mesa/src/freedreno/vulkan/tu_pipeline.c
Jonathan Marek 5785bcc8a0 turnip: don't set SP_FS_CTRL_REG0_VARYING if only fragcoord is used
Fixes artifacts in the subpasses demo, which has a shader using fragcoord
without any varyings. It looks like setting this bit when there are no
varyings can cause weirdness in some cases (without this change, if the
previous shader had <= 8 varyings it would work, but with 9 varyings it
would have artifacts).

Signed-off-by: Jonathan Marek <jonathan@marek.ca>
Reviewed-by: Eric Anholt <eric@anholt.net>
Tested-by: Marge Bot <https://gitlab.freedesktop.org/mesa/mesa/merge_requests/3143>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/merge_requests/3143>
2019-12-18 19:03:37 -05:00

2155 lines
73 KiB
C

/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "tu_private.h"
#include "main/menums.h"
#include "nir/nir.h"
#include "nir/nir_builder.h"
#include "spirv/nir_spirv.h"
#include "util/debug.h"
#include "util/mesa-sha1.h"
#include "util/u_atomic.h"
#include "vk_format.h"
#include "vk_util.h"
#include "tu_cs.h"
struct tu_pipeline_builder
{
struct tu_device *device;
struct tu_pipeline_cache *cache;
struct tu_pipeline_layout *layout;
const VkAllocationCallbacks *alloc;
const VkGraphicsPipelineCreateInfo *create_info;
struct tu_shader *shaders[MESA_SHADER_STAGES];
uint32_t shader_offsets[MESA_SHADER_STAGES];
uint32_t binning_vs_offset;
uint32_t shader_total_size;
bool rasterizer_discard;
/* these states are affectd by rasterizer_discard */
VkSampleCountFlagBits samples;
bool use_depth_stencil_attachment;
bool use_color_attachments;
uint32_t color_attachment_count;
VkFormat color_attachment_formats[MAX_RTS];
};
static enum tu_dynamic_state_bits
tu_dynamic_state_bit(VkDynamicState state)
{
switch (state) {
case VK_DYNAMIC_STATE_VIEWPORT:
return TU_DYNAMIC_VIEWPORT;
case VK_DYNAMIC_STATE_SCISSOR:
return TU_DYNAMIC_SCISSOR;
case VK_DYNAMIC_STATE_LINE_WIDTH:
return TU_DYNAMIC_LINE_WIDTH;
case VK_DYNAMIC_STATE_DEPTH_BIAS:
return TU_DYNAMIC_DEPTH_BIAS;
case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
return TU_DYNAMIC_BLEND_CONSTANTS;
case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
return TU_DYNAMIC_DEPTH_BOUNDS;
case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
return TU_DYNAMIC_STENCIL_COMPARE_MASK;
case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
return TU_DYNAMIC_STENCIL_WRITE_MASK;
case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
return TU_DYNAMIC_STENCIL_REFERENCE;
default:
unreachable("invalid dynamic state");
return 0;
}
}
static gl_shader_stage
tu_shader_stage(VkShaderStageFlagBits stage)
{
switch (stage) {
case VK_SHADER_STAGE_VERTEX_BIT:
return MESA_SHADER_VERTEX;
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
return MESA_SHADER_TESS_CTRL;
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
return MESA_SHADER_TESS_EVAL;
case VK_SHADER_STAGE_GEOMETRY_BIT:
return MESA_SHADER_GEOMETRY;
case VK_SHADER_STAGE_FRAGMENT_BIT:
return MESA_SHADER_FRAGMENT;
case VK_SHADER_STAGE_COMPUTE_BIT:
return MESA_SHADER_COMPUTE;
default:
unreachable("invalid VkShaderStageFlagBits");
return MESA_SHADER_NONE;
}
}
static const VkVertexInputAttributeDescription *
tu_find_vertex_input_attribute(
const VkPipelineVertexInputStateCreateInfo *vi_info, uint32_t slot)
{
assert(slot >= VERT_ATTRIB_GENERIC0);
slot -= VERT_ATTRIB_GENERIC0;
for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
if (vi_info->pVertexAttributeDescriptions[i].location == slot)
return &vi_info->pVertexAttributeDescriptions[i];
}
return NULL;
}
static const VkVertexInputBindingDescription *
tu_find_vertex_input_binding(
const VkPipelineVertexInputStateCreateInfo *vi_info,
const VkVertexInputAttributeDescription *vi_attr)
{
assert(vi_attr);
for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
if (vi_info->pVertexBindingDescriptions[i].binding == vi_attr->binding)
return &vi_info->pVertexBindingDescriptions[i];
}
return NULL;
}
static bool
tu_logic_op_reads_dst(VkLogicOp op)
{
switch (op) {
case VK_LOGIC_OP_CLEAR:
case VK_LOGIC_OP_COPY:
case VK_LOGIC_OP_COPY_INVERTED:
case VK_LOGIC_OP_SET:
return false;
default:
return true;
}
}
static VkBlendFactor
tu_blend_factor_no_dst_alpha(VkBlendFactor factor)
{
/* treat dst alpha as 1.0 and avoid reading it */
switch (factor) {
case VK_BLEND_FACTOR_DST_ALPHA:
return VK_BLEND_FACTOR_ONE;
case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
return VK_BLEND_FACTOR_ZERO;
default:
return factor;
}
}
static enum pc_di_primtype
tu6_primtype(VkPrimitiveTopology topology)
{
switch (topology) {
case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
return DI_PT_POINTLIST;
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
return DI_PT_LINELIST;
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
return DI_PT_LINESTRIP;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
return DI_PT_TRILIST;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
return DI_PT_TRISTRIP;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
return DI_PT_TRIFAN;
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
return DI_PT_LINE_ADJ;
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
return DI_PT_LINESTRIP_ADJ;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
return DI_PT_TRI_ADJ;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
return DI_PT_TRISTRIP_ADJ;
case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
default:
unreachable("invalid primitive topology");
return DI_PT_NONE;
}
}
static enum adreno_compare_func
tu6_compare_func(VkCompareOp op)
{
switch (op) {
case VK_COMPARE_OP_NEVER:
return FUNC_NEVER;
case VK_COMPARE_OP_LESS:
return FUNC_LESS;
case VK_COMPARE_OP_EQUAL:
return FUNC_EQUAL;
case VK_COMPARE_OP_LESS_OR_EQUAL:
return FUNC_LEQUAL;
case VK_COMPARE_OP_GREATER:
return FUNC_GREATER;
case VK_COMPARE_OP_NOT_EQUAL:
return FUNC_NOTEQUAL;
case VK_COMPARE_OP_GREATER_OR_EQUAL:
return FUNC_GEQUAL;
case VK_COMPARE_OP_ALWAYS:
return FUNC_ALWAYS;
default:
unreachable("invalid VkCompareOp");
return FUNC_NEVER;
}
}
static enum adreno_stencil_op
tu6_stencil_op(VkStencilOp op)
{
switch (op) {
case VK_STENCIL_OP_KEEP:
return STENCIL_KEEP;
case VK_STENCIL_OP_ZERO:
return STENCIL_ZERO;
case VK_STENCIL_OP_REPLACE:
return STENCIL_REPLACE;
case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
return STENCIL_INCR_CLAMP;
case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
return STENCIL_DECR_CLAMP;
case VK_STENCIL_OP_INVERT:
return STENCIL_INVERT;
case VK_STENCIL_OP_INCREMENT_AND_WRAP:
return STENCIL_INCR_WRAP;
case VK_STENCIL_OP_DECREMENT_AND_WRAP:
return STENCIL_DECR_WRAP;
default:
unreachable("invalid VkStencilOp");
return STENCIL_KEEP;
}
}
static enum a3xx_rop_code
tu6_rop(VkLogicOp op)
{
switch (op) {
case VK_LOGIC_OP_CLEAR:
return ROP_CLEAR;
case VK_LOGIC_OP_AND:
return ROP_AND;
case VK_LOGIC_OP_AND_REVERSE:
return ROP_AND_REVERSE;
case VK_LOGIC_OP_COPY:
return ROP_COPY;
case VK_LOGIC_OP_AND_INVERTED:
return ROP_AND_INVERTED;
case VK_LOGIC_OP_NO_OP:
return ROP_NOOP;
case VK_LOGIC_OP_XOR:
return ROP_XOR;
case VK_LOGIC_OP_OR:
return ROP_OR;
case VK_LOGIC_OP_NOR:
return ROP_NOR;
case VK_LOGIC_OP_EQUIVALENT:
return ROP_EQUIV;
case VK_LOGIC_OP_INVERT:
return ROP_INVERT;
case VK_LOGIC_OP_OR_REVERSE:
return ROP_OR_REVERSE;
case VK_LOGIC_OP_COPY_INVERTED:
return ROP_COPY_INVERTED;
case VK_LOGIC_OP_OR_INVERTED:
return ROP_OR_INVERTED;
case VK_LOGIC_OP_NAND:
return ROP_NAND;
case VK_LOGIC_OP_SET:
return ROP_SET;
default:
unreachable("invalid VkLogicOp");
return ROP_NOOP;
}
}
static enum adreno_rb_blend_factor
tu6_blend_factor(VkBlendFactor factor)
{
switch (factor) {
case VK_BLEND_FACTOR_ZERO:
return FACTOR_ZERO;
case VK_BLEND_FACTOR_ONE:
return FACTOR_ONE;
case VK_BLEND_FACTOR_SRC_COLOR:
return FACTOR_SRC_COLOR;
case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
return FACTOR_ONE_MINUS_SRC_COLOR;
case VK_BLEND_FACTOR_DST_COLOR:
return FACTOR_DST_COLOR;
case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
return FACTOR_ONE_MINUS_DST_COLOR;
case VK_BLEND_FACTOR_SRC_ALPHA:
