mesa/src/intel/compiler/brw_fs_builder.h
Ian Romanick 1bff4f93ca brw: Basic infrastructure to store convergent values as scalars
In SIMD16 and SIMD32, storing convergent values in full 16- or
32-channel registers is wasteful. It wastes register space, and in most
cases on SIMD32, it wastes instructions. Our register allocator is not
clever enough to handle scalar allocations. It's fundamental unit of
allocation is SIMD8. Start treating convergent values as SIMD8.

Add a tracking bit in brw_reg to specify that a register represents a
convergent, scalar value. This has two implications:

1. All channels of the SIMD8 register must contain the same value. In
   general, this means that writes to the register must be
   force_writemask_all and exec_size = 8;

2. Reads of this register can (and should) use <0,1,0> stride. SIMD8
   instructions that have restrictions on source stride can us <8,8,1>.

Values that are vectors (e.g., results of load_uniform or texture
operations) will be stored as multiple SIMD8 hardware registers.

v2: brw_fs_opt_copy_propagation_defs fix from Ken. Fix for Xe2.

v3: Eliminte offset_to_scalar(). Remove mention of vec4 backend in
brw_reg.h. Both suggested by Caio. The offset_to_scalar() change
necessitates some trickery in the fs_builder offset() function, but I
think this is an improvement overall. There is also some rework in
find_value_for_offset to account for the possibility that is_scalar
sources in LOAD_PAYLOAD might be <8;8,1> or <0;1,0>.

Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/29884>
2024-12-24 18:09:58 -08:00

930 lines
30 KiB
C++

/* -*- c++ -*- */
/*
* Copyright © 2010-2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#pragma once
#include "brw_ir_fs.h"
#include "brw_eu.h"
#include "brw_fs.h"
static inline brw_reg offset(const brw_reg &, const brw::fs_builder &,
unsigned);
namespace brw {
/**
* Toolbox to assemble an FS IR program out of individual instructions.
*/
class fs_builder {
public:
/**
* Construct an fs_builder that inserts instructions into \p shader.
* \p dispatch_width gives the native execution width of the program.
*/
fs_builder(fs_visitor *shader,
unsigned dispatch_width) :
shader(shader), block(NULL), cursor(NULL),
_dispatch_width(dispatch_width),
_group(0),
force_writemask_all(false),
annotation()
{
}
explicit fs_builder(fs_visitor *s) : fs_builder(s, s->dispatch_width) {}
/**
* Construct an fs_builder that inserts instructions into \p shader
* before instruction \p inst in basic block \p block. The default
* execution controls and debug annotation are initialized from the
* instruction passed as argument.
*/
fs_builder(fs_visitor *shader, bblock_t *block, fs_inst *inst) :
shader(shader), block(block), cursor(inst),
_dispatch_width(inst->exec_size),
_group(inst->group),
force_writemask_all(inst->force_writemask_all)
{
#ifndef NDEBUG
annotation.str = inst->annotation;
#else
annotation.str = NULL;
#endif
}
/**
* Construct an fs_builder that inserts instructions before \p cursor in
* basic block \p block, inheriting other code generation parameters
* from this.
*/
fs_builder
at(bblock_t *block, exec_node *cursor) const
{
fs_builder bld = *this;
bld.block = block;
bld.cursor = cursor;
return bld;
}
/**
* Construct an fs_builder appending instructions at the end of the
* instruction list of the shader, inheriting other code generation
* parameters from this.
*/
fs_builder
at_end() const
{
return at(NULL, (exec_node *)&shader->instructions.tail_sentinel);
}
/**
* Construct a builder specifying the default SIMD width and group of
* channel enable signals, inheriting other code generation parameters
* from this.
*
* \p n gives the default SIMD width, \p i gives the slot group used for
* predication and control flow masking in multiples of \p n channels.
