mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-23 22:00:13 +01:00
Our attempt to restart the loop with the second level batch worked at one point but got broken at some point. It was too fragile anyway and we're not likely to have enough secondaries to actually overflow the stack so we may as well recurse in both cases. Reviewed-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
882 lines
29 KiB
C
882 lines
29 KiB
C
/*
|
|
* Copyright © 2017 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "common/gen_decoder.h"
|
|
#include "gen_disasm.h"
|
|
|
|
#include <string.h>
|
|
|
|
void
|
|
gen_batch_decode_ctx_init(struct gen_batch_decode_ctx *ctx,
|
|
const struct gen_device_info *devinfo,
|
|
FILE *fp, enum gen_batch_decode_flags flags,
|
|
const char *xml_path,
|
|
struct gen_batch_decode_bo (*get_bo)(void *,
|
|
uint64_t),
|
|
unsigned (*get_state_size)(void *, uint32_t),
|
|
void *user_data)
|
|
{
|
|
memset(ctx, 0, sizeof(*ctx));
|
|
|
|
ctx->get_bo = get_bo;
|
|
ctx->get_state_size = get_state_size;
|
|
ctx->user_data = user_data;
|
|
ctx->fp = fp;
|
|
ctx->flags = flags;
|
|
ctx->max_vbo_decoded_lines = -1; /* No limit! */
|
|
|
|
if (xml_path == NULL)
|
|
ctx->spec = gen_spec_load(devinfo);
|
|
else
|
|
ctx->spec = gen_spec_load_from_path(devinfo, xml_path);
|
|
ctx->disasm = gen_disasm_create(devinfo);
|
|
}
|
|
|
|
void
|
|
gen_batch_decode_ctx_finish(struct gen_batch_decode_ctx *ctx)
|
|
{
|
|
gen_spec_destroy(ctx->spec);
|
|
gen_disasm_destroy(ctx->disasm);
|
|
}
|
|
|
|
#define CSI "\e["
|
|
#define RED_COLOR CSI "31m"
|
|
#define BLUE_HEADER CSI "0;44m"
|
|
#define GREEN_HEADER CSI "1;42m"
|
|
#define NORMAL CSI "0m"
|
|
|
|
#define ARRAY_LENGTH(a) (sizeof (a) / sizeof (a)[0])
|
|
|
|
static void
|
|
ctx_print_group(struct gen_batch_decode_ctx *ctx,
|
|
struct gen_group *group,
|
|
uint64_t address, const void *map)
|
|
{
|
|
gen_print_group(ctx->fp, group, address, map, 0,
|
|
(ctx->flags & GEN_BATCH_DECODE_IN_COLOR) != 0);
|
|
}
|
|
|
|
static struct gen_batch_decode_bo
|
|
ctx_get_bo(struct gen_batch_decode_ctx *ctx, uint64_t addr)
|
|
{
|
|
if (gen_spec_get_gen(ctx->spec) >= gen_make_gen(8,0)) {
|
|
/* On Broadwell and above, we have 48-bit addresses which consume two
|
|
* dwords. Some packets require that these get stored in a "canonical
|
|
* form" which means that bit 47 is sign-extended through the upper
|
|
* bits. In order to correctly handle those aub dumps, we need to mask
|
|
* off the top 16 bits.
|
|
*/
|
|
addr &= (~0ull >> 16);
|
|
}
|
|
|
|
struct gen_batch_decode_bo bo = ctx->get_bo(ctx->user_data, addr);
|
|
|
|
if (gen_spec_get_gen(ctx->spec) >= gen_make_gen(8,0))
|
|
bo.addr &= (~0ull >> 16);
|
|
|
|
/* We may actually have an offset into the bo */
|
|
if (bo.map != NULL) {
|
|
assert(bo.addr <= addr);
|
|
uint64_t offset = addr - bo.addr;
|
|
bo.map += offset;
|
|
bo.addr += offset;
|
|
bo.size -= offset;
|
|
}
|
|
|
|
return bo;
|
|
}
|
|
|
|
static int
|
|
update_count(struct gen_batch_decode_ctx *ctx,
|
|
uint32_t offset_from_dsba,
|
|
unsigned element_dwords,
|
|
unsigned guess)
|
|
{
|
|
unsigned size = 0;
|
|
|
|
if (ctx->get_state_size)
|
|
size = ctx->get_state_size(ctx->user_data, offset_from_dsba);
|
|
|
|
if (size > 0)
|
|
return size / (sizeof(uint32_t) * element_dwords);
|
|
|
|
/* In the absence of any information, just guess arbitrarily. */
|
|
return guess;
|
|
}
|
|
|
|
static void
|
|
ctx_disassemble_program(struct gen_batch_decode_ctx *ctx,
