mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-20 20:20:18 +01:00
No fossil-db changes. Signed-off-by: Rhys Perry <pendingchaos02@gmail.com> Reviewed-by: Daniel Schürmann <daniel@schuermann.dev> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/5245>
793 lines
37 KiB
C++
793 lines
37 KiB
C++
/*
|
|
* Copyright © 2018 Valve Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include "aco_ir.h"
|
|
|
|
#include <array>
|
|
#include <map>
|
|
|
|
namespace aco {
|
|
|
|
#ifndef NDEBUG
|
|
void perfwarn(bool cond, const char *msg, Instruction *instr)
|
|
{
|
|
if (cond) {
|
|
fprintf(stderr, "ACO performance warning: %s\n", msg);
|
|
if (instr) {
|
|
fprintf(stderr, "instruction: ");
|
|
aco_print_instr(instr, stderr);
|
|
fprintf(stderr, "\n");
|
|
}
|
|
|
|
if (debug_flags & DEBUG_PERFWARN)
|
|
exit(1);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void validate(Program* program, FILE * output)
|
|
{
|
|
if (!(debug_flags & DEBUG_VALIDATE))
|
|
return;
|
|
|
|
bool is_valid = true;
|
|
auto check = [&output, &is_valid](bool check, const char * msg, aco::Instruction * instr) -> void {
|
|
if (!check) {
|
|
fprintf(output, "%s: ", msg);
|
|
aco_print_instr(instr, output);
|
|
fprintf(output, "\n");
|
|
is_valid = false;
|
|
}
|
|
};
|
|
auto check_block = [&output, &is_valid](bool check, const char * msg, aco::Block * block) -> void {
|
|
if (!check) {
|
|
fprintf(output, "%s: BB%u\n", msg, block->index);
|
|
is_valid = false;
|
|
}
|
|
};
|
|
|
|
for (Block& block : program->blocks) {
|
|
for (aco_ptr<Instruction>& instr : block.instructions) {
|
|
|
|
/* check base format */
|
|
Format base_format = instr->format;
|
|
base_format = (Format)((uint32_t)base_format & ~(uint32_t)Format::SDWA);
|
|
base_format = (Format)((uint32_t)base_format & ~(uint32_t)Format::DPP);
|
|
if ((uint32_t)base_format & (uint32_t)Format::VOP1)
|
|
base_format = Format::VOP1;
|
|
else if ((uint32_t)base_format & (uint32_t)Format::VOP2)
|
|
base_format = Format::VOP2;
|
|
else if ((uint32_t)base_format & (uint32_t)Format::VOPC)
|
|
base_format = Format::VOPC;
|
|
else if ((uint32_t)base_format & (uint32_t)Format::VINTRP) {
|
|
if (instr->opcode == aco_opcode::v_interp_p1ll_f16 ||
|
|
instr->opcode == aco_opcode::v_interp_p1lv_f16 ||
|
|
instr->opcode == aco_opcode::v_interp_p2_legacy_f16 ||
|
|
instr->opcode == aco_opcode::v_interp_p2_f16) {
|
|
/* v_interp_*_fp16 are considered VINTRP by the compiler but
|
|
* they are emitted as VOP3.
|
|
*/
|
|
base_format = Format::VOP3;
|
|
} else {
|
|
base_format = Format::VINTRP;
|
|
}
|
|
}
|
|
check(base_format == instr_info.format[(int)instr->opcode], "Wrong base format for instruction", instr.get());
|
|
|
|
/* check VOP3 modifiers */
|
|
if (((uint32_t)instr->format & (uint32_t)Format::VOP3) && instr->format != Format::VOP3) {
|
|
check(base_format == Format::VOP2 ||
|
|
base_format == Format::VOP1 ||
|
|
base_format == Format::VOPC ||
|
|
base_format == Format::VINTRP,
|
|
"Format cannot have VOP3A/VOP3B applied", instr.get());
|
|
}
|
|
|
|
/* check SDWA */
|
|
if (instr->isSDWA()) {
|
|
check(base_format == Format::VOP2 ||
|
|
base_format == Format::VOP1 ||
|
|
base_format == Format::VOPC,
|
|
"Format cannot have SDWA applied", instr.get());
|
|
|
|
check(program->chip_class >= GFX8, "SDWA is GFX8+ only", instr.get());
|
|
|
|
SDWA_instruction *sdwa = static_cast<SDWA_instruction*>(instr.get());
|
|
check(sdwa->omod == 0 || program->chip_class >= GFX9, "SDWA omod only supported on GFX9+", instr.get());
|
|
if (base_format == Format::VOPC) {
|
|
check(sdwa->clamp == false || program->chip_class == GFX8, "SDWA VOPC clamp only supported on GFX8", instr.get());
|
|
check((instr->definitions[0].isFixed() && instr->definitions[0].physReg() == vcc) ||
|
|
program->chip_class >= GFX9,
|
|
"SDWA+VOPC definition must be fixed to vcc on GFX8", instr.get());
|
|
}
|
|
|
|
if (instr->operands.size() >= 3) {
|
|
check(instr->operands[2].isFixed() && instr->operands[2].physReg() == vcc,
|
|
"3rd operand must be fixed to vcc with SDWA", instr.get());
|
|
}
|
|
if (instr->definitions.size() >= 2) {
|
|