*/
fs_builder
group(unsigned n, unsigned i) const
{
fs_builder bld = *this;
if (n <= dispatch_width() && i < dispatch_width() / n) {
bld._group += i * n;
} else {
/* The requested channel group isn't a subset of the channel group
* of this builder, which means that the resulting instructions
* would use (potentially undefined) channel enable signals not
* specified by the parent builder. That's only valid if the
* instruction doesn't have per-channel semantics, in which case
* we should clear off the default group index in order to prevent
* emitting instructions with channel group not aligned to their
* own execution size.
*/
assert(force_writemask_all);
bld._group = 0;
}
bld._dispatch_width = n;
return bld;
}
/**
* Alias for group() with width equal to eight.
*/
fs_builder
quarter(unsigned i) const
{
return group(8, i);
}
/**
* Construct a builder with per-channel control flow execution masking
* disabled if \p b is true. If control flow execution masking is
* already disabled this has no effect.
*/
fs_builder
exec_all(bool b = true) const
{
fs_builder bld = *this;
if (b)
bld.force_writemask_all = true;
return bld;
}
/**
* Construct a builder for SIMD8-as-scalar
*/
fs_builder
scalar_group() const
{
return exec_all().group(8 * reg_unit(shader->devinfo), 0);
}
/**
* Construct a builder with the given debug annotation info.
*/
fs_builder
annotate(const char *str) const
{
fs_builder bld = *this;
bld.annotation.str = str;
return bld;
}
/**
* Get the SIMD width in use.
*/
unsigned
dispatch_width() const
{
return _dispatch_width;
}
/**
* Get the channel group in use.
*/
unsigned
group() const
{
return _group;
}
/**
* Allocate a virtual register of natural vector size (one for this IR)
* and SIMD width. \p n gives the amount of space to allocate in
* dispatch_width units (which is just enough space for one logical
* component in this IR).
*/
brw_reg
vgrf(enum brw_reg_type type, unsigned n = 1) const
{
const unsigned unit = reg_unit(shader->devinfo);
assert(dispatch_width() <= 32);
if (n > 0)
return brw_vgrf(shader->alloc.allocate(
DIV_ROUND_UP(n * brw_type_size_bytes(type) * dispatch_width(),
unit * REG_SIZE) * unit),
type);
else
return retype(null_reg_ud(), type);
}
/**
* Create a null register of floating type.
*/
brw_reg
null_reg_f() const
{
return brw_reg(retype(brw_null_reg(), BRW_TYPE_F));
}
brw_reg
null_reg_df() const
{
return brw_reg(retype(brw_null_reg(), BRW_TYPE_DF));
}
/**
* Create a null register of signed integer type.
*/
brw_reg
null_reg_d() const
{
return brw_reg(retype(brw_null_reg(), BRW_TYPE_D));
}
/**
* Create a null register of unsigned integer type.
*/
brw_reg
null_reg_ud() const
{
return brw_reg(retype(brw_null_reg(), BRW_TYPE_UD));
}
/**
* Insert an instruction into the program.
*/
fs_inst *
emit(const fs_inst &inst) const
{
return emit(new(shader->mem_ctx) fs_inst(inst));
}
/**
* Create and insert a nullary control instruction into the program.
*/
fs_inst *
emit(enum opcode opcode) const
{
return emit(fs_inst(opcode, dispatch_width()));
}
/**
* Create and insert a nullary instruction into the program.
*/
fs_inst *
emit(enum opcode opcode, const brw_reg &dst) const
{
return emit(fs_inst(opcode, dispatch_width(), dst));
}
/**
* Create and insert a unary instruction into the program.
*/
fs_inst *
emit(enum opcode opcode, const brw_reg &dst, const brw_reg &src0) const
{
return emit(fs_inst(opcode, dispatch_width(), dst, src0));
}
/**
* Create and insert a binary instruction into the program.
*/
fs_inst *
emit(enum opcode opcode, const brw_reg &dst, const brw_reg &src0,
const brw_reg &src1) const
{
return emit(fs_inst(opcode, dispatch_width(), dst,
src0, src1));
}
/**
* Create and insert a ternary instruction into the program.