|
|
uint32_t ksp, const char *type)
|
|
{
|
|
if (!ctx->instruction_base.map)
|
|
return;
|
|
|
|
printf("\nReferenced %s:\n", type);
|
|
gen_disasm_disassemble(ctx->disasm,
|
|
(void *)ctx->instruction_base.map, ksp,
|
|
ctx->fp);
|
|
}
|
|
|
|
/* Heuristic to determine whether a uint32_t is probably actually a float
|
|
* (http://stackoverflow.com/a/2953466)
|
|
*/
|
|
|
|
static bool
|
|
probably_float(uint32_t bits)
|
|
{
|
|
int exp = ((bits & 0x7f800000U) >> 23) - 127;
|
|
uint32_t mant = bits & 0x007fffff;
|
|
|
|
/* +- 0.0 */
|
|
if (exp == -127 && mant == 0)
|
|
return true;
|
|
|
|
/* +- 1 billionth to 1 billion */
|
|
if (-30 <= exp && exp <= 30)
|
|
return true;
|
|
|
|
/* some value with only a few binary digits */
|
|
if ((mant & 0x0000ffff) == 0)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
ctx_print_buffer(struct gen_batch_decode_ctx *ctx,
|
|
struct gen_batch_decode_bo bo,
|
|
uint32_t read_length,
|
|
uint32_t pitch,
|
|
int max_lines)
|
|
{
|
|
const uint32_t *dw_end = bo.map + MIN2(bo.size, read_length);
|
|
|
|
int column_count = 0, line_count = -1;
|
|
for (const uint32_t *dw = bo.map; dw < dw_end; dw++) {
|
|
if (column_count * 4 == pitch || column_count == 8) {
|
|
fprintf(ctx->fp, "\n");
|
|
column_count = 0;
|
|
line_count++;
|
|
|
|
if (max_lines >= 0 && line_count >= max_lines)
|
|
break;
|
|
}
|
|
fprintf(ctx->fp, column_count == 0 ? " " : " ");
|
|
|
|
if ((ctx->flags & GEN_BATCH_DECODE_FLOATS) && probably_float(*dw))
|
|
fprintf(ctx->fp, " %8.2f", *(float *) dw);
|
|
else
|
|
fprintf(ctx->fp, " 0x%08x", *dw);
|
|
|
|
column_count++;
|
|
}
|
|
fprintf(ctx->fp, "\n");
|
|
}
|
|
|
|
static void
|
|
handle_state_base_address(struct gen_batch_decode_ctx *ctx, const uint32_t *p)
|
|
{
|
|
struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p);
|
|
|
|
struct gen_field_iterator iter;
|
|
gen_field_iterator_init(&iter, inst, p, 0, false);
|
|
|
|
while (gen_field_iterator_next(&iter)) {
|
|
if (strcmp(iter.name, "Surface State Base Address") == 0) {
|
|
ctx->surface_base = ctx_get_bo(ctx, iter.raw_value);
|
|
} else if (strcmp(iter.name, "Dynamic State Base Address") == 0) {
|
|
ctx->dynamic_base = ctx_get_bo(ctx, iter.raw_value);
|
|
} else if (strcmp(iter.name, "Instruction Base Address") == 0) {
|
|
ctx->instruction_base = ctx_get_bo(ctx, iter.raw_value);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
dump_binding_table(struct gen_batch_decode_ctx *ctx, uint32_t offset, int count)
|
|
{
|
|
struct gen_group *strct =
|
|
gen_spec_find_struct(ctx->spec, "RENDER_SURFACE_STATE");
|
|
if (strct == NULL) {
|
|
fprintf(ctx->fp, "did not find RENDER_SURFACE_STATE info\n");
|
|
return;
|
|
}
|
|
|
|
if (count < 0)
|
|
count = update_count(ctx, offset, 1, 8);
|
|
|
|
if (ctx->surface_base.map == NULL) {
|
|
fprintf(ctx->fp, " binding table unavailable\n");
|
|
return;
|
|
}
|
|
|
|
if (offset % 32 != 0 || offset >= UINT16_MAX ||
|
|
offset >= ctx->surface_base.size) {
|
|
fprintf(ctx->fp, " invalid binding table pointer\n");
|
|
return;
|
|
}
|
|
|
|
struct gen_batch_decode_bo bo = ctx->surface_base;
|
|
const uint32_t *pointers = ctx->surface_base.map + offset;
|
|
for (int i = 0; i < count; i++) {
|
|
if (pointers[i] == 0)
|
|
continue;
|
|
|
|
if (pointers[i] % 32 != 0) {
|
|
fprintf(ctx->fp, "pointer %u: %08x <not valid>\n", i, pointers[i]);
|
|
continue;
|
|
}
|
|
|
|
uint64_t addr = ctx->surface_base.addr + pointers[i];
