mesa/src/intel/compiler/brw_cfg.cpp
Francisco Jerez e7470a40c5 intel/fs: Add physical fall-through CFG edge for unconditional BREAK instruction.
This adds a missing CFG edge that represents a possible physical
control flow path the EU might take under some conditions which isn't
part of the logical CFG of the program.  This possibility shouldn't
have led to problems on platforms prior to Gfx12, since the missing
control flow edge cannot possibly influence liveness intervals.
However on Gfx12+ it becomes the compiler's responsibility to resolve
data dependencies across instructions, and the missing physical
control flow paths may lead to a WaR data hazard currently not visible
to the software scoreboard pass, which could lead to data corruption.

Worse, the possibility for this path to be taken by the EU increases
on Gfx12+ due to a hardware bug affecting EU fusion -- However the
same physical path can be potentially taken on earlier platforms as
well, so this patch extends the CFG on all platforms for consistency,
even though the lack of this edge shouldn't lead to any functional
issues on platforms earlier than Gfx12.  There are no shader-db
changes on earlier platforms, so there seems to be no disadvantage
from using the same CFG representation as on later platforms.

This issue has ben reported on TGL with the following conformance
test, thanks to Ian for bringing the FULSIM dependency check warning
to my attention:

   dEQP-VK.graphicsfuzz.spv-stable-pillars-volatile-nontemporal-store

Fixes: 4d1959e693 ("intel/cfg: Represent divergent control flow paths caused by non-uniform loop execution.")
Closes: https://gitlab.freedesktop.org/mesa/mesa/-/issues/4940
Reported-by: Tapani Pälli <tapani.palli@intel.com>
Reported-by: Ian Romanick <ian.d.romanick@intel.com>
Reviewed-by: Ian Romanick <ian.d.romanick@intel.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/14248>
2021-12-21 00:43:29 +00:00

617 lines
19 KiB
C++

/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include "brw_cfg.h"
#include "brw_shader.h"
/** @file brw_cfg.cpp
*
* Walks the shader instructions generated and creates a set of basic
* blocks with successor/predecessor edges connecting them.
*/
using namespace brw;
static bblock_t *
pop_stack(exec_list *list)
{
bblock_link *link = (bblock_link *)list->get_tail();
bblock_t *block = link->block;
link->link.remove();
return block;
}
static exec_node *
link(void *mem_ctx, bblock_t *block, enum bblock_link_kind kind)
{
bblock_link *l = new(mem_ctx) bblock_link(block, kind);
return &l->link;
}
void
push_stack(exec_list *list, void *mem_ctx, bblock_t *block)
{
/* The kind of the link is immaterial, but we need to provide one since
* this is (ab)using the edge data structure in order to implement a stack.
*/
list->push_tail(link(mem_ctx, block, bblock_link_logical));
}
bblock_t::bblock_t(cfg_t *cfg) :
cfg(cfg), start_ip(0), end_ip(0), end_ip_delta(0), num(0)
{
instructions.make_empty();
parents.make_empty();
children.make_empty();
}
void
bblock_t::add_successor(void *mem_ctx, bblock_t *successor,
enum bblock_link_kind kind)
{
successor->parents.push_tail(::link(mem_ctx, this, kind));
children.push_tail(::link(mem_ctx, successor, kind));
}
bool
bblock_t::is_predecessor_of(const bblock_t *block,
enum bblock_link_kind kind) const
{
foreach_list_typed_safe (bblock_link, parent, link, &block->parents) {
if (parent->block == this && parent->kind <= kind) {
return true;
}
}
return false;
}
bool
bblock_t::is_successor_of(const bblock_t *block,
enum bblock_link_kind kind) const
{
foreach_list_typed_safe (bblock_link, child, link, &block->children) {
if (child->block == this && child->kind <= kind) {
return true;
}
}
return false;
}
static bool
ends_block(const backend_instruction *inst)
{
enum opcode op = inst->opcode;
return op == BRW_OPCODE_IF ||
op == BRW_OPCODE_ELSE ||
op == BRW_OPCODE_CONTINUE ||
op == BRW_OPCODE_BREAK ||
op == BRW_OPCODE_DO ||
op == BRW_OPCODE_WHILE;
}
static bool
starts_block(const backend_instruction *inst)
{
enum opcode op = inst->opcode;
return op == BRW_OPCODE_DO ||
op == BRW_OPCODE_ENDIF;
}
bool
