mesa/src/gallium/frontends/rusticl/api/memory.rs
Seán de Búrca 5e365f1674 rusticl/mem: don't create svm_pointers slice from null raw pointer
std::slice::from_raw_parts requires that the slice pointer be non-null,
even when the slice contains zero elements. Failing this invariant is
undefined behavior.

v2: reordered commits to allow cherry-picking bugfixes

Reviewed-by: Karol Herbst <kherbst@redhat.com>
Cc: mesa-stable
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/33989>
2025-03-13 16:54:06 +00:00

3229 lines
121 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#![allow(non_upper_case_globals)]
use crate::api::event::create_and_queue;
use crate::api::icd::*;
use crate::api::types::*;
use crate::api::util::*;
use crate::core::context::Context;
use crate::core::device::*;
use crate::core::event::EventSig;
use crate::core::format::*;
use crate::core::gl::*;
use crate::core::memory::*;
use crate::core::queue::*;
use mesa_rust_util::properties::Properties;
use mesa_rust_util::ptr::*;
use mesa_rust_util::static_assert;
use rusticl_opencl_gen::*;
use rusticl_proc_macros::cl_entrypoint;
use rusticl_proc_macros::cl_info_entrypoint;
use std::alloc;
use std::alloc::Layout;
use std::cmp;
use std::cmp::Ordering;
use std::mem::{self, MaybeUninit};
use std::os::raw::c_void;
use std::ptr;
use std::slice;
use std::sync::Arc;
fn validate_mem_flags(flags: cl_mem_flags, images: bool) -> CLResult<()> {
let mut valid_flags = cl_bitfield::from(
CL_MEM_READ_WRITE | CL_MEM_WRITE_ONLY | CL_MEM_READ_ONLY | CL_MEM_KERNEL_READ_AND_WRITE,
);
if !images {
valid_flags |= cl_bitfield::from(
CL_MEM_USE_HOST_PTR
| CL_MEM_ALLOC_HOST_PTR
| CL_MEM_COPY_HOST_PTR
| CL_MEM_HOST_WRITE_ONLY
| CL_MEM_HOST_READ_ONLY
| CL_MEM_HOST_NO_ACCESS,
);
}
let read_write_group =
cl_bitfield::from(CL_MEM_READ_WRITE | CL_MEM_WRITE_ONLY | CL_MEM_READ_ONLY);
let alloc_host_group = cl_bitfield::from(CL_MEM_ALLOC_HOST_PTR | CL_MEM_USE_HOST_PTR);
let copy_host_group = cl_bitfield::from(CL_MEM_COPY_HOST_PTR | CL_MEM_USE_HOST_PTR);
let host_read_write_group =
cl_bitfield::from(CL_MEM_HOST_WRITE_ONLY | CL_MEM_HOST_READ_ONLY | CL_MEM_HOST_NO_ACCESS);
if (flags & !valid_flags != 0)
|| (flags & read_write_group).count_ones() > 1
|| (flags & alloc_host_group).count_ones() > 1
|| (flags & copy_host_group).count_ones() > 1
|| (flags & host_read_write_group).count_ones() > 1
{
return Err(CL_INVALID_VALUE);
}
Ok(())
}
fn validate_map_flags_common(map_flags: cl_mem_flags) -> CLResult<()> {
// CL_INVALID_VALUE ... if values specified in map_flags are not valid.
let valid_flags =
cl_bitfield::from(CL_MAP_READ | CL_MAP_WRITE | CL_MAP_WRITE_INVALIDATE_REGION);
let read_write_group = cl_bitfield::from(CL_MAP_READ | CL_MAP_WRITE);
let invalidate_group = cl_bitfield::from(CL_MAP_WRITE_INVALIDATE_REGION);
if (map_flags & !valid_flags != 0)
|| ((map_flags & read_write_group != 0) && (map_flags & invalidate_group != 0))
{
return Err(CL_INVALID_VALUE);
}
Ok(())
}
fn validate_map_flags(m: &MemBase, map_flags: cl_mem_flags) -> CLResult<()> {
validate_map_flags_common(map_flags)?;
// CL_INVALID_OPERATION if buffer has been created with CL_MEM_HOST_WRITE_ONLY or
// CL_MEM_HOST_NO_ACCESS and CL_MAP_READ is set in map_flags
if bit_check(m.flags, CL_MEM_HOST_WRITE_ONLY | CL_MEM_HOST_NO_ACCESS) &&
bit_check(map_flags, CL_MAP_READ) ||
// or if buffer has been created with CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_NO_ACCESS and
// CL_MAP_WRITE or CL_MAP_WRITE_INVALIDATE_REGION is set in map_flags.
bit_check(m.flags, CL_MEM_HOST_READ_ONLY | CL_MEM_HOST_NO_ACCESS) &&
bit_check(map_flags, CL_MAP_WRITE | CL_MAP_WRITE_INVALIDATE_REGION)
{
return Err(CL_INVALID_OPERATION);
}
Ok(())
}
fn filter_image_access_flags(flags: cl_mem_flags) -> cl_mem_flags {
flags
& (CL_MEM_READ_WRITE | CL_MEM_WRITE_ONLY | CL_MEM_READ_ONLY | CL_MEM_KERNEL_READ_AND_WRITE)
as cl_mem_flags
}
fn inherit_mem_flags(mut flags: cl_mem_flags, mem: &MemBase) -> cl_mem_flags {
let read_write_mask = cl_bitfield::from(
CL_MEM_READ_WRITE |
CL_MEM_WRITE_ONLY |
CL_MEM_READ_ONLY |
// not in spec, but...
CL_MEM_KERNEL_READ_AND_WRITE,
);
let host_ptr_mask =
cl_bitfield::from(CL_MEM_USE_HOST_PTR | CL_MEM_ALLOC_HOST_PTR | CL_MEM_COPY_HOST_PTR);
let host_mask =
cl_bitfield::from(CL_MEM_HOST_WRITE_ONLY | CL_MEM_HOST_READ_ONLY | CL_MEM_HOST_NO_ACCESS);
// For CL_MEM_OBJECT_IMAGE1D_BUFFER image type, or an image created from another memory object
// (image or buffer)...
//
// ... if the CL_MEM_READ_WRITE, CL_MEM_READ_ONLY or CL_MEM_WRITE_ONLY values are not
// specified in flags, they are inherited from the corresponding memory access qualifiers
// associated with mem_object. ...
if flags & read_write_mask == 0 {
flags |= mem.flags & read_write_mask;
}
// ... The CL_MEM_USE_HOST_PTR, CL_MEM_ALLOC_HOST_PTR and CL_MEM_COPY_HOST_PTR values cannot
// be specified in flags but are inherited from the corresponding memory access qualifiers
// associated with mem_object. ...
flags &= !host_ptr_mask;
flags |= mem.flags & host_ptr_mask;
// ... If the CL_MEM_HOST_WRITE_ONLY, CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_NO_ACCESS values
// are not specified in flags, they are inherited from the corresponding memory access
// qualifiers associated with mem_object.
if flags & host_mask == 0 {
flags |= mem.flags & host_mask;
}
flags
}
fn image_type_valid(image_type: cl_mem_object_type) -> bool {
CL_IMAGE_TYPES.contains(&image_type)
}
fn validate_addressing_mode(addressing_mode: cl_addressing_mode) -> CLResult<()> {
match addressing_mode {
CL_ADDRESS_NONE
| CL_ADDRESS_CLAMP_TO_EDGE
| CL_ADDRESS_CLAMP
| CL_ADDRESS_REPEAT
| CL_ADDRESS_MIRRORED_REPEAT => Ok(()),
_ => Err(CL_INVALID_VALUE),
}
}
fn validate_filter_mode(filter_mode: cl_filter_mode) -> CLResult<()> {
match filter_mode {
CL_FILTER_NEAREST | CL_FILTER_LINEAR => Ok(()),
_ => Err(CL_INVALID_VALUE),
}
}
fn validate_host_ptr(host_ptr: *mut ::std::os::raw::c_void, flags: cl_mem_flags) -> CLResult<()> {
// CL_INVALID_HOST_PTR if host_ptr is NULL and CL_MEM_USE_HOST_PTR or CL_MEM_COPY_HOST_PTR are
// set in flags
if host_ptr.is_null()
&& flags & (cl_mem_flags::from(CL_MEM_USE_HOST_PTR | CL_MEM_COPY_HOST_PTR)) != 0
{
return Err(CL_INVALID_HOST_PTR);
}
// or if host_ptr is not NULL but CL_MEM_COPY_HOST_PTR or CL_MEM_USE_HOST_PTR are not set in
// flags.
if !host_ptr.is_null()
&& flags & (cl_mem_flags::from(CL_MEM_USE_HOST_PTR | CL_MEM_COPY_HOST_PTR)) == 0
{
return Err(CL_INVALID_HOST_PTR);
}
Ok(())
}
fn validate_matching_buffer_flags(mem: &MemBase, flags: cl_mem_flags) -> CLResult<()> {
// CL_INVALID_VALUE if an image is being created from another memory object (buffer or image)
// under one of the following circumstances:
//
// 1) mem_object was created with CL_MEM_WRITE_ONLY and
// flags specifies CL_MEM_READ_WRITE or CL_MEM_READ_ONLY,
if bit_check(mem.flags, CL_MEM_WRITE_ONLY) && bit_check(flags, CL_MEM_READ_WRITE | CL_MEM_READ_ONLY) ||
// 2) mem_object was created with CL_MEM_READ_ONLY and
// flags specifies CL_MEM_READ_WRITE or CL_MEM_WRITE_ONLY,
bit_check(mem.flags, CL_MEM_READ_ONLY) && bit_check(flags, CL_MEM_READ_WRITE | CL_MEM_WRITE_ONLY) ||
// 3) flags specifies CL_MEM_USE_HOST_PTR or CL_MEM_ALLOC_HOST_PTR or CL_MEM_COPY_HOST_PTR.
bit_check(flags, CL_MEM_USE_HOST_PTR | CL_MEM_ALLOC_HOST_PTR | CL_MEM_COPY_HOST_PTR) ||
// CL_INVALID_VALUE if an image is being created from another memory object (buffer or image)
// and mem_object was created with CL_MEM_HOST_WRITE_ONLY and flags specifies CL_MEM_HOST_READ_ONLY
bit_check(mem.flags, CL_MEM_HOST_WRITE_ONLY) && bit_check(flags, CL_MEM_HOST_READ_ONLY) ||
// or if mem_object was created with CL_MEM_HOST_READ_ONLY and flags specifies CL_MEM_HOST_WRITE_ONLY
bit_check(mem.flags, CL_MEM_HOST_READ_ONLY) && bit_check(flags, CL_MEM_HOST_WRITE_ONLY) ||
// or if mem_object was created with CL_MEM_HOST_NO_ACCESS and_flags_ specifies CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_WRITE_ONLY.
bit_check(mem.flags, CL_MEM_HOST_NO_ACCESS) && bit_check(flags, CL_MEM_HOST_READ_ONLY | CL_MEM_HOST_WRITE_ONLY)
{
return Err(CL_INVALID_VALUE);
}
Ok(())
}
#[cl_info_entrypoint(clGetMemObjectInfo)]
unsafe impl CLInfo<cl_mem_info> for cl_mem {
fn query(&self, q: cl_mem_info, v: CLInfoValue) -> CLResult<CLInfoRes> {
let mem = MemBase::ref_from_raw(*self)?;
match *q {
CL_MEM_ASSOCIATED_MEMOBJECT => {
let ptr = match mem.parent() {
// Note we use as_ptr here which doesn't increase the reference count.
Some(Mem::Buffer(buffer)) => cl_mem::from_ptr(Arc::as_ptr(buffer)),
Some(Mem::Image(image)) => cl_mem::from_ptr(Arc::as_ptr(image)),
None => ptr::null_mut(),
};
v.write::<cl_mem>(ptr.cast())
}
CL_MEM_CONTEXT => {
// Note we use as_ptr here which doesn't increase the reference count.
let ptr = Arc::as_ptr(&mem.context);
v.write::<cl_context>(cl_context::from_ptr(ptr))
}
CL_MEM_FLAGS => v.write::<cl_mem_flags>(mem.flags),
// TODO debugging feature
CL_MEM_MAP_COUNT => v.write::<cl_uint>(0),
CL_MEM_HOST_PTR => v.write::<*mut c_void>(mem.host_ptr()),
CL_MEM_OFFSET => v.write::<usize>(if mem.is_buffer() {
Buffer::ref_from_raw(*self)?.offset()
} else {
0
}),
CL_MEM_PROPERTIES => v.write::<&Properties<cl_mem_properties>>(&mem.props),
CL_MEM_REFERENCE_COUNT => v.write::<cl_uint>(if mem.is_buffer() {
Buffer::refcnt(*self)?
} else {
Image::refcnt(*self)?
}),
CL_MEM_SIZE => v.write::<usize>(mem.size),
CL_MEM_TYPE => v.write::<cl_mem_object_type>(mem.mem_type),
CL_MEM_USES_SVM_POINTER | CL_MEM_USES_SVM_POINTER_ARM => {
v.write::<cl_bool>(mem.is_svm().into())
}
_ => Err(CL_INVALID_VALUE),
}
}
}
#[cl_entrypoint(clCreateBufferWithProperties)]
fn create_buffer_with_properties(
context: cl_context,
properties: *const cl_mem_properties,
flags: cl_mem_flags,
size: usize,
host_ptr: *mut ::std::os::raw::c_void,
) -> CLResult<cl_mem> {
let c = Context::arc_from_raw(context)?;
// CL_INVALID_VALUE if values specified in flags are not valid as defined in the Memory Flags table.
validate_mem_flags(flags, false)?;
// CL_INVALID_BUFFER_SIZE if size is 0
if size == 0 {
return Err(CL_INVALID_BUFFER_SIZE);
}
// ... or if size is greater than CL_DEVICE_MAX_MEM_ALLOC_SIZE for all devices in context,
if checked_compare(size, Ordering::Greater, c.max_mem_alloc()) {
return Err(CL_INVALID_BUFFER_SIZE);
}
validate_host_ptr(host_ptr, flags)?;
// or if CL_MEM_USE_HOST_PTR is set in flags and host_ptr is a pointer returned by clSVMAlloc
// and size is greater than the size passed to clSVMAlloc.
if let Some((svm_ptr, svm_layout)) = c.find_svm_alloc(host_ptr as usize) {
// SAFETY: they are part of the same allocation, and because host_ptr >= svm_ptr we can cast
// to usize.
let diff = unsafe { host_ptr.byte_offset_from(svm_ptr) } as usize;
// technically we don't have to account for the offset, but it's almost for free.
if size > svm_layout - diff {
return Err(CL_INVALID_BUFFER_SIZE);
}
}
// CL_INVALID_PROPERTY [...] if the same property name is specified more than once.
let props = unsafe { Properties::new(properties) }.ok_or(CL_INVALID_PROPERTY)?;
// CL_INVALID_PROPERTY if a property name in properties is not a supported property name, if
// the value specified for a supported property name is not valid, or if the same property name
// is specified more than once.
if !props.is_empty() {
// we don't support any properties
return Err(CL_INVALID_PROPERTY);
}
Ok(MemBase::new_buffer(c, flags, size, host_ptr, props)?.into_cl())
}
#[cl_entrypoint(clCreateBuffer)]
fn create_buffer(
context: cl_context,
flags: cl_mem_flags,
size: usize,
host_ptr: *mut ::std::os::raw::c_void,
) -> CLResult<cl_mem> {
create_buffer_with_properties(context, ptr::null(), flags, size, host_ptr)
}
#[cl_entrypoint(clCreateSubBuffer)]
fn create_sub_buffer(
buffer: cl_mem,
mut flags: cl_mem_flags,
buffer_create_type: cl_buffer_create_type,
buffer_create_info: *const ::std::os::raw::c_void,
) -> CLResult<cl_mem> {
let b = Buffer::arc_from_raw(buffer)?;
// CL_INVALID_MEM_OBJECT if buffer ... is a sub-buffer object.
if b.parent().is_some() {
return Err(CL_INVALID_MEM_OBJECT);
}
validate_matching_buffer_flags(&b, flags)?;
flags = inherit_mem_flags(flags, &b);
validate_mem_flags(flags, false)?;
let (offset, size) = match buffer_create_type {
CL_BUFFER_CREATE_TYPE_REGION => {
// buffer_create_info is a pointer to a cl_buffer_region structure specifying a region of
// the buffer.