*/
fs_inst *
emit(enum opcode opcode, const brw_reg &dst, const brw_reg &src0,
const brw_reg &src1, const brw_reg &src2) const
{
switch (opcode) {
case BRW_OPCODE_BFE:
case BRW_OPCODE_BFI2:
case BRW_OPCODE_MAD:
case BRW_OPCODE_LRP:
return emit(fs_inst(opcode, dispatch_width(), dst,
fix_3src_operand(src0),
fix_3src_operand(src1),
fix_3src_operand(src2)));
default:
return emit(fs_inst(opcode, dispatch_width(), dst,
src0, src1, src2));
}
}
/**
* Create and insert an instruction with a variable number of sources
* into the program.
*/
fs_inst *
emit(enum opcode opcode, const brw_reg &dst, const brw_reg srcs[],
unsigned n) const
{
/* Use the emit() methods for specific operand counts to ensure that
* opcode-specific operand fixups occur.
*/
if (n == 3) {
return emit(opcode, dst, srcs[0], srcs[1], srcs[2]);
} else {
return emit(fs_inst(opcode, dispatch_width(), dst, srcs, n));
}
}
/**
* Insert a preallocated instruction into the program.
*/
fs_inst *
emit(fs_inst *inst) const
{
assert(inst->exec_size <= 32);
assert(inst->exec_size == dispatch_width() ||
force_writemask_all);
inst->group = _group;
inst->force_writemask_all = force_writemask_all;
#ifndef NDEBUG
inst->annotation = annotation.str;
#endif
if (block)
static_cast<fs_inst *>(cursor)->insert_before(block, inst);
else
cursor->insert_before(inst);
return inst;
}
/**
* Select \p src0 if the comparison of both sources with the given
* conditional mod evaluates to true, otherwise select \p src1.
*
* Generally useful to get the minimum or maximum of two values.
*/
fs_inst *
emit_minmax(const brw_reg &dst, const brw_reg &src0,
const brw_reg &src1, brw_conditional_mod mod) const
{
assert(mod == BRW_CONDITIONAL_GE || mod == BRW_CONDITIONAL_L);
/* In some cases we can't have bytes as operand for src1, so use the
* same type for both operand.
*/
return set_condmod(mod, SEL(dst, fix_unsigned_negate(src0),
fix_unsigned_negate(src1)));
}
/**
* Copy any live channel from \p src to the first channel of the result.
*/
brw_reg
emit_uniformize(const brw_reg &src) const
{
/* FIXME: We use a vector chan_index and dst to allow constant and
* copy propagration to move result all the way into the consuming
* instruction (typically a surface index or sampler index for a
* send). Once we teach const/copy propagation about scalars we
* should go back to scalar destinations here.
*/
const fs_builder xbld = scalar_group();
const brw_reg chan_index = xbld.vgrf(BRW_TYPE_UD);
/* FIND_LIVE_CHANNEL will only write a single component after
* lowering. Munge size_written here to match the allocated size of
* chan_index.
*/
exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, chan_index)
->size_written = chan_index.component_size(xbld.dispatch_width());
return BROADCAST(src, component(chan_index, 0));
}
brw_reg
move_to_vgrf(const brw_reg &src, unsigned num_components) const
{
brw_reg *const src_comps = new brw_reg[num_components];
for (unsigned i = 0; i < num_components; i++)
src_comps[i] = offset(src, *this, i);
const brw_reg dst = vgrf(src.type, num_components);
LOAD_PAYLOAD(dst, src_comps, num_components, 0);
delete[] src_comps;
return brw_reg(dst);
}
fs_inst *
emit_undef_for_dst(const fs_inst *old_inst) const
{
assert(old_inst->dst.file == VGRF);
fs_inst *inst = emit(SHADER_OPCODE_UNDEF,
retype(old_inst->dst, BRW_TYPE_UD));
inst->size_written = old_inst->size_written;
return inst;
}
/**
* Assorted arithmetic ops.
