_class >= GFX10 && !is_shift64)
|
|
const_bus_limit = 2;
|
|
|
|
unsigned num_sgprs = !!sgpr_ids[0] + !!sgpr_ids[1];
|
|
if (num_sgprs == const_bus_limit && !is_literal_sgpr)
|
|
return;
|
|
|
|
if (literal_id && literal_uses < threshold &&
|
|
(current_literal.isUndefined() ||
|
|
(current_literal.size() == literal.size() &&
|
|
current_literal.constantValue() == literal.constantValue()))) {
|
|
/* mark the literal to be applied */
|
|
while (mask) {
|
|
unsigned i = u_bit_scan(&mask);
|
|
if (instr->operands[i].isTemp() && instr->operands[i].tempId() == literal_id)
|
|
ctx.uses[instr->operands[i].tempId()]--;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void apply_literals(opt_ctx &ctx, aco_ptr<Instruction>& instr)
|
|
{
|
|
/* Cleanup Dead Instructions */
|
|
if (!instr)
|
|
return;
|
|
|
|
/* apply literals on MAD */
|
|
if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
|
|
mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
|
|
if (info->check_literal &&
|
|
(ctx.uses[instr->operands[info->literal_idx].tempId()] == 0 || info->literal_idx == 2)) {
|
|
aco_ptr<Instruction> new_mad;
|
|
if (info->literal_idx == 2) { /* add literal -> madak */
|
|
new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madak_f32, Format::VOP2, 3, 1));
|
|
new_mad->operands[0] = instr->operands[0];
|
|
new_mad->operands[1] = instr->operands[1];
|
|
} else { /* mul literal -> madmk */
|
|
new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madmk_f32, Format::VOP2, 3, 1));
|
|
new_mad->operands[0] = instr->operands[1 - info->literal_idx];
|
|
new_mad->operands[1] = instr->operands[2];
|
|
}
|
|
new_mad->operands[2] = Operand(ctx.info[instr->operands[info->literal_idx].tempId()].val);
|
|
new_mad->definitions[0] = instr->definitions[0];
|
|
ctx.instructions.emplace_back(std::move(new_mad));
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* apply literals on other SALU/VALU */
|
|
if (instr->isSALU() || instr->isVALU()) {
|
|
for (unsigned i = 0; i < instr->operands.size(); i++) {
|
|
Operand op = instr->operands[i];
|
|
if (op.isTemp() && ctx.info[op.tempId()].is_literal() && ctx.uses[op.tempId()] == 0) {
|
|
Operand literal(ctx.info[op.tempId()].val);
|
|
if (instr->isVALU() && i > 0)
|
|
to_VOP3(ctx, instr);
|
|
instr->operands[i] = literal;
|
|
}
|
|
}
|
|
}
|
|
|
|
ctx.instructions.emplace_back(std::move(instr));
|
|
}
|
|
|
|
|
|
void optimize(Program* program)
|
|
{
|
|
opt_ctx ctx;
|
|
ctx.program = program;
|
|
std::vector<ssa_info> info(program->peekAllocationId());
|
|
ctx.info = info.data();
|
|
|
|
/* 1. Bottom-Up DAG pass (forward) to label all ssa-defs */
|
|
for (Block& block : program->blocks) {
|
|
for (aco_ptr<Instruction>& instr : block.instructions)
|
|
label_instruction(ctx, block, instr);
|
|
}
|
|
|
|
ctx.uses = std::move(dead_code_analysis(program));
|
|
|
|
/* 2. Combine v_mad, omod, clamp and propagate sgpr on VALU instructions */
|
|
for (Block& block : program->blocks) {
|
|
for (aco_ptr<Instruction>& instr : block.instructions)
|
|
combine_instruction(ctx, block, instr);
|
|
}
|
|
|
|
/* 3. Top-Down DAG pass (backward) to select instructions (includes DCE) */
|
|
for (std::vector<Block>::reverse_iterator it = program->blocks.rbegin(); it != program->blocks.rend(); ++it) {
|
|
Block* block = &(*it);
|
|
for (std::vector<aco_ptr<Instruction>>::reverse_iterator it = block->instructions.rbegin(); it != block->instructions.rend(); ++it)
|
|
select_instruction(ctx, *it);
|
|
}
|
|
|
|
/* 4. Add literals to instructions */
|
|
for (Block& block : program->blocks) {
|
|
ctx.instructions.clear();
|
|
for (aco_ptr<Instruction>& instr : block.instructions)
|
|
apply_literals(ctx, instr);
|
|
block.instructions.swap(ctx.instructions);
|
|
}
|
|
|
|
}
|
|
|
|
}
|