mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2025-12-25 00:00:11 +01:00
On Intel HW we use the same mechanism for internal operations surfaces
as well as application surfaces (VkDescriptor).
This change splits the surface pool in 2, one part dedicated to
internal allocations, the other to application VkDescriptors.
To do so, the STATE_BASE_ADDRESS::SurfaceStateBaseAddress points to a
4Gb area, with the following layout :
- 1Gb of binding table pool
- 2Gb of internal surface states
- 1Gb of bindless surface states
That way any entry from the binding table can refer to both internal &
bindless surface states but none of the driver allocations interfere
with the allocation of the application.
Based off a change from Sviatoslav Peleshko.
v2: Allocate image view null surface state from bindless heap (Sviatoslav)
Removed debug stuff (Sviatoslav)
Signed-off-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Closes: https://gitlab.freedesktop.org/mesa/mesa/-/issues/7110
Cc: mesa-stable
Tested-by: Sviatoslav Peleshko <sviatoslav.peleshko@globallogic.com>
Reviewed-by: Tapani Pälli <tapani.palli@intel.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/19275>
4972 lines
195 KiB
C
4972 lines
195 KiB
C
/*
|
|
* Copyright © 2015 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <inttypes.h>
|
|
#include <stdbool.h>
|
|
#include <string.h>
|
|
#ifdef MAJOR_IN_MKDEV
|
|
#include <sys/mkdev.h>
|
|
#endif
|
|
#ifdef MAJOR_IN_SYSMACROS
|
|
#include <sys/sysmacros.h>
|
|
#endif
|
|
#include <sys/mman.h>
|
|
#include <sys/stat.h>
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
#include "drm-uapi/drm_fourcc.h"
|
|
#include "drm-uapi/drm.h"
|
|
#include <xf86drm.h>
|
|
|
|
#include "anv_private.h"
|
|
#include "anv_measure.h"
|
|
#include "util/u_debug.h"
|
|
#include "util/build_id.h"
|
|
#include "util/disk_cache.h"
|
|
#include "util/mesa-sha1.h"
|
|
#include "util/os_file.h"
|
|
#include "util/os_misc.h"
|
|
#include "util/u_atomic.h"
|
|
#include "util/u_string.h"
|
|
#include "util/driconf.h"
|
|
#include "git_sha1.h"
|
|
#include "vk_util.h"
|
|
#include "vk_deferred_operation.h"
|
|
#include "vk_drm_syncobj.h"
|
|
#include "common/intel_aux_map.h"
|
|
#include "common/intel_defines.h"
|
|
#include "common/intel_uuid.h"
|
|
#include "perf/intel_perf.h"
|
|
|
|
#include "genxml/gen7_pack.h"
|
|
#include "genxml/genX_bits.h"
|
|
|
|
static const driOptionDescription anv_dri_options[] = {
|
|
DRI_CONF_SECTION_PERFORMANCE
|
|
DRI_CONF_ADAPTIVE_SYNC(true)
|
|
DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
|
|
DRI_CONF_VK_X11_STRICT_IMAGE_COUNT(false)
|
|
DRI_CONF_VK_XWAYLAND_WAIT_READY(true)
|
|
DRI_CONF_ANV_ASSUME_FULL_SUBGROUPS(false)
|
|
DRI_CONF_ANV_SAMPLE_MASK_OUT_OPENGL_BEHAVIOUR(false)
|
|
DRI_CONF_ANV_FP64_WORKAROUND_ENABLED(false)
|
|
DRI_CONF_SECTION_END
|
|
|
|
DRI_CONF_SECTION_DEBUG
|
|
DRI_CONF_ALWAYS_FLUSH_CACHE(false)
|
|
DRI_CONF_VK_WSI_FORCE_BGRA8_UNORM_FIRST(false)
|
|
DRI_CONF_LIMIT_TRIG_INPUT_RANGE(false)
|
|
DRI_CONF_SECTION_END
|
|
|
|
DRI_CONF_SECTION_QUALITY
|
|
DRI_CONF_PP_LOWER_DEPTH_RANGE_RATE()
|
|
DRI_CONF_SECTION_END
|
|
};
|
|
|
|
/* This is probably far to big but it reflects the max size used for messages
|
|
* in OpenGLs KHR_debug.
|
|
*/
|
|
#define MAX_DEBUG_MESSAGE_LENGTH 4096
|
|
|
|
/* The "RAW" clocks on Linux are called "FAST" on FreeBSD */
|
|
#if !defined(CLOCK_MONOTONIC_RAW) && defined(CLOCK_MONOTONIC_FAST)
|
|
#define CLOCK_MONOTONIC_RAW CLOCK_MONOTONIC_FAST
|
|
#endif
|
|
|
|
static void
|
|
compiler_debug_log(void *data, UNUSED unsigned *id, const char *fmt, ...)
|
|
{
|
|
char str[MAX_DEBUG_MESSAGE_LENGTH];
|
|
struct anv_device *device = (struct anv_device *)data;
|
|
UNUSED struct anv_instance *instance = device->physical->instance;
|
|
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
(void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
|
|
va_end(args);
|
|
|
|
//vk_logd(VK_LOG_NO_OBJS(&instance->vk), "%s", str);
|
|
}
|
|
|
|
static void
|
|
compiler_perf_log(UNUSED void *data, UNUSED unsigned *id, const char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
|
|
if (INTEL_DEBUG(DEBUG_PERF))
|
|
mesa_logd_v(fmt, args);
|
|
|
|
va_end(args);
|
|
}
|
|
|
|
#if defined(VK_USE_PLATFORM_WAYLAND_KHR) || \
|
|
defined(VK_USE_PLATFORM_XCB_KHR) || \
|
|
defined(VK_USE_PLATFORM_XLIB_KHR) || \
|
|
defined(VK_USE_PLATFORM_DISPLAY_KHR)
|
|
#define ANV_USE_WSI_PLATFORM
|
|
#endif
|
|
|
|
#ifdef ANDROID
|
|
#define ANV_API_VERSION VK_MAKE_VERSION(1, 1, VK_HEADER_VERSION)
|
|
#else
|
|
#define ANV_API_VERSION VK_MAKE_VERSION(1, 3, VK_HEADER_VERSION)
|
|
#endif
|
|
|
|
VkResult anv_EnumerateInstanceVersion(
|
|
uint32_t* pApiVersion)
|
|
{
|
|
*pApiVersion = ANV_API_VERSION;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
static const struct vk_instance_extension_table instance_extensions = {
|
|
.KHR_device_group_creation = true,
|
|
.KHR_external_fence_capabilities = true,
|
|
.KHR_external_memory_capabilities = true,
|
|
.KHR_external_semaphore_capabilities = true,
|
|
.KHR_get_physical_device_properties2 = true,
|
|
.EXT_debug_report = true,
|
|
.EXT_debug_utils = true,
|
|
|
|
#ifdef ANV_USE_WSI_PLATFORM
|
|
.KHR_get_surface_capabilities2 = true,
|
|
.KHR_surface = true,
|
|
.KHR_surface_protected_capabilities = true,
|
|
#endif
|
|
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
|
|
.KHR_wayland_surface = true,
|
|
#endif
|
|
#ifdef VK_USE_PLATFORM_XCB_KHR
|
|
.KHR_xcb_surface = true,
|
|
#endif
|
|
#ifdef VK_USE_PLATFORM_XLIB_KHR
|
|
.KHR_xlib_surface = true,
|
|
#endif
|
|
#ifdef VK_USE_PLATFORM_XLIB_XRANDR_EXT
|
|
.EXT_acquire_xlib_display = true,
|
|
#endif
|
|
#ifdef VK_USE_PLATFORM_DISPLAY_KHR
|
|
.KHR_display = true,
|
|
.KHR_get_display_properties2 = true,
|
|
.EXT_direct_mode_display = true,
|
|