return FACTOR_SRC_ALPHA;
case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
return FACTOR_ONE_MINUS_SRC_ALPHA;
case VK_BLEND_FACTOR_DST_ALPHA:
return FACTOR_DST_ALPHA;
case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
return FACTOR_ONE_MINUS_DST_ALPHA;
case VK_BLEND_FACTOR_CONSTANT_COLOR:
return FACTOR_CONSTANT_COLOR;
case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
return FACTOR_ONE_MINUS_CONSTANT_COLOR;
case VK_BLEND_FACTOR_CONSTANT_ALPHA:
return FACTOR_CONSTANT_ALPHA;
case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
return FACTOR_ONE_MINUS_CONSTANT_ALPHA;
case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
return FACTOR_SRC_ALPHA_SATURATE;
case VK_BLEND_FACTOR_SRC1_COLOR:
return FACTOR_SRC1_COLOR;
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
return FACTOR_ONE_MINUS_SRC1_COLOR;
case VK_BLEND_FACTOR_SRC1_ALPHA:
return FACTOR_SRC1_ALPHA;
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
return FACTOR_ONE_MINUS_SRC1_ALPHA;
default:
unreachable("invalid VkBlendFactor");
return FACTOR_ZERO;
}
}
static enum a3xx_rb_blend_opcode
tu6_blend_op(VkBlendOp op)
{
switch (op) {
case VK_BLEND_OP_ADD:
return BLEND_DST_PLUS_SRC;
case VK_BLEND_OP_SUBTRACT:
return BLEND_SRC_MINUS_DST;
case VK_BLEND_OP_REVERSE_SUBTRACT:
return BLEND_DST_MINUS_SRC;
case VK_BLEND_OP_MIN:
return BLEND_MIN_DST_SRC;
case VK_BLEND_OP_MAX:
return BLEND_MAX_DST_SRC;
default:
unreachable("invalid VkBlendOp");
return BLEND_DST_PLUS_SRC;
}
}
static void
tu6_emit_vs_config(struct tu_cs *cs, struct tu_shader *shader,
const struct ir3_shader_variant *vs)
{
uint32_t sp_vs_ctrl =
A6XX_SP_VS_CTRL_REG0_THREADSIZE(FOUR_QUADS) |
A6XX_SP_VS_CTRL_REG0_FULLREGFOOTPRINT(vs->info.max_reg + 1) |
A6XX_SP_VS_CTRL_REG0_MERGEDREGS |
A6XX_SP_VS_CTRL_REG0_BRANCHSTACK(vs->branchstack);
if (vs->need_pixlod)
sp_vs_ctrl |= A6XX_SP_VS_CTRL_REG0_PIXLODENABLE;
uint32_t sp_vs_config = A6XX_SP_VS_CONFIG_NTEX(shader->texture_map.num_desc) |
A6XX_SP_VS_CONFIG_NSAMP(shader->sampler_map.num_desc);
if (vs->instrlen)
sp_vs_config |= A6XX_SP_VS_CONFIG_ENABLED;
tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_CTRL_REG0, 1);
tu_cs_emit(cs, sp_vs_ctrl);
tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_CONFIG, 2);
tu_cs_emit(cs, sp_vs_config);
tu_cs_emit(cs, vs->instrlen);
tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_VS_CNTL, 1);
tu_cs_emit(cs, A6XX_HLSQ_VS_CNTL_CONSTLEN(align(vs->constlen, 4)) |
A6XX_HLSQ_VS_CNTL_ENABLED);
}
static void
tu6_emit_hs_config(struct tu_cs *cs, struct tu_shader *shader,
const struct ir3_shader_variant *hs)
{
uint32_t sp_hs_config = 0;
if (hs->instrlen)
sp_hs_config |= A6XX_SP_HS_CONFIG_ENABLED;
tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_UNKNOWN_A831, 1);
tu_cs_emit(cs, 0);
tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_CONFIG, 2);
tu_cs_emit(cs, sp_hs_config);
tu_cs_emit(cs, hs->instrlen);
tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_HS_CNTL, 1);
tu_cs_emit(cs, A6XX_HLSQ_HS_CNTL_CONSTLEN(align(hs->constlen, 4)));
}
static void
tu6_emit_ds_config(struct tu_cs *cs, struct tu_shader *shader,
const struct ir3_shader_variant *ds)
{
uint32_t sp_ds_config = 0;
if (ds->instrlen)
sp_ds_config |= A6XX_SP_DS_CONFIG_ENABLED;
tu_cs_emit_pkt4(cs, REG_A6XX_SP_DS_CONFIG, 2);
tu_cs_emit(cs, sp_ds_config);
tu_cs_emit(cs, ds->instrlen);
tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_DS_CNTL, 1);
tu_cs_emit(cs, A6XX_HLSQ_DS_CNTL_CONSTLEN(align(ds->constlen, 4)));
}
static void
tu6_emit_gs_config(struct tu_cs *cs, struct tu_shader *shader,
const struct ir3_shader_variant *gs)
{
uint32_t sp_gs_config = 0;
if (gs->instrlen)
sp_gs_config |= A6XX_SP_GS_CONFIG_ENABLED;
tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_UNKNOWN_A871, 1);
tu_cs_emit(cs, 0);
tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_CONFIG, 2);
tu_cs_emit(cs, sp_gs_config);
tu_cs_emit(cs, gs->instrlen);
tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_GS_CNTL, 1);
tu_cs_emit(cs, A6XX_HLSQ_GS_CNTL_CONSTLEN(align(gs->constlen, 4)));
}
static void
tu6_emit_fs_config(struct tu_cs *cs, struct tu_shader *shader,
const struct ir3_shader_variant *fs)
{
uint32_t sp_fs_ctrl =
A6XX_SP_FS_CTRL_REG0_THREADSIZE(FOUR_QUADS) | 0x1000000 |
A6XX_SP_FS_CTRL_REG0_FULLREGFOOTPRINT(fs->info.max_reg + 1) |
A6XX_SP_FS_CTRL_REG0_MERGEDREGS |
A6XX_SP_FS_CTRL_REG0_BRANCHSTACK(fs->branchstack);
if (fs->total_in > 0)
sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_VARYING;
if (fs->need_pixlod)
sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_PIXLODENABLE;
uint32_t sp_fs_config = A6XX_SP_FS_CONFIG_NTEX(shader->texture_map.num_desc) |
A6XX_SP_FS_CONFIG_NSAMP(shader->sampler_map.num_desc) |
A6XX_SP_FS_CONFIG_NIBO(fs->image_mapping.num_ibo);
if (fs->instrlen)
sp_fs_config |= A6XX_SP_FS_CONFIG_ENABLED;
tu_cs_emit_pkt4(cs, REG_A6XX_SP_UNKNOWN_A9A8, 1);
tu_cs_emit(cs, 0);
tu_cs_emit_pkt4(cs, REG_A6XX_SP_UNKNOWN_AB00, 1);
tu_cs_emit(cs, 0x5);
tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_CTRL_REG0, 1);
tu_cs_emit(cs, sp_fs_ctrl);
tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_CONFIG, 2);
tu_cs_emit(cs, sp_fs_config);
tu_cs_emit(cs, fs->instrlen);
tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_FS_CNTL, 1);
tu_cs_emit(cs, A6XX_HLSQ_FS_CNTL_CONSTLEN(align(fs->constlen, 4)) |
A6XX_HLSQ_FS_CNTL_ENABLED);
tu_cs_emit_pkt4(cs, REG_A6XX_SP_IBO_COUNT, 1);
tu_cs_emit(cs, fs->image_mapping.num_ibo);
}
static void
tu6_emit_cs_config(struct tu_cs *cs, const struct tu_shader *shader,
const struct ir3_shader_variant *v)
{
tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1);
tu_cs_emit(cs, 0xff);
unsigned constlen = align(v->constlen, 4);
tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CS_CNTL, 1);
tu_cs_emit(cs, A6XX_HLSQ_CS_CNTL_CONSTLEN(constlen) |
A6XX_HLSQ_CS_CNTL_ENABLED);
tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_CONFIG, 2);
tu_cs_emit(cs, A6XX_SP_CS_CONFIG_ENABLED |
A6XX_SP_CS_CONFIG_NIBO(v->image_mapping.num_ibo) |
A6XX_SP_CS_CONFIG_NTEX(shader->texture_map.num_desc) |
A6XX_SP_CS_CONFIG_NSAMP(shader->sampler_map.num_desc));
tu_cs_emit(cs, v->instrlen);
tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_CTRL_REG0, 1);
tu_cs_emit(cs, A6XX_SP_CS_CTRL_REG0_THREADSIZE(FOUR_QUADS) |
A6XX_SP_CS_CTRL_REG0_FULLREGFOOTPRINT(v->info.max_reg + 1) |
A6XX_SP_CS_CTRL_REG0_MERGEDREGS |
A6XX_SP_CS_CTRL_REG0_BRANCHSTACK(v->branchstack) |
COND(v->need_pixlod, A6XX_SP_CS_CTRL_REG0_PIXLODENABLE));
tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_UNKNOWN_A9B1, 1);
tu_cs_emit(cs, 0x41);
uint32_t local_invocation_id =
ir3_find_sysval_regid(v, SYSTEM_VALUE_LOCAL_INVOCATION_ID);
uint32_t work_group_id =
ir3_find_sysval_regid(v, SYSTEM_VALUE_WORK_GROUP_ID);
tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CS_CNTL_0, 2);
tu_cs_emit(cs,
A6XX_HLSQ_CS_CNTL_0_WGIDCONSTID(work_group_id) |
A6XX_HLSQ_CS_CNTL_0_UNK0(regid(63, 0)) |
A6XX_HLSQ_CS_CNTL_0_UNK1(regid(63, 0)) |
A6XX_HLSQ_CS_CNTL_0_LOCALIDREGID(local_invocation_id));
tu_cs_emit(cs, 0x2fc); /* HLSQ_CS_UNKNOWN_B998 */
tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_IBO_COUNT, 1);
tu_cs_emit(cs, v->image_mapping.num_ibo);
}
static void
tu6_emit_vs_system_values(struct tu_cs *cs,
const struct ir3_shader_variant *vs)
{
const uint32_t vertexid_regid =
ir3_find_sysval_regid(vs, SYSTEM_VALUE_VERTEX_ID);
const uint32_t instanceid_regid =
ir3_find_sysval_regid(vs, SYSTEM_VALUE_INSTANCE_ID);
tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_1, 6);
tu_cs_emit(cs, A6XX_VFD_CONTROL_1_REGID4VTX(vertexid_regid) |
A6XX_VFD_CONTROL_1_REGID4INST(instanceid_regid) |
0xfcfc0000);
tu_cs_emit(cs, 0x0000fcfc); /* VFD_CONTROL_2 */
tu_cs_emit(cs, 0xfcfcfcfc); /* VFD_CONTROL_3 */
tu_cs_emit(cs, 0x000000fc); /* VFD_CONTROL_4 */
tu_cs_emit(cs, 0x0000fcfc); /* VFD_CONTROL_5 */
tu_cs_emit(cs, 0x00000000); /* VFD_CONTROL_6 */
}
static void
tu6_emit_vpc(struct tu_cs *cs,
const struct ir3_shader_variant *vs,
const struct ir3_shader_variant *fs,
bool binning_pass)
{
struct ir3_shader_linkage linkage = { 0 };