// CL_INVALID_VALUE if value(s) specified in buffer_create_info (for a given
// buffer_create_type) is not valid or if buffer_create_info is NULL.
let region = unsafe { buffer_create_info.cast::<cl_buffer_region>().as_ref() }
.ok_or(CL_INVALID_VALUE)?;
// CL_INVALID_BUFFER_SIZE if the size field of the cl_buffer_region structure passed in
// buffer_create_info is 0.
if region.size == 0 {
return Err(CL_INVALID_BUFFER_SIZE);
}
// CL_INVALID_VALUE if the region specified by the cl_buffer_region structure passed in
// buffer_create_info is out of bounds in buffer.
if region.origin >= b.size || region.size > b.size - region.origin {
return Err(CL_INVALID_VALUE);
}
(region.origin, region.size)
}
// CL_INVALID_VALUE if the value specified in buffer_create_type is not valid.
_ => return Err(CL_INVALID_VALUE),
};
Ok(MemBase::new_sub_buffer(b, flags, offset, size).into_cl())
// TODO
// CL_MISALIGNED_SUB_BUFFER_OFFSET if there are no devices in context associated with buffer for which the origin field of the cl_buffer_region structure passed in buffer_create_info is aligned to the CL_DEVICE_MEM_BASE_ADDR_ALIGN value.
}
#[cl_entrypoint(clSetMemObjectDestructorCallback)]
fn set_mem_object_destructor_callback(
memobj: cl_mem,
pfn_notify: Option<FuncMemCB>,
user_data: *mut ::std::os::raw::c_void,
) -> CLResult<()> {
let m = MemBase::ref_from_raw(memobj)?;
// SAFETY: The requirements on `MemCB::new` match the requirements
// imposed by the OpenCL specification. It is the caller's duty to uphold them.
let cb = unsafe { MemCB::new(pfn_notify, user_data)? };
m.cbs.lock().unwrap().push(cb);
Ok(())
}
fn validate_image_format<'a>(
image_format: *const cl_image_format,
) -> CLResult<(&'a cl_image_format, u8)> {
// CL_INVALID_IMAGE_FORMAT_DESCRIPTOR ... if image_format is NULL.
let format = unsafe { image_format.as_ref() }.ok_or(CL_INVALID_IMAGE_FORMAT_DESCRIPTOR)?;
let pixel_size = format
.pixel_size()
.ok_or(CL_INVALID_IMAGE_FORMAT_DESCRIPTOR)?;
// Depth images with an image channel order of CL_DEPTH_STENCIL can only be created using the
// clCreateFromGLTexture API
if format.image_channel_order == CL_DEPTH_STENCIL {
return Err(CL_INVALID_IMAGE_FORMAT_DESCRIPTOR);
}
// special validation
let valid_combination = match format.image_channel_data_type {
CL_UNORM_SHORT_565 | CL_UNORM_SHORT_555 | CL_UNORM_INT_101010 => {
[CL_RGB, CL_RGBx].contains(&format.image_channel_order)
}
CL_UNORM_INT_101010_2 => format.image_channel_order == CL_RGBA,
_ => true,
};
if !valid_combination {
return Err(CL_INVALID_IMAGE_FORMAT_DESCRIPTOR);
}
Ok((format, pixel_size))
}
fn validate_image_desc(
image_desc: *const cl_image_desc,
host_ptr: *mut ::std::os::raw::c_void,
elem_size: usize,
devs: &[&Device],
) -> CLResult<(cl_image_desc, Option<Mem>)> {
// CL_INVALID_IMAGE_DESCRIPTOR if values specified in image_desc are not valid
const err: cl_int = CL_INVALID_IMAGE_DESCRIPTOR;
// CL_INVALID_IMAGE_DESCRIPTOR ... if image_desc is NULL.
let mut desc = *unsafe { image_desc.as_ref() }.ok_or(err)?;
// image_type describes the image type and must be either CL_MEM_OBJECT_IMAGE1D,
// CL_MEM_OBJECT_IMAGE1D_BUFFER, CL_MEM_OBJECT_IMAGE1D_ARRAY, CL_MEM_OBJECT_IMAGE2D,
// CL_MEM_OBJECT_IMAGE2D_ARRAY, or CL_MEM_OBJECT_IMAGE3D.
if !CL_IMAGE_TYPES.contains(&desc.image_type) {
return Err(err);
}
let (dims, array) = desc.type_info();
// image_width is the width of the image in pixels. For a 2D image and image array, the image
// width must be a value ≥ 1 and ≤ CL_DEVICE_IMAGE2D_MAX_WIDTH. For a 3D image, the image width
// must be a value ≥ 1 and ≤ CL_DEVICE_IMAGE3D_MAX_WIDTH. For a 1D image buffer, the image width
// must be a value ≥ 1 and ≤ CL_DEVICE_IMAGE_MAX_BUFFER_SIZE. For a 1D image and 1D image array,
// the image width must be a value ≥ 1 and ≤ CL_DEVICE_IMAGE2D_MAX_WIDTH.
//
// image_height is the height of the image in pixels. This is only used if the image is a 2D or
// 3D image, or a 2D image array. For a 2D image or image array, the image height must be a
// value ≥ 1 and ≤ CL_DEVICE_IMAGE2D_MAX_HEIGHT. For a 3D image, the image height must be a
// value ≥ 1 and ≤ CL_DEVICE_IMAGE3D_MAX_HEIGHT.
//
// image_depth is the depth of the image in pixels. This is only used if the image is a 3D image
// and must be a value ≥ 1 and ≤ CL_DEVICE_IMAGE3D_MAX_DEPTH.
if desc.image_width < 1
|| desc.image_height < 1 && dims >= 2
|| desc.image_depth < 1 && dims >= 3
|| desc.image_array_size < 1 && array
{
return Err(err);
}
let max_size = if dims == 3 {
devs.iter().map(|d| d.image_3d_size()).min()
} else if desc.image_type == CL_MEM_OBJECT_IMAGE1D_BUFFER {
devs.iter().map(|d| d.image_buffer_max_size_pixels()).min()
} else {
devs.iter().map(|d| d.caps.image_2d_size as usize).min()
}
.unwrap();
let max_array = devs.iter().map(|d| d.image_array_size()).min().unwrap();
// CL_INVALID_IMAGE_SIZE if image dimensions specified in image_desc exceed the maximum image
// dimensions described in the Device Queries table for all devices in context.
if desc.image_width > max_size
|| desc.image_height > max_size && dims >= 2
|| desc.image_depth > max_size && dims >= 3
|| desc.image_array_size > max_array && array
{
return Err(CL_INVALID_IMAGE_SIZE);
}
// num_mip_levels and num_samples must be 0.
if desc.num_mip_levels != 0 || desc.num_samples != 0 {
return Err(err);
}
// mem_object may refer to a valid buffer or image memory object. mem_object can be a buffer
// memory object if image_type is CL_MEM_OBJECT_IMAGE1D_BUFFER or CL_MEM_OBJECT_IMAGE2D.
// mem_object can be an image object if image_type is CL_MEM_OBJECT_IMAGE2D. Otherwise it must
// be NULL.
//
// TODO: cl_khr_image2d_from_buffer is an optional feature
let p = unsafe { &desc.anon_1.mem_object };
let parent = if !p.is_null() {
let p = MemBase::arc_from_raw(*p)?;
if !match desc.image_type {
CL_MEM_OBJECT_IMAGE1D_BUFFER => p.is_buffer(),
CL_MEM_OBJECT_IMAGE2D => {
(p.is_buffer() && devs.iter().any(|d| d.image2d_from_buffer_supported()))
|| p.mem_type == CL_MEM_OBJECT_IMAGE2D
}
_ => false,
} {
return Err(CL_INVALID_OPERATION);
}
Some(p)
} else {
None
};
// image_row_pitch is the scan-line pitch in bytes. This must be 0 if host_ptr is NULL and can
// be either 0 or ≥ image_width × size of element in bytes if host_ptr is not NULL. If host_ptr
// is not NULL and image_row_pitch = 0, image_row_pitch is calculated as image_width × size of
// element in bytes. If image_row_pitch is not 0, it must be a multiple of the image element
// size in bytes. For a 2D image created from a buffer, the pitch specified (or computed if
// pitch specified is 0) must be a multiple of the maximum of the
// CL_DEVICE_IMAGE_PITCH_ALIGNMENT value for all devices in the context associated with the
// buffer specified by mem_object that support images.
//
// image_slice_pitch is the size in bytes of each 2D slice in the 3D image or the size in bytes
// of each image in a 1D or 2D image array. This must be 0 if host_ptr is NULL. If host_ptr is
// not NULL, image_slice_pitch can be either 0 or ≥ image_row_pitch × image_height for a 2D
// image array or 3D image and can be either 0 or ≥ image_row_pitch for a 1D image array. If
// host_ptr is not NULL and image_slice_pitch = 0, image_slice_pitch is calculated as
// image_row_pitch × image_height for a 2D image array or 3D image and image_row_pitch for a 1D
// image array. If image_slice_pitch is not 0, it must be a multiple of the image_row_pitch.
let has_buf_parent = parent.as_ref().map_or(false, |p| p.is_buffer());
if host_ptr.is_null() {
if (desc.image_row_pitch != 0 || desc.image_slice_pitch != 0) && !has_buf_parent {
return Err(err);
}
if desc.image_row_pitch == 0 {
desc.image_row_pitch = desc.image_width * elem_size;
}
if desc.image_slice_pitch == 0 {
desc.image_slice_pitch = desc.image_row_pitch * cmp::max(1, desc.image_height);
}
if has_buf_parent && desc.image_type != CL_MEM_OBJECT_IMAGE1D_BUFFER {
let pitch_alignment = devs
.iter()
.map(|d| d.image_pitch_alignment())
.max()
.unwrap() as usize;
if desc.image_row_pitch % (pitch_alignment * elem_size) != 0 {
return Err(err);
}
}
} else {
if desc.image_row_pitch == 0 {
desc.image_row_pitch = desc.image_width * elem_size;
} else if desc.image_row_pitch % elem_size != 0 {
return Err(err);
}
if dims == 3 || array {
let valid_slice_pitch = desc.image_row_pitch * cmp::max(1, desc.image_height);
if desc.image_slice_pitch == 0 {
desc.image_slice_pitch = valid_slice_pitch;
} else if desc.image_slice_pitch < valid_slice_pitch
|| desc.image_slice_pitch % desc.image_row_pitch != 0
{
return Err(err);
}
}
}
Ok((desc, parent))
}
fn validate_image_bounds(i: &Image, origin: CLVec<usize>, region: CLVec<usize>) -> CLResult<()> {
let dims = i.image_desc.dims_with_array();
let bound = region + origin;
if bound > i.image_desc.size() {
return Err(CL_INVALID_VALUE);
}
// If image is a 2D image object, origin[2] must be 0. If image is a 1D image or 1D image buffer
// object, origin[1] and origin[2] must be 0. If image is a 1D image array object, origin[2]
// must be 0.
if dims < 3 && origin[2] != 0 || dims < 2 && origin[1] != 0 {
return Err(CL_INVALID_VALUE);
}
// If image is a 2D image object, region[2] must be 1. If image is a 1D image or 1D image buffer
// object, region[1] and region[2] must be 1. If image is a 1D image array object, region[2]
// must be 1. The values in region cannot be 0.
if dims < 3 && region[2] != 1 || dims < 2 && region[1] != 1 || region.contains(&0) {
return Err(CL_INVALID_VALUE);
}
Ok(())
}
fn desc_eq_no_buffer(a: &cl_image_desc, b: &cl_image_desc) -> bool {
a.image_type == b.image_type
&& a.image_width == b.image_width
&& a.image_height == b.image_height
&& a.image_depth == b.image_depth
&& a.image_array_size == b.image_array_size
&& a.image_row_pitch == b.image_row_pitch
&& a.image_slice_pitch == b.image_slice_pitch
&& a.num_mip_levels == b.num_mip_levels
&& a.num_samples == b.num_samples
}
fn validate_buffer(
desc: &cl_image_desc,
mut flags: cl_mem_flags,
format: &cl_image_format,
host_ptr: *mut ::std::os::raw::c_void,
elem_size: usize,
) -> CLResult<cl_mem_flags> {
// CL_INVALID_IMAGE_DESCRIPTOR if values specified in image_desc are not valid
const err: cl_int = CL_INVALID_IMAGE_DESCRIPTOR;
let mem_object = unsafe { desc.anon_1.mem_object };
// mem_object may refer to a valid buffer or image memory object. mem_object can be a buffer
// memory object if image_type is CL_MEM_OBJECT_IMAGE1D_BUFFER or CL_MEM_OBJECT_IMAGE2D
// mem_object can be an image object if image_type is CL_MEM_OBJECT_IMAGE2D. Otherwise it must
// be NULL. The image pixels are taken from the memory objects data store. When the contents of
// the specified memory objects data store are modified, those changes are reflected in the
// contents of the image object and vice-versa at corresponding synchronization points.
if !mem_object.is_null() {
let mem = MemBase::ref_from_raw(mem_object)?;
match mem.mem_type {
CL_MEM_OBJECT_BUFFER => {
match desc.image_type {
// For a 1D image buffer created from a buffer object, the image_width × size of
// element in bytes must be ≤ size of the buffer object.
CL_MEM_OBJECT_IMAGE1D_BUFFER => {
if desc.image_width * elem_size > mem.size {
return Err(err);
}
}
// For a 2D image created from a buffer object, the image_row_pitch × image_height
// must be ≤ size of the buffer object specified by mem_object.