* @{
*/
#define _ALU1(prefix, op) \
fs_inst * \
op(const brw_reg &dst, const brw_reg &src0) const \
{ \
assert(_dispatch_width == 1 || \
(dst.file >= VGRF && dst.stride != 0) || \
(dst.file < VGRF && dst.hstride != 0)); \
return emit(prefix##op, dst, src0); \
} \
brw_reg \
op(const brw_reg &src0, fs_inst **out = NULL) const \
{ \
fs_inst *inst = op(vgrf(src0.type), src0); \
if (out) *out = inst; \
return inst->dst; \
}
#define ALU1(op) _ALU1(BRW_OPCODE_, op)
#define VIRT1(op) _ALU1(SHADER_OPCODE_, op)
fs_inst *
alu2(opcode op, const brw_reg &dst, const brw_reg &src0, const brw_reg &src1) const
{
return emit(op, dst, src0, src1);
}
brw_reg
alu2(opcode op, const brw_reg &src0, const brw_reg &src1, fs_inst **out = NULL) const
{
enum brw_reg_type inferred_dst_type =
brw_type_larger_of(src0.type, src1.type);
fs_inst *inst = alu2(op, vgrf(inferred_dst_type), src0, src1);
if (out) *out = inst;
return inst->dst;
}
#define _ALU2(prefix, op) \
fs_inst * \
op(const brw_reg &dst, const brw_reg &src0, const brw_reg &src1) const \
{ \
return alu2(prefix##op, dst, src0, src1); \
} \
brw_reg \
op(const brw_reg &src0, const brw_reg &src1, fs_inst **out = NULL) const \
{ \
return alu2(prefix##op, src0, src1, out); \
}
#define ALU2(op) _ALU2(BRW_OPCODE_, op)
#define VIRT2(op) _ALU2(SHADER_OPCODE_, op)
#define ALU2_ACC(op) \
fs_inst * \
op(const brw_reg &dst, const brw_reg &src0, const brw_reg &src1) const \
{ \
fs_inst *inst = emit(BRW_OPCODE_##op, dst, src0, src1); \
inst->writes_accumulator = true; \
return inst; \
}
#define ALU3(op) \
fs_inst * \
op(const brw_reg &dst, const brw_reg &src0, const brw_reg &src1, \
const brw_reg &src2) const \
{ \
return emit(BRW_OPCODE_##op, dst, src0, src1, src2); \
} \
brw_reg \
op(const brw_reg &src0, const brw_reg &src1, const brw_reg &src2, \
fs_inst **out = NULL) const \
{ \
enum brw_reg_type inferred_dst_type = \
brw_type_larger_of(brw_type_larger_of(src0.type, src1.type),\
src2.type); \
fs_inst *inst = op(vgrf(inferred_dst_type), src0, src1, src2); \
if (out) *out = inst; \
return inst->dst; \
}
ALU3(ADD3)
ALU2_ACC(ADDC)
ALU2(AND)
ALU2(ASR)
ALU2(AVG)
ALU3(BFE)
ALU2(BFI1)
ALU3(BFI2)
ALU1(BFREV)
ALU1(CBIT)
ALU2(DP2)
ALU2(DP3)
ALU2(DP4)
ALU2(DPH)
ALU1(FBH)
ALU1(FBL)
ALU1(FRC)
ALU3(DP4A)
ALU2(LINE)
ALU1(LZD)
ALU2(MAC)
ALU2_ACC(MACH)
ALU3(MAD)
ALU1(MOV)
ALU2(MUL)
ALU1(NOT)
ALU2(OR)
ALU2(PLN)
ALU1(RNDD)
ALU1(RNDE)
ALU1(RNDU)
ALU1(RNDZ)
ALU2(ROL)
ALU2(ROR)
ALU2(SEL)
ALU2(SHL)
ALU2(SHR)
ALU2_ACC(SUBB)
ALU2(XOR)
VIRT1(RCP)
VIRT1(RSQ)
VIRT1(SQRT)
VIRT1(EXP2)
VIRT1(LOG2)
VIRT2(POW)
VIRT2(INT_QUOTIENT)
VIRT2(INT_REMAINDER)
VIRT1(SIN)
VIRT1(COS)
#undef ALU3
#undef ALU2_ACC
#undef ALU2
#undef VIRT2
#undef _ALU2
#undef ALU1
#undef VIRT1
#undef _ALU1
/** @} */
fs_inst *
ADD(const brw_reg &dst, const brw_reg &src0, const brw_reg &src1) const
{
return alu2(BRW_OPCODE_ADD, dst, src0, src1);
}
brw_reg
ADD(const brw_reg &src0, const brw_reg &src1, fs_inst **out = NULL) const
{
if (src1.file == IMM && src1.ud == 0 && !out)
return src0;
return alu2(BRW_OPCODE_ADD, src0, src1, out);
}
/**
* CMP: Sets the low bit of the destination channels with the result
* of the comparison, while the upper bits are undefined, and updates
* the flag register with the packed 16 bits of the result.
