mesa/src/gallium/drivers/iris/iris_batch.c
Kenneth Graunke 60d708bb80 iris: copy over i965's cache tracking
needed to split out vtbl so I can pipe control without ice
2019-02-21 10:26:06 -08:00

632 lines
20 KiB
C

/*
* Copyright © 2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "iris_batch.h"
#include "iris_bufmgr.h"
#include "iris_context.h"
#include "drm-uapi/i915_drm.h"
#include "util/hash_table.h"
#include "util/set.h"
#include "main/macros.h"
#include <errno.h>
#include <xf86drm.h>
#define FILE_DEBUG_FLAG DEBUG_BUFMGR
/**
* Target sizes of the batch and state buffers. We create the initial
* buffers at these sizes, and flush when they're nearly full. If we
* underestimate how close we are to the end, and suddenly need more space
* in the middle of a draw, we can grow the buffers, and finish the draw.
* At that point, we'll be over our target size, so the next operation
* should flush. Each time we flush the batch, we recreate both buffers
* at the original target size, so it doesn't grow without bound.
*/
#define BATCH_SZ (20 * 1024)
#define STATE_SZ (18 * 1024)
static void decode_batch(struct iris_batch *batch);
static void
iris_batch_reset(struct iris_batch *batch);
UNUSED static void
dump_validation_list(struct iris_batch *batch)
{
fprintf(stderr, "Validation list (length %d):\n", batch->exec_count);
for (int i = 0; i < batch->exec_count; i++) {
uint64_t flags = batch->validation_list[i].flags;
assert(batch->validation_list[i].handle ==
batch->exec_bos[i]->gem_handle);
fprintf(stderr, "[%2d]: %2d %-14s %p %s%-7s @ 0x%016llx (%"PRIu64"B)\n",
i,
batch->validation_list[i].handle,
batch->exec_bos[i]->name,
batch->exec_bos[i],
(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) ? "(48b" : "(32b",
(flags & EXEC_OBJECT_WRITE) ? " write)" : ")",
batch->validation_list[i].offset,
batch->exec_bos[i]->size);
}
}
static struct gen_batch_decode_bo
decode_get_bo(void *v_batch, uint64_t address)
{
struct iris_batch *batch = v_batch;
for (int i = 0; i < batch->exec_count; i++) {
struct iris_bo *bo = batch->exec_bos[i];
/* The decoder zeroes out the top 16 bits, so we need to as well */
uint64_t bo_address = bo->gtt_offset & (~0ull >> 16);
if (address >= bo_address && address < bo_address + bo->size) {
return (struct gen_batch_decode_bo) {
.addr = address,
.size = bo->size,
.map = iris_bo_map(batch->dbg, bo, MAP_READ) +
(address - bo_address),
};
}
}
return (struct gen_batch_decode_bo) { };
}
static bool
uint_key_compare(const void *a, const void *b)
{
return a == b;
}
static uint32_t
uint_key_hash(const void *key)
{
return (uintptr_t) key;
}
static void
create_batch_buffer(struct iris_bufmgr *bufmgr,
struct iris_batch_buffer *buf,
const char *name, unsigned size)
{
buf->bo = iris_bo_alloc(bufmgr, name, size, IRIS_MEMZONE_OTHER);
buf->bo->kflags |= EXEC_OBJECT_CAPTURE;
buf->map = iris_bo_map(NULL, buf->bo, MAP_READ | MAP_WRITE);
buf->map_next = buf->map;
}
void
iris_init_batch(struct iris_batch *batch,
struct iris_screen *screen,
struct iris_vtable *vtbl,
struct pipe_debug_callback *dbg,
uint8_t ring)
{
batch->screen = screen;
batch->vtbl = vtbl;
batch->dbg = dbg;
/* ring should be one of I915_EXEC_RENDER, I915_EXEC_BLT, etc. */
assert((ring & ~I915_EXEC_RING_MASK) == 0);
assert(util_bitcount(ring) == 1);
batch->ring = ring;