CL_MEM_OBJECT_IMAGE2D => {
//TODO
//• CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if a 2D image is created from a buffer and the row pitch and base address alignment does not follow the rules described for creating a 2D image from a buffer.
if desc.image_row_pitch * desc.image_height > mem.size {
return Err(err);
}
// If the buffer object specified by mem_object was created with
// CL_MEM_USE_HOST_PTR, the host_ptr specified to clCreateBuffer or
// clCreateBufferWithProperties must be aligned to the maximum of the
// CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT value for all devices in the
// context associated with the buffer specified by mem_object that support
// images.
if mem.flags & CL_MEM_USE_HOST_PTR as cl_mem_flags != 0 {
for dev in &mem.context.devs {
// CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT is only relevant for 2D
// images created from a buffer object.
let addr_alignment = dev.image_base_address_alignment();
if addr_alignment == 0 {
return Err(CL_INVALID_OPERATION);
} else if !is_alligned(host_ptr, addr_alignment as usize) {
return Err(err);
}
}
}
}
_ => return Err(err),
}
}
// For an image object created from another image object, the values specified in the
// image descriptor except for mem_object must match the image descriptor information
// associated with mem_object.
CL_MEM_OBJECT_IMAGE2D => {
let image = Image::ref_from_raw(mem_object).unwrap();
if desc.image_type != mem.mem_type || !desc_eq_no_buffer(desc, &image.image_desc) {
return Err(err);
}
// CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if a 2D image is created from a 2D image object
// and the rules described above are not followed.
// Creating a 2D image object from another 2D image object creates a new 2D image
// object that shares the image data store with mem_object but views the pixels in the
// image with a different image channel order. Restrictions are:
//
// The image channel data type specified in image_format must match the image channel
// data type associated with mem_object.
if format.image_channel_data_type != image.image_format.image_channel_data_type {
return Err(CL_INVALID_IMAGE_FORMAT_DESCRIPTOR);
}
// The image channel order specified in image_format must be compatible with the image
// channel order associated with mem_object. Compatible image channel orders are:
if format.image_channel_order != image.image_format.image_channel_order {
// in image_format | in mem_object:
// CL_sBGRA | CL_BGRA
// CL_BGRA | CL_sBGRA
// CL_sRGBA | CL_RGBA
// CL_RGBA | CL_sRGBA
// CL_sRGB | CL_RGB
// CL_RGB | CL_sRGB
// CL_sRGBx | CL_RGBx
// CL_RGBx | CL_sRGBx
// CL_DEPTH | CL_R
match (
format.image_channel_order,
image.image_format.image_channel_order,
) {
(CL_sBGRA, CL_BGRA)
| (CL_BGRA, CL_sBGRA)
| (CL_sRGBA, CL_RGBA)
| (CL_RGBA, CL_sRGBA)
| (CL_sRGB, CL_RGB)
| (CL_RGB, CL_sRGB)
| (CL_sRGBx, CL_RGBx)
| (CL_RGBx, CL_sRGBx)
| (CL_DEPTH, CL_R) => (),
_ => return Err(CL_INVALID_IMAGE_FORMAT_DESCRIPTOR),
}
}
}
_ => return Err(err),
}
validate_matching_buffer_flags(mem, flags)?;
flags = inherit_mem_flags(flags, mem);
// implied by spec
} else if desc.image_type == CL_MEM_OBJECT_IMAGE1D_BUFFER {
return Err(err);
}
Ok(flags)
}
#[cl_info_entrypoint(clGetImageInfo)]
unsafe impl CLInfo<cl_image_info> for cl_mem {
fn query(&self, q: cl_image_info, v: CLInfoValue) -> CLResult<CLInfoRes> {
let mem = Image::ref_from_raw(*self)?;
match *q {
CL_IMAGE_ARRAY_SIZE => v.write::<usize>(mem.image_desc.image_array_size),
CL_IMAGE_BUFFER => v.write::<cl_mem>(unsafe { mem.image_desc.anon_1.buffer }),
CL_IMAGE_DEPTH => v.write::<usize>(mem.image_desc.image_depth),
CL_IMAGE_ELEMENT_SIZE => v.write::<usize>(mem.image_elem_size.into()),
CL_IMAGE_FORMAT => v.write::<cl_image_format>(mem.image_format),
CL_IMAGE_HEIGHT => v.write::<usize>(mem.image_desc.image_height),
CL_IMAGE_NUM_MIP_LEVELS => v.write::<cl_uint>(mem.image_desc.num_mip_levels),
CL_IMAGE_NUM_SAMPLES => v.write::<cl_uint>(mem.image_desc.num_samples),
CL_IMAGE_ROW_PITCH => v.write::<usize>(mem.image_desc.image_row_pitch),
CL_IMAGE_SLICE_PITCH => v.write::<usize>(if mem.image_desc.dims() == 1 {
0
} else {
mem.image_desc.image_slice_pitch
}),
CL_IMAGE_WIDTH => v.write::<usize>(mem.image_desc.image_width),
_ => Err(CL_INVALID_VALUE),
}
}
}
#[cl_entrypoint(clCreateImageWithProperties)]
fn create_image_with_properties(
context: cl_context,
properties: *const cl_mem_properties,
mut flags: cl_mem_flags,
image_format: *const cl_image_format,
image_desc: *const cl_image_desc,
host_ptr: *mut ::std::os::raw::c_void,
) -> CLResult<cl_mem> {
let c = Context::arc_from_raw(context)?;
// CL_INVALID_OPERATION if there are no devices in context that support images (i.e.
// CL_DEVICE_IMAGE_SUPPORT specified in the Device Queries table is CL_FALSE).
c.devs
.iter()
.find(|d| d.caps.has_images)
.ok_or(CL_INVALID_OPERATION)?;
let (format, elem_size) = validate_image_format(image_format)?;
let (desc, parent) = validate_image_desc(image_desc, host_ptr, elem_size.into(), &c.devs)?;
// validate host_ptr before merging flags
validate_host_ptr(host_ptr, flags)?;
flags = validate_buffer(&desc, flags, format, host_ptr, elem_size.into())?;
// For all image types except CL_MEM_OBJECT_IMAGE1D_BUFFER, if the value specified for flags is 0, the
// default is used which is CL_MEM_READ_WRITE.
if flags == 0 && desc.image_type != CL_MEM_OBJECT_IMAGE1D_BUFFER {
flags = CL_MEM_READ_WRITE.into();
}
validate_mem_flags(flags, false)?;
let filtered_flags = filter_image_access_flags(flags);
// CL_IMAGE_FORMAT_NOT_SUPPORTED if there are no devices in context that support image_format.
c.devs
.iter()
.filter_map(|d| d.formats.get(format))
.filter_map(|f| f.get(&desc.image_type))
.find(|f| *f & filtered_flags == filtered_flags)
.ok_or(CL_IMAGE_FORMAT_NOT_SUPPORTED)?;
// CL_INVALID_PROPERTY [...] if the same property name is specified more than once.
let props = unsafe { Properties::new(properties) }.ok_or(CL_INVALID_PROPERTY)?;
// CL_INVALID_PROPERTY if a property name in properties is not a supported property name, if
// the value specified for a supported property name is not valid, or if the same property name
// is specified more than once.
if !props.is_empty() {
// we don't support any properties
return Err(CL_INVALID_PROPERTY);
}
Ok(MemBase::new_image(c, parent, flags, format, desc, elem_size, host_ptr, props)?.into_cl())
}
#[cl_entrypoint(clCreateImage)]
fn create_image(
context: cl_context,
flags: cl_mem_flags,
image_format: *const cl_image_format,
image_desc: *const cl_image_desc,
host_ptr: *mut ::std::os::raw::c_void,
) -> CLResult<cl_mem> {
create_image_with_properties(
context,
ptr::null(),
flags,
image_format,
image_desc,
host_ptr,
)
}
#[cl_entrypoint(clCreateImage2D)]
fn create_image_2d(
context: cl_context,
flags: cl_mem_flags,
image_format: *const cl_image_format,
image_width: usize,
image_height: usize,
image_row_pitch: usize,
host_ptr: *mut ::std::os::raw::c_void,
) -> CLResult<cl_mem> {
let image_desc = cl_image_desc {
image_type: CL_MEM_OBJECT_IMAGE2D,
image_width: image_width,
image_height: image_height,
image_row_pitch: image_row_pitch,
..Default::default()
};
create_image(context, flags, image_format, &image_desc, host_ptr)
}
#[cl_entrypoint(clCreateImage3D)]
fn create_image_3d(
context: cl_context,
flags: cl_mem_flags,
image_format: *const cl_image_format,
image_width: usize,
image_height: usize,
image_depth: usize,
image_row_pitch: usize,
image_slice_pitch: usize,
host_ptr: *mut ::std::os::raw::c_void,
) -> CLResult<cl_mem> {
let image_desc = cl_image_desc {
image_type: CL_MEM_OBJECT_IMAGE3D,
image_width: image_width,
image_height: image_height,
image_depth: image_depth,
image_row_pitch: image_row_pitch,
image_slice_pitch: image_slice_pitch,
..Default::default()
};
create_image(context, flags, image_format, &image_desc, host_ptr)
}
#[cl_entrypoint(clGetSupportedImageFormats)]
fn get_supported_image_formats(
context: cl_context,
flags: cl_mem_flags,
image_type: cl_mem_object_type,
num_entries: cl_uint,
image_formats: *mut cl_image_format,
num_image_formats: *mut cl_uint,
) -> CLResult<()> {
let c = Context::ref_from_raw(context)?;
// CL_INVALID_VALUE if flags
validate_mem_flags(flags, true)?;
// or image_type are not valid
if !image_type_valid(image_type) {
return Err(CL_INVALID_VALUE);
}
// CL_INVALID_VALUE ... if num_entries is 0 and image_formats is not NULL.
if num_entries == 0 && !image_formats.is_null() {
return Err(CL_INVALID_VALUE);
}
let mut res = Vec::<cl_image_format>::new();
let filtered_flags = filter_image_access_flags(flags);
for dev in &c.devs {
for f in &dev.formats {
let s = f.1.get(&image_type).unwrap_or(&0);
if filtered_flags & s == filtered_flags {
res.push(*f.0);
}
}
}
res.sort();
res.dedup();
// `num_image_formats` should be the full count of supported formats,
// regardless of the value of `num_entries`. It may be null, in which case
// it is ignored.
num_image_formats.write_checked(res.len() as cl_uint);
// `image_formats` may be null, in which case it is ignored.
let num_entries_to_write = cmp::min(res.len(), num_entries as usize);
// SAFETY: Callers are responsible for providing either a null pointer or
// one for which a write of `num_entries * size_of::<cl_image_format>()` is
// valid. The validity of reading from `res` is guaranteed by the compiler.
unsafe { image_formats.copy_checked(res.as_ptr(), num_entries_to_write) };
Ok(())
}
#[cl_info_entrypoint(clGetSamplerInfo)]
unsafe impl CLInfo<cl_sampler_info> for cl_sampler {
fn query(&self, q: cl_sampler_info, v: CLInfoValue) -> CLResult<CLInfoRes> {
let sampler = Sampler::ref_from_raw(*self)?;
match q {
CL_SAMPLER_ADDRESSING_MODE => v.write::<cl_addressing_mode>(sampler.addressing_mode),
CL_SAMPLER_CONTEXT => {
// Note we use as_ptr here which doesn't increase the reference count.
let ptr = Arc::as_ptr(&sampler.context);
v.write::<cl_context>(cl_context::from_ptr(ptr))
}
CL_SAMPLER_FILTER_MODE => v.write::<cl_filter_mode>(sampler.filter_mode),
CL_SAMPLER_NORMALIZED_COORDS => v.write::<bool>(sampler.normalized_coords),
CL_SAMPLER_REFERENCE_COUNT => v.write::<cl_uint>(Sampler::refcnt(*self)?),
CL_SAMPLER_PROPERTIES => v.write::<&Properties<cl_sampler_properties>>(&sampler.props),
// CL_INVALID_VALUE if param_name is not one of the supported values
_ => Err(CL_INVALID_VALUE),
}
}
}
fn create_sampler_impl(
context: cl_context,
normalized_coords: cl_bool,
addressing_mode: cl_addressing_mode,
filter_mode: cl_filter_mode,
props: Properties<cl_sampler_properties>,
) -> CLResult<cl_sampler> {
let c = Context::arc_from_raw(context)?;
// CL_INVALID_OPERATION if images are not supported by any device associated with context (i.e.
// CL_DEVICE_IMAGE_SUPPORT specified in the Device Queries table is CL_FALSE).
c.devs
.iter()
.find(|d| d.caps.has_images)
.ok_or(CL_INVALID_OPERATION)?;
// CL_INVALID_VALUE if addressing_mode, filter_mode, normalized_coords or a combination of these
// arguements are not valid.
validate_addressing_mode(addressing_mode)?;
validate_filter_mode(filter_mode)?;
let sampler = Sampler::new(
c,
check_cl_bool(normalized_coords).ok_or(CL_INVALID_VALUE)?,
addressing_mode,
filter_mode,
props,
);
Ok(sampler.into_cl())
}
#[cl_entrypoint(clCreateSampler)]
fn create_sampler(
context: cl_context,
normalized_coords: cl_bool,
addressing_mode: cl_addressing_mode,
filter_mode: cl_filter_mode,
) -> CLResult<cl_sampler> {
create_sampler_impl(
context,
normalized_coords,
addressing_mode,
filter_mode,
Properties::default(),
)
}
#[cl_entrypoint(clCreateSamplerWithProperties)]
fn create_sampler_with_properties(
context: cl_context,
sampler_properties: *const cl_sampler_properties,
) -> CLResult<cl_sampler> {
let mut normalized_coords = CL_TRUE;
let mut addressing_mode = CL_ADDRESS_CLAMP;
let mut filter_mode = CL_FILTER_NEAREST;
// CL_INVALID_VALUE if the same property name is specified more than once.