.EXT_display_surface_counter = true,
|
|
.EXT_acquire_drm_display = true,
|
|
#endif
|
|
};
|
|
|
|
static void
|
|
get_device_extensions(const struct anv_physical_device *device,
|
|
struct vk_device_extension_table *ext)
|
|
{
|
|
const bool has_syncobj_wait =
|
|
(device->sync_syncobj_type.features & VK_SYNC_FEATURE_CPU_WAIT) != 0;
|
|
|
|
const bool nv_mesh_shading_enabled =
|
|
debug_get_bool_option("ANV_EXPERIMENTAL_NV_MESH_SHADER", false);
|
|
|
|
*ext = (struct vk_device_extension_table) {
|
|
.KHR_8bit_storage = true,
|
|
.KHR_16bit_storage = true,
|
|
.KHR_acceleration_structure = device->info.has_ray_tracing,
|
|
.KHR_acceleration_structure = ANV_SUPPORT_RT &&
|
|
device->info.has_ray_tracing,
|
|
.KHR_bind_memory2 = true,
|
|
.KHR_buffer_device_address = true,
|
|
.KHR_copy_commands2 = true,
|
|
.KHR_create_renderpass2 = true,
|
|
.KHR_dedicated_allocation = true,
|
|
.KHR_deferred_host_operations = true,
|
|
.KHR_depth_stencil_resolve = true,
|
|
.KHR_descriptor_update_template = true,
|
|
.KHR_device_group = true,
|
|
.KHR_draw_indirect_count = true,
|
|
.KHR_driver_properties = true,
|
|
.KHR_dynamic_rendering = true,
|
|
.KHR_external_fence = has_syncobj_wait,
|
|
.KHR_external_fence_fd = has_syncobj_wait,
|
|
.KHR_external_memory = true,
|
|
.KHR_external_memory_fd = true,
|
|
.KHR_external_semaphore = true,
|
|
.KHR_external_semaphore_fd = true,
|
|
.KHR_format_feature_flags2 = true,
|
|
.KHR_fragment_shading_rate = device->info.ver >= 11,
|
|
.KHR_get_memory_requirements2 = true,
|
|
.KHR_image_format_list = true,
|
|
.KHR_imageless_framebuffer = true,
|
|
#ifdef ANV_USE_WSI_PLATFORM
|
|
.KHR_incremental_present = true,
|
|
#endif
|
|
.KHR_maintenance1 = true,
|
|
.KHR_maintenance2 = true,
|
|
.KHR_maintenance3 = true,
|
|
.KHR_maintenance4 = true,
|
|
.KHR_multiview = true,
|
|
.KHR_performance_query =
|
|
device->perf &&
|
|
(device->perf->i915_perf_version >= 3 ||
|
|
INTEL_DEBUG(DEBUG_NO_OACONFIG)) &&
|
|
device->use_call_secondary,
|
|
.KHR_pipeline_executable_properties = true,
|
|
.KHR_pipeline_library = true,
|
|
.KHR_push_descriptor = true,
|
|
.KHR_ray_query =
|
|
ANV_SUPPORT_RT && device->info.has_ray_tracing,
|
|
.KHR_ray_tracing_pipeline =
|
|
ANV_SUPPORT_RT && device->info.has_ray_tracing,
|
|
.KHR_relaxed_block_layout = true,
|
|
.KHR_sampler_mirror_clamp_to_edge = true,
|
|
.KHR_sampler_ycbcr_conversion = true,
|
|
.KHR_separate_depth_stencil_layouts = true,
|
|
.KHR_shader_atomic_int64 = true,
|
|
.KHR_shader_clock = true,
|
|
.KHR_shader_draw_parameters = true,
|
|
.KHR_shader_float16_int8 = true,
|
|
.KHR_shader_float_controls = true,
|
|
.KHR_shader_integer_dot_product = true,
|
|
.KHR_shader_non_semantic_info = true,
|
|
.KHR_shader_subgroup_extended_types = true,
|
|
.KHR_shader_subgroup_uniform_control_flow = true,
|
|
.KHR_shader_terminate_invocation = true,
|
|
.KHR_spirv_1_4 = true,
|
|
.KHR_storage_buffer_storage_class = true,
|
|
#ifdef ANV_USE_WSI_PLATFORM
|
|
.KHR_swapchain = true,
|
|
.KHR_swapchain_mutable_format = true,
|
|
#endif
|
|
.KHR_synchronization2 = true,
|
|
.KHR_timeline_semaphore = true,
|
|
.KHR_uniform_buffer_standard_layout = true,
|
|
.KHR_variable_pointers = true,
|
|
.KHR_vulkan_memory_model = true,
|
|
.KHR_workgroup_memory_explicit_layout = true,
|
|
.KHR_zero_initialize_workgroup_memory = true,
|
|
.EXT_4444_formats = true,
|
|
.EXT_border_color_swizzle = true,
|
|
.EXT_buffer_device_address = true,
|
|
.EXT_calibrated_timestamps = device->has_reg_timestamp,
|
|
.EXT_color_write_enable = true,
|
|
.EXT_conditional_rendering = true,
|
|
.EXT_conservative_rasterization = true,
|
|
.EXT_custom_border_color = true,
|
|
.EXT_depth_clamp_zero_one = true,
|
|
.EXT_depth_clip_control = true,
|
|
.EXT_depth_clip_enable = true,
|
|
.EXT_descriptor_indexing = true,
|
|
#ifdef VK_USE_PLATFORM_DISPLAY_KHR
|
|
.EXT_display_control = true,
|
|
#endif
|
|
.EXT_extended_dynamic_state = true,
|
|
.EXT_extended_dynamic_state2 = true,
|
|
.EXT_extended_dynamic_state3 = true,
|
|
.EXT_external_memory_dma_buf = true,
|
|
.EXT_external_memory_host = true,
|
|
.EXT_fragment_shader_interlock = true,
|
|
.EXT_global_priority = device->max_context_priority >=
|
|
VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR,
|
|
.EXT_global_priority_query = device->max_context_priority >=
|
|
VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR,
|
|
.EXT_host_query_reset = true,
|
|
.EXT_image_2d_view_of_3d = true,
|
|
.EXT_image_robustness = true,
|
|
.EXT_image_drm_format_modifier = true,
|
|
.EXT_image_view_min_lod = true,
|
|
.EXT_index_type_uint8 = true,
|
|
.EXT_inline_uniform_block = true,
|
|
.EXT_line_rasterization = true,
|
|
/* Enable the extension only if we have support on both the local &
|
|
* system memory
|
|
*/
|
|
.EXT_memory_budget = (!device->info.has_local_mem ||
|
|
device->vram_mappable.available > 0) &&
|
|
device->sys.available,
|
|
.EXT_mesh_shader = device->info.has_mesh_shading,
|
|
.EXT_mutable_descriptor_type = true,
|
|
.EXT_non_seamless_cube_map = true,
|
|
.EXT_pci_bus_info = true,
|
|
.EXT_physical_device_drm = true,
|
|
.EXT_pipeline_creation_cache_control = true,
|
|
.EXT_pipeline_creation_feedback = true,
|
|
.EXT_post_depth_coverage = true,
|
|
.EXT_primitives_generated_query = true,
|
|
.EXT_primitive_topology_list_restart = true,
|
|
.EXT_private_data = true,
|
|
.EXT_provoking_vertex = true,
|
|
.EXT_queue_family_foreign = true,
|
|
.EXT_robustness2 = true,
|
|
.EXT_sample_locations = true,
|
|
.EXT_sampler_filter_minmax = true,
|
|
.EXT_scalar_block_layout = true,
|
|
.EXT_separate_stencil_usage = true,
|
|
.EXT_shader_atomic_float = true,
|
|
.EXT_shader_atomic_float2 = true,
|
|
.EXT_shader_demote_to_helper_invocation = true,
|
|
.EXT_shader_module_identifier = true,
|
|
.EXT_shader_stencil_export = true,
|
|