batch->exec_count = 0;
batch->exec_array_size = 100;
batch->exec_bos =
malloc(batch->exec_array_size * sizeof(batch->exec_bos[0]));
batch->validation_list =
malloc(batch->exec_array_size * sizeof(batch->validation_list[0]));
batch->cache.render = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
_mesa_key_pointer_equal);
batch->cache.depth = _mesa_set_create(NULL, _mesa_hash_pointer,
_mesa_key_pointer_equal);
if (unlikely(INTEL_DEBUG)) {
batch->state_sizes =
_mesa_hash_table_create(NULL, uint_key_hash, uint_key_compare);
const unsigned decode_flags =
GEN_BATCH_DECODE_FULL |
((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
GEN_BATCH_DECODE_OFFSETS |
GEN_BATCH_DECODE_FLOATS;
gen_batch_decode_ctx_init(&batch->decoder, &screen->devinfo,
stderr, decode_flags, NULL,
decode_get_bo, NULL, batch);
}
iris_batch_reset(batch);
}
#define READ_ONCE(x) (*(volatile __typeof__(x) *)&(x))
static unsigned
add_exec_bo(struct iris_batch *batch, struct iris_bo *bo)
{
unsigned index = READ_ONCE(bo->index);
if (index < batch->exec_count && batch->exec_bos[index] == bo)
return index;
/* May have been shared between multiple active batches */
for (index = 0; index < batch->exec_count; index++) {
if (batch->exec_bos[index] == bo)
return index;
}
iris_bo_reference(bo);
if (batch->exec_count == batch->exec_array_size) {
batch->exec_array_size *= 2;
batch->exec_bos =
realloc(batch->exec_bos,
batch->exec_array_size * sizeof(batch->exec_bos[0]));
batch->validation_list =
realloc(batch->validation_list,
batch->exec_array_size * sizeof(batch->validation_list[0]));
}
batch->validation_list[batch->exec_count] =
(struct drm_i915_gem_exec_object2) {
.handle = bo->gem_handle,
.offset = bo->gtt_offset,
.flags = bo->kflags,
};
bo->index = batch->exec_count;
batch->exec_bos[batch->exec_count] = bo;
batch->aperture_space += bo->size;
return batch->exec_count++;
}
static void
iris_batch_reset(struct iris_batch *batch)
{
struct iris_screen *screen = batch->screen;
struct iris_bufmgr *bufmgr = screen->bufmgr;
if (batch->last_cmd_bo != NULL) {
iris_bo_unreference(batch->last_cmd_bo);
batch->last_cmd_bo = NULL;
}
batch->last_cmd_bo = batch->cmdbuf.bo;
create_batch_buffer(bufmgr, &batch->cmdbuf, "command buffer", BATCH_SZ);
add_exec_bo(batch, batch->cmdbuf.bo);
assert(batch->cmdbuf.bo->index == 0);
if (batch->state_sizes)
_mesa_hash_table_clear(batch->state_sizes, NULL);
}
static void
iris_batch_reset_and_clear_caches(struct iris_batch *batch)
{
iris_batch_reset(batch);
iris_cache_sets_clear(batch);
}
static void
free_batch_buffer(struct iris_batch_buffer *buf)
{
iris_bo_unreference(buf->bo);
buf->bo = NULL;
buf->map = NULL;
buf->map_next = NULL;
}
void
iris_batch_free(struct iris_batch *batch)
{
for (int i = 0; i < batch->exec_count; i++) {
iris_bo_unreference(batch->exec_bos[i]);
}
free(batch->exec_bos);
free(batch->validation_list);
free_batch_buffer(&batch->cmdbuf);
iris_bo_unreference(batch->last_cmd_bo);
_mesa_hash_table_destroy(batch->cache.render, NULL);
_mesa_set_destroy(batch->cache.depth, NULL);
if (batch->state_sizes) {
_mesa_hash_table_destroy(batch->state_sizes, NULL);
gen_batch_decode_ctx_finish(&batch->decoder);
}
}
/**
* Finish copying the old batch/state buffer's contents to the new one
* after we tried to "grow" the buffer in an earlier operation.