// SAFETY: sampler_properties is a 0 terminated array by spec.
let sampler_properties =
unsafe { Properties::new(sampler_properties) }.ok_or(CL_INVALID_VALUE)?;
for (&key, &val) in sampler_properties.iter() {
match key as u32 {
CL_SAMPLER_ADDRESSING_MODE => addressing_mode = val as u32,
CL_SAMPLER_FILTER_MODE => filter_mode = val as u32,
CL_SAMPLER_NORMALIZED_COORDS => normalized_coords = val as u32,
// CL_INVALID_VALUE if the property name in sampler_properties is not a supported
// property name
_ => return Err(CL_INVALID_VALUE),
}
}
create_sampler_impl(
context,
normalized_coords,
addressing_mode,
filter_mode,
sampler_properties,
)
}
#[cl_entrypoint(clRetainSampler)]
fn retain_sampler(sampler: cl_sampler) -> CLResult<()> {
Sampler::retain(sampler)
}
#[cl_entrypoint(clReleaseSampler)]
fn release_sampler(sampler: cl_sampler) -> CLResult<()> {
Sampler::release(sampler)
}
#[cl_entrypoint(clEnqueueReadBuffer)]
fn enqueue_read_buffer(
command_queue: cl_command_queue,
buffer: cl_mem,
blocking_read: cl_bool,
offset: usize,
cb: usize,
ptr: *mut ::std::os::raw::c_void,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
let q = Queue::arc_from_raw(command_queue)?;
let b = Buffer::arc_from_raw(buffer)?;
let block = check_cl_bool(blocking_read).ok_or(CL_INVALID_VALUE)?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
// CL_INVALID_VALUE if the region being read or written specified by (offset, size) is out of
// bounds or if ptr is a NULL value.
if offset + cb > b.size || ptr.is_null() {
return Err(CL_INVALID_VALUE);
}
// CL_INVALID_CONTEXT if the context associated with command_queue and buffer are not the same
if b.context != q.context {
return Err(CL_INVALID_CONTEXT);
}
// CL_INVALID_OPERATION if clEnqueueReadBuffer is called on buffer which has been created with
// CL_MEM_HOST_WRITE_ONLY or CL_MEM_HOST_NO_ACCESS.
if bit_check(b.flags, CL_MEM_HOST_WRITE_ONLY | CL_MEM_HOST_NO_ACCESS) {
return Err(CL_INVALID_OPERATION);
}
// SAFETY: it's required that applications do not cause data races
let ptr = unsafe { MutMemoryPtr::from_ptr(ptr) };
create_and_queue(
q,
CL_COMMAND_READ_BUFFER,
evs,
event,
block,
Box::new(move |_, ctx| b.read(ctx, offset, ptr, cb)),
)
// TODO
// CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset specified when the sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.
}
#[cl_entrypoint(clEnqueueWriteBuffer)]
fn enqueue_write_buffer(
command_queue: cl_command_queue,
buffer: cl_mem,
blocking_write: cl_bool,
offset: usize,
cb: usize,
ptr: *const ::std::os::raw::c_void,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
let q = Queue::arc_from_raw(command_queue)?;
let b = Buffer::arc_from_raw(buffer)?;
let block = check_cl_bool(blocking_write).ok_or(CL_INVALID_VALUE)?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
// CL_INVALID_VALUE if the region being read or written specified by (offset, size) is out of
// bounds or if ptr is a NULL value.
if offset + cb > b.size || ptr.is_null() {
return Err(CL_INVALID_VALUE);
}
// CL_INVALID_CONTEXT if the context associated with command_queue and buffer are not the same
if b.context != q.context {
return Err(CL_INVALID_CONTEXT);
}
// CL_INVALID_OPERATION if clEnqueueWriteBuffer is called on buffer which has been created with
// CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_NO_ACCESS.
if bit_check(b.flags, CL_MEM_HOST_READ_ONLY | CL_MEM_HOST_NO_ACCESS) {
return Err(CL_INVALID_OPERATION);
}
// SAFETY: it's required that applications do not cause data races
let ptr = unsafe { ConstMemoryPtr::from_ptr(ptr) };
create_and_queue(
q,
CL_COMMAND_WRITE_BUFFER,
evs,
event,
block,
Box::new(move |_, ctx| b.write(ctx, offset, ptr, cb)),
)
// TODO
// CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset specified when the sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.
}
#[cl_entrypoint(clEnqueueCopyBuffer)]
fn enqueue_copy_buffer(
command_queue: cl_command_queue,
src_buffer: cl_mem,
dst_buffer: cl_mem,
src_offset: usize,
dst_offset: usize,
size: usize,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
let q = Queue::arc_from_raw(command_queue)?;
let src = Buffer::arc_from_raw(src_buffer)?;
let dst = Buffer::arc_from_raw(dst_buffer)?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
// CL_INVALID_CONTEXT if the context associated with command_queue, src_buffer and dst_buffer
// are not the same
if q.context != src.context || q.context != dst.context {
return Err(CL_INVALID_CONTEXT);
}
// CL_INVALID_VALUE if src_offset, dst_offset, size, src_offset + size or dst_offset + size
// require accessing elements outside the src_buffer and dst_buffer buffer objects respectively.
if src_offset + size > src.size || dst_offset + size > dst.size {
return Err(CL_INVALID_VALUE);
}
// CL_MEM_COPY_OVERLAP if src_buffer and dst_buffer are the same buffer or sub-buffer object
// and the source and destination regions overlap or if src_buffer and dst_buffer are different
// sub-buffers of the same associated buffer object and they overlap. The regions overlap if
// src_offset ≤ dst_offset ≤ src_offset + size - 1 or if dst_offset ≤ src_offset ≤ dst_offset + size - 1.
if src.backing_memory_eq(&dst) {
let src_offset = src_offset + src.offset();
let dst_offset = dst_offset + dst.offset();
if (src_offset <= dst_offset && dst_offset < src_offset + size)
|| (dst_offset <= src_offset && src_offset < dst_offset + size)
{
return Err(CL_MEM_COPY_OVERLAP);
}
}
create_and_queue(
q,
CL_COMMAND_COPY_BUFFER,
evs,
event,
false,
Box::new(move |_, ctx| src.copy_to_buffer(ctx, &dst, src_offset, dst_offset, size)),
)
// TODO
//• CL_MISALIGNED_SUB_BUFFER_OFFSET if src_buffer is a sub-buffer object and offset specified when the sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.
//• CL_MISALIGNED_SUB_BUFFER_OFFSET if dst_buffer is a sub-buffer object and offset specified when the sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.
//• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store associated with src_buffer or dst_buffer.
}
#[cl_entrypoint(clEnqueueReadBufferRect)]
fn enqueue_read_buffer_rect(
command_queue: cl_command_queue,
buffer: cl_mem,
blocking_read: cl_bool,
buffer_origin: *const usize,
host_origin: *const usize,
region: *const usize,
mut buffer_row_pitch: usize,
mut buffer_slice_pitch: usize,
mut host_row_pitch: usize,
mut host_slice_pitch: usize,
ptr: *mut ::std::os::raw::c_void,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
let block = check_cl_bool(blocking_read).ok_or(CL_INVALID_VALUE)?;
let q = Queue::arc_from_raw(command_queue)?;
let buf = Buffer::arc_from_raw(buffer)?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
// CL_INVALID_OPERATION if clEnqueueReadBufferRect is called on buffer which has been created
// with CL_MEM_HOST_WRITE_ONLY or CL_MEM_HOST_NO_ACCESS.
if bit_check(buf.flags, CL_MEM_HOST_WRITE_ONLY | CL_MEM_HOST_NO_ACCESS) {
return Err(CL_INVALID_OPERATION);
}
// CL_INVALID_VALUE if buffer_origin, host_origin, or region is NULL.
if buffer_origin.is_null() ||
host_origin.is_null() ||
region.is_null() ||
// CL_INVALID_VALUE if ptr is NULL.
ptr.is_null()
{
return Err(CL_INVALID_VALUE);
}
let r = unsafe { CLVec::from_raw(region) };
let buf_ori = unsafe { CLVec::from_raw(buffer_origin) };
let host_ori = unsafe { CLVec::from_raw(host_origin) };
// CL_INVALID_VALUE if any region array element is 0.
if r.contains(&0) ||
// CL_INVALID_VALUE if buffer_row_pitch is not 0 and is less than region[0].
buffer_row_pitch != 0 && buffer_row_pitch < r[0] ||
// CL_INVALID_VALUE if host_row_pitch is not 0 and is less than region[0].
host_row_pitch != 0 && host_row_pitch < r[0]
{
return Err(CL_INVALID_VALUE);
}
// If buffer_row_pitch is 0, buffer_row_pitch is computed as region[0].
if buffer_row_pitch == 0 {
buffer_row_pitch = r[0];
}
// If host_row_pitch is 0, host_row_pitch is computed as region[0].
if host_row_pitch == 0 {
host_row_pitch = r[0];
}
// CL_INVALID_VALUE if buffer_slice_pitch is not 0 and is less than region[1] × buffer_row_pitch and not a multiple of buffer_row_pitch.
if buffer_slice_pitch != 0 && buffer_slice_pitch < r[1] * buffer_row_pitch && buffer_slice_pitch % buffer_row_pitch != 0 ||
// CL_INVALID_VALUE if host_slice_pitch is not 0 and is less than region[1] × host_row_pitch and not a multiple of host_row_pitch.
host_slice_pitch != 0 && host_slice_pitch < r[1] * host_row_pitch && host_slice_pitch % host_row_pitch != 0
{
return Err(CL_INVALID_VALUE);
}
// If buffer_slice_pitch is 0, buffer_slice_pitch is computed as region[1] × buffer_row_pitch.
if buffer_slice_pitch == 0 {
buffer_slice_pitch = r[1] * buffer_row_pitch;
}
// If host_slice_pitch is 0, host_slice_pitch is computed as region[1] × host_row_pitch.
if host_slice_pitch == 0 {
host_slice_pitch = r[1] * host_row_pitch
}
// CL_INVALID_VALUE if the region being read or written specified by (buffer_origin, region,
// buffer_row_pitch, buffer_slice_pitch) is out of bounds.
if CLVec::calc_size(r + buf_ori, [1, buffer_row_pitch, buffer_slice_pitch]) > buf.size {
return Err(CL_INVALID_VALUE);
}
// CL_INVALID_CONTEXT if the context associated with command_queue and buffer are not the same
if q.context != buf.context {
return Err(CL_INVALID_CONTEXT);
}
// SAFETY: it's required that applications do not cause data races
let ptr = unsafe { MutMemoryPtr::from_ptr(ptr) };
create_and_queue(
q,
CL_COMMAND_READ_BUFFER_RECT,
evs,
event,
block,
Box::new(move |_, ctx| {
buf.read_rect(
ptr,
ctx,
&r,
&buf_ori,
buffer_row_pitch,
buffer_slice_pitch,
&host_ori,
host_row_pitch,
host_slice_pitch,
)
}),
)
// TODO
// CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset specified when the sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.
}
#[cl_entrypoint(clEnqueueWriteBufferRect)]
fn enqueue_write_buffer_rect(
command_queue: cl_command_queue,
buffer: cl_mem,
blocking_write: cl_bool,
buffer_origin: *const usize,
host_origin: *const usize,
region: *const usize,
mut buffer_row_pitch: usize,
mut buffer_slice_pitch: usize,
mut host_row_pitch: usize,
mut host_slice_pitch: usize,
ptr: *const ::std::os::raw::c_void,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
let block = check_cl_bool(blocking_write).ok_or(CL_INVALID_VALUE)?;
let q = Queue::arc_from_raw(command_queue)?;
let buf = Buffer::arc_from_raw(buffer)?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
// CL_INVALID_OPERATION if clEnqueueWriteBufferRect is called on buffer which has been created
// with CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_NO_ACCESS.
if bit_check(buf.flags, CL_MEM_HOST_READ_ONLY | CL_MEM_HOST_NO_ACCESS) {
return Err(CL_INVALID_OPERATION);
}
// CL_INVALID_VALUE if buffer_origin, host_origin, or region is NULL.
if buffer_origin.is_null() ||
host_origin.is_null() ||
region.is_null() ||
// CL_INVALID_VALUE if ptr is NULL.
ptr.is_null()
{
return Err(CL_INVALID_VALUE);
}
let r = unsafe { CLVec::from_raw(region) };
let buf_ori = unsafe { CLVec::from_raw(buffer_origin) };
let host_ori = unsafe { CLVec::from_raw(host_origin) };
// CL_INVALID_VALUE if any region array element is 0.
if r.contains(&0) ||
// CL_INVALID_VALUE if buffer_row_pitch is not 0 and is less than region[0].
buffer_row_pitch != 0 && buffer_row_pitch < r[0] ||
// CL_INVALID_VALUE if host_row_pitch is not 0 and is less than region[0].
host_row_pitch != 0 && host_row_pitch < r[0]
{
return Err(CL_INVALID_VALUE);
}
// If buffer_row_pitch is 0, buffer_row_pitch is computed as region[0].
if buffer_row_pitch == 0 {
buffer_row_pitch = r[0];
}
// If host_row_pitch is 0, host_row_pitch is computed as region[0].
if host_row_pitch == 0 {
host_row_pitch = r[0];
}
// CL_INVALID_VALUE if buffer_slice_pitch is not 0 and is less than region[1] × buffer_row_pitch and not a multiple of buffer_row_pitch.
if buffer_slice_pitch != 0 && buffer_slice_pitch < r[1] * buffer_row_pitch && buffer_slice_pitch % buffer_row_pitch != 0 ||
// CL_INVALID_VALUE if host_slice_pitch is not 0 and is less than region[1] × host_row_pitch and not a multiple of host_row_pitch.
host_slice_pitch != 0 && host_slice_pitch < r[1] * host_row_pitch && host_slice_pitch % host_row_pitch != 0
{
return Err(CL_INVALID_VALUE);
}
// If buffer_slice_pitch is 0, buffer_slice_pitch is computed as region[1] × buffer_row_pitch.
if buffer_slice_pitch == 0 {
buffer_slice_pitch = r[1] * buffer_row_pitch;
}
// If host_slice_pitch is 0, host_slice_pitch is computed as region[1] × host_row_pitch.
if host_slice_pitch == 0 {
host_slice_pitch = r[1] * host_row_pitch
}
// CL_INVALID_VALUE if the region being read or written specified by (buffer_origin, region,
// buffer_row_pitch, buffer_slice_pitch) is out of bounds.
if CLVec::calc_size(r + buf_ori, [1, buffer_row_pitch, buffer_slice_pitch]) > buf.size {
return Err(CL_INVALID_VALUE);
}
// CL_INVALID_CONTEXT if the context associated with command_queue and buffer are not the same
if q.context != buf.context {
return Err(CL_INVALID_CONTEXT);
}
// SAFETY: it's required that applications do not cause data races
let ptr = unsafe { ConstMemoryPtr::from_ptr(ptr) };
create_and_queue(
q,
CL_COMMAND_WRITE_BUFFER_RECT,
evs,
event,
block,
Box::new(move |_, ctx| {
buf.write_rect(
ptr,
ctx,
&r,
&host_ori,
host_row_pitch,
host_slice_pitch,
&buf_ori,
buffer_row_pitch,
buffer_slice_pitch,
)
}),
)
// TODO
// CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset specified when the sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.