|
|
uint32_t size = strct->dw_length * 4;
|
|
|
|
if (addr < bo.addr || addr + size >= bo.addr + bo.size)
|
|
bo = ctx->get_bo(ctx->user_data, addr);
|
|
|
|
if (addr < bo.addr || addr + size >= bo.addr + bo.size) {
|
|
fprintf(ctx->fp, "pointer %u: %08x <not valid>\n", i, pointers[i]);
|
|
continue;
|
|
}
|
|
|
|
fprintf(ctx->fp, "pointer %u: %08x\n", i, pointers[i]);
|
|
ctx_print_group(ctx, strct, addr, bo.map + (addr - bo.addr));
|
|
}
|
|
}
|
|
|
|
static void
|
|
dump_samplers(struct gen_batch_decode_ctx *ctx, uint32_t offset, int count)
|
|
{
|
|
struct gen_group *strct = gen_spec_find_struct(ctx->spec, "SAMPLER_STATE");
|
|
|
|
if (count < 0)
|
|
count = update_count(ctx, offset, strct->dw_length, 4);
|
|
|
|
if (ctx->dynamic_base.map == NULL) {
|
|
fprintf(ctx->fp, " samplers unavailable\n");
|
|
return;
|
|
}
|
|
|
|
if (offset % 32 != 0 || offset >= ctx->dynamic_base.size) {
|
|
fprintf(ctx->fp, " invalid sampler state pointer\n");
|
|
return;
|
|
}
|
|
|
|
uint64_t state_addr = ctx->dynamic_base.addr + offset;
|
|
const void *state_map = ctx->dynamic_base.map + offset;
|
|
for (int i = 0; i < count; i++) {
|
|
fprintf(ctx->fp, "sampler state %d\n", i);
|
|
ctx_print_group(ctx, strct, state_addr, state_map);
|
|
state_addr += 16;
|
|
state_map += 16;
|
|
}
|
|
}
|
|
|
|
static void
|
|
handle_media_interface_descriptor_load(struct gen_batch_decode_ctx *ctx,
|
|
const uint32_t *p)
|
|
{
|
|
if (ctx->dynamic_base.map == NULL)
|
|
return;
|
|
|
|
struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p);
|
|
struct gen_group *desc =
|
|
gen_spec_find_struct(ctx->spec, "INTERFACE_DESCRIPTOR_DATA");
|
|
|
|
struct gen_field_iterator iter;
|
|
gen_field_iterator_init(&iter, inst, p, 0, false);
|
|
uint32_t descriptor_offset = 0;
|
|
int descriptor_count = 0;
|
|
while (gen_field_iterator_next(&iter)) {
|
|
if (strcmp(iter.name, "Interface Descriptor Data Start Address") == 0) {
|
|
descriptor_offset = strtol(iter.value, NULL, 16);
|
|
} else if (strcmp(iter.name, "Interface Descriptor Total Length") == 0) {
|
|
descriptor_count =
|
|
strtol(iter.value, NULL, 16) / (desc->dw_length * 4);
|
|
}
|
|
}
|
|
|
|
uint64_t desc_addr = ctx->dynamic_base.addr + descriptor_offset;
|
|
const uint32_t *desc_map = ctx->dynamic_base.map + descriptor_offset;
|
|
for (int i = 0; i < descriptor_count; i++) {
|
|
fprintf(ctx->fp, "descriptor %d: %08x\n", i, descriptor_offset);
|
|
|
|
ctx_print_group(ctx, desc, desc_addr, desc_map);
|
|
|
|
gen_field_iterator_init(&iter, desc, desc_map, 0, false);
|
|
uint64_t ksp;
|
|
uint32_t sampler_offset, sampler_count;
|
|
uint32_t binding_table_offset, binding_entry_count;
|
|
while (gen_field_iterator_next(&iter)) {
|
|
if (strcmp(iter.name, "Kernel Start Pointer") == 0) {
|
|
ksp = strtoll(iter.value, NULL, 16);
|
|
} else if (strcmp(iter.name, "Sampler State Pointer") == 0) {
|
|
sampler_offset = strtol(iter.value, NULL, 16);
|
|
} else if (strcmp(iter.name, "Sampler Count") == 0) {
|
|
sampler_count = strtol(iter.value, NULL, 10);
|
|
} else if (strcmp(iter.name, "Binding Table Pointer") == 0) {
|
|
binding_table_offset = strtol(iter.value, NULL, 16);
|
|
} else if (strcmp(iter.name, "Binding Table Entry Count") == 0) {
|
|
binding_entry_count = strtol(iter.value, NULL, 10);
|
|
}
|
|
}
|
|
|
|
ctx_disassemble_program(ctx, ksp, "compute shader");
|
|
printf("\n");
|
|
|
|
dump_samplers(ctx, sampler_offset, sampler_count);
|
|