*/
static void
finish_growing_bos(struct iris_batch_buffer *buf)
{
struct iris_bo *old_bo = buf->partial_bo;
if (!old_bo)
return;
void *old_map = old_bo->map_cpu ? old_bo->map_cpu : old_bo->map_wc;
memcpy(buf->map, old_map, buf->partial_bytes);
buf->partial_bo = NULL;
buf->partial_bytes = 0;
iris_bo_unreference(old_bo);
}
static unsigned
buffer_bytes_used(struct iris_batch_buffer *buf)
{
return buf->map_next - buf->map;
}
/**
* Grow either the batch or state buffer to a new larger size.
*
* We can't actually grow buffers, so we allocate a new one, copy over
* the existing contents, and update our lists to refer to the new one.
*
* Note that this is only temporary - each new batch recreates the buffers
* at their original target size (BATCH_SZ or STATE_SZ).
*/
static void
grow_buffer(struct iris_batch *batch,
struct iris_batch_buffer *buf,
unsigned new_size)
{
struct iris_bufmgr *bufmgr = batch->screen->bufmgr;
struct iris_bo *bo = buf->bo;
perf_debug(batch->dbg, "Growing %s - ran out of space\n", bo->name);
if (buf->partial_bo) {
/* We've already grown once, and now we need to do it again.
* Finish our last grow operation so we can start a new one.
* This should basically never happen.
*/
perf_debug(batch->dbg, "Had to grow multiple times");
finish_growing_bos(buf);
}
const unsigned existing_bytes = buffer_bytes_used(buf);
struct iris_bo *new_bo =
iris_bo_alloc(bufmgr, bo->name, new_size, IRIS_MEMZONE_OTHER);
buf->map = iris_bo_map(NULL, new_bo, MAP_READ | MAP_WRITE);
buf->map_next = buf->map + existing_bytes;
/* Try to put the new BO at the same GTT offset as the old BO (which
* we're throwing away, so it doesn't need to be there).
*
* This guarantees that our relocations continue to work: values we've
* already written into the buffer, values we're going to write into the
* buffer, and the validation/relocation lists all will match.
*
* Also preserve kflags for EXEC_OBJECT_CAPTURE.
*/
new_bo->gtt_offset = bo->gtt_offset;
new_bo->index = bo->index;
new_bo->kflags = bo->kflags;
/* Batch/state buffers are per-context, and if we've run out of space,
* we must have actually used them before, so...they will be in the list.
*/
assert(bo->index < batch->exec_count);
assert(batch->exec_bos[bo->index] == bo);
/* Update the validation list to use the new BO. */
batch->exec_bos[bo->index] = new_bo;
batch->validation_list[bo->index].handle = new_bo->gem_handle;
/* Exchange the two BOs...without breaking pointers to the old BO.
*
* Consider this scenario:
*
* 1. Somebody calls iris_state_batch() to get a region of memory, and
* and then creates a iris_address pointing to iris->batch.state.bo.
* 2. They then call iris_state_batch() a second time, which happens to
* grow and replace the state buffer. They then try to emit a
* relocation to their first section of memory.
*
* If we replace the iris->batch.state.bo pointer at step 2, we would
* break the address created in step 1. They'd have a pointer to the
* old destroyed BO. Emitting a relocation would add this dead BO to
* the validation list...causing /both/ statebuffers to be in the list,
* and all kinds of disasters.
*
* This is not a contrived case - BLORP vertex data upload hits this.
*
* There are worse scenarios too. Fences for GL sync objects reference
* iris->batch.batch.bo. If we replaced the batch pointer when growing,
* we'd need to chase down every fence and update it to point to the
* new BO. Otherwise, it would refer to a "batch" that never actually
* gets submitted, and would fail to trigger.
*
* To work around both of these issues, we transmutate the buffers in
* place, making the existing struct iris_bo represent the new buffer,
* and "new_bo" represent the old BO. This is highly unusual, but it
* seems like a necessary evil.
*
* We also defer the memcpy of the existing batch's contents. Callers
* may make multiple iris_state_batch calls, and retain pointers to the
* old BO's map. We'll perform the memcpy in finish_growing_bo() when
* we finally submit the batch, at which point we've finished uploading
* state, and nobody should have any old references anymore.