ir3_link_shaders(&linkage, vs, fs);
if (vs->shader->stream_output.num_outputs && !binning_pass)
tu_finishme("stream output");
BITSET_DECLARE(vpc_var_enables, 128) = { 0 };
for (uint32_t i = 0; i < linkage.cnt; i++) {
const uint32_t comp_count = util_last_bit(linkage.var[i].compmask);
for (uint32_t j = 0; j < comp_count; j++)
BITSET_SET(vpc_var_enables, linkage.var[i].loc + j);
}
tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VAR_DISABLE(0), 4);
tu_cs_emit(cs, ~vpc_var_enables[0]);
tu_cs_emit(cs, ~vpc_var_enables[1]);
tu_cs_emit(cs, ~vpc_var_enables[2]);
tu_cs_emit(cs, ~vpc_var_enables[3]);
/* a6xx finds position/pointsize at the end */
const uint32_t position_regid =
ir3_find_output_regid(vs, VARYING_SLOT_POS);
const uint32_t pointsize_regid =
ir3_find_output_regid(vs, VARYING_SLOT_PSIZ);
uint32_t pointsize_loc = 0xff, position_loc = 0xff;
if (position_regid != regid(63, 0)) {
position_loc = linkage.max_loc;
ir3_link_add(&linkage, position_regid, 0xf, linkage.max_loc);
}
if (pointsize_regid != regid(63, 0)) {
pointsize_loc = linkage.max_loc;
ir3_link_add(&linkage, pointsize_regid, 0x1, linkage.max_loc);
}
/* map vs outputs to VPC */
assert(linkage.cnt <= 32);
const uint32_t sp_vs_out_count = (linkage.cnt + 1) / 2;
const uint32_t sp_vs_vpc_dst_count = (linkage.cnt + 3) / 4;
uint32_t sp_vs_out[16];
uint32_t sp_vs_vpc_dst[8];
sp_vs_out[sp_vs_out_count - 1] = 0;
sp_vs_vpc_dst[sp_vs_vpc_dst_count - 1] = 0;
for (uint32_t i = 0; i < linkage.cnt; i++) {
((uint16_t *) sp_vs_out)[i] =
A6XX_SP_VS_OUT_REG_A_REGID(linkage.var[i].regid) |
A6XX_SP_VS_OUT_REG_A_COMPMASK(linkage.var[i].compmask);
((uint8_t *) sp_vs_vpc_dst)[i] =
A6XX_SP_VS_VPC_DST_REG_OUTLOC0(linkage.var[i].loc);
}
tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_OUT_REG(0), sp_vs_out_count);
tu_cs_emit_array(cs, sp_vs_out, sp_vs_out_count);
tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_VPC_DST_REG(0), sp_vs_vpc_dst_count);
tu_cs_emit_array(cs, sp_vs_vpc_dst, sp_vs_vpc_dst_count);
tu_cs_emit_pkt4(cs, REG_A6XX_VPC_CNTL_0, 1);
tu_cs_emit(cs, A6XX_VPC_CNTL_0_NUMNONPOSVAR(fs->total_in) |
(fs->total_in > 0 ? A6XX_VPC_CNTL_0_VARYING : 0) |
0xff00ff00);
tu_cs_emit_pkt4(cs, REG_A6XX_VPC_PACK, 1);
tu_cs_emit(cs, A6XX_VPC_PACK_POSITIONLOC(position_loc) |
A6XX_VPC_PACK_PSIZELOC(pointsize_loc) |
A6XX_VPC_PACK_STRIDE_IN_VPC(linkage.max_loc));
tu_cs_emit_pkt4(cs, REG_A6XX_VPC_GS_SIV_CNTL, 1);
tu_cs_emit(cs, 0x0000ffff); /* XXX */
tu_cs_emit_pkt4(cs, REG_A6XX_SP_PRIMITIVE_CNTL, 1);
tu_cs_emit(cs, A6XX_SP_PRIMITIVE_CNTL_VSOUT(linkage.cnt));
tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_1, 1);
tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_1_STRIDE_IN_VPC(linkage.max_loc) |
(vs->writes_psize ? A6XX_PC_PRIMITIVE_CNTL_1_PSIZE : 0));
}
static int
tu6_vpc_varying_mode(const struct ir3_shader_variant *fs,
uint32_t index,
uint8_t *interp_mode,
uint8_t *ps_repl_mode)
{
enum
{
INTERP_SMOOTH = 0,
INTERP_FLAT = 1,
INTERP_ZERO = 2,
INTERP_ONE = 3,
};
enum
{
PS_REPL_NONE = 0,
PS_REPL_S = 1,
PS_REPL_T = 2,
PS_REPL_ONE_MINUS_T = 3,
};
const uint32_t compmask = fs->inputs[index].compmask;
/* NOTE: varyings are packed, so if compmask is 0xb then first, second, and
* fourth component occupy three consecutive varying slots
*/
int shift = 0;
*interp_mode = 0;
*ps_repl_mode = 0;
if (fs->inputs[index].slot == VARYING_SLOT_PNTC) {
if (compmask & 0x1) {
*ps_repl_mode |= PS_REPL_S << shift;
shift += 2;
}
if (compmask & 0x2) {
*ps_repl_mode |= PS_REPL_T << shift;
shift += 2;
}
if (compmask & 0x4) {
*interp_mode |= INTERP_ZERO << shift;
shift += 2;
}
if (compmask & 0x8) {
*interp_mode |= INTERP_ONE << 6;
shift += 2;
}
} else if ((fs->inputs[index].interpolate == INTERP_MODE_FLAT) ||
fs->inputs[index].rasterflat) {
for (int i = 0; i < 4; i++) {
if (compmask & (1 << i)) {
*interp_mode |= INTERP_FLAT << shift;
shift += 2;
}
}
}
return shift;
}
static void
tu6_emit_vpc_varying_modes(struct tu_cs *cs,
const struct ir3_shader_variant *fs,
bool binning_pass)
{
uint32_t interp_modes[8] = { 0 };
uint32_t ps_repl_modes[8] = { 0 };
if (!binning_pass) {
for (int i = -1;
(i = ir3_next_varying(fs, i)) < (int) fs->inputs_count;) {
/* get the mode for input i */
uint8_t interp_mode;
uint8_t ps_repl_mode;
const int bits =
tu6_vpc_varying_mode(fs, i, &interp_mode, &ps_repl_mode);
/* OR the mode into the array */
const uint32_t inloc = fs->inputs[i].inloc * 2;
uint32_t n = inloc / 32;
uint32_t shift = inloc % 32;
interp_modes[n] |= interp_mode << shift;
ps_repl_modes[n] |= ps_repl_mode << shift;
if (shift + bits > 32) {
n++;
shift = 32 - shift;
interp_modes[n] |= interp_mode >> shift;
ps_repl_modes[n] |= ps_repl_mode >> shift;
}
}
}
tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_INTERP_MODE(0), 8);
tu_cs_emit_array(cs, interp_modes, 8);
tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_PS_REPL_MODE(0), 8);
tu_cs_emit_array(cs, ps_repl_modes, 8);
}
static void
tu6_emit_fs_inputs(struct tu_cs *cs, const struct ir3_shader_variant *fs)
{
uint32_t face_regid, coord_regid, zwcoord_regid, samp_id_regid;
uint32_t ij_pix_regid, ij_samp_regid, ij_cent_regid, ij_size_regid;
uint32_t smask_in_regid;
bool sample_shading = fs->per_samp; /* TODO | key->sample_shading; */
bool enable_varyings = fs->total_in > 0;
samp_id_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_ID);
smask_in_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_MASK_IN);
face_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRONT_FACE);
coord_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRAG_COORD);
zwcoord_regid = VALIDREG(coord_regid) ? coord_regid + 2 : regid(63, 0);
ij_pix_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PIXEL);
ij_samp_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_SAMPLE);
ij_cent_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_CENTROID);
ij_size_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_SIZE);
if (fs->num_sampler_prefetch > 0) {
assert(VALIDREG(ij_pix_regid));
/* also, it seems like ij_pix is *required* to be r0.x */
assert(ij_pix_regid == regid(0, 0));
}
tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_PREFETCH_CNTL, 1 + fs->num_sampler_prefetch);
tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CNTL_COUNT(fs->num_sampler_prefetch) |
A6XX_SP_FS_PREFETCH_CNTL_UNK4(regid(63, 0)) |
0x7000); // XXX);
for (int i = 0; i < fs->num_sampler_prefetch; i++) {
const struct ir3_sampler_prefetch *prefetch = &fs->sampler_prefetch[i];
tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CMD_SRC(prefetch->src) |
A6XX_SP_FS_PREFETCH_CMD_SAMP_ID(prefetch->samp_id) |
A6XX_SP_FS_PREFETCH_CMD_TEX_ID(prefetch->tex_id) |
A6XX_SP_FS_PREFETCH_CMD_DST(prefetch->dst) |
A6XX_SP_FS_PREFETCH_CMD_WRMASK(prefetch->wrmask) |
COND(prefetch->half_precision, A6XX_SP_FS_PREFETCH_CMD_HALF) |
A6XX_SP_FS_PREFETCH_CMD_CMD(prefetch->cmd));
}
tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CONTROL_1_REG, 5);
tu_cs_emit(cs, 0x7);
tu_cs_emit(cs, A6XX_HLSQ_CONTROL_2_REG_FACEREGID(face_regid) |
A6XX_HLSQ_CONTROL_2_REG_SAMPLEID(samp_id_regid) |
A6XX_HLSQ_CONTROL_2_REG_SAMPLEMASK(smask_in_regid) |
A6XX_HLSQ_CONTROL_2_REG_SIZE(ij_size_regid));
tu_cs_emit(cs, A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_PIXEL(ij_pix_regid) |
A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_CENTROID(ij_cent_regid) |
0xfc00fc00);
tu_cs_emit(cs, A6XX_HLSQ_CONTROL_4_REG_XYCOORDREGID(coord_regid) |
A6XX_HLSQ_CONTROL_4_REG_ZWCOORDREGID(zwcoord_regid) |
A6XX_HLSQ_CONTROL_4_REG_BARY_IJ_PIXEL_PERSAMP(ij_samp_regid) |
0x0000fc00);
tu_cs_emit(cs, 0xfc);
tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UNKNOWN_B980, 1);
tu_cs_emit(cs, enable_varyings ? 3 : 1);
tu_cs_emit_pkt4(cs, REG_A6XX_SP_UNKNOWN_A982, 1);
tu_cs_emit(cs, 0); /* XXX */
tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1);
tu_cs_emit(cs, 0xff); /* XXX */
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CNTL, 1);
tu_cs_emit(cs,
CONDREG(ij_pix_regid, A6XX_GRAS_CNTL_VARYING) |
CONDREG(ij_cent_regid, A6XX_GRAS_CNTL_CENTROID) |