bblock_t::can_combine_with(const bblock_t *that) const
{
if ((const bblock_t *)this->link.next != that)
return false;
if (ends_block(this->end()) ||
starts_block(that->start()))
return false;
return true;
}
void
bblock_t::combine_with(bblock_t *that)
{
assert(this->can_combine_with(that));
foreach_list_typed (bblock_link, link, link, &that->parents) {
assert(link->block == this);
}
this->end_ip = that->end_ip;
this->instructions.append_list(&that->instructions);
this->cfg->remove_block(that);
}
void
bblock_t::dump() const
{
const backend_shader *s = this->cfg->s;
int ip = this->start_ip;
foreach_inst_in_block(backend_instruction, inst, this) {
fprintf(stderr, "%5d: ", ip);
s->dump_instruction(inst);
ip++;
}
}
cfg_t::cfg_t(const backend_shader *s, exec_list *instructions) :
s(s)
{
mem_ctx = ralloc_context(NULL);
block_list.make_empty();
blocks = NULL;
num_blocks = 0;
bblock_t *cur = NULL;
int ip = 0;
bblock_t *entry = new_block();
bblock_t *cur_if = NULL; /**< BB ending with IF. */
bblock_t *cur_else = NULL; /**< BB ending with ELSE. */
bblock_t *cur_endif = NULL; /**< BB starting with ENDIF. */
bblock_t *cur_do = NULL; /**< BB starting with DO. */
bblock_t *cur_while = NULL; /**< BB immediately following WHILE. */
exec_list if_stack, else_stack, do_stack, while_stack;
bblock_t *next;
set_next_block(&cur, entry, ip);
foreach_in_list_safe(backend_instruction, inst, instructions) {
/* set_next_block wants the post-incremented ip */
ip++;
inst->exec_node::remove();
switch (inst->opcode) {
case BRW_OPCODE_IF:
cur->instructions.push_tail(inst);
/* Push our information onto a stack so we can recover from
* nested ifs.
*/
push_stack(&if_stack, mem_ctx, cur_if);
push_stack(&else_stack, mem_ctx, cur_else);
cur_if = cur;
cur_else = NULL;
cur_endif = NULL;
/* Set up our immediately following block, full of "then"
* instructions.
*/
next = new_block();
cur_if->add_successor(mem_ctx, next, bblock_link_logical);
set_next_block(&cur, next, ip);
break;
case BRW_OPCODE_ELSE:
cur->instructions.push_tail(inst);
cur_else = cur;
next = new_block();
assert(cur_if != NULL);
cur_if->add_successor(mem_ctx, next, bblock_link_logical);
cur_else->add_successor(mem_ctx, next, bblock_link_physical);
set_next_block(&cur, next, ip);
break;
case BRW_OPCODE_ENDIF: {
if (cur->instructions.is_empty()) {
/* New block was just created; use it. */
cur_endif = cur;
} else {
cur_endif = new_block();
cur->add_successor(mem_ctx, cur_endif, bblock_link_logical);
set_next_block(&cur, cur_endif, ip - 1);
}
cur->instructions.push_tail(inst);
if (cur_else) {
cur_else->add_successor(mem_ctx, cur_endif, bblock_link_logical);
} else {
assert(cur_if != NULL);
cur_if->add_successor(mem_ctx, cur_endif, bblock_link_logical);
}
assert(cur_if->end()->opcode == BRW_OPCODE_IF);
assert(!cur_else || cur_else->end()->opcode == BRW_OPCODE_ELSE);
/* Pop the stack so we're in the previous if/else/endif */
cur_if = pop_stack(&if_stack);
cur_else = pop_stack(&else_stack);
break;
}
case BRW_OPCODE_DO:
/* Push our information onto a stack so we can recover from
* nested loops.
*/
push_stack(&do_stack, mem_ctx, cur_do);
push_stack(&while_stack, mem_ctx, cur_while);
/* Set up the block just after the while. Don't know when exactly
* it will start, yet.
*/
cur_while = new_block();
if (cur->instructions.is_empty()) {
/* New block was just created; use it. */
cur_do = cur;
} else {
cur_do = new_block();
cur->add_successor(mem_ctx, cur_do, bblock_link_logical);
set_next_block(&cur, cur_do, ip - 1);
}
cur->instructions.push_tail(inst);
/* Represent divergent execution of the loop as a pair of alternative
* edges coming out of the DO instruction: For any physical iteration
* of the loop a given logical thread can either start off enabled
* (which is represented as the "next" successor), or disabled (if it
* has reached a non-uniform exit of the loop during a previous
* iteration, which is represented as the "cur_while" successor).
*
* The disabled edge will be taken by the logical thread anytime we
* arrive at the DO instruction through a back-edge coming from a
* conditional exit of the loop where divergent control flow started.