.EXT_shader_subgroup_ballot = true,
|
|
.EXT_shader_subgroup_vote = true,
|
|
.EXT_shader_viewport_index_layer = true,
|
|
.EXT_subgroup_size_control = true,
|
|
.EXT_texel_buffer_alignment = true,
|
|
.EXT_tooling_info = true,
|
|
.EXT_transform_feedback = true,
|
|
.EXT_vertex_attribute_divisor = true,
|
|
.EXT_ycbcr_image_arrays = true,
|
|
#ifdef ANDROID
|
|
.ANDROID_external_memory_android_hardware_buffer = true,
|
|
.ANDROID_native_buffer = true,
|
|
#endif
|
|
.GOOGLE_decorate_string = true,
|
|
.GOOGLE_hlsl_functionality1 = true,
|
|
.GOOGLE_user_type = true,
|
|
.INTEL_performance_query = device->perf &&
|
|
device->perf->i915_perf_version >= 3,
|
|
.INTEL_shader_integer_functions2 = true,
|
|
.EXT_multi_draw = true,
|
|
.NV_compute_shader_derivatives = true,
|
|
.NV_mesh_shader = device->info.has_mesh_shading &&
|
|
nv_mesh_shading_enabled,
|
|
.VALVE_mutable_descriptor_type = true,
|
|
};
|
|
}
|
|
|
|
static uint64_t
|
|
anv_compute_sys_heap_size(struct anv_physical_device *device,
|
|
uint64_t total_ram)
|
|
{
|
|
/* We don't want to burn too much ram with the GPU. If the user has 4GiB
|
|
* or less, we use at most half. If they have more than 4GiB, we use 3/4.
|
|
*/
|
|
uint64_t available_ram;
|
|
if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
|
|
available_ram = total_ram / 2;
|
|
else
|
|
available_ram = total_ram * 3 / 4;
|
|
|
|
/* We also want to leave some padding for things we allocate in the driver,
|
|
* so don't go over 3/4 of the GTT either.
|
|
*/
|
|
available_ram = MIN2(available_ram, device->gtt_size * 3 / 4);
|
|
|
|
if (available_ram > (2ull << 30) && !device->supports_48bit_addresses) {
|
|
/* When running with an overridden PCI ID, we may get a GTT size from
|
|
* the kernel that is greater than 2 GiB but the execbuf check for 48bit
|
|
* address support can still fail. Just clamp the address space size to
|
|
* 2 GiB if we don't have 48-bit support.
|
|
*/
|
|
mesa_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
|
|
"not support for 48-bit addresses",
|
|
__FILE__, __LINE__);
|
|
available_ram = 2ull << 30;
|
|
}
|
|
|
|
return available_ram;
|
|
}
|
|
|
|
static VkResult MUST_CHECK
|
|
anv_init_meminfo(struct anv_physical_device *device, int fd)
|
|
{
|
|
const struct intel_device_info *devinfo = &device->info;
|
|
|
|
device->sys.region.memory_class = devinfo->mem.sram.mem_class;
|
|
device->sys.region.memory_instance = devinfo->mem.sram.mem_instance;
|
|
device->sys.size =
|
|
anv_compute_sys_heap_size(device, devinfo->mem.sram.mappable.size);
|
|
device->sys.available = devinfo->mem.sram.mappable.free;
|
|
|
|
device->vram_mappable.region.memory_class = devinfo->mem.vram.mem_class;
|
|
device->vram_mappable.region.memory_instance =
|
|
devinfo->mem.vram.mem_instance;
|
|
device->vram_mappable.size = devinfo->mem.vram.mappable.size;
|
|
device->vram_mappable.available = devinfo->mem.vram.mappable.free;
|
|
|
|
device->vram_non_mappable.region.memory_class =
|
|
devinfo->mem.vram.mem_class;
|
|
device->vram_non_mappable.region.memory_instance =
|
|
devinfo->mem.vram.mem_instance;
|
|
device->vram_non_mappable.size = devinfo->mem.vram.unmappable.size;
|
|
device->vram_non_mappable.available = devinfo->mem.vram.unmappable.free;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
static void
|
|
anv_update_meminfo(struct anv_physical_device *device, int fd)
|
|
{
|
|
if (!intel_device_info_update_memory_info(&device->info, fd))
|
|
return;
|
|
|
|
const struct intel_device_info *devinfo = &device->info;
|
|
device->sys.available = devinfo->mem.sram.mappable.free;
|
|
device->vram_mappable.available = devinfo->mem.vram.mappable.free;
|
|
device->vram_non_mappable.available = devinfo->mem.vram.unmappable.free;
|
|
}
|
|
|
|
|
|
static VkResult
|
|
anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
|
|
{
|
|
VkResult result = anv_init_meminfo(device, fd);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
|
|
assert(device->sys.size != 0);
|
|
|
|
if (anv_physical_device_has_vram(device)) {
|
|
/* We can create 2 or 3 different heaps when we have local memory
|
|
* support, first heap with local memory size and second with system
|
|
* memory size and the third is added only if part of the vram is
|
|
* mappable to the host.
|
|
*/
|
|
device->memory.heap_count = 2;
|
|
device->memory.heaps[0] = (struct anv_memory_heap) {
|
|
/* If there is a vram_non_mappable, use that for the device only
|
|
* heap. Otherwise use the vram_mappable.
|
|
*/
|
|
.size = device->vram_non_mappable.size != 0 ?
|
|
device->vram_non_mappable.size : device->vram_mappable.size,
|
|
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
|
|
.is_local_mem = true,
|
|
};
|
|
device->memory.heaps[1] = (struct anv_memory_heap) {
|
|
.size = device->sys.size,
|
|
.flags = 0,
|
|
.is_local_mem = false,
|
|
};
|
|
/* Add an additional smaller vram mappable heap if we can't map all the
|
|
* vram to the host.
|
|
*/
|
|
if (device->vram_non_mappable.size > 0) {
|
|
device->memory.heap_count++;
|
|
device->memory.heaps[2] = (struct anv_memory_heap) {
|
|
.size = device->vram_mappable.size,
|
|
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
|
|
.is_local_mem = true,
|
|
};
|
|
}
|
|
|
|
device->memory.type_count = 3;
|
|
device->memory.types[0] = (struct anv_memory_type) {
|
|
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
|
|
.heapIndex = 0,
|
|
};
|
|
device->memory.types[1] = (struct anv_memory_type) {
|
|
.propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
|
|
.heapIndex = 1,
|
|
};
|
|
device->memory.types[2] = (struct anv_memory_type) {
|
|
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
/* This memory type either comes from heaps[0] if there is only
|
|
* mappable vram region, or from heaps[2] if there is both mappable &
|
|
* non-mappable vram regions.