CONDREG(ij_samp_regid, A6XX_GRAS_CNTL_PERSAMP_VARYING) |
COND(VALIDREG(ij_size_regid) && !sample_shading, A6XX_GRAS_CNTL_SIZE) |
COND(VALIDREG(ij_size_regid) && sample_shading, A6XX_GRAS_CNTL_SIZE_PERSAMP) |
COND(fs->frag_coord,
A6XX_GRAS_CNTL_SIZE |
A6XX_GRAS_CNTL_XCOORD |
A6XX_GRAS_CNTL_YCOORD |
A6XX_GRAS_CNTL_ZCOORD |
A6XX_GRAS_CNTL_WCOORD) |
COND(fs->frag_face, A6XX_GRAS_CNTL_SIZE));
tu_cs_emit_pkt4(cs, REG_A6XX_RB_RENDER_CONTROL0, 2);
tu_cs_emit(cs,
CONDREG(ij_pix_regid, A6XX_RB_RENDER_CONTROL0_VARYING) |
CONDREG(ij_cent_regid, A6XX_RB_RENDER_CONTROL0_CENTROID) |
CONDREG(ij_samp_regid, A6XX_RB_RENDER_CONTROL0_PERSAMP_VARYING) |
COND(enable_varyings, A6XX_RB_RENDER_CONTROL0_UNK10) |
COND(VALIDREG(ij_size_regid) && !sample_shading, A6XX_RB_RENDER_CONTROL0_SIZE) |
COND(VALIDREG(ij_size_regid) && sample_shading, A6XX_RB_RENDER_CONTROL0_SIZE_PERSAMP) |
COND(fs->frag_coord,
A6XX_RB_RENDER_CONTROL0_SIZE |
A6XX_RB_RENDER_CONTROL0_XCOORD |
A6XX_RB_RENDER_CONTROL0_YCOORD |
A6XX_RB_RENDER_CONTROL0_ZCOORD |
A6XX_RB_RENDER_CONTROL0_WCOORD) |
COND(fs->frag_face, A6XX_RB_RENDER_CONTROL0_SIZE));
tu_cs_emit(cs,
CONDREG(smask_in_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEMASK) |
CONDREG(samp_id_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEID) |
CONDREG(ij_size_regid, A6XX_RB_RENDER_CONTROL1_SIZE) |
COND(fs->frag_face, A6XX_RB_RENDER_CONTROL1_FACENESS));
}
static void
tu6_emit_fs_outputs(struct tu_cs *cs,
const struct ir3_shader_variant *fs,
uint32_t mrt_count)
{
uint32_t smask_regid, posz_regid;
posz_regid = ir3_find_output_regid(fs, FRAG_RESULT_DEPTH);
smask_regid = ir3_find_output_regid(fs, FRAG_RESULT_SAMPLE_MASK);
uint32_t fragdata_regid[8];
if (fs->color0_mrt) {
fragdata_regid[0] = ir3_find_output_regid(fs, FRAG_RESULT_COLOR);
for (uint32_t i = 1; i < ARRAY_SIZE(fragdata_regid); i++)
fragdata_regid[i] = fragdata_regid[0];
} else {
for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++)
fragdata_regid[i] = ir3_find_output_regid(fs, FRAG_RESULT_DATA0 + i);
}
tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_CNTL0, 2);
tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL0_DEPTH_REGID(posz_regid) |
A6XX_SP_FS_OUTPUT_CNTL0_SAMPMASK_REGID(smask_regid) |
0xfc000000);
tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL1_MRT(mrt_count));
tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_REG(0), 8);
for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++) {
// TODO we could have a mix of half and full precision outputs,
// we really need to figure out half-precision from IR3_REG_HALF
tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_REG_REGID(fragdata_regid[i]) |
(false ? A6XX_SP_FS_OUTPUT_REG_HALF_PRECISION : 0));
}
tu_cs_emit_pkt4(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 2);
tu_cs_emit(cs, COND(fs->writes_pos, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_Z) |
COND(fs->writes_smask, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_SAMPMASK));
tu_cs_emit(cs, A6XX_RB_FS_OUTPUT_CNTL1_MRT(mrt_count));
uint32_t gras_su_depth_plane_cntl = 0;
uint32_t rb_depth_plane_cntl = 0;
if (fs->no_earlyz | fs->writes_pos) {
gras_su_depth_plane_cntl |= A6XX_GRAS_SU_DEPTH_PLANE_CNTL_FRAG_WRITES_Z;
rb_depth_plane_cntl |= A6XX_RB_DEPTH_PLANE_CNTL_FRAG_WRITES_Z;
}
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_DEPTH_PLANE_CNTL, 1);
tu_cs_emit(cs, gras_su_depth_plane_cntl);
tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_PLANE_CNTL, 1);
tu_cs_emit(cs, rb_depth_plane_cntl);
}
static void
tu6_emit_shader_object(struct tu_cs *cs,
gl_shader_stage stage,
const struct ir3_shader_variant *variant,
const struct tu_bo *binary_bo,
uint32_t binary_offset)
{
uint16_t reg;
uint8_t opcode;
enum a6xx_state_block sb;
switch (stage) {
case MESA_SHADER_VERTEX:
reg = REG_A6XX_SP_VS_OBJ_START_LO;
opcode = CP_LOAD_STATE6_GEOM;
sb = SB6_VS_SHADER;
break;
case MESA_SHADER_TESS_CTRL:
reg = REG_A6XX_SP_HS_OBJ_START_LO;
opcode = CP_LOAD_STATE6_GEOM;
sb = SB6_HS_SHADER;
break;
case MESA_SHADER_TESS_EVAL:
reg = REG_A6XX_SP_DS_OBJ_START_LO;
opcode = CP_LOAD_STATE6_GEOM;
sb = SB6_DS_SHADER;
break;
case MESA_SHADER_GEOMETRY:
reg = REG_A6XX_SP_GS_OBJ_START_LO;
opcode = CP_LOAD_STATE6_GEOM;
sb = SB6_GS_SHADER;
break;
case MESA_SHADER_FRAGMENT:
reg = REG_A6XX_SP_FS_OBJ_START_LO;
opcode = CP_LOAD_STATE6_FRAG;
sb = SB6_FS_SHADER;
break;
case MESA_SHADER_COMPUTE:
reg = REG_A6XX_SP_CS_OBJ_START_LO;
opcode = CP_LOAD_STATE6_FRAG;
sb = SB6_CS_SHADER;
break;
default:
unreachable("invalid gl_shader_stage");
opcode = CP_LOAD_STATE6_GEOM;
sb = SB6_VS_SHADER;
break;
}
if (!variant->instrlen) {
tu_cs_emit_pkt4(cs, reg, 2);
tu_cs_emit_qw(cs, 0);
return;
}
assert(variant->type == stage);
const uint64_t binary_iova = binary_bo->iova + binary_offset;
assert((binary_iova & 0x3) == 0);
tu_cs_emit_pkt4(cs, reg, 2);
tu_cs_emit_qw(cs, binary_iova);
/* always indirect */
const bool indirect = true;
if (indirect) {
tu_cs_emit_pkt7(cs, opcode, 3);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
CP_LOAD_STATE6_0_NUM_UNIT(variant->instrlen));
tu_cs_emit_qw(cs, binary_iova);
} else {
const void *binary = binary_bo->map + binary_offset;
tu_cs_emit_pkt7(cs, opcode, 3 + variant->info.sizedwords);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
CP_LOAD_STATE6_0_NUM_UNIT(variant->instrlen));
tu_cs_emit_qw(cs, 0);
tu_cs_emit_array(cs, binary, variant->info.sizedwords);
}
}
static void
tu6_emit_immediates(struct tu_cs *cs, const struct ir3_shader_variant *v,
uint32_t opcode, enum a6xx_state_block block)
{
/* dummy variant */
if (!v->shader)
return;
const struct ir3_const_state *const_state = &v->shader->const_state;
uint32_t base = const_state->offsets.immediate;
int size = const_state->immediates_count;
/* truncate size to avoid writing constants that shader
* does not use:
*/
size = MIN2(size + base, v->constlen) - base;
if (size <= 0)
return;
tu_cs_emit_pkt7(cs, opcode, 3 + size * 4);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(block) |
CP_LOAD_STATE6_0_NUM_UNIT(size));
tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
for (unsigned i = 0; i < size; i++) {
tu_cs_emit(cs, const_state->immediates[i].val[0]);
tu_cs_emit(cs, const_state->immediates[i].val[1]);
tu_cs_emit(cs, const_state->immediates[i].val[2]);
tu_cs_emit(cs, const_state->immediates[i].val[3]);
}
}
static void
tu6_emit_program(struct tu_cs *cs,
const struct tu_pipeline_builder *builder,
const struct tu_bo *binary_bo,
bool binning_pass)
{
static const struct ir3_shader_variant dummy_variant = {
.type = MESA_SHADER_NONE
};
assert(builder->shaders[MESA_SHADER_VERTEX]);
const struct ir3_shader_variant *vs =
&builder->shaders[MESA_SHADER_VERTEX]->variants[0];
const struct ir3_shader_variant *hs =
builder->shaders[MESA_SHADER_TESS_CTRL]
? &builder->shaders[MESA_SHADER_TESS_CTRL]->variants[0]
: &dummy_variant;
const struct ir3_shader_variant *ds =
builder->shaders[MESA_SHADER_TESS_EVAL]
? &builder->shaders[MESA_SHADER_TESS_EVAL]->variants[0]
: &dummy_variant;
const struct ir3_shader_variant *gs =
builder->shaders[MESA_SHADER_GEOMETRY]
? &builder->shaders[MESA_SHADER_GEOMETRY]->variants[0]
: &dummy_variant;
const struct ir3_shader_variant *fs =
builder->shaders[MESA_SHADER_FRAGMENT]
? &builder->shaders[MESA_SHADER_FRAGMENT]->variants[0]
: &dummy_variant;
if (binning_pass) {
vs = &builder->shaders[MESA_SHADER_VERTEX]->variants[1];
fs = &dummy_variant;
}
tu6_emit_vs_config(cs, builder->shaders[MESA_SHADER_VERTEX], vs);
tu6_emit_hs_config(cs, builder->shaders[MESA_SHADER_TESS_CTRL], hs);
tu6_emit_ds_config(cs, builder->shaders[MESA_SHADER_TESS_EVAL], ds);
tu6_emit_gs_config(cs, builder->shaders[MESA_SHADER_GEOMETRY], gs);
tu6_emit_fs_config(cs, builder->shaders[MESA_SHADER_FRAGMENT], fs);
tu6_emit_vs_system_values(cs, vs);
tu6_emit_vpc(cs, vs, fs, binning_pass);
tu6_emit_vpc_varying_modes(cs, fs, binning_pass);
tu6_emit_fs_inputs(cs, fs);
tu6_emit_fs_outputs(cs, fs, builder->color_attachment_count);
tu6_emit_shader_object(cs, MESA_SHADER_VERTEX, vs, binary_bo,