*
* This guarantees that there is a control-flow path from any
* divergence point of the loop into the convergence point
* (immediately past the WHILE instruction) such that it overlaps the
* whole IP region of divergent control flow (potentially the whole
* loop) *and* doesn't imply the execution of any instructions part
* of the loop (since the corresponding execution mask bit will be
* disabled for a diverging thread).
*
* This way we make sure that any variables that are live throughout
* the region of divergence for an inactive logical thread are also
* considered to interfere with any other variables assigned by
* active logical threads within the same physical region of the
* program, since otherwise we would risk cross-channel data
* corruption.
*/
next = new_block();
cur->add_successor(mem_ctx, next, bblock_link_logical);
cur->add_successor(mem_ctx, cur_while, bblock_link_physical);
set_next_block(&cur, next, ip);
break;
case BRW_OPCODE_CONTINUE:
cur->instructions.push_tail(inst);
/* A conditional CONTINUE may start a region of divergent control
* flow until the start of the next loop iteration (*not* until the
* end of the loop which is why the successor is not the top-level
* divergence point at cur_do). The live interval of any variable
* extending through a CONTINUE edge is guaranteed to overlap the
* whole region of divergent execution, because any variable live-out
* at the CONTINUE instruction will also be live-in at the top of the
* loop, and therefore also live-out at the bottom-most point of the
* loop which is reachable from the top (since a control flow path
* exists from a definition of the variable through this CONTINUE
* instruction, the top of the loop, the (reachable) bottom of the
* loop, the top of the loop again, into a use of the variable).
*/
assert(cur_do != NULL);
cur->add_successor(mem_ctx, cur_do->next(), bblock_link_logical);
next = new_block();
if (inst->predicate)
cur->add_successor(mem_ctx, next, bblock_link_logical);
else
cur->add_successor(mem_ctx, next, bblock_link_physical);
set_next_block(&cur, next, ip);
break;
case BRW_OPCODE_BREAK:
cur->instructions.push_tail(inst);
/* A conditional BREAK instruction may start a region of divergent
* control flow until the end of the loop if the condition is
* non-uniform, in which case the loop will execute additional
* iterations with the present channel disabled. We model this as a
* control flow path from the divergence point to the convergence
* point that overlaps the whole IP range of the loop and skips over
* the execution of any other instructions part of the loop.
*
* See the DO case for additional explanation.
*/
assert(cur_do != NULL);
cur->add_successor(mem_ctx, cur_do, bblock_link_physical);
cur->add_successor(mem_ctx, cur_while, bblock_link_logical);
next = new_block();
if (inst->predicate)
cur->add_successor(mem_ctx, next, bblock_link_logical);
else
cur->add_successor(mem_ctx, next, bblock_link_physical);
set_next_block(&cur, next, ip);
break;
case BRW_OPCODE_WHILE:
cur->instructions.push_tail(inst);
assert(cur_do != NULL && cur_while != NULL);
/* A conditional WHILE instruction may start a region of divergent
* control flow until the end of the loop, just like the BREAK
* instruction. See the BREAK case for more details. OTOH an
* unconditional WHILE instruction is non-divergent (just like an
* unconditional CONTINUE), and will necessarily lead to the
* execution of an additional iteration of the loop for all enabled
* channels, so we may skip over the divergence point at the top of
* the loop to keep the CFG as unambiguous as possible.