|
|
*/
|
|
.heapIndex = device->vram_non_mappable.size > 0 ? 2 : 0,
|
|
};
|
|
} else if (device->info.has_llc) {
|
|
device->memory.heap_count = 1;
|
|
device->memory.heaps[0] = (struct anv_memory_heap) {
|
|
.size = device->sys.size,
|
|
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
|
|
.is_local_mem = false,
|
|
};
|
|
|
|
/* Big core GPUs share LLC with the CPU and thus one memory type can be
|
|
* both cached and coherent at the same time.
|
|
*/
|
|
device->memory.type_count = 1;
|
|
device->memory.types[0] = (struct anv_memory_type) {
|
|
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
|
|
.heapIndex = 0,
|
|
};
|
|
} else {
|
|
device->memory.heap_count = 1;
|
|
device->memory.heaps[0] = (struct anv_memory_heap) {
|
|
.size = device->sys.size,
|
|
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
|
|
.is_local_mem = false,
|
|
};
|
|
|
|
/* The spec requires that we expose a host-visible, coherent memory
|
|
* type, but Atom GPUs don't share LLC. Thus we offer two memory types
|
|
* to give the application a choice between cached, but not coherent and
|
|
* coherent but uncached (WC though).
|
|
*/
|
|
device->memory.type_count = 2;
|
|
device->memory.types[0] = (struct anv_memory_type) {
|
|
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
|
|
.heapIndex = 0,
|
|
};
|
|
device->memory.types[1] = (struct anv_memory_type) {
|
|
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
.heapIndex = 0,
|
|
};
|
|
}
|
|
|
|
device->memory.need_clflush = false;
|
|
for (unsigned i = 0; i < device->memory.type_count; i++) {
|
|
VkMemoryPropertyFlags props = device->memory.types[i].propertyFlags;
|
|
if ((props & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) &&
|
|
!(props & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
|
|
device->memory.need_clflush = true;
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
static VkResult
|
|
anv_physical_device_init_uuids(struct anv_physical_device *device)
|
|
{
|
|
const struct build_id_note *note =
|
|
build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
|
|
if (!note) {
|
|
return vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED,
|
|
"Failed to find build-id");
|
|
}
|
|
|
|
unsigned build_id_len = build_id_length(note);
|
|
if (build_id_len < 20) {
|
|
return vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED,
|
|
"build-id too short. It needs to be a SHA");
|
|
}
|
|
|
|
memcpy(device->driver_build_sha1, build_id_data(note), 20);
|
|
|
|
struct mesa_sha1 sha1_ctx;
|
|
uint8_t sha1[20];
|
|
STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
|
|
|
|
/* The pipeline cache UUID is used for determining when a pipeline cache is
|
|
* invalid. It needs both a driver build and the PCI ID of the device.
|
|
*/
|
|
_mesa_sha1_init(&sha1_ctx);
|
|
_mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
|
|
_mesa_sha1_update(&sha1_ctx, &device->info.pci_device_id,
|
|
sizeof(device->info.pci_device_id));
|
|
_mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
|
|
sizeof(device->always_use_bindless));
|
|
_mesa_sha1_final(&sha1_ctx, sha1);
|
|
memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
|
|
|
|
intel_uuid_compute_driver_id(device->driver_uuid, &device->info, VK_UUID_SIZE);
|
|
intel_uuid_compute_device_id(device->device_uuid, &device->info, VK_UUID_SIZE);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
static void
|
|
anv_physical_device_init_disk_cache(struct anv_physical_device *device)
|
|
{
|
|
#ifdef ENABLE_SHADER_CACHE
|
|
char renderer[10];
|
|
ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
|
|
device->info.pci_device_id);
|
|
assert(len == sizeof(renderer) - 2);
|
|
|
|
char timestamp[41];
|
|
_mesa_sha1_format(timestamp, device->driver_build_sha1);
|
|
|
|
const uint64_t driver_flags =
|
|
brw_get_compiler_config_value(device->compiler);
|
|
device->vk.disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
anv_physical_device_free_disk_cache(struct anv_physical_device *device)
|
|
{
|
|
#ifdef ENABLE_SHADER_CACHE
|
|
if (device->vk.disk_cache) {
|
|
disk_cache_destroy(device->vk.disk_cache);
|
|
device->vk.disk_cache = NULL;
|
|
}
|
|
#else
|
|
assert(device->vk.disk_cache == NULL);
|
|
#endif
|
|
}
|
|
|
|
/* The ANV_QUEUE_OVERRIDE environment variable is a comma separated list of
|
|
* queue overrides.
|
|
*
|
|
* To override the number queues:
|
|
* * "gc" is for graphics queues with compute support
|
|
* * "g" is for graphics queues with no compute support
|
|
* * "c" is for compute queues with no graphics support
|
|
*
|
|
* For example, ANV_QUEUE_OVERRIDE=gc=2,c=1 would override the number of
|
|
* advertised queues to be 2 queues with graphics+compute support, and 1 queue
|
|
* with compute-only support.
|
|
*
|
|
* ANV_QUEUE_OVERRIDE=c=1 would override the number of advertised queues to
|
|
* include 1 queue with compute-only support, but it will not change the
|
|
* number of graphics+compute queues.
|
|
*
|
|
* ANV_QUEUE_OVERRIDE=gc=0,c=1 would override the number of advertised queues
|
|
* to include 1 queue with compute-only support, and it would override the
|
|
* number of graphics+compute queues to be 0.