}
#[cl_entrypoint(clEnqueueCopyBufferRect)]
fn enqueue_copy_buffer_rect(
command_queue: cl_command_queue,
src_buffer: cl_mem,
dst_buffer: cl_mem,
src_origin: *const usize,
dst_origin: *const usize,
region: *const usize,
mut src_row_pitch: usize,
mut src_slice_pitch: usize,
mut dst_row_pitch: usize,
mut dst_slice_pitch: usize,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
let q = Queue::arc_from_raw(command_queue)?;
let src = Buffer::arc_from_raw(src_buffer)?;
let dst = Buffer::arc_from_raw(dst_buffer)?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
// CL_INVALID_VALUE if src_origin, dst_origin, or region is NULL.
if src_origin.is_null() || dst_origin.is_null() || region.is_null() {
return Err(CL_INVALID_VALUE);
}
let r = unsafe { CLVec::from_raw(region) };
let src_ori = unsafe { CLVec::from_raw(src_origin) };
let dst_ori = unsafe { CLVec::from_raw(dst_origin) };
// CL_INVALID_VALUE if any region array element is 0.
if r.contains(&0) ||
// CL_INVALID_VALUE if src_row_pitch is not 0 and is less than region[0].
src_row_pitch != 0 && src_row_pitch < r[0] ||
// CL_INVALID_VALUE if dst_row_pitch is not 0 and is less than region[0].
dst_row_pitch != 0 && dst_row_pitch < r[0]
{
return Err(CL_INVALID_VALUE);
}
// If src_row_pitch is 0, src_row_pitch is computed as region[0].
if src_row_pitch == 0 {
src_row_pitch = r[0];
}
// If dst_row_pitch is 0, dst_row_pitch is computed as region[0].
if dst_row_pitch == 0 {
dst_row_pitch = r[0];
}
// CL_INVALID_VALUE if src_slice_pitch is not 0 and is less than region[1] × src_row_pitch
if src_slice_pitch != 0 && src_slice_pitch < r[1] * src_row_pitch ||
// CL_INVALID_VALUE if dst_slice_pitch is not 0 and is less than region[1] × dst_row_pitch
dst_slice_pitch != 0 && dst_slice_pitch < r[1] * dst_row_pitch ||
// if src_slice_pitch is not 0 and is not a multiple of src_row_pitch.
src_slice_pitch != 0 && src_slice_pitch % src_row_pitch != 0 ||
// if dst_slice_pitch is not 0 and is not a multiple of dst_row_pitch.
dst_slice_pitch != 0 && dst_slice_pitch % dst_row_pitch != 0
{
return Err(CL_INVALID_VALUE);
}
// If src_slice_pitch is 0, src_slice_pitch is computed as region[1] × src_row_pitch.
if src_slice_pitch == 0 {
src_slice_pitch = r[1] * src_row_pitch;
}
// If dst_slice_pitch is 0, dst_slice_pitch is computed as region[1] × dst_row_pitch.
if dst_slice_pitch == 0 {
dst_slice_pitch = r[1] * dst_row_pitch;
}
// CL_INVALID_VALUE if src_buffer and dst_buffer are the same buffer object and src_slice_pitch
// is not equal to dst_slice_pitch and src_row_pitch is not equal to dst_row_pitch.
if src_buffer == dst_buffer
&& src_slice_pitch != dst_slice_pitch
&& src_row_pitch != dst_row_pitch
{
return Err(CL_INVALID_VALUE);
}
// CL_INVALID_VALUE if (src_origin, region, src_row_pitch, src_slice_pitch) or (dst_origin,
// region, dst_row_pitch, dst_slice_pitch) require accessing elements outside the src_buffer
// and dst_buffer buffer objects respectively.
if CLVec::calc_size(r + src_ori, [1, src_row_pitch, src_slice_pitch]) > src.size
|| CLVec::calc_size(r + dst_ori, [1, dst_row_pitch, dst_slice_pitch]) > dst.size
{
return Err(CL_INVALID_VALUE);
}
// CL_MEM_COPY_OVERLAP if src_buffer and dst_buffer are the same buffer or sub-buffer object and
// the source and destination regions overlap or if src_buffer and dst_buffer are different
// sub-buffers of the same associated buffer object and they overlap.
if src.backing_memory_eq(&dst)
&& check_copy_overlap(
&src_ori,
src.offset(),
&dst_ori,
dst.offset(),
&r,
src_row_pitch,
src_slice_pitch,
)
{
return Err(CL_MEM_COPY_OVERLAP);
}
// CL_INVALID_CONTEXT if the context associated with command_queue, src_buffer and dst_buffer
// are not the same
if src.context != q.context || dst.context != q.context {
return Err(CL_INVALID_CONTEXT);
}
create_and_queue(
q,
CL_COMMAND_COPY_BUFFER_RECT,
evs,
event,
false,
Box::new(move |_, ctx| {
src.copy_rect(
&dst,
ctx,
&r,
&src_ori,
src_row_pitch,
src_slice_pitch,
&dst_ori,
dst_row_pitch,
dst_slice_pitch,
)
}),
)
// TODO
// CL_MISALIGNED_SUB_BUFFER_OFFSET if src_buffer is a sub-buffer object and offset specified when the sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.
}
#[cl_entrypoint(clEnqueueFillBuffer)]
fn enqueue_fill_buffer(
command_queue: cl_command_queue,
buffer: cl_mem,
pattern: *const ::std::os::raw::c_void,
pattern_size: usize,
offset: usize,
size: usize,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
let q = Queue::arc_from_raw(command_queue)?;
let b = Buffer::arc_from_raw(buffer)?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
// CL_INVALID_VALUE if offset or offset + size require accessing elements outside the buffer
// buffer object respectively.
if offset + size > b.size {
return Err(CL_INVALID_VALUE);
}
// CL_INVALID_VALUE if pattern is NULL or if pattern_size is 0 or if pattern_size is not one of
// { 1, 2, 4, 8, 16, 32, 64, 128 }.
if pattern.is_null() || pattern_size.count_ones() != 1 || pattern_size > 128 {
return Err(CL_INVALID_VALUE);
}
// CL_INVALID_VALUE if offset and size are not a multiple of pattern_size.
if offset % pattern_size != 0 || size % pattern_size != 0 {
return Err(CL_INVALID_VALUE);
}
// CL_INVALID_CONTEXT if the context associated with command_queue and buffer are not the same
if b.context != q.context {
return Err(CL_INVALID_CONTEXT);
}
// we have to copy memory
let pattern = unsafe { slice::from_raw_parts(pattern.cast(), pattern_size).to_vec() };
create_and_queue(
q,
CL_COMMAND_FILL_BUFFER,
evs,
event,
false,
Box::new(move |_, ctx| b.fill(ctx, &pattern, offset, size)),
)
// TODO
//• CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset specified when the sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.
//• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store associated with buffer.
}
#[cl_entrypoint(clEnqueueMapBuffer)]
fn enqueue_map_buffer(
command_queue: cl_command_queue,
buffer: cl_mem,
blocking_map: cl_bool,
map_flags: cl_map_flags,
offset: usize,
size: usize,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<*mut c_void> {
let q = Queue::arc_from_raw(command_queue)?;
let b = Buffer::arc_from_raw(buffer)?;
let block = check_cl_bool(blocking_map).ok_or(CL_INVALID_VALUE)?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
validate_map_flags(&b, map_flags)?;
// CL_INVALID_VALUE if region being mapped given by (offset, size) is out of bounds or if size
// is 0
if offset >= b.size || size > b.size - offset || size == 0 {
return Err(CL_INVALID_VALUE);
}
// CL_INVALID_CONTEXT if context associated with command_queue and buffer are not the same
if b.context != q.context {
return Err(CL_INVALID_CONTEXT);
}
let ptr = b.map(size, offset, map_flags != CL_MAP_READ.into())?;
create_and_queue(
q,
CL_COMMAND_MAP_BUFFER,
evs,
event,
block,
Box::new(move |_, ctx| {
if map_flags != CL_MAP_WRITE_INVALIDATE_REGION.into() {
b.sync_map(ctx, ptr)
} else {
Ok(())
}
}),
)?;
Ok(ptr.as_ptr())
// TODO
// CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset specified when the sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for the device associated with queue. This error code is missing before version 1.1.
// CL_MAP_FAILURE if there is a failure to map the requested region into the host address space. This error cannot occur for buffer objects created with CL_MEM_USE_HOST_PTR or CL_MEM_ALLOC_HOST_PTR.
// CL_INVALID_OPERATION if mapping would lead to overlapping regions being mapped for writing.
}
#[cl_entrypoint(clEnqueueReadImage)]
fn enqueue_read_image(
command_queue: cl_command_queue,
image: cl_mem,
blocking_read: cl_bool,
origin: *const usize,
region: *const usize,
mut row_pitch: usize,
mut slice_pitch: usize,
ptr: *mut ::std::os::raw::c_void,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
let q = Queue::arc_from_raw(command_queue)?;
let i = Image::arc_from_raw(image)?;
let block = check_cl_bool(blocking_read).ok_or(CL_INVALID_VALUE)?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
let pixel_size = i.image_format.pixel_size().unwrap() as usize;
// CL_INVALID_CONTEXT if the context associated with command_queue and image are not the same
if i.context != q.context {
return Err(CL_INVALID_CONTEXT);
}
// CL_INVALID_OPERATION if clEnqueueReadImage is called on image which has been created with
// CL_MEM_HOST_WRITE_ONLY or CL_MEM_HOST_NO_ACCESS.
if bit_check(i.flags, CL_MEM_HOST_WRITE_ONLY | CL_MEM_HOST_NO_ACCESS) {
return Err(CL_INVALID_OPERATION);
}
// Not supported with depth stencil or msaa images.
if i.image_format.image_channel_order == CL_DEPTH_STENCIL || i.image_desc.num_samples > 0 {
return Err(CL_INVALID_OPERATION);
}
// CL_INVALID_VALUE if origin or region is NULL.
// CL_INVALID_VALUE if ptr is NULL.
if origin.is_null() || region.is_null() || ptr.is_null() {
return Err(CL_INVALID_VALUE);
}
// CL_INVALID_VALUE if image is a 1D or 2D image and slice_pitch or input_slice_pitch is not 0.
if !i.image_desc.has_slice() && slice_pitch != 0 {
return Err(CL_INVALID_VALUE);
}
let r = unsafe { CLVec::from_raw(region) };
let o = unsafe { CLVec::from_raw(origin) };
// CL_INVALID_VALUE if the region being read or written specified by origin and region is out of
// bounds.
// CL_INVALID_VALUE if values in origin and region do not follow rules described in the argument
// description for origin and region.
validate_image_bounds(&i, o, r)?;
// If row_pitch (or input_row_pitch) is set to 0, the appropriate row pitch is calculated based
// on the size of each element in bytes multiplied by width.
if row_pitch == 0 {
row_pitch = r[0] * pixel_size;
}
// If slice_pitch (or input_slice_pitch) is set to 0, the appropriate slice pitch is calculated
// based on the row_pitch × height.
if slice_pitch == 0 {
slice_pitch = row_pitch * r[1];
}
// SAFETY: it's required that applications do not cause data races
let ptr = unsafe { MutMemoryPtr::from_ptr(ptr) };
create_and_queue(
q,
CL_COMMAND_READ_IMAGE,
evs,
event,
block,
Box::new(move |_, ctx| i.read(ptr, ctx, &r, &o, row_pitch, slice_pitch)),
)
//• CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or compute row and/or slice pitch) for image are not supported by device associated with queue.
//• CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data type) for image are not supported by device associated with queue.
//• CL_INVALID_OPERATION if the device associated with command_queue does not support images (i.e. CL_DEVICE_IMAGE_SUPPORT specified in the Device Queries table is CL_FALSE).
}
#[cl_entrypoint(clEnqueueWriteImage)]
fn enqueue_write_image(
command_queue: cl_command_queue,
image: cl_mem,
blocking_write: cl_bool,
origin: *const usize,
region: *const usize,
mut row_pitch: usize,
mut slice_pitch: usize,
ptr: *const ::std::os::raw::c_void,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
let q = Queue::arc_from_raw(command_queue)?;
let i = Image::arc_from_raw(image)?;
let block = check_cl_bool(blocking_write).ok_or(CL_INVALID_VALUE)?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
let pixel_size = i.image_format.pixel_size().unwrap() as usize;
// CL_INVALID_CONTEXT if the context associated with command_queue and image are not the same
if i.context != q.context {
return Err(CL_INVALID_CONTEXT);
}
// CL_INVALID_OPERATION if clEnqueueWriteImage is called on image which has been created with
// CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_NO_ACCESS.
if bit_check(i.flags, CL_MEM_HOST_READ_ONLY | CL_MEM_HOST_NO_ACCESS) {
return Err(CL_INVALID_OPERATION);
}
// Not supported with depth stencil or msaa images.
if i.image_format.image_channel_order == CL_DEPTH_STENCIL || i.image_desc.num_samples > 0 {
return Err(CL_INVALID_OPERATION);
}
// CL_INVALID_VALUE if origin or region is NULL.
// CL_INVALID_VALUE if ptr is NULL.
if origin.is_null() || region.is_null() || ptr.is_null() {
return Err(CL_INVALID_VALUE);
}
// CL_INVALID_VALUE if image is a 1D or 2D image and slice_pitch or input_slice_pitch is not 0.
if !i.image_desc.has_slice() && slice_pitch != 0 {
return Err(CL_INVALID_VALUE);
}
let r = unsafe { CLVec::from_raw(region) };
let o = unsafe { CLVec::from_raw(origin) };
// CL_INVALID_VALUE if the region being read or written specified by origin and region is out of
// bounds.
// CL_INVALID_VALUE if values in origin and region do not follow rules described in the argument
// description for origin and region.
validate_image_bounds(&i, o, r)?;
// If row_pitch (or input_row_pitch) is set to 0, the appropriate row pitch is calculated based
// on the size of each element in bytes multiplied by width.
if row_pitch == 0 {
row_pitch = r[0] * pixel_size;
}
// If slice_pitch (or input_slice_pitch) is set to 0, the appropriate slice pitch is calculated
// based on the row_pitch × height.
if slice_pitch == 0 {
slice_pitch = row_pitch * r[1];
}
// SAFETY: it's required that applications do not cause data races
let ptr = unsafe { ConstMemoryPtr::from_ptr(ptr) };
create_and_queue(
q,
CL_COMMAND_WRITE_BUFFER_RECT,
evs,
event,
block,
Box::new(move |_, ctx| i.write(ptr, ctx, &r, row_pitch, slice_pitch, &o)),
)
//• CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or compute row and/or slice pitch) for image are not supported by device associated with queue.
//• CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data type) for image are not supported by device associated with queue.
//• CL_INVALID_OPERATION if the device associated with command_queue does not support images (i.e. CL_DEVICE_IMAGE_SUPPORT specified in the Device Queries table is CL_FALSE).
}
#[cl_entrypoint(clEnqueueCopyImage)]
fn enqueue_copy_image(
command_queue: cl_command_queue,
src_image: cl_mem,
dst_image: cl_mem,
src_origin: *const usize,
dst_origin: *const usize,
region: *const usize,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
let q = Queue::arc_from_raw(command_queue)?;
let src_image = Image::arc_from_raw(src_image)?;
let dst_image = Image::arc_from_raw(dst_image)?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
// CL_INVALID_CONTEXT if the context associated with command_queue, src_image and dst_image are not the same
if src_image.context != q.context || dst_image.context != q.context {
return Err(CL_INVALID_CONTEXT);
}
// CL_IMAGE_FORMAT_MISMATCH if src_image and dst_image do not use the same image format.
if src_image.image_format != dst_image.image_format {
return Err(CL_IMAGE_FORMAT_MISMATCH);
}
// Not supported with depth stencil or msaa images.
if src_image.image_format.image_channel_order == CL_DEPTH_STENCIL
|| dst_image.image_format.image_channel_order == CL_DEPTH_STENCIL
|| src_image.image_desc.num_samples > 0
|| dst_image.image_desc.num_samples > 0
{
return Err(CL_INVALID_OPERATION);
}
// CL_INVALID_VALUE if src_origin, dst_origin, or region is NULL.
if src_origin.is_null() || dst_origin.is_null() || region.is_null() {
return Err(CL_INVALID_VALUE);
}
let region = unsafe { CLVec::from_raw(region) };
let dst_origin = unsafe { CLVec::from_raw(dst_origin) };
let src_origin = unsafe { CLVec::from_raw(src_origin) };
// CL_INVALID_VALUE if the 2D or 3D rectangular region specified by src_origin and
// src_origin + region refers to a region outside src_image, or if the 2D or 3D rectangular
// region specified by dst_origin and dst_origin + region refers to a region outside dst_image.