*/
fs_inst *
CMP(const brw_reg &dst, const brw_reg &src0, const brw_reg &src1,
brw_conditional_mod condition) const
{
/* Take the instruction:
*
* CMP null<d> src0<f> src1<f>
*
* Original gfx4 does type conversion to the destination type
* before comparison, producing garbage results for floating
* point comparisons.
*/
const enum brw_reg_type type =
dst.is_null() ?
src0.type :
brw_type_with_size(src0.type, brw_type_size_bits(dst.type));
return set_condmod(condition,
emit(BRW_OPCODE_CMP, retype(dst, type),
fix_unsigned_negate(src0),
fix_unsigned_negate(src1)));
}
/**
* CMPN: Behaves like CMP, but produces true if src1 is NaN.
*/
fs_inst *
CMPN(const brw_reg &dst, const brw_reg &src0, const brw_reg &src1,
brw_conditional_mod condition) const
{
/* Take the instruction:
*
* CMP null<d> src0<f> src1<f>
*
* Original gfx4 does type conversion to the destination type
* before comparison, producing garbage results for floating
* point comparisons.
*/
const enum brw_reg_type type =
dst.is_null() ?
src0.type :
brw_type_with_size(src0.type, brw_type_size_bits(dst.type));
return set_condmod(condition,
emit(BRW_OPCODE_CMPN, retype(dst, type),
fix_unsigned_negate(src0),
fix_unsigned_negate(src1)));
}
/**
* Gfx4 predicated IF.
*/
fs_inst *
IF(brw_predicate predicate) const
{
return set_predicate(predicate, emit(BRW_OPCODE_IF));
}
/**
* CSEL: dst = src2 <op> 0.0f ? src0 : src1
*/
fs_inst *
CSEL(const brw_reg &dst, const brw_reg &src0, const brw_reg &src1,
const brw_reg &src2, brw_conditional_mod condition) const
{
return set_condmod(condition,
emit(BRW_OPCODE_CSEL,
retype(dst, src2.type),
retype(src0, src2.type),
retype(src1, src2.type),
src2));
}
/**
* Emit a linear interpolation instruction.
*/
fs_inst *
LRP(const brw_reg &dst, const brw_reg &x, const brw_reg &y,
const brw_reg &a) const
{
if (shader->devinfo->ver <= 10) {
/* The LRP instruction actually does op1 * op0 + op2 * (1 - op0), so
* we need to reorder the operands.
*/
return emit(BRW_OPCODE_LRP, dst, a, y, x);
} else {
/* We can't use the LRP instruction. Emit x*(1-a) + y*a. */
const brw_reg y_times_a = vgrf(dst.type);
const brw_reg one_minus_a = vgrf(dst.type);
const brw_reg x_times_one_minus_a = vgrf(dst.type);
MUL(y_times_a, y, a);
ADD(one_minus_a, negate(a), brw_imm_f(1.0f));
MUL(x_times_one_minus_a, x, brw_reg(one_minus_a));
return ADD(dst, brw_reg(x_times_one_minus_a), brw_reg(y_times_a));
}
}
/**
* Collect a number of registers in a contiguous range of registers.