dump_binding_table(ctx, binding_table_offset, binding_entry_count);
|
|
|
|
desc_map += desc->dw_length;
|
|
desc_addr += desc->dw_length * 4;
|
|
}
|
|
}
|
|
|
|
static void
|
|
handle_3dstate_vertex_buffers(struct gen_batch_decode_ctx *ctx,
|
|
const uint32_t *p)
|
|
{
|
|
struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p);
|
|
struct gen_group *vbs = gen_spec_find_struct(ctx->spec, "VERTEX_BUFFER_STATE");
|
|
|
|
struct gen_batch_decode_bo vb = {};
|
|
uint32_t vb_size = 0;
|
|
int index = -1;
|
|
int pitch = -1;
|
|
bool ready = false;
|
|
|
|
struct gen_field_iterator iter;
|
|
gen_field_iterator_init(&iter, inst, p, 0, false);
|
|
while (gen_field_iterator_next(&iter)) {
|
|
if (iter.struct_desc != vbs)
|
|
continue;
|
|
|
|
struct gen_field_iterator vbs_iter;
|
|
gen_field_iterator_init(&vbs_iter, vbs, &iter.p[iter.start_bit / 32], 0, false);
|
|
while (gen_field_iterator_next(&vbs_iter)) {
|
|
if (strcmp(vbs_iter.name, "Vertex Buffer Index") == 0) {
|
|
index = vbs_iter.raw_value;
|
|
} else if (strcmp(vbs_iter.name, "Buffer Pitch") == 0) {
|
|
pitch = vbs_iter.raw_value;
|
|
} else if (strcmp(vbs_iter.name, "Buffer Starting Address") == 0) {
|
|
vb = ctx_get_bo(ctx, vbs_iter.raw_value);
|
|
} else if (strcmp(vbs_iter.name, "Buffer Size") == 0) {
|
|
vb_size = vbs_iter.raw_value;
|
|
ready = true;
|
|
} else if (strcmp(vbs_iter.name, "End Address") == 0) {
|
|
if (vb.map && vbs_iter.raw_value >= vb.addr)
|
|
vb_size = vbs_iter.raw_value - vb.addr;
|
|
else
|
|
vb_size = 0;
|
|
ready = true;
|
|
}
|
|
|
|
if (!ready)
|
|
continue;
|
|
|
|
fprintf(ctx->fp, "vertex buffer %d, size %d\n", index, vb_size);
|
|
|
|
if (vb.map == NULL) {
|
|
fprintf(ctx->fp, " buffer contents unavailable\n");
|
|
continue;
|
|
}
|
|
|
|
if (vb.map == 0 || vb_size == 0)
|
|
continue;
|
|
|
|
ctx_print_buffer(ctx, vb, vb_size, pitch, ctx->max_vbo_decoded_lines);
|
|
|
|
vb.map = NULL;
|
|
vb_size = 0;
|
|
index = -1;
|
|
pitch = -1;
|
|
ready = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
handle_3dstate_index_buffer(struct gen_batch_decode_ctx *ctx,
|
|
const uint32_t *p)
|
|
{
|
|
struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p);
|
|
|
|
struct gen_batch_decode_bo ib = {};
|
|
uint32_t ib_size = 0;
|
|
uint32_t format = 0;
|
|
|
|
struct gen_field_iterator iter;
|
|
gen_field_iterator_init(&iter, inst, p, 0, false);
|
|
while (gen_field_iterator_next(&iter)) {
|
|
if (strcmp(iter.name, "Index Format") == 0) {
|
|
format = iter.raw_value;
|
|
} else if (strcmp(iter.name, "Buffer Starting Address") == 0) {
|
|
ib = ctx_get_bo(ctx, iter.raw_value);
|
|
} else if (strcmp(iter.name, "Buffer Size") == 0) {
|
|
ib_size = iter.raw_value;
|
|
}
|
|
}
|
|
|
|
if (ib.map == NULL) {
|
|
fprintf(ctx->fp, " buffer contents unavailable\n");
|
|
return;
|
|
}
|
|
|
|
const void *m = ib.map;
|
|
const void *ib_end = ib.map + MIN2(ib.size, ib_size);
|
|
for (int i = 0; m < ib_end && i < 10; i++) {
|
|
switch (format) {
|
|
case 0:
|
|
fprintf(ctx->fp, "%3d ", *(uint8_t *)m);
|
|
m += 1;
|
|
break;
|
|
case 1:
|
|
fprintf(ctx->fp, "%3d ", *(uint16_t *)m);
|
|
m += 2;
|
|
break;
|
|
case 2:
|
|
fprintf(ctx->fp, "%3d ", *(uint32_t *)m);
|
|
m += 4;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (m < ib_end)
|
|
fprintf(ctx->fp, "...");
|
|
fprintf(ctx->fp, "\n");
|
|
}
|
|
|
|
static void
|
|
decode_single_ksp(struct gen_batch_decode_ctx *ctx, const uint32_t *p)
|
|
{
|
|
struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p);
|
|
|
|
uint64_t ksp = 0;
|
|
bool is_simd8 = false; /* vertex shaders on Gen8+ only */
|
|
bool is_enabled = true;
|
|
|
|
struct gen_field_iterator iter;
|
|
gen_field_iterator_init(&iter, inst, p, 0, false);
|
|
while (gen_field_iterator_next(&iter)) {
|
|
if (strcmp(iter.name, "Kernel Start Pointer") == 0) {
|
|
ksp = iter.raw_value;
|
|
} else if (strcmp(iter.name, "SIMD8 Dispatch Enable") == 0) {
|
|
is_simd8 = iter.raw_value;
|
|
} else if (strcmp(iter.name, "Dispatch Mode") == 0) {
|
|
is_simd8 = strcmp(iter.value, "SIMD8") == 0;
|
|
} else if (strcmp(iter.name, "Dispatch Enable") == 0) {
|
|
is_simd8 = strcmp(iter.value, "SIMD8") == 0;
|
|
} else if (strcmp(iter.name, "Enable") == 0) {
|
|
is_enabled = iter.raw_value;
|
|
}
|
|
}
|
|
|
|
const char *type =
|
|
strcmp(inst->name, "VS_STATE") == 0 ? "vertex shader" :
|
|
strcmp(inst->name, "GS_STATE") == 0 ? "geometry shader" :
|
|
strcmp(inst->name, "SF_STATE") == 0 ? "strips and fans shader" :
|
|
strcmp(inst->name, "CLIP_STATE") == 0 ? "clip shader" :
|
|
strcmp(inst->name, "3DSTATE_DS") == 0 ? "tessellation evaluation shader" :
|
|
strcmp(inst->name, "3DSTATE_HS") == 0 ? "tessellation control shader" :
|
|
strcmp(inst->name, "3DSTATE_VS") == 0 ? (is_simd8 ? "SIMD8 vertex shader" : "vec4 vertex shader") :
|
|
strcmp(inst->name, "3DSTATE_GS") == 0 ? (is_simd8 ? "SIMD8 geometry shader" : "vec4 geometry shader") :
|
|
NULL;
|
|
|
|
if (is_enabled) {
|
|
ctx_disassemble_program(ctx, ksp, type);
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
static void
|
|
decode_ps_kernels(struct gen_batch_decode_ctx *ctx, const uint32_t *p)
|
|
{
|
|
struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p);
|
|
|
|
uint64_t ksp[3] = {0, 0, 0};
|
|
bool enabled[3] = {false, false, false};
|
|
|
|
struct gen_field_iterator iter;
|
|
gen_field_iterator_init(&iter, inst, p, 0, false);
|
|
while (gen_field_iterator_next(&iter)) {
|
|
if (strncmp(iter.name, "Kernel Start Pointer ",
|
|
strlen("Kernel Start Pointer ")) == 0) {
|
|
int idx = iter.name[strlen("Kernel Start Pointer ")] - '0';
|
|
ksp[idx] = strtol(iter.value, NULL, 16);
|
|
} else if (strcmp(iter.name, "8 Pixel Dispatch Enable") == 0) {
|
|
enabled[0] = strcmp(iter.value, "true") == 0;
|
|
} else if (strcmp(iter.name, "16 Pixel Dispatch Enable") == 0) {
|
|
enabled[1] = strcmp(iter.value, "true") == 0;
|
|
} else if (strcmp(iter.name, "32 Pixel Dispatch Enable") == 0) {
|
|
enabled[2] = strcmp(iter.value, "true") == 0;
|
|
}
|
|
}
|
|
|
|
/* Reorder KSPs to be [8, 16, 32] instead of the hardware order. */
|
|
if (enabled[0] + enabled[1] + enabled[2] == 1) {
|
|
if (enabled[1]) {
|
|
ksp[1] = ksp[0];
|
|
ksp[0] = 0;
|
|
} else if (enabled[2]) {
|
|
ksp[2] = ksp[0];
|
|
ksp[0] = 0;
|
|
}
|
|
} else {
|
|
uint64_t tmp = ksp[1];
|
|
ksp[1] = ksp[2];
|
|
ksp[2] = tmp;
|
|
}
|
|
|
|
if (enabled[0])
|
|
ctx_disassemble_program(ctx, ksp[0], "SIMD8 fragment shader");
|
|
if (enabled[1])
|
|
ctx_disassemble_program(ctx, ksp[1], "SIMD16 fragment shader");
|
|
if (enabled[2])
|
|
ctx_disassemble_program(ctx, ksp[2], "SIMD32 fragment shader");
|
|
fprintf(ctx->fp, "\n");
|
|
}
|
|
|
|
static void
|
|
decode_3dstate_constant(struct gen_batch_decode_ctx *ctx, const uint32_t *p)
|
|
{
|
|
struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p);
|
|
struct gen_group *body =
|
|
gen_spec_find_struct(ctx->spec, "3DSTATE_CONSTANT_BODY");
|
|
|
|