binning_pass ? builder->binning_vs_offset : builder->shader_offsets[MESA_SHADER_VERTEX]);
tu6_emit_shader_object(cs, MESA_SHADER_FRAGMENT, fs, binary_bo,
builder->shader_offsets[MESA_SHADER_FRAGMENT]);
tu6_emit_immediates(cs, vs, CP_LOAD_STATE6_GEOM, SB6_VS_SHADER);
if (!binning_pass)
tu6_emit_immediates(cs, fs, CP_LOAD_STATE6_FRAG, SB6_FS_SHADER);
}
static void
tu6_emit_vertex_input(struct tu_cs *cs,
const struct ir3_shader_variant *vs,
const VkPipelineVertexInputStateCreateInfo *vi_info,
uint8_t bindings[MAX_VERTEX_ATTRIBS],
uint16_t strides[MAX_VERTEX_ATTRIBS],
uint16_t offsets[MAX_VERTEX_ATTRIBS],
uint32_t *count)
{
uint32_t vfd_decode_idx = 0;
for (uint32_t i = 0; i < vs->inputs_count; i++) {
if (vs->inputs[i].sysval || !vs->inputs[i].compmask)
continue;
const VkVertexInputAttributeDescription *vi_attr =
tu_find_vertex_input_attribute(vi_info, vs->inputs[i].slot);
const VkVertexInputBindingDescription *vi_binding =
tu_find_vertex_input_binding(vi_info, vi_attr);
assert(vi_attr && vi_binding);
const struct tu_native_format *format =
tu6_get_native_format(vi_attr->format);
assert(format && format->vtx >= 0);
uint32_t vfd_decode = A6XX_VFD_DECODE_INSTR_IDX(vfd_decode_idx) |
A6XX_VFD_DECODE_INSTR_FORMAT(format->vtx) |
A6XX_VFD_DECODE_INSTR_SWAP(format->swap) |
A6XX_VFD_DECODE_INSTR_UNK30;
if (vi_binding->inputRate == VK_VERTEX_INPUT_RATE_INSTANCE)
vfd_decode |= A6XX_VFD_DECODE_INSTR_INSTANCED;
if (!vk_format_is_int(vi_attr->format))
vfd_decode |= A6XX_VFD_DECODE_INSTR_FLOAT;
const uint32_t vfd_decode_step_rate = 1;
const uint32_t vfd_dest_cntl =
A6XX_VFD_DEST_CNTL_INSTR_WRITEMASK(vs->inputs[i].compmask) |
A6XX_VFD_DEST_CNTL_INSTR_REGID(vs->inputs[i].regid);
tu_cs_emit_pkt4(cs, REG_A6XX_VFD_DECODE(vfd_decode_idx), 2);
tu_cs_emit(cs, vfd_decode);
tu_cs_emit(cs, vfd_decode_step_rate);
tu_cs_emit_pkt4(cs, REG_A6XX_VFD_DEST_CNTL(vfd_decode_idx), 1);
tu_cs_emit(cs, vfd_dest_cntl);
bindings[vfd_decode_idx] = vi_binding->binding;
strides[vfd_decode_idx] = vi_binding->stride;
offsets[vfd_decode_idx] = vi_attr->offset;
vfd_decode_idx++;
assert(vfd_decode_idx <= MAX_VERTEX_ATTRIBS);
}
tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_0, 1);
tu_cs_emit(
cs, A6XX_VFD_CONTROL_0_VTXCNT(vfd_decode_idx) | (vfd_decode_idx << 8));
*count = vfd_decode_idx;
}
static uint32_t
tu6_guardband_adj(uint32_t v)
{
if (v > 256)
return (uint32_t)(511.0 - 65.0 * (log2(v) - 8.0));
else
return 511;
}
void
tu6_emit_viewport(struct tu_cs *cs, const VkViewport *viewport)
{
float offsets[3];
float scales[3];
scales[0] = viewport->width / 2.0f;
scales[1] = viewport->height / 2.0f;
scales[2] = viewport->maxDepth - viewport->minDepth;
offsets[0] = viewport->x + scales[0];
offsets[1] = viewport->y + scales[1];
offsets[2] = viewport->minDepth;
VkOffset2D min;
VkOffset2D max;
min.x = (int32_t) viewport->x;
max.x = (int32_t) ceilf(viewport->x + viewport->width);
if (viewport->height >= 0.0f) {
min.y = (int32_t) viewport->y;
max.y = (int32_t) ceilf(viewport->y + viewport->height);
} else {
min.y = (int32_t)(viewport->y + viewport->height);
max.y = (int32_t) ceilf(viewport->y);
}
/* the spec allows viewport->height to be 0.0f */
if (min.y == max.y)
max.y++;
assert(min.x >= 0 && min.x < max.x);
assert(min.y >= 0 && min.y < max.y);
VkExtent2D guardband_adj;
guardband_adj.width = tu6_guardband_adj(max.x - min.x);
guardband_adj.height = tu6_guardband_adj(max.y - min.y);
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_VPORT_XOFFSET_0, 6);
tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XOFFSET_0(offsets[0]));
tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XSCALE_0(scales[0]));
tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YOFFSET_0(offsets[1]));
tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YSCALE_0(scales[1]));
tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZOFFSET_0(offsets[2]));
tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZSCALE_0(scales[2]));
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0, 2);
tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(min.x) |
A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(min.y));
tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(max.x - 1) |
A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(max.y - 1));
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ, 1);
tu_cs_emit(cs,
A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_HORZ(guardband_adj.width) |
A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_VERT(guardband_adj.height));
}
void
tu6_emit_scissor(struct tu_cs *cs, const VkRect2D *scissor)
{
const VkOffset2D min = scissor->offset;
const VkOffset2D max = {
scissor->offset.x + scissor->extent.width,
scissor->offset.y + scissor->extent.height,
};
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0, 2);
tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(min.x) |
A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(min.y));
tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(max.x - 1) |
A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(max.y - 1));
}
static void
tu6_emit_gras_unknowns(struct tu_cs *cs)
{
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8000, 1);
tu_cs_emit(cs, 0x80);
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8001, 1);
tu_cs_emit(cs, 0x0);
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_LAYER_CNTL, 1);
tu_cs_emit(cs, 0x0);
}
static void
tu6_emit_point_size(struct tu_cs *cs)
{
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POINT_MINMAX, 2);
tu_cs_emit(cs, A6XX_GRAS_SU_POINT_MINMAX_MIN(1.0f / 16.0f) |
A6XX_GRAS_SU_POINT_MINMAX_MAX(4092.0f));
tu_cs_emit(cs, A6XX_GRAS_SU_POINT_SIZE(1.0f));
}
static uint32_t
tu6_gras_su_cntl(const VkPipelineRasterizationStateCreateInfo *rast_info,
VkSampleCountFlagBits samples)
{
uint32_t gras_su_cntl = 0;
if (rast_info->cullMode & VK_CULL_MODE_FRONT_BIT)
gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_FRONT;
if (rast_info->cullMode & VK_CULL_MODE_BACK_BIT)
gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_BACK;
if (rast_info->frontFace == VK_FRONT_FACE_CLOCKWISE)
gras_su_cntl |= A6XX_GRAS_SU_CNTL_FRONT_CW;
/* don't set A6XX_GRAS_SU_CNTL_LINEHALFWIDTH */
if (rast_info->depthBiasEnable)
gras_su_cntl |= A6XX_GRAS_SU_CNTL_POLY_OFFSET;
if (samples > VK_SAMPLE_COUNT_1_BIT)
gras_su_cntl |= A6XX_GRAS_SU_CNTL_MSAA_ENABLE;
return gras_su_cntl;
}
void
tu6_emit_gras_su_cntl(struct tu_cs *cs,
uint32_t gras_su_cntl,
float line_width)
{
assert((gras_su_cntl & A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK) == 0);
gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(line_width / 2.0f);
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_CNTL, 1);
tu_cs_emit(cs, gras_su_cntl);
}
void
tu6_emit_depth_bias(struct tu_cs *cs,
float constant_factor,
float clamp,
float slope_factor)
{
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POLY_OFFSET_SCALE, 3);
tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_SCALE(slope_factor));
tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET(constant_factor));
tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET_CLAMP(clamp));
}
static void
tu6_emit_alpha_control_disable(struct tu_cs *cs)
{
tu_cs_emit_pkt4(cs, REG_A6XX_RB_ALPHA_CONTROL, 1);
tu_cs_emit(cs, 0);
}
static void
tu6_emit_depth_control(struct tu_cs *cs,
const VkPipelineDepthStencilStateCreateInfo *ds_info)
{
assert(!ds_info->depthBoundsTestEnable);
uint32_t rb_depth_cntl = 0;
if (ds_info->depthTestEnable) {
rb_depth_cntl |=
A6XX_RB_DEPTH_CNTL_Z_ENABLE |
A6XX_RB_DEPTH_CNTL_ZFUNC(tu6_compare_func(ds_info->depthCompareOp)) |
A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE;
if (ds_info->depthWriteEnable)
rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_WRITE_ENABLE;
}
tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_CNTL, 1);
tu_cs_emit(cs, rb_depth_cntl);
}
static void
tu6_emit_stencil_control(struct tu_cs *cs,
const VkPipelineDepthStencilStateCreateInfo *ds_info)
{
uint32_t rb_stencil_control = 0;
if (ds_info->stencilTestEnable) {
const VkStencilOpState *front = &ds_info->front;