|
|
*/
|
|
static void
|
|
anv_override_engine_counts(int *gc_count, int *g_count, int *c_count)
|
|
{
|
|
int gc_override = -1;
|
|
int g_override = -1;
|
|
int c_override = -1;
|
|
char *env = getenv("ANV_QUEUE_OVERRIDE");
|
|
|
|
if (env == NULL)
|
|
return;
|
|
|
|
env = strdup(env);
|
|
char *save = NULL;
|
|
char *next = strtok_r(env, ",", &save);
|
|
while (next != NULL) {
|
|
if (strncmp(next, "gc=", 3) == 0) {
|
|
gc_override = strtol(next + 3, NULL, 0);
|
|
} else if (strncmp(next, "g=", 2) == 0) {
|
|
g_override = strtol(next + 2, NULL, 0);
|
|
} else if (strncmp(next, "c=", 2) == 0) {
|
|
c_override = strtol(next + 2, NULL, 0);
|
|
} else {
|
|
mesa_logw("Ignoring unsupported ANV_QUEUE_OVERRIDE token: %s", next);
|
|
}
|
|
next = strtok_r(NULL, ",", &save);
|
|
}
|
|
free(env);
|
|
if (gc_override >= 0)
|
|
*gc_count = gc_override;
|
|
if (g_override >= 0)
|
|
*g_count = g_override;
|
|
if (*g_count > 0 && *gc_count <= 0 && (gc_override >= 0 || g_override >= 0))
|
|
mesa_logw("ANV_QUEUE_OVERRIDE: gc=0 with g > 0 violates the "
|
|
"Vulkan specification");
|
|
if (c_override >= 0)
|
|
*c_count = c_override;
|
|
}
|
|
|
|
static void
|
|
anv_physical_device_init_queue_families(struct anv_physical_device *pdevice)
|
|
{
|
|
uint32_t family_count = 0;
|
|
|
|
if (pdevice->engine_info) {
|
|
int gc_count =
|
|
intel_engines_count(pdevice->engine_info,
|
|
INTEL_ENGINE_CLASS_RENDER);
|
|
int g_count = 0;
|
|
int c_count = 0;
|
|
if (debug_get_bool_option("INTEL_COMPUTE_CLASS", false))
|
|
c_count = intel_engines_count(pdevice->engine_info,
|
|
INTEL_ENGINE_CLASS_COMPUTE);
|
|
enum intel_engine_class compute_class =
|
|
c_count < 1 ? INTEL_ENGINE_CLASS_RENDER : INTEL_ENGINE_CLASS_COMPUTE;
|
|
|
|
anv_override_engine_counts(&gc_count, &g_count, &c_count);
|
|
|
|
if (gc_count > 0) {
|
|
pdevice->queue.families[family_count++] = (struct anv_queue_family) {
|
|
.queueFlags = VK_QUEUE_GRAPHICS_BIT |
|
|
VK_QUEUE_COMPUTE_BIT |
|
|
VK_QUEUE_TRANSFER_BIT,
|
|
.queueCount = gc_count,
|
|
.engine_class = INTEL_ENGINE_CLASS_RENDER,
|
|
};
|
|
}
|
|
if (g_count > 0) {
|
|
pdevice->queue.families[family_count++] = (struct anv_queue_family) {
|
|
.queueFlags = VK_QUEUE_GRAPHICS_BIT |
|
|
VK_QUEUE_TRANSFER_BIT,
|
|
.queueCount = g_count,
|
|
.engine_class = INTEL_ENGINE_CLASS_RENDER,
|
|
};
|
|
}
|
|
if (c_count > 0) {
|
|
pdevice->queue.families[family_count++] = (struct anv_queue_family) {
|
|
.queueFlags = VK_QUEUE_COMPUTE_BIT |
|
|
VK_QUEUE_TRANSFER_BIT,
|
|
.queueCount = c_count,
|
|
.engine_class = compute_class,
|
|
};
|
|
}
|
|
/* Increase count below when other families are added as a reminder to
|
|
* increase the ANV_MAX_QUEUE_FAMILIES value.
|
|
*/
|
|
STATIC_ASSERT(ANV_MAX_QUEUE_FAMILIES >= 3);
|
|
} else {
|
|
/* Default to a single render queue */
|
|
pdevice->queue.families[family_count++] = (struct anv_queue_family) {
|
|
.queueFlags = VK_QUEUE_GRAPHICS_BIT |
|
|
VK_QUEUE_COMPUTE_BIT |
|
|
VK_QUEUE_TRANSFER_BIT,
|
|
.queueCount = 1,
|
|
.engine_class = INTEL_ENGINE_CLASS_RENDER,
|
|
};
|
|
family_count = 1;
|
|
}
|
|
assert(family_count <= ANV_MAX_QUEUE_FAMILIES);
|
|
pdevice->queue.family_count = family_count;
|
|
}
|
|
|
|
static VkResult
|
|
anv_i915_physical_device_get_parameters(struct anv_physical_device *device)
|
|
{
|
|
VkResult result = VK_SUCCESS;
|
|
int val, fd = device->local_fd;
|
|
|
|
if (!intel_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT, &val) || !val) {
|
|
result = vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED,
|
|
"kernel missing gem wait");
|
|
return result;
|
|
}
|
|
|
|
if (!intel_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2, &val) || !val) {
|
|
result = vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED,
|
|
"kernel missing execbuf2");
|
|
return result;
|
|
}
|
|
|
|
if (!device->info.has_llc &&
|
|
(!intel_gem_get_param(fd, I915_PARAM_MMAP_VERSION, &val) || val < 1)) {
|
|
result = vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED,
|
|
"kernel missing wc mmap");
|
|
return result;
|
|
}
|
|
|
|
if (!intel_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN, &val) || !val) {
|
|
result = vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED,
|
|
"kernel missing softpin");
|
|
return result;
|
|
}
|
|
|
|
if (!intel_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY, &val) || !val) {
|
|
result = vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED,
|
|
"kernel missing syncobj support");
|
|
return result;
|
|
}
|
|
|
|
if (intel_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC, &val))
|
|
device->has_exec_async = val;
|
|
if (intel_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE, &val))
|
|
device->has_exec_capture = val;
|
|
|
|
/* Start with medium; sorted low to high */
|
|
const VkQueueGlobalPriorityKHR priorities[] = {
|
|
VK_QUEUE_GLOBAL_PRIORITY_LOW_KHR,
|
|
VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR,
|
|
VK_QUEUE_GLOBAL_PRIORITY_HIGH_KHR,
|
|
VK_QUEUE_GLOBAL_PRIORITY_REALTIME_KHR,
|
|
};
|
|
device->max_context_priority = VK_QUEUE_GLOBAL_PRIORITY_LOW_KHR;
|
|
for (unsigned i = 0; i < ARRAY_SIZE(priorities); i++) {
|
|
if (!anv_gem_has_context_priority(fd, priorities[i]))
|
|
break;
|
|
device->max_context_priority = priorities[i];
|
|
}
|
|
|
|
if (intel_gem_get_param(fd, I915_PARAM_HAS_EXEC_TIMELINE_FENCES, &val))
|
|
device->has_exec_timeline = val;
|
|
|
|
return result;
|
|
}
|
|
|
|
static VkResult
|
|
anv_physical_device_get_parameters(struct anv_physical_device *device)
|
|
{
|
|
return anv_i915_physical_device_get_parameters(device);
|
|
}
|
|
|
|
static VkResult
|
|
anv_physical_device_try_create(struct vk_instance *vk_instance,
|
|
struct _drmDevice *drm_device,
|
|
struct vk_physical_device **out)
|
|
{
|
|
struct anv_instance *instance =
|
|
container_of(vk_instance, struct anv_instance, vk);
|
|
|
|
if (!(drm_device->available_nodes & (1 << DRM_NODE_RENDER)) ||
|
|
drm_device->bustype != DRM_BUS_PCI ||
|
|
drm_device->deviceinfo.pci->vendor_id != 0x8086)
|
|
return VK_ERROR_INCOMPATIBLE_DRIVER;
|
|
|
|
const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
|
|
const char *path = drm_device->nodes[DRM_NODE_RENDER];
|
|
VkResult result;
|
|
int fd;
|
|
int master_fd = -1;
|
|
|
|
brw_process_intel_debug_variable();
|
|
|
|
fd = open(path, O_RDWR | O_CLOEXEC);
|
|
if (fd < 0) {
|
|
if (errno == ENOMEM) {
|
|
return vk_errorf(instance, VK_ERROR_OUT_OF_HOST_MEMORY,
|
|
"Unable to open device %s: out of memory", path);
|
|
}
|
|
return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
|
|
"Unable to open device %s: %m", path);
|
|
}
|
|
|
|
struct intel_device_info devinfo;
|
|
if (!intel_get_device_info_from_fd(fd, &devinfo)) {
|
|
result = vk_error(instance, VK_ERROR_INCOMPATIBLE_DRIVER);
|
|
goto fail_fd;
|
|
}
|
|
|
|
if (devinfo.ver > 12) {
|
|
result = vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
|
|
"Vulkan not yet supported on %s", devinfo.name);
|
|
goto fail_fd;
|
|
} else if (devinfo.ver < 9) {
|
|
/* Silently fail here, hasvk should pick up this device. */
|
|
result = VK_ERROR_INCOMPATIBLE_DRIVER;
|
|
goto fail_fd;
|
|
}
|
|
|
|
struct anv_physical_device *device =
|
|
vk_zalloc(&instance->vk.alloc, sizeof(*device), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
|
|
if (device == NULL) {
|
|
result = vk_error(instance, VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
goto fail_fd;
|
|
}
|
|
|
|
struct vk_physical_device_dispatch_table dispatch_table;
|
|
vk_physical_device_dispatch_table_from_entrypoints(
|
|
&dispatch_table, &anv_physical_device_entrypoints, true);
|
|
vk_physical_device_dispatch_table_from_entrypoints(
|
|
&dispatch_table, &wsi_physical_device_entrypoints, false);
|
|
|
|
result = vk_physical_device_init(&device->vk, &instance->vk,
|
|
NULL, /* We set up extensions later */
|
|
&dispatch_table);
|
|
if (result != VK_SUCCESS) {
|
|
vk_error(instance, result);
|
|
goto fail_alloc;
|
|
}
|
|
device->instance = instance;
|
|
|
|
assert(strlen(path) < ARRAY_SIZE(device->path));
|
|
snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
|
|
|
|
device->info = devinfo;
|
|
|
|
device->local_fd = fd;
|
|
result = anv_physical_device_get_parameters(device);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_base;
|
|
|
|
device->gtt_size = device->info.gtt_size ? device->info.gtt_size :
|
|
device->info.aperture_bytes;
|
|
|
|
/* We only allow 48-bit addresses with softpin because knowing the actual
|
|
* address is required for the vertex cache flush workaround.