check(instr->definitions[1].isFixed() && instr->definitions[1].physReg() == vcc,
|
|
"2nd definition must be fixed to vcc with SDWA", instr.get());
|
|
}
|
|
|
|
check(instr->opcode != aco_opcode::v_madmk_f32 &&
|
|
instr->opcode != aco_opcode::v_madak_f32 &&
|
|
instr->opcode != aco_opcode::v_madmk_f16 &&
|
|
instr->opcode != aco_opcode::v_madak_f16 &&
|
|
instr->opcode != aco_opcode::v_readfirstlane_b32 &&
|
|
instr->opcode != aco_opcode::v_clrexcp &&
|
|
instr->opcode != aco_opcode::v_swap_b32,
|
|
"SDWA can't be used with this opcode", instr.get());
|
|
if (program->chip_class != GFX8) {
|
|
check(instr->opcode != aco_opcode::v_mac_f32 &&
|
|
instr->opcode != aco_opcode::v_mac_f16 &&
|
|
instr->opcode != aco_opcode::v_fmac_f32 &&
|
|
instr->opcode != aco_opcode::v_fmac_f16,
|
|
"SDWA can't be used with this opcode", instr.get());
|
|
}
|
|
|
|
for (unsigned i = 0; i < MIN2(instr->operands.size(), 2); i++) {
|
|
if (instr->operands[i].regClass().is_subdword())
|
|
check((sdwa->sel[i] & sdwa_asuint) == (sdwa_isra | instr->operands[i].bytes()), "Unexpected SDWA sel for sub-dword operand", instr.get());
|
|
}
|
|
if (instr->definitions[0].regClass().is_subdword())
|
|
check((sdwa->dst_sel & sdwa_asuint) == (sdwa_isra | instr->definitions[0].bytes()), "Unexpected SDWA sel for sub-dword definition", instr.get());
|
|
}
|
|
|
|
/* check opsel */
|
|
if (instr->isVOP3()) {
|
|
VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(instr.get());
|
|
check(vop3->opsel == 0 || program->chip_class >= GFX9, "Opsel is only supported on GFX9+", instr.get());
|
|
check((vop3->opsel & ~(0x10 | ((1 << instr->operands.size()) - 1))) == 0, "Unused bits in opsel must be zeroed out", instr.get());
|
|
|
|
for (unsigned i = 0; i < instr->operands.size(); i++) {
|
|
if (instr->operands[i].regClass().is_subdword())
|
|
check((vop3->opsel & (1 << i)) == 0, "Unexpected opsel for sub-dword operand", instr.get());
|
|
}
|
|
if (instr->definitions[0].regClass().is_subdword())
|
|
check((vop3->opsel & (1 << 3)) == 0, "Unexpected opsel for sub-dword definition", instr.get());
|
|
}
|
|
|
|
/* check for undefs */
|
|
for (unsigned i = 0; i < instr->operands.size(); i++) {
|
|
if (instr->operands[i].isUndefined()) {
|
|
bool flat = instr->format == Format::FLAT || instr->format == Format::SCRATCH || instr->format == Format::GLOBAL;
|
|
bool can_be_undef = is_phi(instr) || instr->format == Format::EXP ||
|
|
instr->format == Format::PSEUDO_REDUCTION ||
|
|
instr->opcode == aco_opcode::p_create_vector ||
|
|
(flat && i == 1) || (instr->format == Format::MIMG && i == 1) ||
|
|
((instr->format == Format::MUBUF || instr->format == Format::MTBUF) && i == 1);
|
|
check(can_be_undef, "Undefs can only be used in certain operands", instr.get());
|
|
} else {
|
|
check(instr->operands[i].isFixed() || instr->operands[i].isTemp() || instr->operands[i].isConstant(), "Uninitialized Operand", instr.get());
|
|
}
|
|
}
|
|
|
|
/* check subdword definitions */
|
|
for (unsigned i = 0; i < instr->definitions.size(); i++) {
|
|
if (instr->definitions[i].regClass().is_subdword())
|
|
check(instr->format == Format::PSEUDO || instr->definitions[i].bytes() <= 4, "Only Pseudo instructions can write subdword registers larger than 4 bytes", instr.get());
|
|
}
|
|
|
|
if (instr->isSALU() || instr->isVALU()) {
|
|
/* check literals */
|
|
Operand literal(s1);
|
|
for (unsigned i = 0; i < instr->operands.size(); i++)
|
|
{
|
|
Operand op = instr->operands[i];
|
|
if (!op.isLiteral())
|
|
continue;
|
|
|
|
check(instr->format == Format::SOP1 ||
|
|
instr->format == Format::SOP2 ||
|
|
instr->format == Format::SOPC ||
|
|
instr->format == Format::VOP1 ||
|
|
instr->format == Format::VOP2 ||
|
|
instr->format == Format::VOPC ||
|
|
(instr->isVOP3() && program->chip_class >= GFX10),
|
|
"Literal applied on wrong instruction format", instr.get());
|
|
|
|
check(literal.isUndefined() || (literal.size() == op.size() && literal.constantValue() == op.constantValue()), "Only 1 Literal allowed", instr.get());
|
|
literal = op;
|
|
check(!instr->isVALU() || instr->isVOP3() || i == 0 || i == 2, "Wrong source position for Literal argument", instr.get());
|
|
}
|
|