*/
fs_inst *
LOAD_PAYLOAD(const brw_reg &dst, const brw_reg *src,
unsigned sources, unsigned header_size) const
{
fs_inst *inst = emit(SHADER_OPCODE_LOAD_PAYLOAD, dst, src, sources);
inst->header_size = header_size;
inst->size_written = header_size * REG_SIZE;
for (unsigned i = header_size; i < sources; i++) {
inst->size_written += dispatch_width() * brw_type_size_bytes(src[i].type) *
dst.stride;
}
return inst;
}
fs_inst *
VEC(const brw_reg &dst, const brw_reg *src, unsigned sources) const
{
return sources == 1 ? MOV(dst, src[0])
: LOAD_PAYLOAD(dst, src, sources, 0);
}
fs_inst *
SYNC(enum tgl_sync_function sync) const
{
return emit(BRW_OPCODE_SYNC, null_reg_ud(), brw_imm_ud(sync));
}
fs_inst *
UNDEF(const brw_reg &dst) const
{
assert(dst.file == VGRF);
assert(dst.offset % REG_SIZE == 0);
fs_inst *inst = emit(SHADER_OPCODE_UNDEF,
retype(dst, BRW_TYPE_UD));
inst->size_written = shader->alloc.sizes[dst.nr] * REG_SIZE - dst.offset;
return inst;
}
fs_inst *
DPAS(const brw_reg &dst, const brw_reg &src0, const brw_reg &src1, const brw_reg &src2,
unsigned sdepth, unsigned rcount) const
{
assert(_dispatch_width == 8 * reg_unit(shader->devinfo));
assert(sdepth == 8);
assert(rcount == 1 || rcount == 2 || rcount == 4 || rcount == 8);
fs_inst *inst = emit(BRW_OPCODE_DPAS, dst, src0, src1, src2);
inst->sdepth = sdepth;
inst->rcount = rcount;
if (dst.type == BRW_TYPE_HF) {
inst->size_written = reg_unit(shader->devinfo) * rcount * REG_SIZE / 2;
} else {
inst->size_written = reg_unit(shader->devinfo) * rcount * REG_SIZE;
}
return inst;
}
void
VARYING_PULL_CONSTANT_LOAD(const brw_reg &dst,
const brw_reg &surface,
const brw_reg &surface_handle,
const brw_reg &varying_offset,
uint32_t const_offset,
uint8_t alignment,
unsigned components) const
{
assert(components <= 4);
/* We have our constant surface use a pitch of 4 bytes, so our index can
* be any component of a vector, and then we load 4 contiguous
* components starting from that. TODO: Support loading fewer than 4.
*/
brw_reg total_offset = ADD(varying_offset, brw_imm_ud(const_offset));
/* The pull load message will load a vec4 (16 bytes). If we are loading
* a double this means we are only loading 2 elements worth of data.
* We also want to use a 32-bit data type for the dst of the load operation
* so other parts of the driver don't get confused about the size of the
* result.
*/
brw_reg vec4_result = vgrf(BRW_TYPE_F, 4);
brw_reg srcs[PULL_VARYING_CONSTANT_SRCS];
srcs[PULL_VARYING_CONSTANT_SRC_SURFACE] = surface;
srcs[PULL_VARYING_CONSTANT_SRC_SURFACE_HANDLE] = surface_handle;
srcs[PULL_VARYING_CONSTANT_SRC_OFFSET] = total_offset;
srcs[PULL_VARYING_CONSTANT_SRC_ALIGNMENT] = brw_imm_ud(alignment);
fs_inst *inst = emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
vec4_result, srcs, PULL_VARYING_CONSTANT_SRCS);
inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
shuffle_from_32bit_read(*this, dst, vec4_result, 0, components);
}
brw_reg
LOAD_SUBGROUP_INVOCATION() const
{
brw_reg reg = vgrf(shader->dispatch_width < 16 ? BRW_TYPE_UD : BRW_TYPE_UW);
exec_all().emit(SHADER_OPCODE_LOAD_SUBGROUP_INVOCATION, reg);
return reg;
}
brw_reg
BROADCAST(brw_reg value, brw_reg index) const
{
const fs_builder xbld = scalar_group();
const brw_reg dst = xbld.vgrf(value.type);
assert(is_uniform(index));
/* Ensure that the source of a broadcast is always register aligned.