|
|
*/
|
|
device->supports_48bit_addresses =
|
|
device->gtt_size > (4ULL << 30 /* GiB */);
|
|
|
|
/* We currently only have the right bits for instructions in Gen12+. If the
|
|
* kernel ever starts supporting that feature on previous generations,
|
|
* we'll need to edit genxml prior to enabling here.
|
|
*/
|
|
device->has_protected_contexts = device->info.ver >= 12 &&
|
|
intel_gem_supports_protected_context(fd);
|
|
|
|
result = anv_physical_device_init_heaps(device, fd);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_base;
|
|
|
|
if (debug_get_bool_option("ANV_QUEUE_THREAD_DISABLE", false))
|
|
device->has_exec_timeline = false;
|
|
|
|
unsigned st_idx = 0;
|
|
|
|
device->sync_syncobj_type = vk_drm_syncobj_get_type(fd);
|
|
if (!device->has_exec_timeline)
|
|
device->sync_syncobj_type.features &= ~VK_SYNC_FEATURE_TIMELINE;
|
|
device->sync_types[st_idx++] = &device->sync_syncobj_type;
|
|
|
|
if (!(device->sync_syncobj_type.features & VK_SYNC_FEATURE_CPU_WAIT))
|
|
device->sync_types[st_idx++] = &anv_bo_sync_type;
|
|
|
|
if (!(device->sync_syncobj_type.features & VK_SYNC_FEATURE_TIMELINE)) {
|
|
device->sync_timeline_type = vk_sync_timeline_get_type(&anv_bo_sync_type);
|
|
device->sync_types[st_idx++] = &device->sync_timeline_type.sync;
|
|
}
|
|
|
|
device->sync_types[st_idx++] = NULL;
|
|
assert(st_idx <= ARRAY_SIZE(device->sync_types));
|
|
device->vk.supported_sync_types = device->sync_types;
|
|
|
|
device->vk.pipeline_cache_import_ops = anv_cache_import_ops;
|
|
|
|
device->always_use_bindless =
|
|
debug_get_bool_option("ANV_ALWAYS_BINDLESS", false);
|
|
|
|
device->use_call_secondary =
|
|
!debug_get_bool_option("ANV_DISABLE_SECONDARY_CMD_BUFFER_CALLS", false);
|
|
|
|
device->has_implicit_ccs = device->info.has_aux_map ||
|
|
device->info.verx10 >= 125;
|
|
|
|
/* Check if we can read the GPU timestamp register from the CPU */
|
|
uint64_t u64_ignore;
|
|
device->has_reg_timestamp = intel_gem_read_render_timestamp(fd, &u64_ignore);
|
|
|
|
device->always_flush_cache = INTEL_DEBUG(DEBUG_STALL) ||
|
|
driQueryOptionb(&instance->dri_options, "always_flush_cache");
|
|
|
|
device->compiler = brw_compiler_create(NULL, &device->info);
|
|
if (device->compiler == NULL) {
|
|
result = vk_error(instance, VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
goto fail_base;
|
|
}
|
|
device->compiler->shader_debug_log = compiler_debug_log;
|
|
device->compiler->shader_perf_log = compiler_perf_log;
|
|
device->compiler->constant_buffer_0_is_relative =
|
|
!device->info.has_context_isolation;
|
|
device->compiler->supports_shader_constants = true;
|
|
device->compiler->indirect_ubos_use_sampler = device->info.ver < 12;
|
|
|
|
isl_device_init(&device->isl_dev, &device->info);
|
|
|
|
result = anv_physical_device_init_uuids(device);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_compiler;
|
|
|
|
anv_physical_device_init_disk_cache(device);
|
|
|
|
if (instance->vk.enabled_extensions.KHR_display) {
|
|
master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
|
|
if (master_fd >= 0) {
|
|
/* fail if we don't have permission to even render on this device */
|
|
if (!intel_gem_can_render_on_fd(master_fd)) {
|
|
close(master_fd);
|
|
master_fd = -1;
|
|
}
|
|
}
|
|
}
|
|
device->master_fd = master_fd;
|
|
|
|
device->engine_info = intel_engine_get_info(fd);
|
|
anv_physical_device_init_queue_families(device);
|
|
|
|
anv_physical_device_init_perf(device, fd);
|
|
|
|
get_device_extensions(device, &device->vk.supported_extensions);
|
|
|
|
/* Gather major/minor before WSI. */
|
|
struct stat st;
|
|
|
|
if (stat(primary_path, &st) == 0) {
|
|
device->has_master = true;
|
|
device->master_major = major(st.st_rdev);
|
|
device->master_minor = minor(st.st_rdev);
|
|
} else {
|
|
device->has_master = false;
|
|
device->master_major = 0;
|
|
device->master_minor = 0;
|
|
}
|
|
|
|
if (stat(path, &st) == 0) {
|
|
device->has_local = true;
|
|
device->local_major = major(st.st_rdev);
|
|
device->local_minor = minor(st.st_rdev);
|
|
} else {
|
|
device->has_local = false;
|
|
device->local_major = 0;
|
|
device->local_minor = 0;
|
|
}
|
|
|
|
result = anv_init_wsi(device);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_perf;
|
|
|
|
anv_measure_device_init(device);
|
|
|
|
anv_genX(&device->info, init_physical_device_state)(device);
|
|
|
|
*out = &device->vk;
|
|
|
|
return VK_SUCCESS;
|
|
|
|
fail_perf:
|
|
ralloc_free(device->perf);
|
|
free(device->engine_info);
|
|
anv_physical_device_free_disk_cache(device);
|
|
fail_compiler:
|
|
ralloc_free(device->compiler);
|
|
fail_base:
|
|
vk_physical_device_finish(&device->vk);
|
|
fail_alloc:
|
|
vk_free(&instance->vk.alloc, device);
|
|
fail_fd:
|
|
close(fd);
|
|
if (master_fd != -1)
|
|
close(master_fd);
|
|
return result;
|
|
}
|
|
|
|
static void
|
|
anv_physical_device_destroy(struct vk_physical_device *vk_device)
|
|
{
|
|
struct anv_physical_device *device =
|
|
container_of(vk_device, struct anv_physical_device, vk);
|
|
|
|
anv_finish_wsi(device);
|
|
anv_measure_device_destroy(device);
|
|
free(device->engine_info);
|
|
anv_physical_device_free_disk_cache(device);
|
|
ralloc_free(device->compiler);
|
|
ralloc_free(device->perf);
|
|
close(device->local_fd);
|
|
if (device->master_fd >= 0)
|
|
close(device->master_fd);
|
|
vk_physical_device_finish(&device->vk);
|
|
vk_free(&device->instance->vk.alloc, device);
|
|
}
|
|
|
|
VkResult anv_EnumerateInstanceExtensionProperties(
|
|
const char* pLayerName,
|
|
uint32_t* pPropertyCount,
|
|
VkExtensionProperties* pProperties)
|
|