|
|
/* check num sgprs for VALU */
|
|
if (instr->isVALU()) {
|
|
bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 ||
|
|
instr->opcode == aco_opcode::v_lshrrev_b64 ||
|
|
instr->opcode == aco_opcode::v_ashrrev_i64;
|
|
unsigned const_bus_limit = 1;
|
|
if (program->chip_class >= GFX10 && !is_shift64)
|
|
const_bus_limit = 2;
|
|
|
|
uint32_t scalar_mask = instr->isVOP3() ? 0x7 : 0x5;
|
|
if (instr->isSDWA())
|
|
scalar_mask = program->chip_class >= GFX9 ? 0x7 : 0x4;
|
|
|
|
check(instr->definitions[0].getTemp().type() == RegType::vgpr ||
|
|
(int) instr->format & (int) Format::VOPC ||
|
|
instr->opcode == aco_opcode::v_readfirstlane_b32 ||
|
|
instr->opcode == aco_opcode::v_readlane_b32 ||
|
|
instr->opcode == aco_opcode::v_readlane_b32_e64,
|
|
"Wrong Definition type for VALU instruction", instr.get());
|
|
unsigned num_sgprs = 0;
|
|
unsigned sgpr[] = {0, 0};
|
|
for (unsigned i = 0; i < instr->operands.size(); i++)
|
|
{
|
|
Operand op = instr->operands[i];
|
|
if (instr->opcode == aco_opcode::v_readfirstlane_b32 ||
|
|
instr->opcode == aco_opcode::v_readlane_b32 ||
|
|
instr->opcode == aco_opcode::v_readlane_b32_e64 ||
|
|
instr->opcode == aco_opcode::v_writelane_b32 ||
|
|
instr->opcode == aco_opcode::v_writelane_b32_e64) {
|
|
check(!op.isLiteral(), "No literal allowed on VALU instruction", instr.get());
|
|
check(i == 1 || (op.isTemp() && op.regClass().type() == RegType::vgpr && op.bytes() <= 4), "Wrong Operand type for VALU instruction", instr.get());
|
|
continue;
|
|
}
|
|
if (op.isTemp() && instr->operands[i].regClass().type() == RegType::sgpr) {
|
|
check(scalar_mask & (1 << i), "Wrong source position for SGPR argument", instr.get());
|
|
|
|
if (op.tempId() != sgpr[0] && op.tempId() != sgpr[1]) {
|
|
if (num_sgprs < 2)
|
|
sgpr[num_sgprs++] = op.tempId();
|
|
}
|
|
}
|
|
|
|
if (op.isConstant() && !op.isLiteral())
|
|
check(scalar_mask & (1 << i), "Wrong source position for constant argument", instr.get());
|
|
}
|
|
check(num_sgprs + (literal.isUndefined() ? 0 : 1) <= const_bus_limit, "Too many SGPRs/literals", instr.get());
|
|
}
|
|
|
|
if (instr->format == Format::SOP1 || instr->format == Format::SOP2) {
|
|
check(instr->definitions[0].getTemp().type() == RegType::sgpr, "Wrong Definition type for SALU instruction", instr.get());
|
|
for (const Operand& op : instr->operands) {
|
|
check(op.isConstant() || op.regClass().type() <= RegType::sgpr,
|
|
"Wrong Operand type for SALU instruction", instr.get());
|
|
}
|
|
}
|
|
}
|
|
|
|
switch (instr->format) {
|
|
case Format::PSEUDO: {
|
|
bool is_subdword = false;
|
|
bool has_const_sgpr = false;
|
|
bool has_literal = false;
|
|
for (Definition def : instr->definitions)
|
|
is_subdword |= def.regClass().is_subdword();
|
|
for (unsigned i = 0; i < instr->operands.size(); i++) {
|
|
if (instr->opcode == aco_opcode::p_extract_vector && i == 1)
|
|
continue;
|
|
Operand op = instr->operands[i];
|
|
is_subdword |= op.hasRegClass() && op.regClass().is_subdword();
|
|
has_const_sgpr |= op.isConstant() || (op.hasRegClass() && op.regClass().type() == RegType::sgpr);
|
|
has_literal |= op.isLiteral();
|
|
}
|
|
|
|
check(!is_subdword || !has_const_sgpr || program->chip_class >= GFX9,
|
|
"Sub-dword pseudo instructions can only take constants or SGPRs on GFX9+", instr.get());
|
|
check(!is_subdword || !has_literal, "Sub-dword pseudo instructions cannot take literals", instr.get());
|
|
|
|
if (instr->opcode == aco_opcode::p_create_vector) {
|
|
unsigned size = 0;
|
|
for (const Operand& op : instr->operands) {
|
|
size += op.bytes();
|
|
}
|
|
check(size == instr->definitions[0].bytes(), "Definition size does not match operand sizes", instr.get());
|
|
if (instr->definitions[0].getTemp().type() == RegType::sgpr) {
|
|
for (const Operand& op : instr->operands) {
|
|
check(op.isConstant() || op.regClass().type() == RegType::sgpr,
|
|
"Wrong Operand type for scalar vector", instr.get());
|
|
}
|
|
}
|
|
} else if (instr->opcode == aco_opcode::p_extract_vector) {
|
|
check((instr->operands[0].isTemp()) && instr->operands[1].isConstant(), "Wrong Operand types", instr.get());
|
|