// CL_INVALID_VALUE if values in src_origin, dst_origin and region do not follow rules described
// in the argument description for src_origin, dst_origin and region.
validate_image_bounds(&src_image, src_origin, region)?;
validate_image_bounds(&dst_image, dst_origin, region)?;
create_and_queue(
q,
CL_COMMAND_COPY_IMAGE,
evs,
event,
false,
Box::new(move |_, ctx| {
src_image.copy_to_image(ctx, &dst_image, src_origin, dst_origin, &region)
}),
)
//• CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or compute row and/or slice pitch) for src_image or dst_image are not supported by device associated with queue.
//• CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data type) for src_image or dst_image are not supported by device associated with queue.
//• CL_INVALID_OPERATION if the device associated with command_queue does not support images (i.e. CL_DEVICE_IMAGE_SUPPORT specified in the Device Queries table is CL_FALSE).
//• CL_MEM_COPY_OVERLAP if src_image and dst_image are the same image object and the source and destination regions overlap.
}
#[cl_entrypoint(clEnqueueFillImage)]
fn enqueue_fill_image(
command_queue: cl_command_queue,
image: cl_mem,
fill_color: *const ::std::os::raw::c_void,
origin: *const usize,
region: *const usize,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
let q = Queue::arc_from_raw(command_queue)?;
let i = Image::arc_from_raw(image)?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
// CL_INVALID_CONTEXT if the context associated with command_queue and image are not the same
if i.context != q.context {
return Err(CL_INVALID_CONTEXT);
}
// Not supported with depth stencil or msaa images.
if i.image_format.image_channel_order == CL_DEPTH_STENCIL || i.image_desc.num_samples > 0 {
return Err(CL_INVALID_OPERATION);
}
// CL_INVALID_VALUE if fill_color is NULL.
// CL_INVALID_VALUE if origin or region is NULL.
if fill_color.is_null() || origin.is_null() || region.is_null() {
return Err(CL_INVALID_VALUE);
}
let region = unsafe { CLVec::from_raw(region.cast()) };
let origin = unsafe { CLVec::from_raw(origin.cast()) };
// CL_INVALID_VALUE if the region being filled as specified by origin and region is out of
// bounds.
// CL_INVALID_VALUE if values in origin and region do not follow rules described in the argument
// description for origin and region.
validate_image_bounds(&i, origin, region)?;
// The fill color is a single floating-point value if the channel order is CL_DEPTH. Otherwise,
// the fill color is a four component RGBA floating-point color value if the image channel data
// type is not an unnormalized signed or unsigned integer type, is a four component signed
// integer value if the image channel data type is an unnormalized signed integer type and is a
// four component unsigned integer value if the image channel data type is an unnormalized
// unsigned integer type.
let fill_color = if i.image_format.image_channel_order == CL_DEPTH {
[unsafe { fill_color.cast::<u32>().read() }, 0, 0, 0]
} else {
unsafe { fill_color.cast::<[u32; 4]>().read() }
};
create_and_queue(
q,
CL_COMMAND_FILL_BUFFER,
evs,
event,
false,
Box::new(move |_, ctx| i.fill(ctx, fill_color, &origin, &region)),
)
//• CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or compute row and/or slice pitch) for image are not supported by device associated with queue.
//• CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data type) for
//image are not supported by device associated with queue.
}
#[cl_entrypoint(clEnqueueCopyBufferToImage)]
fn enqueue_copy_buffer_to_image(
command_queue: cl_command_queue,
src_buffer: cl_mem,
dst_image: cl_mem,
src_offset: usize,
dst_origin: *const usize,
region: *const usize,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
let q = Queue::arc_from_raw(command_queue)?;
let src = Buffer::arc_from_raw(src_buffer)?;
let dst = Image::arc_from_raw(dst_image)?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
// CL_INVALID_CONTEXT if the context associated with command_queue, src_buffer and dst_image
// are not the same
if q.context != src.context || q.context != dst.context {
return Err(CL_INVALID_CONTEXT);
}
// Not supported with depth stencil or msaa images.
if dst.image_format.image_channel_order == CL_DEPTH_STENCIL || dst.image_desc.num_samples > 0 {
return Err(CL_INVALID_OPERATION);
}
// CL_INVALID_VALUE if dst_origin or region is NULL.
if dst_origin.is_null() || region.is_null() {
return Err(CL_INVALID_VALUE);
}
let region = unsafe { CLVec::from_raw(region) };
let dst_origin = unsafe { CLVec::from_raw(dst_origin) };
// CL_INVALID_VALUE if values in dst_origin and region do not follow rules described in the
// argument description for dst_origin and region.
// CL_INVALID_VALUE if the 1D, 2D or 3D rectangular region specified by dst_origin and
// dst_origin + region refer to a region outside dst_image,
validate_image_bounds(&dst, dst_origin, region)?;
create_and_queue(
q,
CL_COMMAND_COPY_BUFFER_TO_IMAGE,
evs,
event,
false,
Box::new(move |_, ctx| src.copy_to_image(ctx, &dst, src_offset, dst_origin, &region)),
)
//• CL_INVALID_MEM_OBJECT if src_buffer is not a valid buffer object or dst_image is not a valid image object or if dst_image is a 1D image buffer object created from src_buffer.
//• CL_INVALID_VALUE ... if the region specified by src_offset and src_offset + src_cb refer to a region outside src_buffer.
//• CL_MISALIGNED_SUB_BUFFER_OFFSET if src_buffer is a sub-buffer object and offset specified when the sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.
//• CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or compute row and/or slice pitch) for dst_image are not supported by device associated with queue.
//• CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data type) for dst_image are not supported by device associated with queue.
//• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store associated with src_buffer or dst_image.
//• CL_INVALID_OPERATION if the device associated with command_queue does not support images (i.e. CL_DEVICE_IMAGE_SUPPORT specified in the Device Queries table is CL_FALSE).
}
#[cl_entrypoint(clEnqueueCopyImageToBuffer)]
fn enqueue_copy_image_to_buffer(
command_queue: cl_command_queue,
src_image: cl_mem,
dst_buffer: cl_mem,
src_origin: *const usize,
region: *const usize,
dst_offset: usize,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
let q = Queue::arc_from_raw(command_queue)?;
let src = Image::arc_from_raw(src_image)?;
let dst = Buffer::arc_from_raw(dst_buffer)?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
// CL_INVALID_CONTEXT if the context associated with command_queue, src_image and dst_buffer
// are not the same
if q.context != src.context || q.context != dst.context {
return Err(CL_INVALID_CONTEXT);
}
// Not supported with depth stencil or msaa images.
if src.image_format.image_channel_order == CL_DEPTH_STENCIL || src.image_desc.num_samples > 0 {
return Err(CL_INVALID_OPERATION);
}
// CL_INVALID_VALUE if src_origin or region is NULL.
if src_origin.is_null() || region.is_null() {
return Err(CL_INVALID_VALUE);
}
let region = unsafe { CLVec::from_raw(region) };
let src_origin = unsafe { CLVec::from_raw(src_origin) };
// CL_INVALID_VALUE if values in src_origin and region do not follow rules described in the
// argument description for src_origin and region.
// CL_INVALID_VALUE if the 1D, 2D or 3D rectangular region specified by src_origin and
// src_origin + region refers to a region outside src_image, or if the region specified by
// dst_offset and dst_offset + dst_cb to a region outside dst_buffer.
validate_image_bounds(&src, src_origin, region)?;
create_and_queue(
q,
CL_COMMAND_COPY_IMAGE_TO_BUFFER,
evs,
event,
false,
Box::new(move |_, ctx| src.copy_to_buffer(ctx, &dst, src_origin, dst_offset, &region)),
)
//• CL_INVALID_MEM_OBJECT if src_image is not a valid image object or dst_buffer is not a valid buffer object or if src_image is a 1D image buffer object created from dst_buffer.
//• CL_INVALID_VALUE ... if the region specified by dst_offset and dst_offset + dst_cb to a region outside dst_buffer.
//• CL_MISALIGNED_SUB_BUFFER_OFFSET if dst_buffer is a sub-buffer object and offset specified when the sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue. This error code is missing before version 1.1.
//• CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or compute row and/or slice pitch) for src_image are not supported by device associated with queue.
//• CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data type) for src_image are not supported by device associated with queue.
//• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store associated with src_image or dst_buffer.
//• CL_INVALID_OPERATION if the device associated with command_queue does not support images (i.e. CL_DEVICE_IMAGE_SUPPORT specified in the Device Queries table is CL_FALSE).
}
#[cl_entrypoint(clEnqueueMapImage)]
fn enqueue_map_image(
command_queue: cl_command_queue,
image: cl_mem,
blocking_map: cl_bool,
map_flags: cl_map_flags,
origin: *const usize,
region: *const usize,
image_row_pitch: *mut usize,
image_slice_pitch: *mut usize,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<*mut ::std::os::raw::c_void> {
let q = Queue::arc_from_raw(command_queue)?;
let i = Image::arc_from_raw(image)?;
let block = check_cl_bool(blocking_map).ok_or(CL_INVALID_VALUE)?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
// CL_INVALID_VALUE ... or if values specified in map_flags are not valid.
validate_map_flags(&i, map_flags)?;
// CL_INVALID_CONTEXT if context associated with command_queue and image are not the same
if i.context != q.context {
return Err(CL_INVALID_CONTEXT);
}
// Not supported with depth stencil or msaa images.
if i.image_format.image_channel_order == CL_DEPTH_STENCIL || i.image_desc.num_samples > 0 {
return Err(CL_INVALID_OPERATION);
}
// CL_INVALID_VALUE if origin or region is NULL.
// CL_INVALID_VALUE if image_row_pitch is NULL.
if origin.is_null() || region.is_null() || image_row_pitch.is_null() {
return Err(CL_INVALID_VALUE);
}
let region = unsafe { CLVec::from_raw(region) };
let origin = unsafe { CLVec::from_raw(origin) };
// CL_INVALID_VALUE if region being mapped given by (origin, origin + region) is out of bounds
// CL_INVALID_VALUE if values in origin and region do not follow rules described in the argument
// description for origin and region.
validate_image_bounds(&i, origin, region)?;
let mut dummy_slice_pitch: usize = 0;
let image_slice_pitch = if image_slice_pitch.is_null() {
// CL_INVALID_VALUE if image is a 3D image, 1D or 2D image array object and
// image_slice_pitch is NULL.
if i.image_desc.is_array() || i.image_desc.image_type == CL_MEM_OBJECT_IMAGE3D {
return Err(CL_INVALID_VALUE);
}
&mut dummy_slice_pitch
} else {
unsafe { image_slice_pitch.as_mut().unwrap() }
};
let ptr = i.map(
origin,
region,
unsafe { image_row_pitch.as_mut().unwrap() },
image_slice_pitch,
map_flags != CL_MAP_READ.into(),
)?;
create_and_queue(
q,
CL_COMMAND_MAP_IMAGE,
evs,
event,
block,
Box::new(move |_, ctx| {
if map_flags != CL_MAP_WRITE_INVALIDATE_REGION.into() {
i.sync_map(ctx, ptr)
} else {
Ok(())
}
}),
)?;
Ok(ptr.as_ptr())
//• CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or compute row and/or slice pitch) for image are not supported by device associated with queue.
//• CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data type) for image are not supported by device associated with queue.
//• CL_MAP_FAILURE if there is a failure to map the requested region into the host address space. This error cannot occur for image objects created with CL_MEM_USE_HOST_PTR or CL_MEM_ALLOC_HOST_PTR.
//• CL_INVALID_OPERATION if the device associated with command_queue does not support images (i.e. CL_DEVICE_IMAGE_SUPPORT specified in the Device Queries table is CL_FALSE).
//• CL_INVALID_OPERATION if mapping would lead to overlapping regions being mapped for writing.
}
#[cl_entrypoint(clRetainMemObject)]
fn retain_mem_object(mem: cl_mem) -> CLResult<()> {
let m = MemBase::ref_from_raw(mem)?;
match m.base.get_type()? {
RusticlTypes::Buffer => Buffer::retain(mem),
RusticlTypes::Image => Image::retain(mem),
_ => Err(CL_INVALID_MEM_OBJECT),
}
}
#[cl_entrypoint(clReleaseMemObject)]
fn release_mem_object(mem: cl_mem) -> CLResult<()> {
let m = MemBase::ref_from_raw(mem)?;
match m.base.get_type()? {
RusticlTypes::Buffer => Buffer::release(mem),
RusticlTypes::Image => Image::release(mem),
_ => Err(CL_INVALID_MEM_OBJECT),
}
}
#[cl_entrypoint(clEnqueueUnmapMemObject)]
fn enqueue_unmap_mem_object(
command_queue: cl_command_queue,
memobj: cl_mem,
mapped_ptr: *mut ::std::os::raw::c_void,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
let q = Queue::arc_from_raw(command_queue)?;
let m = MemBase::arc_from_raw(memobj)?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
// CL_INVALID_CONTEXT if context associated with command_queue and memobj are not the same
if q.context != m.context {
return Err(CL_INVALID_CONTEXT);
}
// CL_INVALID_VALUE if mapped_ptr is not a valid pointer returned by clEnqueueMapBuffer or
// clEnqueueMapImage for memobj.
if !m.is_mapped_ptr(mapped_ptr) {
return Err(CL_INVALID_VALUE);
}
// SAFETY: it's required that applications do not cause data races
let mapped_ptr = unsafe { MutMemoryPtr::from_ptr(mapped_ptr) };
let needs_sync = m.unmap(mapped_ptr)?;
create_and_queue(
q,
CL_COMMAND_UNMAP_MEM_OBJECT,
evs,
event,
false,
Box::new(move |_, ctx| {
if needs_sync {
m.sync_unmap(ctx, mapped_ptr)
} else {
Ok(())
}
}),
)
}
#[cl_entrypoint(clEnqueueMigrateMemObjects)]
fn enqueue_migrate_mem_objects(
command_queue: cl_command_queue,
num_mem_objects: cl_uint,
mem_objects: *const cl_mem,
flags: cl_mem_migration_flags,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
let q = Queue::arc_from_raw(command_queue)?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
let bufs = MemBase::refs_from_arr(mem_objects, num_mem_objects)?;
// CL_INVALID_VALUE if num_mem_objects is zero or if mem_objects is NULL.
if bufs.is_empty() {
return Err(CL_INVALID_VALUE);
}
// CL_INVALID_CONTEXT if the context associated with command_queue and memory objects in
// mem_objects are not the same
if bufs.iter().any(|b| b.context != q.context) {
return Err(CL_INVALID_CONTEXT);
}
// CL_INVALID_VALUE if flags is not 0 or is not any of the values described in the table above.
if flags != 0
&& bit_check(
flags,
!(CL_MIGRATE_MEM_OBJECT_HOST | CL_MIGRATE_MEM_OBJECT_CONTENT_UNDEFINED),
)
{
return Err(CL_INVALID_VALUE);
}
// we should do something, but it's legal to not do anything at all
create_and_queue(
q,
CL_COMMAND_MIGRATE_MEM_OBJECTS,
evs,
event,
false,
Box::new(|_, _| Ok(())),
)
//• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for the specified set of memory objects in mem_objects.