uint32_t read_length[4] = {0};
|
|
uint64_t read_addr[4];
|
|
|
|
struct gen_field_iterator outer;
|
|
gen_field_iterator_init(&outer, inst, p, 0, false);
|
|
while (gen_field_iterator_next(&outer)) {
|
|
if (outer.struct_desc != body)
|
|
continue;
|
|
|
|
struct gen_field_iterator iter;
|
|
gen_field_iterator_init(&iter, body, &outer.p[outer.start_bit / 32],
|
|
0, false);
|
|
|
|
while (gen_field_iterator_next(&iter)) {
|
|
int idx;
|
|
if (sscanf(iter.name, "Read Length[%d]", &idx) == 1) {
|
|
read_length[idx] = iter.raw_value;
|
|
} else if (sscanf(iter.name, "Buffer[%d]", &idx) == 1) {
|
|
read_addr[idx] = iter.raw_value;
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
if (read_length[i] == 0)
|
|
continue;
|
|
|
|
struct gen_batch_decode_bo buffer = ctx_get_bo(ctx, read_addr[i]);
|
|
if (!buffer.map) {
|
|
fprintf(ctx->fp, "constant buffer %d unavailable\n", i);
|
|
continue;
|
|
}
|
|
|
|
unsigned size = read_length[i] * 32;
|
|
fprintf(ctx->fp, "constant buffer %d, size %u\n", i, size);
|
|
|
|
ctx_print_buffer(ctx, buffer, size, 0, -1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
decode_3dstate_binding_table_pointers(struct gen_batch_decode_ctx *ctx,
|
|
const uint32_t *p)
|
|
{
|
|
dump_binding_table(ctx, p[1], -1);
|
|
}
|
|
|
|
static void
|
|
decode_3dstate_sampler_state_pointers(struct gen_batch_decode_ctx *ctx,
|
|
const uint32_t *p)
|
|
{
|
|
dump_samplers(ctx, p[1], -1);
|
|
}
|
|
|
|
static void
|
|
decode_3dstate_sampler_state_pointers_gen6(struct gen_batch_decode_ctx *ctx,
|
|
const uint32_t *p)
|
|
{
|
|
dump_samplers(ctx, p[1], -1);
|
|
dump_samplers(ctx, p[2], -1);
|
|
dump_samplers(ctx, p[3], -1);
|
|
}
|
|
|
|
static bool
|
|
str_ends_with(const char *str, const char *end)
|
|
{
|
|
int offset = strlen(str) - strlen(end);
|
|
if (offset < 0)
|
|
return false;
|
|
|
|
return strcmp(str + offset, end) == 0;
|
|
}
|
|
|
|
static void
|
|
decode_dynamic_state_pointers(struct gen_batch_decode_ctx *ctx,
|
|
const char *struct_type, const uint32_t *p,
|
|
int count)
|
|
{
|
|
if (ctx->dynamic_base.map == NULL) {
|
|
fprintf(ctx->fp, " dynamic %s state unavailable\n", struct_type);
|
|
return;
|
|
}
|
|
|
|
struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p);
|
|
struct gen_group *state = gen_spec_find_struct(ctx->spec, struct_type);
|
|
|
|
uint32_t state_offset;
|
|
|
|
struct gen_field_iterator iter;
|
|
gen_field_iterator_init(&iter, inst, p, 0, false);
|
|
while (gen_field_iterator_next(&iter)) {
|
|
if (str_ends_with(iter.name, "Pointer")) {
|
|
state_offset = iter.raw_value;
|
|
break;
|
|
}
|
|
}
|
|
|
|
uint32_t state_addr = ctx->dynamic_base.addr + state_offset;
|
|
const uint32_t *state_map = ctx->dynamic_base.map + state_offset;
|
|
for (int i = 0; i < count; i++) {
|
|
fprintf(ctx->fp, "%s %d\n", struct_type, i);
|
|
ctx_print_group(ctx, state, state_offset, state_map);
|
|
|
|
state_addr += state->dw_length * 4;
|
|
state_map += state->dw_length;
|
|
}
|
|
}
|
|
|
|
static void
|
|
decode_3dstate_viewport_state_pointers_cc(struct gen_batch_decode_ctx *ctx,
|
|
const uint32_t *p)
|
|
{
|
|
decode_dynamic_state_pointers(ctx, "CC_VIEWPORT", p, 4);
|
|
}
|
|
|
|
static void
|
|
decode_3dstate_viewport_state_pointers_sf_clip(struct gen_batch_decode_ctx *ctx,
|
|
const uint32_t *p)
|
|
{
|
|
decode_dynamic_state_pointers(ctx, "SF_CLIP_VIEWPORT", p, 4);
|
|
}
|
|
|
|
static void
|
|
decode_3dstate_blend_state_pointers(struct gen_batch_decode_ctx *ctx,