check((instr->operands[1].constantValue() + 1) * instr->definitions[0].bytes() <= instr->operands[0].bytes(), "Index out of range", instr.get());
|
|
check(instr->definitions[0].getTemp().type() == RegType::vgpr || instr->operands[0].regClass().type() == RegType::sgpr,
|
|
"Cannot extract SGPR value from VGPR vector", instr.get());
|
|
} else if (instr->opcode == aco_opcode::p_parallelcopy) {
|
|
check(instr->definitions.size() == instr->operands.size(), "Number of Operands does not match number of Definitions", instr.get());
|
|
for (unsigned i = 0; i < instr->operands.size(); i++) {
|
|
if (instr->operands[i].isTemp())
|
|
check((instr->definitions[i].getTemp().type() == instr->operands[i].regClass().type()) ||
|
|
(instr->definitions[i].getTemp().type() == RegType::vgpr && instr->operands[i].regClass().type() == RegType::sgpr),
|
|
"Operand and Definition types do not match", instr.get());
|
|
}
|
|
} else if (instr->opcode == aco_opcode::p_phi) {
|
|
check(instr->operands.size() == block.logical_preds.size(), "Number of Operands does not match number of predecessors", instr.get());
|
|
check(instr->definitions[0].getTemp().type() == RegType::vgpr || instr->definitions[0].getTemp().regClass() == program->lane_mask, "Logical Phi Definition must be vgpr or divergent boolean", instr.get());
|
|
} else if (instr->opcode == aco_opcode::p_linear_phi) {
|
|
for (const Operand& op : instr->operands)
|
|
check(!op.isTemp() || op.getTemp().is_linear(), "Wrong Operand type", instr.get());
|
|
check(instr->operands.size() == block.linear_preds.size(), "Number of Operands does not match number of predecessors", instr.get());
|
|
}
|
|
break;
|
|
}
|
|
case Format::SMEM: {
|
|
if (instr->operands.size() >= 1)
|
|
check(instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::sgpr, "SMEM operands must be sgpr", instr.get());
|
|
if (instr->operands.size() >= 2)
|
|
check(instr->operands[1].isConstant() || (instr->operands[1].isTemp() && instr->operands[1].regClass().type() == RegType::sgpr),
|
|
"SMEM offset must be constant or sgpr", instr.get());
|
|
if (!instr->definitions.empty())
|
|
check(instr->definitions[0].getTemp().type() == RegType::sgpr, "SMEM result must be sgpr", instr.get());
|
|
break;
|
|
}
|
|
case Format::MTBUF:
|
|
case Format::MUBUF: {
|
|
check(instr->operands.size() > 1, "VMEM instructions must have at least one operand", instr.get());
|
|
check(instr->operands[1].hasRegClass() && instr->operands[1].regClass().type() == RegType::vgpr,
|
|
"VADDR must be in vgpr for VMEM instructions", instr.get());
|
|
check(instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::sgpr, "VMEM resource constant must be sgpr", instr.get());
|
|
check(instr->operands.size() < 4 || (instr->operands[3].isTemp() && instr->operands[3].regClass().type() == RegType::vgpr), "VMEM write data must be vgpr", instr.get());
|
|
break;
|
|
}
|
|
case Format::MIMG: {
|
|
check(instr->operands.size() == 3, "MIMG instructions must have exactly 3 operands", instr.get());
|
|
check(instr->operands[0].hasRegClass() && (instr->operands[0].regClass() == s4 || instr->operands[0].regClass() == s8),
|
|
"MIMG operands[0] (resource constant) must be in 4 or 8 SGPRs", instr.get());
|
|
if (instr->operands[1].hasRegClass() && instr->operands[1].regClass().type() == RegType::sgpr)
|
|
check(instr->operands[1].regClass() == s4, "MIMG operands[1] (sampler constant) must be 4 SGPRs", instr.get());
|
|
else if (instr->operands[1].hasRegClass() && instr->operands[1].regClass().type() == RegType::vgpr)
|
|
check((instr->definitions.empty() || instr->definitions[0].regClass() == instr->operands[1].regClass() ||
|
|
instr->opcode == aco_opcode::image_atomic_cmpswap || instr->opcode == aco_opcode::image_atomic_fcmpswap),
|
|
"MIMG operands[1] (VDATA) must be the same as definitions[0] for atomics", instr.get());
|
|
check(instr->operands[2].hasRegClass() && instr->operands[2].regClass().type() == RegType::vgpr,
|
|
"MIMG operands[2] (VADDR) must be VGPR", instr.get());
|
|
check(instr->definitions.empty() || (instr->definitions[0].isTemp() && instr->definitions[0].regClass().type() == RegType::vgpr),
|
|