{
|
|
if (pLayerName)
|
|
return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
|
|
|
|
return vk_enumerate_instance_extension_properties(
|
|
&instance_extensions, pPropertyCount, pProperties);
|
|
}
|
|
|
|
static void
|
|
anv_init_dri_options(struct anv_instance *instance)
|
|
{
|
|
driParseOptionInfo(&instance->available_dri_options, anv_dri_options,
|
|
ARRAY_SIZE(anv_dri_options));
|
|
driParseConfigFiles(&instance->dri_options,
|
|
&instance->available_dri_options, 0, "anv", NULL, NULL,
|
|
instance->vk.app_info.app_name,
|
|
instance->vk.app_info.app_version,
|
|
instance->vk.app_info.engine_name,
|
|
instance->vk.app_info.engine_version);
|
|
|
|
instance->assume_full_subgroups =
|
|
driQueryOptionb(&instance->dri_options, "anv_assume_full_subgroups");
|
|
instance->limit_trig_input_range =
|
|
driQueryOptionb(&instance->dri_options, "limit_trig_input_range");
|
|
instance->sample_mask_out_opengl_behaviour =
|
|
driQueryOptionb(&instance->dri_options, "anv_sample_mask_out_opengl_behaviour");
|
|
instance->lower_depth_range_rate =
|
|
driQueryOptionf(&instance->dri_options, "lower_depth_range_rate");
|
|
instance->fp64_workaround_enabled =
|
|
driQueryOptionb(&instance->dri_options, "fp64_workaround_enabled");
|
|
}
|
|
|
|
VkResult anv_CreateInstance(
|
|
const VkInstanceCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkInstance* pInstance)
|
|
{
|
|
struct anv_instance *instance;
|
|
VkResult result;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
|
|
|
|
if (pAllocator == NULL)
|
|
pAllocator = vk_default_allocator();
|
|
|
|
instance = vk_alloc(pAllocator, sizeof(*instance), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
|
|
if (!instance)
|
|
return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
struct vk_instance_dispatch_table dispatch_table;
|
|
vk_instance_dispatch_table_from_entrypoints(
|
|
&dispatch_table, &anv_instance_entrypoints, true);
|
|
vk_instance_dispatch_table_from_entrypoints(
|
|
&dispatch_table, &wsi_instance_entrypoints, false);
|
|
|
|
result = vk_instance_init(&instance->vk, &instance_extensions,
|
|
&dispatch_table, pCreateInfo, pAllocator);
|
|
if (result != VK_SUCCESS) {
|
|
vk_free(pAllocator, instance);
|
|
return vk_error(NULL, result);
|
|
}
|
|
|
|
instance->vk.physical_devices.try_create_for_drm = anv_physical_device_try_create;
|
|
instance->vk.physical_devices.destroy = anv_physical_device_destroy;
|
|
|
|
VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
|
|
|
|
anv_init_dri_options(instance);
|
|
|
|
intel_driver_ds_init();
|
|
|
|
*pInstance = anv_instance_to_handle(instance);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_DestroyInstance(
|
|
VkInstance _instance,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_instance, instance, _instance);
|
|
|
|
if (!instance)
|
|
return;
|
|
|
|
VG(VALGRIND_DESTROY_MEMPOOL(instance));
|
|
|
|
driDestroyOptionCache(&instance->dri_options);
|
|
driDestroyOptionInfo(&instance->available_dri_options);
|
|
|
|
vk_instance_finish(&instance->vk);
|
|
vk_free(&instance->vk.alloc, instance);
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceFeatures(
|
|
VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceFeatures* pFeatures)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
|
|
|
|
/* Just pick one; they're all the same */
|
|
const bool has_astc_ldr =
|
|
isl_format_supports_sampling(&pdevice->info,
|
|
ISL_FORMAT_ASTC_LDR_2D_4X4_FLT16);
|
|
|
|
*pFeatures = (VkPhysicalDeviceFeatures) {
|
|
.robustBufferAccess = true,
|
|
.fullDrawIndexUint32 = true,
|
|
.imageCubeArray = true,
|
|
.independentBlend = true,
|
|
.geometryShader = true,
|
|
.tessellationShader = true,
|
|
.sampleRateShading = true,
|
|
.dualSrcBlend = true,
|
|
.logicOp = true,
|
|
.multiDrawIndirect = true,
|
|
.drawIndirectFirstInstance = true,
|
|
.depthClamp = true,
|
|
.depthBiasClamp = true,
|
|
.fillModeNonSolid = true,
|
|
.depthBounds = pdevice->info.ver >= 12,
|
|
.wideLines = true,
|
|
.largePoints = true,
|
|
.alphaToOne = true,
|
|
.multiViewport = true,
|
|
.samplerAnisotropy = true,
|
|
.textureCompressionETC2 = true,
|
|
.textureCompressionASTC_LDR = has_astc_ldr,
|
|
.textureCompressionBC = true,
|
|
.occlusionQueryPrecise = true,
|
|
.pipelineStatisticsQuery = true,
|
|
.fragmentStoresAndAtomics = true,
|
|
.shaderTessellationAndGeometryPointSize = true,
|
|
.shaderImageGatherExtended = true,
|
|
.shaderStorageImageExtendedFormats = true,
|
|
.shaderStorageImageMultisample = false,
|
|
.shaderStorageImageReadWithoutFormat = false,
|
|
.shaderStorageImageWriteWithoutFormat = true,
|
|
.shaderUniformBufferArrayDynamicIndexing = true,
|
|
.shaderSampledImageArrayDynamicIndexing = true,
|
|
.shaderStorageBufferArrayDynamicIndexing = true,
|
|
.shaderStorageImageArrayDynamicIndexing = true,
|
|
.shaderClipDistance = true,
|
|
.shaderCullDistance = true,
|
|
.shaderFloat64 = pdevice->info.has_64bit_float,
|
|
.shaderInt64 = true,
|
|
.shaderInt16 = true,
|
|
.shaderResourceMinLod = true,
|
|
.variableMultisampleRate = true,
|
|
.inheritedQueries = true,
|
|
};
|
|
|
|
/* We can't do image stores in vec4 shaders */
|
|
pFeatures->vertexPipelineStoresAndAtomics =
|
|
pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
|
|
pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
|
|
|
|
struct vk_app_info *app_info = &pdevice->instance->vk.app_info;
|
|
|
|
/* The new DOOM and Wolfenstein games require depthBounds without
|
|
* checking for it. They seem to run fine without it so just claim it's
|
|
* there and accept the consequences.