|
|
const uint32_t *p)
|
|
{
|
|
decode_dynamic_state_pointers(ctx, "BLEND_STATE", p, 1);
|
|
}
|
|
|
|
static void
|
|
decode_3dstate_cc_state_pointers(struct gen_batch_decode_ctx *ctx,
|
|
const uint32_t *p)
|
|
{
|
|
decode_dynamic_state_pointers(ctx, "COLOR_CALC_STATE", p, 1);
|
|
}
|
|
|
|
static void
|
|
decode_3dstate_scissor_state_pointers(struct gen_batch_decode_ctx *ctx,
|
|
const uint32_t *p)
|
|
{
|
|
decode_dynamic_state_pointers(ctx, "SCISSOR_RECT", p, 1);
|
|
}
|
|
|
|
static void
|
|
decode_load_register_imm(struct gen_batch_decode_ctx *ctx, const uint32_t *p)
|
|
{
|
|
struct gen_group *reg = gen_spec_find_register(ctx->spec, p[1]);
|
|
|
|
if (reg != NULL) {
|
|
fprintf(ctx->fp, "register %s (0x%x): 0x%x\n",
|
|
reg->name, reg->register_offset, p[2]);
|
|
ctx_print_group(ctx, reg, reg->register_offset, &p[2]);
|
|
}
|
|
}
|
|
|
|
struct custom_decoder {
|
|
const char *cmd_name;
|
|
void (*decode)(struct gen_batch_decode_ctx *ctx, const uint32_t *p);
|
|
} custom_decoders[] = {
|
|
{ "STATE_BASE_ADDRESS", handle_state_base_address },
|
|
{ "MEDIA_INTERFACE_DESCRIPTOR_LOAD", handle_media_interface_descriptor_load },
|
|
{ "3DSTATE_VERTEX_BUFFERS", handle_3dstate_vertex_buffers },
|
|
{ "3DSTATE_INDEX_BUFFER", handle_3dstate_index_buffer },
|
|
{ "3DSTATE_VS", decode_single_ksp },
|
|
{ "3DSTATE_GS", decode_single_ksp },
|
|
{ "3DSTATE_DS", decode_single_ksp },
|
|
{ "3DSTATE_HS", decode_single_ksp },
|
|
{ "3DSTATE_PS", decode_ps_kernels },
|
|
{ "3DSTATE_CONSTANT_VS", decode_3dstate_constant },
|
|
{ "3DSTATE_CONSTANT_GS", decode_3dstate_constant },
|
|
{ "3DSTATE_CONSTANT_PS", decode_3dstate_constant },
|
|
{ "3DSTATE_CONSTANT_HS", decode_3dstate_constant },
|
|
{ "3DSTATE_CONSTANT_DS", decode_3dstate_constant },
|
|
|
|
{ "3DSTATE_BINDING_TABLE_POINTERS_VS", decode_3dstate_binding_table_pointers },
|
|
{ "3DSTATE_BINDING_TABLE_POINTERS_HS", decode_3dstate_binding_table_pointers },
|
|
{ "3DSTATE_BINDING_TABLE_POINTERS_DS", decode_3dstate_binding_table_pointers },
|
|
{ "3DSTATE_BINDING_TABLE_POINTERS_GS", decode_3dstate_binding_table_pointers },
|
|
{ "3DSTATE_BINDING_TABLE_POINTERS_PS", decode_3dstate_binding_table_pointers },
|
|
|
|
{ "3DSTATE_SAMPLER_STATE_POINTERS_VS", decode_3dstate_sampler_state_pointers },
|
|
{ "3DSTATE_SAMPLER_STATE_POINTERS_HS", decode_3dstate_sampler_state_pointers },
|
|
{ "3DSTATE_SAMPLER_STATE_POINTERS_DS", decode_3dstate_sampler_state_pointers },
|
|
{ "3DSTATE_SAMPLER_STATE_POINTERS_GS", decode_3dstate_sampler_state_pointers },
|
|
{ "3DSTATE_SAMPLER_STATE_POINTERS_PS", decode_3dstate_sampler_state_pointers },
|
|
{ "3DSTATE_SAMPLER_STATE_POINTERS", decode_3dstate_sampler_state_pointers_gen6 },
|
|
|
|
{ "3DSTATE_VIEWPORT_STATE_POINTERS_CC", decode_3dstate_viewport_state_pointers_cc },
|
|
{ "3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", decode_3dstate_viewport_state_pointers_sf_clip },
|
|
{ "3DSTATE_BLEND_STATE_POINTERS", decode_3dstate_blend_state_pointers },
|
|
{ "3DSTATE_CC_STATE_POINTERS", decode_3dstate_cc_state_pointers },
|
|
{ "3DSTATE_SCISSOR_STATE_POINTERS", decode_3dstate_scissor_state_pointers },
|
|
{ "MI_LOAD_REGISTER_IMM", decode_load_register_imm }
|
|
};
|
|
|
|
static inline uint64_t
|
|
get_address(struct gen_spec *spec, const uint32_t *p)
|
|
{
|
|
/* Addresses are always guaranteed to be page-aligned and sometimes
|
|
* hardware packets have extra stuff stuffed in the bottom 12 bits.