"MIMG definitions[0] (VDATA) must be VGPR", instr.get());
|
|
break;
|
|
}
|
|
case Format::DS: {
|
|
for (const Operand& op : instr->operands) {
|
|
check((op.isTemp() && op.regClass().type() == RegType::vgpr) || op.physReg() == m0,
|
|
"Only VGPRs are valid DS instruction operands", instr.get());
|
|
}
|
|
if (!instr->definitions.empty())
|
|
check(instr->definitions[0].getTemp().type() == RegType::vgpr, "DS instruction must return VGPR", instr.get());
|
|
break;
|
|
}
|
|
case Format::EXP: {
|
|
for (unsigned i = 0; i < 4; i++)
|
|
check(instr->operands[i].hasRegClass() && instr->operands[i].regClass().type() == RegType::vgpr,
|
|
"Only VGPRs are valid Export arguments", instr.get());
|
|
break;
|
|
}
|
|
case Format::FLAT:
|
|
check(instr->operands[1].isUndefined(), "Flat instructions don't support SADDR", instr.get());
|
|
/* fallthrough */
|
|
case Format::GLOBAL:
|
|
case Format::SCRATCH: {
|
|
check(instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::vgpr, "FLAT/GLOBAL/SCRATCH address must be vgpr", instr.get());
|
|
check(instr->operands[1].hasRegClass() && instr->operands[1].regClass().type() == RegType::sgpr,
|
|
"FLAT/GLOBAL/SCRATCH sgpr address must be undefined or sgpr", instr.get());
|
|
if (!instr->definitions.empty())
|
|
check(instr->definitions[0].getTemp().type() == RegType::vgpr, "FLAT/GLOBAL/SCRATCH result must be vgpr", instr.get());
|
|
else
|
|
check(instr->operands[2].regClass().type() == RegType::vgpr, "FLAT/GLOBAL/SCRATCH data must be vgpr", instr.get());
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* validate CFG */
|
|
for (unsigned i = 0; i < program->blocks.size(); i++) {
|
|
Block& block = program->blocks[i];
|
|
check_block(block.index == i, "block.index must match actual index", &block);
|
|
|
|
/* predecessors/successors should be sorted */
|
|
for (unsigned j = 0; j + 1 < block.linear_preds.size(); j++)
|
|
check_block(block.linear_preds[j] < block.linear_preds[j + 1], "linear predecessors must be sorted", &block);
|
|
for (unsigned j = 0; j + 1 < block.logical_preds.size(); j++)
|
|
check_block(block.logical_preds[j] < block.logical_preds[j + 1], "logical predecessors must be sorted", &block);
|
|
for (unsigned j = 0; j + 1 < block.linear_succs.size(); j++)
|
|
check_block(block.linear_succs[j] < block.linear_succs[j + 1], "linear successors must be sorted", &block);
|
|
for (unsigned j = 0; j + 1 < block.logical_succs.size(); j++)
|
|
check_block(block.logical_succs[j] < block.logical_succs[j + 1], "logical successors must be sorted", &block);
|
|
|
|
/* critical edges are not allowed */
|
|
if (block.linear_preds.size() > 1) {
|
|
for (unsigned pred : block.linear_preds)
|
|
check_block(program->blocks[pred].linear_succs.size() == 1, "linear critical edges are not allowed", &program->blocks[pred]);
|
|
for (unsigned pred : block.logical_preds)
|
|
check_block(program->blocks[pred].logical_succs.size() == 1, "logical critical edges are not allowed", &program->blocks[pred]);
|
|
}
|
|
}
|
|
|
|
assert(is_valid);
|
|
}
|
|
|
|
/* RA validation */
|
|
namespace {
|
|
|
|
struct Location {
|
|
Location() : block(NULL), instr(NULL) {}
|
|
|
|
Block *block;
|
|
Instruction *instr; //NULL if it's the block's live-in
|
|
};
|
|
|
|
struct Assignment {
|
|
Location defloc;
|
|
Location firstloc;
|
|
PhysReg reg;
|
|
};
|
|
|
|
bool ra_fail(FILE *output, Location loc, Location loc2, const char *fmt, ...) {
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
char msg[1024];
|
|
vsprintf(msg, fmt, args);
|
|
va_end(args);
|
|
|
|
fprintf(stderr, "RA error found at instruction in BB%d:\n", loc.block->index);
|
|
if (loc.instr) {
|
|
aco_print_instr(loc.instr, stderr);
|
|
fprintf(stderr, "\n%s", msg);
|
|
} else {
|
|
fprintf(stderr, "%s", msg);
|
|
}
|
|
if (loc2.block) {
|
|
fprintf(stderr, " in BB%d:\n", loc2.block->index);
|
|
aco_print_instr(loc2.instr, stderr);
|
|
}
|
|
fprintf(stderr, "\n\n");
|
|
|
|
return true;
|
|
}
|
|
|
|
bool validate_subdword_operand(chip_class chip, const aco_ptr<Instruction>& instr, unsigned index)
|
|
{
|
|
Operand op = instr->operands[index];
|
|
unsigned byte = op.physReg().byte();
|
|
|
|