const VkStencilOpState *back = &ds_info->back;
rb_stencil_control |=
A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE |
A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE_BF |
A6XX_RB_STENCIL_CONTROL_STENCIL_READ |
A6XX_RB_STENCIL_CONTROL_FUNC(tu6_compare_func(front->compareOp)) |
A6XX_RB_STENCIL_CONTROL_FAIL(tu6_stencil_op(front->failOp)) |
A6XX_RB_STENCIL_CONTROL_ZPASS(tu6_stencil_op(front->passOp)) |
A6XX_RB_STENCIL_CONTROL_ZFAIL(tu6_stencil_op(front->depthFailOp)) |
A6XX_RB_STENCIL_CONTROL_FUNC_BF(tu6_compare_func(back->compareOp)) |
A6XX_RB_STENCIL_CONTROL_FAIL_BF(tu6_stencil_op(back->failOp)) |
A6XX_RB_STENCIL_CONTROL_ZPASS_BF(tu6_stencil_op(back->passOp)) |
A6XX_RB_STENCIL_CONTROL_ZFAIL_BF(tu6_stencil_op(back->depthFailOp));
}
tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_CONTROL, 1);
tu_cs_emit(cs, rb_stencil_control);
}
void
tu6_emit_stencil_compare_mask(struct tu_cs *cs, uint32_t front, uint32_t back)
{
tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILMASK, 1);
tu_cs_emit(
cs, A6XX_RB_STENCILMASK_MASK(front) | A6XX_RB_STENCILMASK_BFMASK(back));
}
void
tu6_emit_stencil_write_mask(struct tu_cs *cs, uint32_t front, uint32_t back)
{
tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILWRMASK, 1);
tu_cs_emit(cs, A6XX_RB_STENCILWRMASK_WRMASK(front) |
A6XX_RB_STENCILWRMASK_BFWRMASK(back));
}
void
tu6_emit_stencil_reference(struct tu_cs *cs, uint32_t front, uint32_t back)
{
tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILREF, 1);
tu_cs_emit(cs,
A6XX_RB_STENCILREF_REF(front) | A6XX_RB_STENCILREF_BFREF(back));
}
static uint32_t
tu6_rb_mrt_blend_control(const VkPipelineColorBlendAttachmentState *att,
bool has_alpha)
{
const enum a3xx_rb_blend_opcode color_op = tu6_blend_op(att->colorBlendOp);
const enum adreno_rb_blend_factor src_color_factor = tu6_blend_factor(
has_alpha ? att->srcColorBlendFactor
: tu_blend_factor_no_dst_alpha(att->srcColorBlendFactor));
const enum adreno_rb_blend_factor dst_color_factor = tu6_blend_factor(
has_alpha ? att->dstColorBlendFactor
: tu_blend_factor_no_dst_alpha(att->dstColorBlendFactor));
const enum a3xx_rb_blend_opcode alpha_op = tu6_blend_op(att->alphaBlendOp);
const enum adreno_rb_blend_factor src_alpha_factor =
tu6_blend_factor(att->srcAlphaBlendFactor);
const enum adreno_rb_blend_factor dst_alpha_factor =
tu6_blend_factor(att->dstAlphaBlendFactor);
return A6XX_RB_MRT_BLEND_CONTROL_RGB_SRC_FACTOR(src_color_factor) |
A6XX_RB_MRT_BLEND_CONTROL_RGB_BLEND_OPCODE(color_op) |
A6XX_RB_MRT_BLEND_CONTROL_RGB_DEST_FACTOR(dst_color_factor) |
A6XX_RB_MRT_BLEND_CONTROL_ALPHA_SRC_FACTOR(src_alpha_factor) |
A6XX_RB_MRT_BLEND_CONTROL_ALPHA_BLEND_OPCODE(alpha_op) |
A6XX_RB_MRT_BLEND_CONTROL_ALPHA_DEST_FACTOR(dst_alpha_factor);
}
static uint32_t
tu6_rb_mrt_control(const VkPipelineColorBlendAttachmentState *att,
uint32_t rb_mrt_control_rop,
bool is_int,
bool has_alpha)
{
uint32_t rb_mrt_control =
A6XX_RB_MRT_CONTROL_COMPONENT_ENABLE(att->colorWriteMask);
/* ignore blending and logic op for integer attachments */
if (is_int) {
rb_mrt_control |= A6XX_RB_MRT_CONTROL_ROP_CODE(ROP_COPY);
return rb_mrt_control;
}
rb_mrt_control |= rb_mrt_control_rop;
if (att->blendEnable) {
rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND;
if (has_alpha)
rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND2;
}
return rb_mrt_control;
}
static void
tu6_emit_rb_mrt_controls(struct tu_cs *cs,
const VkPipelineColorBlendStateCreateInfo *blend_info,
const VkFormat attachment_formats[MAX_RTS],
uint32_t *blend_enable_mask)
{
*blend_enable_mask = 0;
bool rop_reads_dst = false;
uint32_t rb_mrt_control_rop = 0;
if (blend_info->logicOpEnable) {
rop_reads_dst = tu_logic_op_reads_dst(blend_info->logicOp);
rb_mrt_control_rop =
A6XX_RB_MRT_CONTROL_ROP_ENABLE |
A6XX_RB_MRT_CONTROL_ROP_CODE(tu6_rop(blend_info->logicOp));
}
for (uint32_t i = 0; i < blend_info->attachmentCount; i++) {
const VkPipelineColorBlendAttachmentState *att =
&blend_info->pAttachments[i];
const VkFormat format = attachment_formats[i];
uint32_t rb_mrt_control = 0;
uint32_t rb_mrt_blend_control = 0;
if (format != VK_FORMAT_UNDEFINED) {
const bool is_int = vk_format_is_int(format);
const bool has_alpha = vk_format_has_alpha(format);
rb_mrt_control =
tu6_rb_mrt_control(att, rb_mrt_control_rop, is_int, has_alpha);
rb_mrt_blend_control = tu6_rb_mrt_blend_control(att, has_alpha);
if (att->blendEnable || rop_reads_dst)
*blend_enable_mask |= 1 << i;
}
tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2);
tu_cs_emit(cs, rb_mrt_control);
tu_cs_emit(cs, rb_mrt_blend_control);
}
for (uint32_t i = blend_info->attachmentCount; i < MAX_RTS; i++) {
tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2);
tu_cs_emit(cs, 0);
tu_cs_emit(cs, 0);
}
}
static void
tu6_emit_blend_control(struct tu_cs *cs,
uint32_t blend_enable_mask,
const VkPipelineMultisampleStateCreateInfo *msaa_info)
{
assert(!msaa_info->sampleShadingEnable);
assert(!msaa_info->alphaToOneEnable);
uint32_t sp_blend_cntl = A6XX_SP_BLEND_CNTL_UNK8;
if (blend_enable_mask)
sp_blend_cntl |= A6XX_SP_BLEND_CNTL_ENABLED;
if (msaa_info->alphaToCoverageEnable)
sp_blend_cntl |= A6XX_SP_BLEND_CNTL_ALPHA_TO_COVERAGE;
const uint32_t sample_mask =
msaa_info->pSampleMask ? *msaa_info->pSampleMask
: ((1 << msaa_info->rasterizationSamples) - 1);
/* set A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND only when enabled? */
uint32_t rb_blend_cntl =
A6XX_RB_BLEND_CNTL_ENABLE_BLEND(blend_enable_mask) |
A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND |
A6XX_RB_BLEND_CNTL_SAMPLE_MASK(sample_mask);
if (msaa_info->alphaToCoverageEnable)
rb_blend_cntl |= A6XX_RB_BLEND_CNTL_ALPHA_TO_COVERAGE;
tu_cs_emit_pkt4(cs, REG_A6XX_SP_BLEND_CNTL, 1);
tu_cs_emit(cs, sp_blend_cntl);
tu_cs_emit_pkt4(cs, REG_A6XX_RB_BLEND_CNTL, 1);
tu_cs_emit(cs, rb_blend_cntl);
}
void
tu6_emit_blend_constants(struct tu_cs *cs, const float constants[4])
{
tu_cs_emit_pkt4(cs, REG_A6XX_RB_BLEND_RED_F32, 4);
tu_cs_emit_array(cs, (const uint32_t *) constants, 4);
}
static VkResult
tu_pipeline_create(struct tu_device *dev,
const VkAllocationCallbacks *pAllocator,
struct tu_pipeline **out_pipeline)
{
struct tu_pipeline *pipeline =
vk_zalloc2(&dev->alloc, pAllocator, sizeof(*pipeline), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!pipeline)
return VK_ERROR_OUT_OF_HOST_MEMORY;
tu_cs_init(&pipeline->cs, TU_CS_MODE_SUB_STREAM, 2048);
/* reserve the space now such that tu_cs_begin_sub_stream never fails */
VkResult result = tu_cs_reserve_space(dev, &pipeline->cs, 2048);
if (result != VK_SUCCESS) {
vk_free2(&dev->alloc, pAllocator, pipeline);
return result;
}
*out_pipeline = pipeline;
return VK_SUCCESS;
}
static VkResult
tu_pipeline_builder_compile_shaders(struct tu_pipeline_builder *builder)
{
const VkPipelineShaderStageCreateInfo *stage_infos[MESA_SHADER_STAGES] = {
NULL
};
for (uint32_t i = 0; i < builder->create_info->stageCount; i++) {
gl_shader_stage stage =
tu_shader_stage(builder->create_info->pStages[i].stage);
stage_infos[stage] = &builder->create_info->pStages[i];
}
struct tu_shader_compile_options options;
tu_shader_compile_options_init(&options, builder->create_info);
/* compile shaders in reverse order */
struct tu_shader *next_stage_shader = NULL;
for (gl_shader_stage stage = MESA_SHADER_STAGES - 1;
stage > MESA_SHADER_NONE; stage--) {
const VkPipelineShaderStageCreateInfo *stage_info = stage_infos[stage];
if (!stage_info)
continue;
struct tu_shader *shader =
tu_shader_create(builder->device, stage, stage_info, builder->layout,
builder->alloc);
if (!shader)
return VK_ERROR_OUT_OF_HOST_MEMORY;
VkResult result =
tu_shader_compile(builder->device, shader, next_stage_shader,
&options, builder->alloc);
if (result != VK_SUCCESS)
return result;
builder->shaders[stage] = shader;
builder->shader_offsets[stage] = builder->shader_total_size;
builder->shader_total_size +=
sizeof(uint32_t) * shader->variants[0].info.sizedwords;
next_stage_shader = shader;
}
if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) {
const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