* See brw_broadcast() non-scalar case for more details.
*/
if (reg_offset(value) % (REG_SIZE * reg_unit(shader->devinfo)) != 0)
value = MOV(value);
/* BROADCAST will only write a single component after lowering. Munge
* size_written here to match the allocated size of dst.
*/
exec_all().emit(SHADER_OPCODE_BROADCAST, dst, value, index)
->size_written = dst.component_size(xbld.dispatch_width());
return component(dst, 0);
}
fs_visitor *shader;
fs_inst *BREAK() { return emit(BRW_OPCODE_BREAK); }
fs_inst *DO() { return emit(BRW_OPCODE_DO); }
fs_inst *ENDIF() { return emit(BRW_OPCODE_ENDIF); }
fs_inst *NOP() { return emit(BRW_OPCODE_NOP); }
fs_inst *WHILE() { return emit(BRW_OPCODE_WHILE); }
fs_inst *CONTINUE() { return emit(BRW_OPCODE_CONTINUE); }
bool has_writemask_all() const {
return force_writemask_all;
}
private:
/**
* Workaround for negation of UD registers. See comment in
* fs_generator::generate_code() for more details.
*/
brw_reg
fix_unsigned_negate(const brw_reg &src) const
{
if (src.type == BRW_TYPE_UD &&
src.negate) {
brw_reg temp = vgrf(BRW_TYPE_UD);
MOV(temp, src);
return brw_reg(temp);
} else {
return src;
}
}
/**
* Workaround for source register modes not supported by the ternary
* instruction encoding.
*/
brw_reg
fix_3src_operand(const brw_reg &src) const
{
switch (src.file) {
case FIXED_GRF:
/* FINISHME: Could handle scalar region, other stride=1 regions */
if (src.vstride != BRW_VERTICAL_STRIDE_8 ||
src.width != BRW_WIDTH_8 ||
src.hstride != BRW_HORIZONTAL_STRIDE_1)
break;
FALLTHROUGH;
case ATTR:
case VGRF:
case UNIFORM:
case IMM:
return src;
default:
break;
}
brw_reg expanded = vgrf(src.type);
MOV(expanded, src);
return expanded;
}
bblock_t *block;
exec_node *cursor;
unsigned _dispatch_width;
unsigned _group;
bool force_writemask_all;
/** Debug annotation info. */
struct {
const char *str;
} annotation;
};
}
/**
* Offset by a number of components into a VGRF
*
* It is assumed that the VGRF represents a vector (e.g., returned by
* load_uniform or a texture operation). Convergent and divergent values are
* stored differently, so care must be taken to offset properly.
*/
static inline brw_reg
offset(const brw_reg &reg, const brw::fs_builder &bld, unsigned delta)
{
/* If the value is convergent (stored as one or more SIMD8), offset using
* SIMD8 and select component 0.
*/
if (reg.is_scalar) {
const unsigned allocation_width = 8 * reg_unit(bld.shader->devinfo);
brw_reg offset_reg = offset(reg, allocation_width, delta);
/* If the dispatch width is larger than the allocation width, that
* implies that the register can only be used as a source. Otherwise the
* instruction would write past the allocation size of the register.
*/
if (bld.dispatch_width() > allocation_width)
return component(offset_reg, 0);
else
return offset_reg;
}
/* Offset to the component assuming the value was allocated in
* dispatch_width units.
*/
return offset(reg, bld.dispatch_width(), delta);
}