if (instr->format == Format::PSEUDO && chip >= GFX8)
|
|
return true;
|
|
if (instr->isSDWA() && (static_cast<SDWA_instruction *>(instr.get())->sel[index] & sdwa_asuint) == (sdwa_isra | op.bytes()))
|
|
return true;
|
|
if (byte == 2 && can_use_opsel(chip, instr->opcode, index, 1))
|
|
return true;
|
|
|
|
switch (instr->opcode) {
|
|
case aco_opcode::v_cvt_f32_ubyte1:
|
|
if (byte == 1)
|
|
return true;
|
|
break;
|
|
case aco_opcode::v_cvt_f32_ubyte2:
|
|
if (byte == 2)
|
|
return true;
|
|
break;
|
|
case aco_opcode::v_cvt_f32_ubyte3:
|
|
if (byte == 3)
|
|
return true;
|
|
break;
|
|
case aco_opcode::ds_write_b8_d16_hi:
|
|
case aco_opcode::ds_write_b16_d16_hi:
|
|
if (byte == 2 && index == 1)
|
|
return true;
|
|
break;
|
|
case aco_opcode::buffer_store_byte_d16_hi:
|
|
case aco_opcode::buffer_store_short_d16_hi:
|
|
if (byte == 2 && index == 3)
|
|
return true;
|
|
break;
|
|
case aco_opcode::flat_store_byte_d16_hi:
|
|
case aco_opcode::flat_store_short_d16_hi:
|
|
case aco_opcode::scratch_store_byte_d16_hi:
|
|
case aco_opcode::scratch_store_short_d16_hi:
|
|
case aco_opcode::global_store_byte_d16_hi:
|
|
case aco_opcode::global_store_short_d16_hi:
|
|
if (byte == 2 && index == 2)
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return byte == 0;
|
|
}
|
|
|
|
bool validate_subdword_definition(chip_class chip, const aco_ptr<Instruction>& instr)
|
|
{
|
|
Definition def = instr->definitions[0];
|
|
unsigned byte = def.physReg().byte();
|
|
|
|
if (instr->format == Format::PSEUDO && chip >= GFX8)
|
|
return true;
|
|
if (instr->isSDWA() && static_cast<SDWA_instruction *>(instr.get())->dst_sel == (sdwa_isra | def.bytes()))
|
|
return true;
|
|
if (byte == 2 && can_use_opsel(chip, instr->opcode, -1, 1))
|
|
return true;
|
|
|
|
switch (instr->opcode) {
|
|
case aco_opcode::buffer_load_ubyte_d16_hi:
|
|
case aco_opcode::buffer_load_short_d16_hi:
|
|
case aco_opcode::flat_load_ubyte_d16_hi:
|
|
case aco_opcode::flat_load_short_d16_hi:
|
|
case aco_opcode::scratch_load_ubyte_d16_hi:
|
|
case aco_opcode::scratch_load_short_d16_hi:
|
|
case aco_opcode::global_load_ubyte_d16_hi:
|
|
case aco_opcode::global_load_short_d16_hi:
|
|
case aco_opcode::ds_read_u8_d16_hi:
|
|
case aco_opcode::ds_read_u16_d16_hi:
|
|
return byte == 2;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return byte == 0;
|
|
}
|
|
|
|
unsigned get_subdword_bytes_written(Program *program, const aco_ptr<Instruction>& instr, unsigned index)
|
|
{
|
|
chip_class chip = program->chip_class;
|
|
Definition def = instr->definitions[index];
|
|
|
|
if (instr->format == Format::PSEUDO)
|
|
return chip >= GFX8 ? def.bytes() : def.size() * 4u;
|
|
if (instr->isSDWA() && static_cast<SDWA_instruction *>(instr.get())->dst_sel == (sdwa_isra | def.bytes()))
|
|
return def.bytes();
|
|
|
|
switch (instr->opcode) {
|
|
case aco_opcode::buffer_load_ubyte_d16:
|
|
case aco_opcode::buffer_load_short_d16:
|
|
case aco_opcode::flat_load_ubyte_d16:
|
|
case aco_opcode::flat_load_short_d16:
|
|
case aco_opcode::scratch_load_ubyte_d16:
|
|
case aco_opcode::scratch_load_short_d16:
|
|
case aco_opcode::global_load_ubyte_d16:
|
|
case aco_opcode::global_load_short_d16:
|
|
case aco_opcode::ds_read_u8_d16:
|
|
case aco_opcode::ds_read_u16_d16:
|
|
case aco_opcode::buffer_load_ubyte_d16_hi:
|
|
case aco_opcode::buffer_load_short_d16_hi:
|
|
case aco_opcode::flat_load_ubyte_d16_hi:
|
|
case aco_opcode::flat_load_short_d16_hi:
|
|
case aco_opcode::scratch_load_ubyte_d16_hi:
|
|
case aco_opcode::scratch_load_short_d16_hi:
|
|
case aco_opcode::global_load_ubyte_d16_hi:
|
|
case aco_opcode::global_load_short_d16_hi:
|
|
case aco_opcode::ds_read_u8_d16_hi:
|
|
case aco_opcode::ds_read_u16_d16_hi:
|
|
return program->sram_ecc_enabled ? 4 : 2;
|
|
case aco_opcode::v_mad_f16:
|
|
case aco_opcode::v_mad_u16:
|
|
case aco_opcode::v_mad_i16:
|
|
case aco_opcode::v_fma_f16:
|
|
case aco_opcode::v_div_fixup_f16:
|
|
case aco_opcode::v_interp_p2_f16:
|
|
if (chip >= GFX9)
|
|
return 2;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return MAX2(chip >= GFX10 ? def.bytes() : 4, instr_info.definition_size[(int)instr->opcode] / 8u);