|
|
*/
|
|
uint64_t addr = p[0] & ~0xfffu;
|
|
|
|
if (gen_spec_get_gen(spec) >= gen_make_gen(8,0)) {
|
|
/* On Broadwell and above, we have 48-bit addresses which consume two
|
|
* dwords. Some packets require that these get stored in a "canonical
|
|
* form" which means that bit 47 is sign-extended through the upper
|
|
* bits. In order to correctly handle those aub dumps, we need to mask
|
|
* off the top 16 bits.
|
|
*/
|
|
addr |= ((uint64_t)p[1] & 0xffff) << 32;
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
void
|
|
gen_print_batch(struct gen_batch_decode_ctx *ctx,
|
|
const uint32_t *batch, uint32_t batch_size,
|
|
uint64_t batch_addr)
|
|
{
|
|
const uint32_t *p, *end = batch + batch_size;
|
|
int length;
|
|
struct gen_group *inst;
|
|
|
|
for (p = batch; p < end; p += length) {
|
|
inst = gen_spec_find_instruction(ctx->spec, p);
|
|
length = gen_group_get_length(inst, p);
|
|
assert(inst == NULL || length > 0);
|
|
length = MAX2(1, length);
|
|
|
|
const char *reset_color = ctx->flags & GEN_BATCH_DECODE_IN_COLOR ? NORMAL : "";
|
|
|
|
uint64_t offset;
|
|
if (ctx->flags & GEN_BATCH_DECODE_OFFSETS)
|
|
offset = batch_addr + ((char *)p - (char *)batch);
|
|
else
|
|
offset = 0;
|
|
|
|
if (inst == NULL) {
|
|
fprintf(ctx->fp, "%s0x%08"PRIx64": unknown instruction %08x%s\n",
|
|
(ctx->flags & GEN_BATCH_DECODE_IN_COLOR) ? RED_COLOR : "",
|
|
offset, p[0], reset_color);
|
|
continue;
|
|
}
|
|
|
|
const char *color;
|
|
const char *inst_name = gen_group_get_name(inst);
|
|
if (ctx->flags & GEN_BATCH_DECODE_IN_COLOR) {
|
|
reset_color = NORMAL;
|
|
if (ctx->flags & GEN_BATCH_DECODE_FULL) {
|
|
if (strcmp(inst_name, "MI_BATCH_BUFFER_START") == 0 ||
|
|
strcmp(inst_name, "MI_BATCH_BUFFER_END") == 0)
|
|
color = GREEN_HEADER;
|
|
else
|
|
color = BLUE_HEADER;
|
|
} else {
|
|
color = NORMAL;
|
|
}
|
|
} else {
|
|
color = "";
|
|
reset_color = "";
|
|
}
|
|
|
|
fprintf(ctx->fp, "%s0x%08"PRIx64": 0x%08x: %-80s%s\n",
|
|
color, offset, p[0], inst_name, reset_color);
|
|
|
|
if (ctx->flags & GEN_BATCH_DECODE_FULL) {
|
|
ctx_print_group(ctx, inst, offset, p);
|
|
|
|
for (int i = 0; i < ARRAY_LENGTH(custom_decoders); i++) {
|
|
if (strcmp(inst_name, custom_decoders[i].cmd_name) == 0) {
|
|
custom_decoders[i].decode(ctx, p);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (strcmp(inst_name, "MI_BATCH_BUFFER_START") == 0) {
|
|
struct gen_batch_decode_bo next_batch;
|
|
bool second_level;
|
|
struct gen_field_iterator iter;
|
|
gen_field_iterator_init(&iter, inst, p, 0, false);
|
|
while (gen_field_iterator_next(&iter)) {
|
|
if (strcmp(iter.name, "Batch Buffer Start Address") == 0) {
|
|
next_batch = ctx_get_bo(ctx, iter.raw_value);
|
|
} else if (strcmp(iter.name, "Second Level Batch Buffer") == 0) {
|
|
second_level = iter.raw_value;
|
|
}
|
|
}
|
|
|
|
if (next_batch.map == NULL) {
|
|
fprintf(ctx->fp, "Secondary batch at 0x%08"PRIx64" unavailable\n",
|
|
next_batch.addr);
|
|
} else {
|
|
gen_print_batch(ctx, next_batch.map, next_batch.size,
|
|
next_batch.addr);
|
|
}
|
|
if (second_level) {
|
|
/* MI_BATCH_BUFFER_START with "2nd Level Batch Buffer" set acts
|
|
* like a subroutine call. Commands that come afterwards get
|
|
* processed once the 2nd level batch buffer returns with
|
|
* MI_BATCH_BUFFER_END.
|
|
*/
|
|
continue;
|
|
} else {
|
|
/* MI_BATCH_BUFFER_START with "2nd Level Batch Buffer" unset acts
|
|
* like a goto. Nothing after it will ever get processed. In
|
|
* order to prevent the recursion from growing, we just reset the
|
|
* loop and continue;
|
|
*/
|
|
break;
|
|
}
|
|
} else if (strcmp(inst_name, "MI_BATCH_BUFFER_END") == 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|