*
* To do that, we keep a reference to the old BO in grow->partial_bo,
* and store the number of bytes to copy in grow->partial_bytes. We
* can monkey with the refcounts directly without atomics because these
* are per-context BOs and they can only be touched by this thread.
*/
assert(new_bo->refcount == 1);
new_bo->refcount = bo->refcount;
bo->refcount = 1;
struct iris_bo tmp;
memcpy(&tmp, bo, sizeof(struct iris_bo));
memcpy(bo, new_bo, sizeof(struct iris_bo));
memcpy(new_bo, &tmp, sizeof(struct iris_bo));
buf->partial_bo = new_bo; /* the one reference of the OLD bo */
buf->partial_bytes = existing_bytes;
}
static void
require_buffer_space(struct iris_batch *batch,
struct iris_batch_buffer *buf,
unsigned size,
unsigned flush_threshold,
unsigned max_buffer_size)
{
const unsigned required_bytes = buffer_bytes_used(buf) + size;
if (!batch->no_wrap && required_bytes >= flush_threshold) {
iris_batch_flush(batch);
} else if (required_bytes >= buf->bo->size) {
grow_buffer(batch, buf,
MIN2(buf->bo->size + buf->bo->size / 2, max_buffer_size));
assert(required_bytes < buf->bo->size);
}
}
void
iris_require_command_space(struct iris_batch *batch, unsigned size)
{
require_buffer_space(batch, &batch->cmdbuf, size, BATCH_SZ, MAX_BATCH_SIZE);
}
void *
iris_get_command_space(struct iris_batch *batch, unsigned bytes)
{
iris_require_command_space(batch, bytes);
void *map = batch->cmdbuf.map_next;
batch->cmdbuf.map_next += bytes;
return map;
}
void
iris_batch_emit(struct iris_batch *batch, const void *data, unsigned size)
{
void *map = iris_get_command_space(batch, size);
memcpy(map, data, size);
}
/**
* Called from iris_batch_flush before emitting MI_BATCHBUFFER_END and
* sending it off.
*
* This function can emit state (say, to preserve registers that aren't saved
* between batches).
*/
static void
iris_finish_batch(struct iris_batch *batch)
{
batch->no_wrap = true;
// XXX: ISP DIS
/* Emit MI_BATCH_BUFFER_END to finish our batch. Note that execbuf2
* requires our batch size to be QWord aligned, so we pad it out if
* necessary by emitting an extra MI_NOOP after the end.
*/
const uint32_t MI_BATCH_BUFFER_END_AND_NOOP[2] = { (0xA << 23), 0 };
const bool qword_aligned = (buffer_bytes_used(&batch->cmdbuf) % 8) == 0;
iris_batch_emit(batch, MI_BATCH_BUFFER_END_AND_NOOP, qword_aligned ? 8 : 4);
batch->no_wrap = false;
}
static int
submit_batch(struct iris_batch *batch, int in_fence_fd, int *out_fence_fd)
{
iris_bo_unmap(batch->cmdbuf.bo);
/* The requirement for using I915_EXEC_NO_RELOC are:
*
* The addresses written in the objects must match the corresponding
* reloc.gtt_offset which in turn must match the corresponding
* execobject.offset.
*
* Any render targets written to in the batch must be flagged with
* EXEC_OBJECT_WRITE.
*
* To avoid stalling, execobject.offset should match the current
* address of that object within the active context.