|
|
}
|
|
|
|
} /* end namespace */
|
|
|
|
bool validate_ra(Program *program, const struct radv_nir_compiler_options *options, FILE *output) {
|
|
if (!(debug_flags & DEBUG_VALIDATE_RA))
|
|
return false;
|
|
|
|
bool err = false;
|
|
aco::live live_vars = aco::live_var_analysis(program, options);
|
|
std::vector<std::vector<Temp>> phi_sgpr_ops(program->blocks.size());
|
|
|
|
std::map<unsigned, Assignment> assignments;
|
|
for (Block& block : program->blocks) {
|
|
Location loc;
|
|
loc.block = █
|
|
for (aco_ptr<Instruction>& instr : block.instructions) {
|
|
if (instr->opcode == aco_opcode::p_phi) {
|
|
for (unsigned i = 0; i < instr->operands.size(); i++) {
|
|
if (instr->operands[i].isTemp() &&
|
|
instr->operands[i].getTemp().type() == RegType::sgpr &&
|
|
instr->operands[i].isFirstKill())
|
|
phi_sgpr_ops[block.logical_preds[i]].emplace_back(instr->operands[i].getTemp());
|
|
}
|
|
}
|
|
|
|
loc.instr = instr.get();
|
|
for (unsigned i = 0; i < instr->operands.size(); i++) {
|
|
Operand& op = instr->operands[i];
|
|
if (!op.isTemp())
|
|
continue;
|
|
if (!op.isFixed())
|
|
err |= ra_fail(output, loc, Location(), "Operand %d is not assigned a register", i);
|
|
if (assignments.count(op.tempId()) && assignments[op.tempId()].reg != op.physReg())
|
|
err |= ra_fail(output, loc, assignments.at(op.tempId()).firstloc, "Operand %d has an inconsistent register assignment with instruction", i);
|
|
if ((op.getTemp().type() == RegType::vgpr && op.physReg().reg_b + op.bytes() > (256 + program->config->num_vgprs) * 4) ||
|
|
(op.getTemp().type() == RegType::sgpr && op.physReg() + op.size() > program->config->num_sgprs && op.physReg() < program->sgpr_limit))
|
|
err |= ra_fail(output, loc, assignments.at(op.tempId()).firstloc, "Operand %d has an out-of-bounds register assignment", i);
|
|
if (op.physReg() == vcc && !program->needs_vcc)
|
|
err |= ra_fail(output, loc, Location(), "Operand %d fixed to vcc but needs_vcc=false", i);
|
|
if (op.regClass().is_subdword() && !validate_subdword_operand(program->chip_class, instr, i))
|
|
err |= ra_fail(output, loc, Location(), "Operand %d not aligned correctly", i);
|
|
if (!assignments[op.tempId()].firstloc.block)
|
|
assignments[op.tempId()].firstloc = loc;
|
|
if (!assignments[op.tempId()].defloc.block)
|
|
assignments[op.tempId()].reg = op.physReg();
|
|
}
|
|
|
|
for (unsigned i = 0; i < instr->definitions.size(); i++) {
|
|
Definition& def = instr->definitions[i];
|
|
if (!def.isTemp())
|
|
continue;
|
|
if (!def.isFixed())
|
|
err |= ra_fail(output, loc, Location(), "Definition %d is not assigned a register", i);
|
|
if (assignments[def.tempId()].defloc.block)
|
|
err |= ra_fail(output, loc, assignments.at(def.tempId()).defloc, "Temporary %%%d also defined by instruction", def.tempId());
|
|
if ((def.getTemp().type() == RegType::vgpr && def.physReg().reg_b + def.bytes() > (256 + program->config->num_vgprs) * 4) ||
|
|
(def.getTemp().type() == RegType::sgpr && def.physReg() + def.size() > program->config->num_sgprs && def.physReg() < program->sgpr_limit))
|
|
err |= ra_fail(output, loc, assignments.at(def.tempId()).firstloc, "Definition %d has an out-of-bounds register assignment", i);
|
|
if (def.physReg() == vcc && !program->needs_vcc)
|
|
err |= ra_fail(output, loc, Location(), "Definition %d fixed to vcc but needs_vcc=false", i);
|
|
if (def.regClass().is_subdword() && !validate_subdword_definition(program->chip_class, instr))
|
|
err |= ra_fail(output, loc, Location(), "Definition %d not aligned correctly", i);
|
|
if (!assignments[def.tempId()].firstloc.block)
|
|
assignments[def.tempId()].firstloc = loc;
|
|
assignments[def.tempId()].defloc = loc;
|
|
assignments[def.tempId()].reg = def.physReg();
|
|
}
|
|
}
|
|
}
|
|
|
|
for (Block& block : program->blocks) {
|
|
Location loc;
|
|
loc.block = █
|
|
|
|
std::array<unsigned, 2048> regs; /* register file in bytes */
|
|
regs.fill(0);
|
|
|
|
std::set<Temp> live;
|
|
live.insert(live_vars.live_out[block.index].begin(), live_vars.live_out[block.index].end());
|
|
/* remove killed p_phi sgpr operands */
|
|
for (Temp tmp : phi_sgpr_ops[block.index])
|
|
live.erase(tmp);