}
#[cl_info_entrypoint(clGetPipeInfo)]
unsafe impl CLInfo<cl_pipe_info> for cl_mem {
fn query(&self, _q: cl_pipe_info, _v: CLInfoValue) -> CLResult<CLInfoRes> {
// CL_INVALID_MEM_OBJECT if pipe is a not a valid pipe object.
Err(CL_INVALID_MEM_OBJECT)
}
}
pub fn svm_alloc(
context: cl_context,
flags: cl_svm_mem_flags,
size: usize,
mut alignment: cl_uint,
) -> CLResult<*mut c_void> {
// clSVMAlloc will fail if
// context is not a valid context
let c = Context::ref_from_raw(context)?;
// or no devices in context support SVM.
if !c.has_svm_devs() {
return Err(CL_INVALID_OPERATION);
}
// flags does not contain CL_MEM_SVM_FINE_GRAIN_BUFFER but does contain CL_MEM_SVM_ATOMICS.
if !bit_check(flags, CL_MEM_SVM_FINE_GRAIN_BUFFER) && bit_check(flags, CL_MEM_SVM_ATOMICS) {
return Err(CL_INVALID_VALUE);
}
// size is 0 or > CL_DEVICE_MAX_MEM_ALLOC_SIZE value for any device in context.
if size == 0 || checked_compare(size, Ordering::Greater, c.max_mem_alloc()) {
return Err(CL_INVALID_VALUE);
}
if alignment == 0 {
alignment = mem::size_of::<[u64; 16]>() as cl_uint;
}
// alignment is not a power of two
if !alignment.is_power_of_two() {
return Err(CL_INVALID_VALUE);
}
let layout;
let ptr;
// SAFETY: we already verify the parameters to from_size_align above and layout is of non zero
// size
unsafe {
layout = Layout::from_size_align_unchecked(size, alignment as usize);
ptr = alloc::alloc(layout);
}
if ptr.is_null() {
return Err(CL_OUT_OF_HOST_MEMORY);
}
c.add_svm_ptr(ptr as usize, layout);
Ok(ptr.cast())
// Values specified in flags do not follow rules described for supported values in the SVM Memory Flags table.
// CL_MEM_SVM_FINE_GRAIN_BUFFER or CL_MEM_SVM_ATOMICS is specified in flags and these are not supported by at least one device in context.
// The values specified in flags are not valid, i.e. dont match those defined in the SVM Memory Flags table.
// the OpenCL implementation cannot support the specified alignment for at least one device in context.
// There was a failure to allocate resources.
}
fn svm_free_impl(c: &Context, svm_pointer: usize) {
if let Some(layout) = c.remove_svm_ptr(svm_pointer) {
// SAFETY: we make sure that svm_pointer is a valid allocation and reuse the same layout
// from the allocation
unsafe {
alloc::dealloc(svm_pointer as *mut u8, layout);
}
}
}
pub fn svm_free(context: cl_context, svm_pointer: usize) -> CLResult<()> {
let c = Context::ref_from_raw(context)?;
svm_free_impl(c, svm_pointer);
Ok(())
}
fn enqueue_svm_free_impl(
command_queue: cl_command_queue,
num_svm_pointers: cl_uint,
svm_pointers: *mut *mut c_void,
pfn_free_func: Option<FuncSVMFreeCb>,
user_data: *mut c_void,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
cmd_type: cl_command_type,
) -> CLResult<()> {
let q = Queue::arc_from_raw(command_queue)?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
// CL_INVALID_VALUE if num_svm_pointers is 0 and svm_pointers is non-NULL, or if svm_pointers is
// NULL and num_svm_pointers is not 0.
if num_svm_pointers == 0 && !svm_pointers.is_null()
|| num_svm_pointers != 0 && svm_pointers.is_null()
{
return Err(CL_INVALID_VALUE);
}
// CL_INVALID_OPERATION if the device associated with command queue does not support SVM.
if !q.device.svm_supported() {
return Err(CL_INVALID_OPERATION);
}
// The application is allowed to reuse or free the memory referenced by `svm_pointers` after this
// function returns, so we have to make a copy.
let mut svm_pointers = if !svm_pointers.is_null() {
// SAFETY: num_svm_pointers specifies the amount of elements in svm_pointers
unsafe { slice::from_raw_parts(svm_pointers.cast(), num_svm_pointers as usize) }.to_vec()
} else {
// A slice must not be created from a raw null pointer, so simply create
// an empty vec instead.
Vec::new()
};
// SAFETY: The requirements on `SVMFreeCb::new` match the requirements
// imposed by the OpenCL specification. It is the caller's duty to uphold them.
let cb_opt = unsafe { SVMFreeCb::new(pfn_free_func, user_data) }.ok();
create_and_queue(
q,
cmd_type,
evs,
event,
false,
Box::new(move |q, _| {
if let Some(cb) = cb_opt {
cb.call(q, &mut svm_pointers);
} else {
for ptr in svm_pointers {
svm_free_impl(&q.context, ptr);
}
}
Ok(())
}),
)
}
#[cl_entrypoint(clEnqueueSVMFree)]
fn enqueue_svm_free(
command_queue: cl_command_queue,
num_svm_pointers: cl_uint,
svm_pointers: *mut *mut c_void,
pfn_free_func: Option<FuncSVMFreeCb>,
user_data: *mut c_void,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
enqueue_svm_free_impl(
command_queue,
num_svm_pointers,
svm_pointers,
pfn_free_func,
user_data,
num_events_in_wait_list,
event_wait_list,
event,
CL_COMMAND_SVM_FREE,
)
}
#[cl_entrypoint(clEnqueueSVMFreeARM)]
fn enqueue_svm_free_arm(
command_queue: cl_command_queue,
num_svm_pointers: cl_uint,
svm_pointers: *mut *mut c_void,
pfn_free_func: Option<FuncSVMFreeCb>,
user_data: *mut c_void,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
enqueue_svm_free_impl(
command_queue,
num_svm_pointers,
svm_pointers,
pfn_free_func,
user_data,
num_events_in_wait_list,
event_wait_list,
event,
CL_COMMAND_SVM_FREE_ARM,
)
}
fn enqueue_svm_memcpy_impl(
command_queue: cl_command_queue,
blocking_copy: cl_bool,
dst_ptr: *mut c_void,
src_ptr: *const c_void,
size: usize,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
cmd_type: cl_command_type,
) -> CLResult<()> {
let q = Queue::arc_from_raw(command_queue)?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
let block = check_cl_bool(blocking_copy).ok_or(CL_INVALID_VALUE)?;
// CL_INVALID_OPERATION if the device associated with command queue does not support SVM.
if !q.device.svm_supported() {
return Err(CL_INVALID_OPERATION);
}
// CL_MEM_COPY_OVERLAP if the values specified for dst_ptr, src_ptr and size result in an
// overlapping copy.
let dst_ptr_addr = dst_ptr as usize;
let src_ptr_addr = src_ptr as usize;
if (src_ptr_addr <= dst_ptr_addr && dst_ptr_addr < src_ptr_addr + size)
|| (dst_ptr_addr <= src_ptr_addr && src_ptr_addr < dst_ptr_addr + size)
{
return Err(CL_MEM_COPY_OVERLAP);
}
// CAST: We have no idea about the type or initialization status of these bytes.
// MaybeUninit<u8> is the safe bet.
let src_ptr = src_ptr.cast::<MaybeUninit<u8>>();
// CAST: We have no idea about the type or initialization status of these bytes.
// MaybeUninit<u8> is the safe bet.
let dst_ptr = dst_ptr.cast::<MaybeUninit<u8>>();
// SAFETY: It is up to the application to ensure the memory is valid to read for `size` bytes
// and that it doesn't modify it until the command has completed.
let src = unsafe { cl_slice::from_raw_parts(src_ptr, size)? };
// SAFETY: We've ensured there's no aliasing between src and dst. It is up to the application
// to ensure the memory is valid to read and write for `size` bytes and that it doesn't modify
// or read from it until the command has completed.
let dst = unsafe { cl_slice::from_raw_parts_mut(dst_ptr, size)? };
create_and_queue(
q,
cmd_type,
evs,
event,
block,
Box::new(move |_, _| {
dst.copy_from_slice(src);
Ok(())
}),
)
}
#[cl_entrypoint(clEnqueueSVMMemcpy)]
fn enqueue_svm_memcpy(
command_queue: cl_command_queue,
blocking_copy: cl_bool,
dst_ptr: *mut c_void,
src_ptr: *const c_void,
size: usize,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
enqueue_svm_memcpy_impl(
command_queue,
blocking_copy,
dst_ptr,
src_ptr,
size,
num_events_in_wait_list,
event_wait_list,
event,
CL_COMMAND_SVM_MEMCPY,
)
}
#[cl_entrypoint(clEnqueueSVMMemcpyARM)]
fn enqueue_svm_memcpy_arm(
command_queue: cl_command_queue,
blocking_copy: cl_bool,
dst_ptr: *mut c_void,
src_ptr: *const c_void,
size: usize,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
enqueue_svm_memcpy_impl(
command_queue,
blocking_copy,
dst_ptr,
src_ptr,
size,
num_events_in_wait_list,
event_wait_list,
event,
CL_COMMAND_SVM_MEMCPY_ARM,
)
}
fn enqueue_svm_mem_fill_impl(
command_queue: cl_command_queue,
svm_ptr: *mut ::std::os::raw::c_void,
pattern: *const ::std::os::raw::c_void,
pattern_size: usize,
size: usize,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
cmd_type: cl_command_type,
) -> CLResult<()> {
let q = Queue::arc_from_raw(command_queue)?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
// CL_INVALID_OPERATION if the device associated with command queue does not support SVM.
if !q.device.svm_supported() {
return Err(CL_INVALID_OPERATION);
}
// CL_INVALID_VALUE if pattern is NULL [...]
if pattern.is_null() {
return Err(CL_INVALID_VALUE);
}
// CL_INVALID_VALUE if size is not a multiple of pattern_size.
if size % pattern_size != 0 {
return Err(CL_INVALID_VALUE);
}
// The provided `$bytesize` must equal `pattern_size`.
macro_rules! generate_fill_closure {
($bytesize:literal) => {{
// We need the value of `$bytesize`` at compile time, so we need to pass it in, but it
// should always match `pattern_size`.
assert!($bytesize == pattern_size);
// Three reasons we define our own bag-of-bytes type here:
//
// We'd otherwise have to pass a type to this macro. Verifying that the type we passed
// upholds all the properties we need or want is more trouble than defining our own.
//
// The primitive Rust types only go up to `u128` anyway and their alignments are
// platfrom defined. E.g. At the time of this writing `u128` only has an alignment of 8
// on x86-64, even though its size is 16. Defining our own type with an alignment of 16
// allows the compiler to generate better code.
//
// The alignment of OpenCL types is currently what we need on x86-64, but the spec
// explicitly states that's just a recommendation and ultimately it's up to the
// cl_platform.h header. The very descriptive names of the CL types don't make
// verifying the match calling this macro any easier on a glance.
// "Was `cl_uint` 4 byte or 8 byte? Eh, I'm sure nobody got it wrong by accident."
#[repr(C)]
#[repr(align($bytesize))]
#[derive(Copy, Clone)]
struct Pattern([u8; $bytesize]);
// Just to make sure the compiler didn't generate anything weird.
static_assert!($bytesize == mem::size_of::<Pattern>());
static_assert!($bytesize == mem::align_of::<Pattern>());
// CAST: We don't know exactly which type `pattern` points to, but we know it's an
// Application Scalar Data Type (cl_char, cl_ulong, etc.) or an Application Vector Data
// Type (cl_double4, etc.). All of them are `Copy`, do not contain padding bytes, and
// have no invalid bit patterns. AKA they are POD data types.
// Since we only copy it around, we can cast to any POD type as long as its size
// matches `pattern_size`.
let pattern_ptr = pattern.cast::<Pattern>();
// The application is allowed to reuse or free the memory referenced by `pattern_ptr`
// after this function returns, so we need to create a copy.
//
// There's no explicit alignment guarantee and we don't rely on `Pattern` matching the
// alignment of whichever Application Data Type we're actually presented with. Thus, do
// an unaligned read.
//
// SAFETY: We've checked that `pattern_ptr` is not NULL above. It is otherwise the
// calling application's responsibility to ensure that it is valid for reads of
// `pattern_size` bytes and properly initialized.
// Creating a bitwise copy can't create memory safety issues, since `Pattern` is `Copy`.
let pattern = unsafe { pattern_ptr.read_unaligned() };
// CAST: Same as with `pattern`, we don't know the exact type of `svm_ptr`, but we do
// know it's fine if we choose the same type here. The application might reasonably
// give us uninitialized memory though, so cast to a `MaybeUninit<Pattern>`, which has
// the same layout as `Pattern`.
let svm_ptr = svm_ptr.cast::<MaybeUninit<Pattern>>();
// SAFETY: It is the calling application's responsibility to ensure that `svm_ptr` is
// valid for reads and writes up to `size` bytes.
// Since `pattern_size == mem::size_of::<Pattern>()` and `MaybeUninit<Pattern>` has the
// same layout as `Pattern`, we know that
// `size / pattern_size * mem::size_of<MaybeUninit<Pattern>>` equals `size`.
//
// Since we're creating a `&[MaybeUninit<Pattern>]` the initialization status does not
// matter.