*/
if (inst->predicate) {
cur->add_successor(mem_ctx, cur_do, bblock_link_logical);
} else {
cur->add_successor(mem_ctx, cur_do->next(), bblock_link_logical);
}
set_next_block(&cur, cur_while, ip);
/* Pop the stack so we're in the previous loop */
cur_do = pop_stack(&do_stack);
cur_while = pop_stack(&while_stack);
break;
default:
cur->instructions.push_tail(inst);
break;
}
}
cur->end_ip = ip - 1;
make_block_array();
}
cfg_t::~cfg_t()
{
ralloc_free(mem_ctx);
}
void
cfg_t::remove_block(bblock_t *block)
{
foreach_list_typed_safe (bblock_link, predecessor, link, &block->parents) {
/* Remove block from all of its predecessors' successor lists. */
foreach_list_typed_safe (bblock_link, successor, link,
&predecessor->block->children) {
if (block == successor->block) {
successor->link.remove();
ralloc_free(successor);
}
}
/* Add removed-block's successors to its predecessors' successor lists. */
foreach_list_typed (bblock_link, successor, link, &block->children) {
if (!successor->block->is_successor_of(predecessor->block,
successor->kind)) {
predecessor->block->children.push_tail(link(mem_ctx,
successor->block,
successor->kind));
}
}
}
foreach_list_typed_safe (bblock_link, successor, link, &block->children) {
/* Remove block from all of its childrens' parents lists. */
foreach_list_typed_safe (bblock_link, predecessor, link,
&successor->block->parents) {
if (block == predecessor->block) {
predecessor->link.remove();
ralloc_free(predecessor);
}
}
/* Add removed-block's predecessors to its successors' predecessor lists. */
foreach_list_typed (bblock_link, predecessor, link, &block->parents) {
if (!predecessor->block->is_predecessor_of(successor->block,
predecessor->kind)) {
successor->block->parents.push_tail(link(mem_ctx,
predecessor->block,
predecessor->kind));
}
}
}
block->link.remove();
for (int b = block->num; b < this->num_blocks - 1; b++) {
this->blocks[b] = this->blocks[b + 1];
this->blocks[b]->num = b;
}
this->blocks[this->num_blocks - 1]->num = this->num_blocks - 2;
this->num_blocks--;
}
bblock_t *
cfg_t::new_block()
{
bblock_t *block = new(mem_ctx) bblock_t(this);
return block;
}
void
cfg_t::set_next_block(bblock_t **cur, bblock_t *block, int ip)
{
if (*cur) {
(*cur)->end_ip = ip - 1;
}
block->start_ip = ip;
block->num = num_blocks++;
block_list.push_tail(&block->link);
*cur = block;
}
void
cfg_t::make_block_array()
{
blocks = ralloc_array(mem_ctx, bblock_t *, num_blocks);
int i = 0;
foreach_block (block, this) {
blocks[i++] = block;
}
assert(i == num_blocks);
}
void
cfg_t::dump()
{
const idom_tree *idom = (s ? &s->idom_analysis.require() : NULL);
foreach_block (block, this) {
if (idom && idom->parent(block))
fprintf(stderr, "START B%d IDOM(B%d)", block->num,
idom->parent(block)->num);
else
fprintf(stderr, "START B%d IDOM(none)", block->num);
foreach_list_typed(bblock_link, link, link, &block->parents) {
fprintf(stderr, " <%cB%d",
link->kind == bblock_link_logical ? '-' : '~',
link->block->num);
}
fprintf(stderr, "\n");
if (s != NULL)
block->dump();
fprintf(stderr, "END B%d", block->num);
foreach_list_typed(bblock_link, link, link, &block->children) {
fprintf(stderr, " %c>B%d",
link->kind == bblock_link_logical ? '-' : '~',
link->block->num);
}
fprintf(stderr, "\n");
}
}
/* Calculates the immediate dominator of each block, according to "A Simple,
* Fast Dominance Algorithm" by Keith D. Cooper, Timothy J. Harvey, and Ken
* Kennedy.
*
* The authors claim that for control flow graphs of sizes normally encountered
* (less than 1000 nodes) that this algorithm is significantly faster than
* others like Lengauer-Tarjan.
*/
idom_tree::idom_tree(const backend_shader *s) :
num_parents(s->cfg->num_blocks),
parents(new bblock_t *[num_parents]())
{
bool changed;
parents[0] = s->cfg->blocks[0];
do {
changed = false;
foreach_block(block, s->cfg) {
if (block->num == 0)
continue;
bblock_t *new_idom = NULL;
foreach_list_typed(bblock_link, parent_link, link, &block->parents) {
if (parent(parent_link->block)) {
new_idom = (new_idom ? intersect(new_idom, parent_link->block) :
parent_link->block);
}
}
if (parent(block) != new_idom) {
parents[block->num] = new_idom;
changed = true;
}
}
} while (changed);
}
idom_tree::~idom_tree()
{
delete[] parents;
}
bblock_t *
idom_tree::intersect(bblock_t *b1, bblock_t *b2) const
{
/* Note, the comparisons here are the opposite of what the paper says
* because we index blocks from beginning -> end (i.e. reverse post-order)
* instead of post-order like they assume.
*/
while (b1->num != b2->num) {
while (b1->num > b2->num)
b1 = parent(b1);
while (b2->num > b1->num)
b2 = parent(b2);
}
assert(b1);
return b1;
}
void
idom_tree::dump() const
{
printf("digraph DominanceTree {\n");
for (unsigned i = 0; i < num_parents; i++)
printf("\t%d -> %d\n", parents[i]->num, i);
printf("}\n");
}
void
cfg_t::dump_cfg()
{
printf("digraph CFG {\n");
for (int b = 0; b < num_blocks; b++) {
bblock_t *block = this->blocks[b];
foreach_list_typed_safe (bblock_link, child, link, &block->children) {
printf("\t%d -> %d\n", b, child->block->num);
}
}
printf("}\n");
}