builder->binning_vs_offset = builder->shader_total_size;
builder->shader_total_size +=
sizeof(uint32_t) * vs->variants[1].info.sizedwords;
}
return VK_SUCCESS;
}
static VkResult
tu_pipeline_builder_upload_shaders(struct tu_pipeline_builder *builder,
struct tu_pipeline *pipeline)
{
struct tu_bo *bo = &pipeline->program.binary_bo;
VkResult result =
tu_bo_init_new(builder->device, bo, builder->shader_total_size);
if (result != VK_SUCCESS)
return result;
result = tu_bo_map(builder->device, bo);
if (result != VK_SUCCESS)
return result;
for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
const struct tu_shader *shader = builder->shaders[i];
if (!shader)
continue;
memcpy(bo->map + builder->shader_offsets[i], shader->binary,
sizeof(uint32_t) * shader->variants[0].info.sizedwords);
}
if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) {
const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
memcpy(bo->map + builder->binning_vs_offset, vs->binning_binary,
sizeof(uint32_t) * vs->variants[1].info.sizedwords);
}
return VK_SUCCESS;
}
static void
tu_pipeline_builder_parse_dynamic(struct tu_pipeline_builder *builder,
struct tu_pipeline *pipeline)
{
const VkPipelineDynamicStateCreateInfo *dynamic_info =
builder->create_info->pDynamicState;
if (!dynamic_info)
return;
for (uint32_t i = 0; i < dynamic_info->dynamicStateCount; i++) {
pipeline->dynamic_state.mask |=
tu_dynamic_state_bit(dynamic_info->pDynamicStates[i]);
}
}
static void
tu_pipeline_builder_parse_shader_stages(struct tu_pipeline_builder *builder,
struct tu_pipeline *pipeline)
{
struct tu_cs prog_cs;
tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 512, &prog_cs);
tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, false);
pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 512, &prog_cs);
tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, true);
pipeline->program.binning_state_ib =
tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
if (!builder->shaders[i])
continue;
struct tu_program_descriptor_linkage *link = &pipeline->program.link[i];
struct ir3_shader *shader = builder->shaders[i]->variants[0].shader;
link->ubo_state = shader->ubo_state;
link->const_state = shader->const_state;
link->constlen = builder->shaders[i]->variants[0].constlen;
link->texture_map = builder->shaders[i]->texture_map;
link->sampler_map = builder->shaders[i]->sampler_map;
link->ubo_map = builder->shaders[i]->ubo_map;
link->ssbo_map = builder->shaders[i]->ssbo_map;
link->image_mapping = builder->shaders[i]->variants[0].image_mapping;
}
}
static void
tu_pipeline_builder_parse_vertex_input(struct tu_pipeline_builder *builder,
struct tu_pipeline *pipeline)
{
const VkPipelineVertexInputStateCreateInfo *vi_info =
builder->create_info->pVertexInputState;
const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
struct tu_cs vi_cs;
tu_cs_begin_sub_stream(builder->device, &pipeline->cs,
MAX_VERTEX_ATTRIBS * 5 + 2, &vi_cs);
tu6_emit_vertex_input(&vi_cs, &vs->variants[0], vi_info,
pipeline->vi.bindings, pipeline->vi.strides,
pipeline->vi.offsets, &pipeline->vi.count);
pipeline->vi.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
if (vs->has_binning_pass) {
tu_cs_begin_sub_stream(builder->device, &pipeline->cs,
MAX_VERTEX_ATTRIBS * 5 + 2, &vi_cs);
tu6_emit_vertex_input(
&vi_cs, &vs->variants[1], vi_info, pipeline->vi.binning_bindings,
pipeline->vi.binning_strides, pipeline->vi.binning_offsets,
&pipeline->vi.binning_count);
pipeline->vi.binning_state_ib =
tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
}
}
static void
tu_pipeline_builder_parse_input_assembly(struct tu_pipeline_builder *builder,
struct tu_pipeline *pipeline)
{
const VkPipelineInputAssemblyStateCreateInfo *ia_info =
builder->create_info->pInputAssemblyState;
pipeline->ia.primtype = tu6_primtype(ia_info->topology);
pipeline->ia.primitive_restart = ia_info->primitiveRestartEnable;
}
static void
tu_pipeline_builder_parse_viewport(struct tu_pipeline_builder *builder,
struct tu_pipeline *pipeline)
{
/* The spec says:
*
* pViewportState is a pointer to an instance of the
* VkPipelineViewportStateCreateInfo structure, and is ignored if the
* pipeline has rasterization disabled."
*
* We leave the relevant registers stale in that case.
*/
if (builder->rasterizer_discard)
return;
const VkPipelineViewportStateCreateInfo *vp_info =
builder->create_info->pViewportState;
struct tu_cs vp_cs;
tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 15, &vp_cs);
if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_VIEWPORT)) {
assert(vp_info->viewportCount == 1);
tu6_emit_viewport(&vp_cs, vp_info->pViewports);
}
if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_SCISSOR)) {
assert(vp_info->scissorCount == 1);
tu6_emit_scissor(&vp_cs, vp_info->pScissors);
}
pipeline->vp.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vp_cs);
}
static void
tu_pipeline_builder_parse_rasterization(struct tu_pipeline_builder *builder,
struct tu_pipeline *pipeline)
{
const VkPipelineRasterizationStateCreateInfo *rast_info =
builder->create_info->pRasterizationState;
assert(!rast_info->depthClampEnable);
assert(rast_info->polygonMode == VK_POLYGON_MODE_FILL);
struct tu_cs rast_cs;
tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 20, &rast_cs);
/* move to hw ctx init? */
tu6_emit_gras_unknowns(&rast_cs);
tu6_emit_point_size(&rast_cs);
const uint32_t gras_su_cntl =
tu6_gras_su_cntl(rast_info, builder->samples);
if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_LINE_WIDTH))
tu6_emit_gras_su_cntl(&rast_cs, gras_su_cntl, rast_info->lineWidth);
if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_DEPTH_BIAS)) {
tu6_emit_depth_bias(&rast_cs, rast_info->depthBiasConstantFactor,
rast_info->depthBiasClamp,
rast_info->depthBiasSlopeFactor);
}
pipeline->rast.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &rast_cs);
pipeline->rast.gras_su_cntl = gras_su_cntl;
}
static void
tu_pipeline_builder_parse_depth_stencil(struct tu_pipeline_builder *builder,
struct tu_pipeline *pipeline)
{
/* The spec says:
*
* pDepthStencilState is a pointer to an instance of the
* VkPipelineDepthStencilStateCreateInfo structure, and is ignored if
* the pipeline has rasterization disabled or if the subpass of the
* render pass the pipeline is created against does not use a
* depth/stencil attachment.
*
* We disable both depth and stenil tests in those cases.
*/
static const VkPipelineDepthStencilStateCreateInfo dummy_ds_info;
const VkPipelineDepthStencilStateCreateInfo *ds_info =
builder->use_depth_stencil_attachment
? builder->create_info->pDepthStencilState
: &dummy_ds_info;
struct tu_cs ds_cs;
tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 12, &ds_cs);
/* move to hw ctx init? */
tu6_emit_alpha_control_disable(&ds_cs);
tu6_emit_depth_control(&ds_cs, ds_info);
tu6_emit_stencil_control(&ds_cs, ds_info);
if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_COMPARE_MASK)) {
tu6_emit_stencil_compare_mask(&ds_cs, ds_info->front.compareMask,
ds_info->back.compareMask);
}
if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_WRITE_MASK)) {
tu6_emit_stencil_write_mask(&ds_cs, ds_info->front.writeMask,
ds_info->back.writeMask);
}
if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_REFERENCE)) {
tu6_emit_stencil_reference(&ds_cs, ds_info->front.reference,
ds_info->back.reference);
}
pipeline->ds.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &ds_cs);
}
static void
tu_pipeline_builder_parse_multisample_and_color_blend(
struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline)
{
/* The spec says:
*
* pMultisampleState is a pointer to an instance of the
* VkPipelineMultisampleStateCreateInfo, and is ignored if the pipeline
* has rasterization disabled.
*
* Also,
*
* pColorBlendState is a pointer to an instance of the
* VkPipelineColorBlendStateCreateInfo structure, and is ignored if the
* pipeline has rasterization disabled or if the subpass of the render
* pass the pipeline is created against does not use any color
* attachments.