//
// From here on out we only access the referenced memory though this slice. In
// particular, since we've made a copy of `pattern`, it doesn't matter if the memory
// region referenced by `pattern` aliases the one referenced by this slice. It is up to
// the application not to access it at all until this command has been completed.
let svm_slice = unsafe { cl_slice::from_raw_parts_mut(svm_ptr, size / pattern_size)? };
Box::new(move |_, _| {
for x in svm_slice {
x.write(pattern);
}
Ok(())
})
}};
}
// Generate optimized code paths for each of the possible pattern sizes.
let work: EventSig = match pattern_size {
1 => generate_fill_closure!(1),
2 => generate_fill_closure!(2),
4 => generate_fill_closure!(4),
8 => generate_fill_closure!(8),
16 => generate_fill_closure!(16),
32 => generate_fill_closure!(32),
64 => generate_fill_closure!(64),
128 => generate_fill_closure!(128),
_ => {
// CL_INVALID_VALUE if [...] pattern_size is 0 or if pattern_size is not one of
// {1, 2, 4, 8, 16, 32, 64, 128}.
return Err(CL_INVALID_VALUE);
}
};
create_and_queue(q, cmd_type, evs, event, false, work)
}
#[cl_entrypoint(clEnqueueSVMMemFill)]
fn enqueue_svm_mem_fill(
command_queue: cl_command_queue,
svm_ptr: *mut ::std::os::raw::c_void,
pattern: *const ::std::os::raw::c_void,
pattern_size: usize,
size: usize,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
enqueue_svm_mem_fill_impl(
command_queue,
svm_ptr,
pattern,
pattern_size,
size,
num_events_in_wait_list,
event_wait_list,
event,
CL_COMMAND_SVM_MEMFILL,
)
}
#[cl_entrypoint(clEnqueueSVMMemFillARM)]
fn enqueue_svm_mem_fill_arm(
command_queue: cl_command_queue,
svm_ptr: *mut ::std::os::raw::c_void,
pattern: *const ::std::os::raw::c_void,
pattern_size: usize,
size: usize,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
enqueue_svm_mem_fill_impl(
command_queue,
svm_ptr,
pattern,
pattern_size,
size,
num_events_in_wait_list,
event_wait_list,
event,
CL_COMMAND_SVM_MEMFILL_ARM,
)
}
fn enqueue_svm_map_impl(
command_queue: cl_command_queue,
blocking_map: cl_bool,
flags: cl_map_flags,
svm_ptr: *mut ::std::os::raw::c_void,
size: usize,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
cmd_type: cl_command_type,
) -> CLResult<()> {
let q = Queue::arc_from_raw(command_queue)?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
let block = check_cl_bool(blocking_map).ok_or(CL_INVALID_VALUE)?;
// CL_INVALID_OPERATION if the device associated with command queue does not support SVM.
if !q.device.svm_supported() {
return Err(CL_INVALID_OPERATION);
}
// CL_INVALID_VALUE if svm_ptr is NULL.
if svm_ptr.is_null() {
return Err(CL_INVALID_VALUE);
}
// CL_INVALID_VALUE if size is 0 ...
if size == 0 {
return Err(CL_INVALID_VALUE);
}
// ... or if values specified in map_flags are not valid.
validate_map_flags_common(flags)?;
create_and_queue(q, cmd_type, evs, event, block, Box::new(|_, _| Ok(())))
}
#[cl_entrypoint(clEnqueueSVMMap)]
fn enqueue_svm_map(
command_queue: cl_command_queue,
blocking_map: cl_bool,
flags: cl_map_flags,
svm_ptr: *mut ::std::os::raw::c_void,
size: usize,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
enqueue_svm_map_impl(
command_queue,
blocking_map,
flags,
svm_ptr,
size,
num_events_in_wait_list,
event_wait_list,
event,
CL_COMMAND_SVM_MAP,
)
}
#[cl_entrypoint(clEnqueueSVMMapARM)]
fn enqueue_svm_map_arm(
command_queue: cl_command_queue,
blocking_map: cl_bool,
flags: cl_map_flags,
svm_ptr: *mut ::std::os::raw::c_void,
size: usize,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
enqueue_svm_map_impl(
command_queue,
blocking_map,
flags,
svm_ptr,
size,
num_events_in_wait_list,
event_wait_list,
event,
CL_COMMAND_SVM_MAP_ARM,
)
}
fn enqueue_svm_unmap_impl(
command_queue: cl_command_queue,
svm_ptr: *mut ::std::os::raw::c_void,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
cmd_type: cl_command_type,
) -> CLResult<()> {
let q = Queue::arc_from_raw(command_queue)?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
// CL_INVALID_OPERATION if the device associated with command queue does not support SVM.
if !q.device.svm_supported() {
return Err(CL_INVALID_OPERATION);
}
// CL_INVALID_VALUE if svm_ptr is NULL.
if svm_ptr.is_null() {
return Err(CL_INVALID_VALUE);
}
create_and_queue(q, cmd_type, evs, event, false, Box::new(|_, _| Ok(())))
}
#[cl_entrypoint(clEnqueueSVMUnmap)]
fn enqueue_svm_unmap(
command_queue: cl_command_queue,
svm_ptr: *mut ::std::os::raw::c_void,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
enqueue_svm_unmap_impl(
command_queue,
svm_ptr,
num_events_in_wait_list,
event_wait_list,
event,
CL_COMMAND_SVM_UNMAP,
)
}
#[cl_entrypoint(clEnqueueSVMUnmapARM)]
fn enqueue_svm_unmap_arm(
command_queue: cl_command_queue,
svm_ptr: *mut ::std::os::raw::c_void,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
enqueue_svm_unmap_impl(
command_queue,
svm_ptr,
num_events_in_wait_list,
event_wait_list,
event,
CL_COMMAND_SVM_UNMAP_ARM,
)
}
#[cl_entrypoint(clEnqueueSVMMigrateMem)]
fn enqueue_svm_migrate_mem(
command_queue: cl_command_queue,
num_svm_pointers: cl_uint,
svm_pointers: *mut *const ::std::os::raw::c_void,
sizes: *const usize,
flags: cl_mem_migration_flags,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
let q = Queue::arc_from_raw(command_queue)?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
// CL_INVALID_OPERATION if the device associated with command queue does not support SVM.
if !q.device.svm_supported() {
return Err(CL_INVALID_OPERATION);
}
// CL_INVALID_VALUE if num_svm_pointers is zero
if num_svm_pointers == 0 {
return Err(CL_INVALID_VALUE);
}
let num_svm_pointers = num_svm_pointers as usize;
// SAFETY: Just hoping the application is alright.
let mut svm_pointers: Vec<usize> =
unsafe { cl_slice::from_raw_parts(svm_pointers.cast(), num_svm_pointers)? }.to_owned();
// if sizes is NULL, every allocation containing the pointers need to be migrated
let mut sizes = if sizes.is_null() {
vec![0; num_svm_pointers]
} else {
unsafe { cl_slice::from_raw_parts(sizes, num_svm_pointers)? }.to_owned()
};
// CL_INVALID_VALUE if sizes[i] is non-zero range [svm_pointers[i], svm_pointers[i]+sizes[i]) is
// not contained within an existing clSVMAlloc allocation.
for (ptr, size) in svm_pointers.iter_mut().zip(&mut sizes) {
if let Some((alloc, alloc_size)) = q.context.find_svm_alloc(*ptr) {
let ptr_addr = *ptr;
let alloc_addr = alloc as usize;
// if the offset + size is bigger than the allocation we are out of bounds
if (ptr_addr - alloc_addr) + *size <= alloc_size {
// if the size is 0, the entire allocation should be migrated
if *size == 0 {
*ptr = alloc as usize;
*size = alloc_size;
}
continue;
}
}
return Err(CL_INVALID_VALUE);
}
let to_device = !bit_check(flags, CL_MIGRATE_MEM_OBJECT_HOST);
let content_undefined = bit_check(flags, CL_MIGRATE_MEM_OBJECT_CONTENT_UNDEFINED);
create_and_queue(
q,
CL_COMMAND_SVM_MIGRATE_MEM,
evs,
event,
false,
Box::new(move |_, ctx| {
ctx.svm_migrate(&svm_pointers, &sizes, to_device, content_undefined);
Ok(())
}),
)
}
#[cl_entrypoint(clCreatePipe)]
fn create_pipe(
_context: cl_context,
_flags: cl_mem_flags,
_pipe_packet_size: cl_uint,
_pipe_max_packets: cl_uint,
_properties: *const cl_pipe_properties,
) -> CLResult<cl_mem> {
Err(CL_INVALID_OPERATION)
}
#[cl_info_entrypoint(clGetGLTextureInfo)]
unsafe impl CLInfo<cl_gl_texture_info> for cl_mem {
fn query(&self, q: cl_gl_texture_info, v: CLInfoValue) -> CLResult<CLInfoRes> {
let mem = MemBase::ref_from_raw(*self)?;
match *q {
CL_GL_MIPMAP_LEVEL => v.write::<cl_GLint>(0),
CL_GL_TEXTURE_TARGET => v.write::<cl_GLenum>(
mem.gl_obj
.as_ref()
.ok_or(CL_INVALID_GL_OBJECT)?
.gl_object_target,
),
_ => Err(CL_INVALID_VALUE),
}
}
}
fn create_from_gl(
context: cl_context,
flags: cl_mem_flags,
target: cl_GLenum,
miplevel: cl_GLint,
texture: cl_GLuint,
) -> CLResult<cl_mem> {
let c = Context::arc_from_raw(context)?;
let gl_ctx_manager = &c.gl_ctx_manager;
// CL_INVALID_CONTEXT if context associated with command_queue was not created from an OpenGL context
if gl_ctx_manager.is_none() {
return Err(CL_INVALID_CONTEXT);
}
// CL_INVALID_VALUE if values specified in flags are not valid or if value specified in
// texture_target is not one of the values specified in the description of texture_target.
validate_mem_flags(flags, target == GL_ARRAY_BUFFER)?;
// CL_INVALID_MIP_LEVEL if miplevel is greather than zero and the OpenGL
// implementation does not support creating from non-zero mipmap levels.
if miplevel > 0 {
return Err(CL_INVALID_MIP_LEVEL);
}
// CL_INVALID_CONTEXT if context [..] was not created from a GL context.
if let Some(gl_ctx_manager) = gl_ctx_manager {
let gl_export_manager =
gl_ctx_manager.export_object(&c, target, flags as u32, miplevel, texture)?;
Ok(MemBase::from_gl(c, flags, &gl_export_manager)?)
} else {
Err(CL_INVALID_CONTEXT)
}
}
#[cl_entrypoint(clCreateFromGLTexture)]
fn create_from_gl_texture(
context: cl_context,
flags: cl_mem_flags,
target: cl_GLenum,
miplevel: cl_GLint,
texture: cl_GLuint,
) -> CLResult<cl_mem> {
// CL_INVALID_VALUE if values specified in flags are not valid or if value specified in
// texture_target is not one of the values specified in the description of texture_target.
if !is_valid_gl_texture(target) {
return Err(CL_INVALID_VALUE);
}
create_from_gl(context, flags, target, miplevel, texture)
}
#[cl_entrypoint(clCreateFromGLTexture2D)]
fn create_from_gl_texture_2d(
context: cl_context,
flags: cl_mem_flags,
target: cl_GLenum,
miplevel: cl_GLint,
texture: cl_GLuint,
) -> CLResult<cl_mem> {
// CL_INVALID_VALUE if values specified in flags are not valid or if value specified in
// texture_target is not one of the values specified in the description of texture_target.
if !is_valid_gl_texture_2d(target) {
return Err(CL_INVALID_VALUE);
}
create_from_gl(context, flags, target, miplevel, texture)
}
#[cl_entrypoint(clCreateFromGLTexture3D)]
fn create_from_gl_texture_3d(
context: cl_context,
flags: cl_mem_flags,
target: cl_GLenum,
miplevel: cl_GLint,
texture: cl_GLuint,
) -> CLResult<cl_mem> {
// CL_INVALID_VALUE if values specified in flags are not valid or if value specified in
// texture_target is not one of the values specified in the description of texture_target.
if target != GL_TEXTURE_3D {
return Err(CL_INVALID_VALUE);
}
create_from_gl(context, flags, target, miplevel, texture)
}
#[cl_entrypoint(clCreateFromGLBuffer)]
fn create_from_gl_buffer(
context: cl_context,
flags: cl_mem_flags,
bufobj: cl_GLuint,
) -> CLResult<cl_mem> {
create_from_gl(context, flags, GL_ARRAY_BUFFER, 0, bufobj)
}
#[cl_entrypoint(clCreateFromGLRenderbuffer)]
fn create_from_gl_renderbuffer(
context: cl_context,
flags: cl_mem_flags,
renderbuffer: cl_GLuint,
) -> CLResult<cl_mem> {
create_from_gl(context, flags, GL_RENDERBUFFER, 0, renderbuffer)
}
#[cl_entrypoint(clGetGLObjectInfo)]
fn get_gl_object_info(
memobj: cl_mem,
gl_object_type: *mut cl_gl_object_type,
gl_object_name: *mut cl_GLuint,
) -> CLResult<()> {
let m = MemBase::ref_from_raw(memobj)?;
match &m.gl_obj {
Some(gl_obj) => {
gl_object_type.write_checked(gl_obj.gl_object_type);
gl_object_name.write_checked(gl_obj.gl_object_name);
}
None => {
// CL_INVALID_GL_OBJECT if there is no GL object associated with memobj.
return Err(CL_INVALID_GL_OBJECT);
}
}
Ok(())
}
#[cl_entrypoint(clEnqueueAcquireGLObjects)]
fn enqueue_acquire_gl_objects(
command_queue: cl_command_queue,
num_objects: cl_uint,
mem_objects: *const cl_mem,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
let q = Queue::arc_from_raw(command_queue)?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
let objs = MemBase::arcs_from_arr(mem_objects, num_objects)?;
let gl_ctx_manager = &q.context.gl_ctx_manager;
// CL_INVALID_CONTEXT if context associated with command_queue was not created from an OpenGL context
if gl_ctx_manager.is_none() {
return Err(CL_INVALID_CONTEXT);
}
// CL_INVALID_GL_OBJECT if memory objects in mem_objects have not been created from a GL object(s).
if objs.iter().any(|o| o.gl_obj.is_none()) {
return Err(CL_INVALID_GL_OBJECT);
}
create_and_queue(
q,
CL_COMMAND_ACQUIRE_GL_OBJECTS,
evs,
event,
false,
Box::new(move |_, ctx| copy_cube_to_slice(ctx, &objs)),
)
}
#[cl_entrypoint(clEnqueueReleaseGLObjects)]
fn enqueue_release_gl_objects(
command_queue: cl_command_queue,
num_objects: cl_uint,
mem_objects: *const cl_mem,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
let q = Queue::arc_from_raw(command_queue)?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
let objs = MemBase::arcs_from_arr(mem_objects, num_objects)?;
let gl_ctx_manager = &q.context.gl_ctx_manager;
// CL_INVALID_CONTEXT if context associated with command_queue was not created from an OpenGL context
if gl_ctx_manager.is_none() {
return Err(CL_INVALID_CONTEXT);
}
// CL_INVALID_GL_OBJECT if memory objects in mem_objects have not been created from a GL object(s).
if objs.iter().any(|o| o.gl_obj.is_none()) {
return Err(CL_INVALID_GL_OBJECT);
}
create_and_queue(
q,
CL_COMMAND_RELEASE_GL_OBJECTS,
evs,
event,
false,
Box::new(move |_, ctx| copy_slice_to_cube(ctx, &objs)),
)
}