*/
struct drm_i915_gem_execbuffer2 execbuf = {
.buffers_ptr = (uintptr_t) batch->validation_list,
.buffer_count = batch->exec_count,
.batch_start_offset = 0,
.batch_len = buffer_bytes_used(&batch->cmdbuf),
.flags = batch->ring |
I915_EXEC_NO_RELOC |
I915_EXEC_BATCH_FIRST |
I915_EXEC_HANDLE_LUT,
.rsvd1 = batch->hw_ctx_id, /* rsvd1 is actually the context ID */
};
unsigned long cmd = DRM_IOCTL_I915_GEM_EXECBUFFER2;
if (in_fence_fd != -1) {
execbuf.rsvd2 = in_fence_fd;
execbuf.flags |= I915_EXEC_FENCE_IN;
}
if (out_fence_fd != NULL) {
cmd = DRM_IOCTL_I915_GEM_EXECBUFFER2_WR;
*out_fence_fd = -1;
execbuf.flags |= I915_EXEC_FENCE_OUT;
}
int ret = drm_ioctl(batch->screen->fd, cmd, &execbuf);
if (ret != 0) {
ret = -errno;
DBG("execbuf FAILED: errno = %d\n", -ret);
} else {
DBG("execbuf succeeded\n");
}
for (int i = 0; i < batch->exec_count; i++) {
struct iris_bo *bo = batch->exec_bos[i];
bo->idle = false;
bo->index = -1;
}
if (ret == 0 && out_fence_fd != NULL)
*out_fence_fd = execbuf.rsvd2 >> 32;
return ret;
}
/**
* The in_fence_fd is ignored if -1. Otherwise this function takes ownership
* of the fd.
*
* The out_fence_fd is ignored if NULL. Otherwise, the caller takes ownership
* of the returned fd.
*/
int
_iris_batch_flush_fence(struct iris_batch *batch,
int in_fence_fd, int *out_fence_fd,
const char *file, int line)
{
if (buffer_bytes_used(&batch->cmdbuf) == 0)
return 0;
/* Check that we didn't just wrap our batchbuffer at a bad time. */
assert(!batch->no_wrap);
iris_finish_batch(batch);
if (unlikely(INTEL_DEBUG & (DEBUG_BATCH | DEBUG_SUBMIT))) {
int bytes_for_commands = buffer_bytes_used(&batch->cmdbuf);
fprintf(stderr, "%19s:%-3d: Batchbuffer flush with %5db (%0.1f%%), "
"%4d BOs (%0.1fMb aperture)\n",
file, line,
bytes_for_commands, 100.0f * bytes_for_commands / BATCH_SZ,
batch->exec_count,
(float) batch->aperture_space / (1024 * 1024));
dump_validation_list(batch);
}
if (unlikely(INTEL_DEBUG & DEBUG_BATCH))
decode_batch(batch);
int ret = submit_batch(batch, in_fence_fd, out_fence_fd);
//throttle(iris);
if (ret < 0)
return ret;
//if (iris->ctx.Const.ResetStrategy == GL_LOSE_CONTEXT_ON_RESET_ARB)
//iris_check_for_reset(ice);
if (unlikely(INTEL_DEBUG & DEBUG_SYNC)) {
dbg_printf("waiting for idle\n");
iris_bo_wait_rendering(batch->cmdbuf.bo);
}
/* Clean up after the batch we submitted and prepare for a new one. */
for (int i = 0; i < batch->exec_count; i++) {
iris_bo_unreference(batch->exec_bos[i]);
batch->exec_bos[i] = NULL;
}
batch->exec_count = 0;
batch->aperture_space = 0;
/* Start a new batch buffer. */
iris_batch_reset_and_clear_caches(batch);
return 0;
}
bool
iris_batch_references(struct iris_batch *batch, struct iris_bo *bo)
{
unsigned index = READ_ONCE(bo->index);
if (index < batch->exec_count && batch->exec_bos[index] == bo)
return true;
for (int i = 0; i < batch->exec_count; i++) {
if (batch->exec_bos[i] == bo)
return true;
}
return false;
}
/* This is the only way buffers get added to the validate list.
*/
void
iris_use_pinned_bo(struct iris_batch *batch,
struct iris_bo *bo,
bool writable)
{
assert(bo->kflags & EXEC_OBJECT_PINNED);
unsigned index = add_exec_bo(batch, bo);
if (writable)
batch->validation_list[index].flags |= EXEC_OBJECT_WRITE;
}
static void
decode_batch(struct iris_batch *batch)
{
gen_print_batch(&batch->decoder, batch->cmdbuf.map,
buffer_bytes_used(&batch->cmdbuf),
batch->cmdbuf.bo->gtt_offset);
}