*
* We leave the relevant registers stale when rasterization is disabled.
*/
if (builder->rasterizer_discard)
return;
static const VkPipelineColorBlendStateCreateInfo dummy_blend_info;
const VkPipelineMultisampleStateCreateInfo *msaa_info =
builder->create_info->pMultisampleState;
const VkPipelineColorBlendStateCreateInfo *blend_info =
builder->use_color_attachments ? builder->create_info->pColorBlendState
: &dummy_blend_info;
struct tu_cs blend_cs;
tu_cs_begin_sub_stream(builder->device, &pipeline->cs, MAX_RTS * 3 + 9,
&blend_cs);
uint32_t blend_enable_mask;
tu6_emit_rb_mrt_controls(&blend_cs, blend_info,
builder->color_attachment_formats,
&blend_enable_mask);
if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_BLEND_CONSTANTS))
tu6_emit_blend_constants(&blend_cs, blend_info->blendConstants);
tu6_emit_blend_control(&blend_cs, blend_enable_mask, msaa_info);
pipeline->blend.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &blend_cs);
}
static void
tu_pipeline_finish(struct tu_pipeline *pipeline,
struct tu_device *dev,
const VkAllocationCallbacks *alloc)
{
tu_cs_finish(dev, &pipeline->cs);
if (pipeline->program.binary_bo.gem_handle)
tu_bo_finish(dev, &pipeline->program.binary_bo);
}
static VkResult
tu_pipeline_builder_build(struct tu_pipeline_builder *builder,
struct tu_pipeline **pipeline)
{
VkResult result = tu_pipeline_create(builder->device, builder->alloc,
pipeline);
if (result != VK_SUCCESS)
return result;
/* compile and upload shaders */
result = tu_pipeline_builder_compile_shaders(builder);
if (result == VK_SUCCESS)
result = tu_pipeline_builder_upload_shaders(builder, *pipeline);
if (result != VK_SUCCESS) {
tu_pipeline_finish(*pipeline, builder->device, builder->alloc);
vk_free2(&builder->device->alloc, builder->alloc, *pipeline);
*pipeline = VK_NULL_HANDLE;
return result;
}
tu_pipeline_builder_parse_dynamic(builder, *pipeline);
tu_pipeline_builder_parse_shader_stages(builder, *pipeline);
tu_pipeline_builder_parse_vertex_input(builder, *pipeline);
tu_pipeline_builder_parse_input_assembly(builder, *pipeline);
tu_pipeline_builder_parse_viewport(builder, *pipeline);
tu_pipeline_builder_parse_rasterization(builder, *pipeline);
tu_pipeline_builder_parse_depth_stencil(builder, *pipeline);
tu_pipeline_builder_parse_multisample_and_color_blend(builder, *pipeline);
/* we should have reserved enough space upfront such that the CS never
* grows
*/
assert((*pipeline)->cs.bo_count == 1);
return VK_SUCCESS;
}
static void
tu_pipeline_builder_finish(struct tu_pipeline_builder *builder)
{
for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
if (!builder->shaders[i])
continue;
tu_shader_destroy(builder->device, builder->shaders[i], builder->alloc);
}
}
static void
tu_pipeline_builder_init_graphics(
struct tu_pipeline_builder *builder,
struct tu_device *dev,
struct tu_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *create_info,
const VkAllocationCallbacks *alloc)
{
TU_FROM_HANDLE(tu_pipeline_layout, layout, create_info->layout);
*builder = (struct tu_pipeline_builder) {
.device = dev,
.cache = cache,
.create_info = create_info,
.alloc = alloc,
.layout = layout,
};
builder->rasterizer_discard =
create_info->pRasterizationState->rasterizerDiscardEnable;
if (builder->rasterizer_discard) {
builder->samples = VK_SAMPLE_COUNT_1_BIT;
} else {
builder->samples = create_info->pMultisampleState->rasterizationSamples;
const struct tu_render_pass *pass =
tu_render_pass_from_handle(create_info->renderPass);
const struct tu_subpass *subpass =
&pass->subpasses[create_info->subpass];
builder->use_depth_stencil_attachment =
subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED;
assert(subpass->color_count == 0 ||
!create_info->pColorBlendState ||
subpass->color_count == create_info->pColorBlendState->attachmentCount);
builder->color_attachment_count = subpass->color_count;
for (uint32_t i = 0; i < subpass->color_count; i++) {
const uint32_t a = subpass->color_attachments[i].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
builder->color_attachment_formats[i] = pass->attachments[a].format;
builder->use_color_attachments = true;
}
}
}
static VkResult
tu_graphics_pipeline_create(VkDevice device,
VkPipelineCache pipelineCache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipeline)
{
TU_FROM_HANDLE(tu_device, dev, device);
TU_FROM_HANDLE(tu_pipeline_cache, cache, pipelineCache);
struct tu_pipeline_builder builder;
tu_pipeline_builder_init_graphics(&builder, dev, cache,
pCreateInfo, pAllocator);
struct tu_pipeline *pipeline = NULL;
VkResult result = tu_pipeline_builder_build(&builder, &pipeline);
tu_pipeline_builder_finish(&builder);
if (result == VK_SUCCESS)
*pPipeline = tu_pipeline_to_handle(pipeline);
else
*pPipeline = NULL;
return result;
}
VkResult
tu_CreateGraphicsPipelines(VkDevice device,
VkPipelineCache pipelineCache,
uint32_t count,
const VkGraphicsPipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipelines)
{
VkResult final_result = VK_SUCCESS;
for (uint32_t i = 0; i < count; i++) {
VkResult result = tu_graphics_pipeline_create(device, pipelineCache,
&pCreateInfos[i], pAllocator,
&pPipelines[i]);
if (result != VK_SUCCESS)
final_result = result;
}
return final_result;
}
static void
tu6_emit_compute_program(struct tu_cs *cs,
struct tu_shader *shader,
const struct tu_bo *binary_bo)
{
const struct ir3_shader_variant *v = &shader->variants[0];
tu6_emit_cs_config(cs, shader, v);
/* The compute program is the only one in the pipeline, so 0 offset. */
tu6_emit_shader_object(cs, MESA_SHADER_COMPUTE, v, binary_bo, 0);
tu6_emit_immediates(cs, v, CP_LOAD_STATE6_FRAG, SB6_CS_SHADER);
}
static VkResult
tu_compute_upload_shader(VkDevice device,
struct tu_pipeline *pipeline,
struct tu_shader *shader)
{
TU_FROM_HANDLE(tu_device, dev, device);
struct tu_bo *bo = &pipeline->program.binary_bo;
struct ir3_shader_variant *v = &shader->variants[0];
uint32_t shader_size = sizeof(uint32_t) * v->info.sizedwords;
VkResult result =
tu_bo_init_new(dev, bo, shader_size);
if (result != VK_SUCCESS)
return result;
result = tu_bo_map(dev, bo);
if (result != VK_SUCCESS)
return result;
memcpy(bo->map, shader->binary, shader_size);
return VK_SUCCESS;
}
static VkResult
tu_compute_pipeline_create(VkDevice device,
VkPipelineCache _cache,
const VkComputePipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipeline)
{
TU_FROM_HANDLE(tu_device, dev, device);
TU_FROM_HANDLE(tu_pipeline_layout, layout, pCreateInfo->layout);
const VkPipelineShaderStageCreateInfo *stage_info = &pCreateInfo->stage;
VkResult result;
struct tu_pipeline *pipeline;
result = tu_pipeline_create(dev, pAllocator, &pipeline);
if (result != VK_SUCCESS)
return result;
pipeline->layout = layout;
struct tu_shader_compile_options options;
tu_shader_compile_options_init(&options, NULL);
struct tu_shader *shader =
tu_shader_create(dev, MESA_SHADER_COMPUTE, stage_info, layout, pAllocator);
if (!shader) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto fail;
}
result = tu_shader_compile(dev, shader, NULL, &options, pAllocator);
if (result != VK_SUCCESS)
return result;
struct tu_program_descriptor_linkage *link = &pipeline->program.link[MESA_SHADER_COMPUTE];
struct ir3_shader_variant *v = &shader->variants[0];
link->ubo_state = v->shader->ubo_state;
link->const_state = v->shader->const_state;
link->constlen = v->constlen;
link->texture_map = shader->texture_map;
link->sampler_map = shader->sampler_map;
link->ubo_map = shader->ubo_map;
link->ssbo_map = shader->ssbo_map;
link->image_mapping = v->image_mapping;
result = tu_compute_upload_shader(device, pipeline, shader);
if (result != VK_SUCCESS)
return result;
for (int i = 0; i < 3; i++)
pipeline->compute.local_size[i] = v->shader->nir->info.cs.local_size[i];
struct tu_cs prog_cs;
tu_cs_begin_sub_stream(dev, &pipeline->cs, 512, &prog_cs);
tu6_emit_compute_program(&prog_cs, shader, &pipeline->program.binary_bo);
pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
*pPipeline = tu_pipeline_to_handle(pipeline);
return VK_SUCCESS;
fail:
tu_shader_destroy(dev, shader, pAllocator);
if (result != VK_SUCCESS) {
tu_pipeline_finish(pipeline, dev, pAllocator);
vk_free2(&dev->alloc, pAllocator, pipeline);
}
return result;
}
VkResult
tu_CreateComputePipelines(VkDevice device,
VkPipelineCache pipelineCache,
uint32_t count,
const VkComputePipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipelines)
{
VkResult final_result = VK_SUCCESS;
for (uint32_t i = 0; i < count; i++) {
VkResult result = tu_compute_pipeline_create(device, pipelineCache,
&pCreateInfos[i],
pAllocator, &pPipelines[i]);
if (result != VK_SUCCESS)
final_result = result;
}
return final_result;
}
void
tu_DestroyPipeline(VkDevice _device,
VkPipeline _pipeline,
const VkAllocationCallbacks *pAllocator)
{
TU_FROM_HANDLE(tu_device, dev, _device);
TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
if (!_pipeline)
return;
tu_pipeline_finish(pipeline, dev, pAllocator);
vk_free2(&dev->alloc, pAllocator, pipeline);
}