|
|
|
|
/* check live out */
|
|
for (Temp tmp : live) {
|
|
PhysReg reg = assignments.at(tmp.id()).reg;
|
|
for (unsigned i = 0; i < tmp.bytes(); i++) {
|
|
if (regs[reg.reg_b + i]) {
|
|
err |= ra_fail(output, loc, Location(), "Assignment of element %d of %%%d already taken by %%%d in live-out", i, tmp.id(), regs[reg.reg_b + i]);
|
|
}
|
|
regs[reg.reg_b + i] = tmp.id();
|
|
}
|
|
}
|
|
regs.fill(0);
|
|
|
|
for (auto it = block.instructions.rbegin(); it != block.instructions.rend(); ++it) {
|
|
aco_ptr<Instruction>& instr = *it;
|
|
|
|
/* check killed p_phi sgpr operands */
|
|
if (instr->opcode == aco_opcode::p_logical_end) {
|
|
for (Temp tmp : phi_sgpr_ops[block.index]) {
|
|
PhysReg reg = assignments.at(tmp.id()).reg;
|
|
for (unsigned i = 0; i < tmp.bytes(); i++) {
|
|
if (regs[reg.reg_b + i])
|
|
err |= ra_fail(output, loc, Location(), "Assignment of element %d of %%%d already taken by %%%d in live-out", i, tmp.id(), regs[reg.reg_b + i]);
|
|
}
|
|
live.emplace(tmp);
|
|
}
|
|
}
|
|
|
|
for (const Definition& def : instr->definitions) {
|
|
if (!def.isTemp())
|
|
continue;
|
|
live.erase(def.getTemp());
|
|
}
|
|
|
|
/* don't count phi operands as live-in, since they are actually
|
|
* killed when they are copied at the predecessor */
|
|
if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) {
|
|
for (const Operand& op : instr->operands) {
|
|
if (!op.isTemp())
|
|
continue;
|
|
live.insert(op.getTemp());
|
|
}
|
|
}
|
|
}
|
|
|
|
for (Temp tmp : live) {
|
|
PhysReg reg = assignments.at(tmp.id()).reg;
|
|
for (unsigned i = 0; i < tmp.bytes(); i++)
|
|
regs[reg.reg_b + i] = tmp.id();
|
|
}
|
|
|
|
for (aco_ptr<Instruction>& instr : block.instructions) {
|
|
loc.instr = instr.get();
|
|
|
|
/* remove killed p_phi operands from regs */
|
|
if (instr->opcode == aco_opcode::p_logical_end) {
|
|
for (Temp tmp : phi_sgpr_ops[block.index]) {
|
|
PhysReg reg = assignments.at(tmp.id()).reg;
|
|
for (unsigned i = 0; i < tmp.bytes(); i++)
|
|
regs[reg.reg_b + i] = 0;
|
|
}
|
|
}
|
|
|
|
if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) {
|
|
for (const Operand& op : instr->operands) {
|
|
if (!op.isTemp())
|
|
continue;
|
|
if (op.isFirstKillBeforeDef()) {
|
|
for (unsigned j = 0; j < op.getTemp().bytes(); j++)
|
|
regs[op.physReg().reg_b + j] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0; i < instr->definitions.size(); i++) {
|
|
Definition& def = instr->definitions[i];
|
|
if (!def.isTemp())
|
|
continue;
|
|
Temp tmp = def.getTemp();
|
|
PhysReg reg = assignments.at(tmp.id()).reg;
|
|
for (unsigned j = 0; j < tmp.bytes(); j++) {
|
|
if (regs[reg.reg_b + j])
|
|
err |= ra_fail(output, loc, assignments.at(regs[reg.reg_b + j]).defloc, "Assignment of element %d of %%%d already taken by %%%d from instruction", i, tmp.id(), regs[reg.reg_b + j]);
|
|
regs[reg.reg_b + j] = tmp.id();
|
|
}
|
|
if (def.regClass().is_subdword() && def.bytes() < 4) {
|
|
unsigned written = get_subdword_bytes_written(program, instr, i);
|
|
/* If written=4, the instruction still might write the upper half. In that case, it's the lower half that isn't preserved */
|
|
for (unsigned j = reg.byte() & ~(written - 1); j < written; j++) {
|
|
unsigned written_reg = reg.reg() * 4u + j;
|
|
if (regs[written_reg] && regs[written_reg] != def.tempId())
|
|
err |= ra_fail(output, loc, assignments.at(regs[written_reg]).defloc, "Assignment of element %d of %%%d overwrites the full register taken by %%%d from instruction", i, tmp.id(), regs[written_reg]);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (const Definition& def : instr->definitions) {
|
|
if (!def.isTemp())
|
|
continue;
|
|
if (def.isKill()) {
|
|
for (unsigned j = 0; j < def.getTemp().bytes(); j++)
|
|
regs[def.physReg().reg_b + j] = 0;
|
|
}
|
|
}
|
|
|
|
if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) {
|
|
for (const Operand& op : instr->operands) {
|
|
if (!op.isTemp())
|
|
continue;
|
|
if (op.isLateKill() && op.isFirstKill()) {
|
|
for (unsigned j = 0; j < op.getTemp().bytes(); j++)
|
|
regs[op.physReg().reg_b + j] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return err;
|
|
}
|
|
}
|