|
|
*/
|
|
if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
|
|
pFeatures->depthBounds = true;
|
|
}
|
|
|
|
static void
|
|
anv_get_physical_device_features_1_1(struct anv_physical_device *pdevice,
|
|
VkPhysicalDeviceVulkan11Features *f)
|
|
{
|
|
assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES);
|
|
|
|
f->storageBuffer16BitAccess = true;
|
|
f->uniformAndStorageBuffer16BitAccess = true;
|
|
f->storagePushConstant16 = true;
|
|
f->storageInputOutput16 = false;
|
|
f->multiview = true;
|
|
f->multiviewGeometryShader = true;
|
|
f->multiviewTessellationShader = true;
|
|
f->variablePointersStorageBuffer = true;
|
|
f->variablePointers = true;
|
|
f->protectedMemory = false;
|
|
f->samplerYcbcrConversion = true;
|
|
f->shaderDrawParameters = true;
|
|
}
|
|
|
|
static void
|
|
anv_get_physical_device_features_1_2(struct anv_physical_device *pdevice,
|
|
VkPhysicalDeviceVulkan12Features *f)
|
|
{
|
|
assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES);
|
|
|
|
f->samplerMirrorClampToEdge = true;
|
|
f->drawIndirectCount = true;
|
|
f->storageBuffer8BitAccess = true;
|
|
f->uniformAndStorageBuffer8BitAccess = true;
|
|
f->storagePushConstant8 = true;
|
|
f->shaderBufferInt64Atomics = true;
|
|
f->shaderSharedInt64Atomics = false;
|
|
f->shaderFloat16 = true;
|
|
f->shaderInt8 = true;
|
|
|
|
f->descriptorIndexing = true;
|
|
f->shaderInputAttachmentArrayDynamicIndexing = false;
|
|
f->shaderUniformTexelBufferArrayDynamicIndexing = true;
|
|
f->shaderStorageTexelBufferArrayDynamicIndexing = true;
|
|
f->shaderUniformBufferArrayNonUniformIndexing = false;
|
|
f->shaderSampledImageArrayNonUniformIndexing = true;
|
|
f->shaderStorageBufferArrayNonUniformIndexing = true;
|
|
f->shaderStorageImageArrayNonUniformIndexing = true;
|
|
f->shaderInputAttachmentArrayNonUniformIndexing = false;
|
|
f->shaderUniformTexelBufferArrayNonUniformIndexing = true;
|
|
f->shaderStorageTexelBufferArrayNonUniformIndexing = true;
|
|
f->descriptorBindingUniformBufferUpdateAfterBind = true;
|
|
f->descriptorBindingSampledImageUpdateAfterBind = true;
|
|
f->descriptorBindingStorageImageUpdateAfterBind = true;
|
|
f->descriptorBindingStorageBufferUpdateAfterBind = true;
|
|
f->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
|
|
f->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
|
|
f->descriptorBindingUpdateUnusedWhilePending = true;
|
|
f->descriptorBindingPartiallyBound = true;
|
|
f->descriptorBindingVariableDescriptorCount = true;
|
|
f->runtimeDescriptorArray = true;
|
|
|
|
f->samplerFilterMinmax = true;
|
|
f->scalarBlockLayout = true;
|
|
f->imagelessFramebuffer = true;
|
|
f->uniformBufferStandardLayout = true;
|
|
f->shaderSubgroupExtendedTypes = true;
|
|
f->separateDepthStencilLayouts = true;
|
|
f->hostQueryReset = true;
|
|
f->timelineSemaphore = true;
|
|
f->bufferDeviceAddress = true;
|
|
f->bufferDeviceAddressCaptureReplay = true;
|
|
f->bufferDeviceAddressMultiDevice = false;
|
|
f->vulkanMemoryModel = true;
|
|
f->vulkanMemoryModelDeviceScope = true;
|
|
f->vulkanMemoryModelAvailabilityVisibilityChains = true;
|
|
f->shaderOutputViewportIndex = true;
|
|
f->shaderOutputLayer = true;
|
|
f->subgroupBroadcastDynamicId = true;
|
|
}
|
|
|
|
static void
|
|
anv_get_physical_device_features_1_3(struct anv_physical_device *pdevice,
|
|
VkPhysicalDeviceVulkan13Features *f)
|
|
{
|
|
assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES);
|
|
|
|
f->robustImageAccess = true;
|
|
f->inlineUniformBlock = true;
|
|
f->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
|
|
f->pipelineCreationCacheControl = true;
|
|
f->privateData = true;
|
|
f->shaderDemoteToHelperInvocation = true;
|
|
f->shaderTerminateInvocation = true;
|
|
f->subgroupSizeControl = true;
|
|
f->computeFullSubgroups = true;
|
|
f->synchronization2 = true;
|
|
f->textureCompressionASTC_HDR = false;
|
|
f->shaderZeroInitializeWorkgroupMemory = true;
|
|
f->dynamicRendering = true;
|
|
f->shaderIntegerDotProduct = true;
|
|
f->maintenance4 = true;
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceFeatures2(
|
|
VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceFeatures2* pFeatures)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
|
|
anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
|
|
|
|
VkPhysicalDeviceVulkan11Features core_1_1 = {
|
|
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES,
|
|
};
|
|
anv_get_physical_device_features_1_1(pdevice, &core_1_1);
|
|
|
|
VkPhysicalDeviceVulkan12Features core_1_2 = {
|
|
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES,
|
|
};
|
|
anv_get_physical_device_features_1_2(pdevice, &core_1_2);
|
|
|
|
VkPhysicalDeviceVulkan13Features core_1_3 = {
|
|
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES,
|
|
};
|
|
anv_get_physical_device_features_1_3(pdevice, &core_1_3);
|
|
|
|
vk_foreach_struct(ext, pFeatures->pNext) {
|
|
if (vk_get_physical_device_core_1_1_feature_ext(ext, &core_1_1))
|
|
continue;
|
|
if (vk_get_physical_device_core_1_2_feature_ext(ext, &core_1_2))
|
|
continue;
|
|
if (vk_get_physical_device_core_1_3_feature_ext(ext, &core_1_3))
|
|
continue;
|
|
|
|
switch (ext->sType) {
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_4444_FORMATS_FEATURES_EXT: {
|
|
VkPhysicalDevice4444FormatsFeaturesEXT *features =
|
|
(VkPhysicalDevice4444FormatsFeaturesEXT *)ext;
|
|
features->formatA4R4G4B4 = true;
|
|
features->formatA4B4G4R4 = false;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_FEATURES_KHR: {
|
|
VkPhysicalDeviceAccelerationStructureFeaturesKHR *features = (void *)ext;
|
|
features->accelerationStructure =
|
|
ANV_SUPPORT_RT && pdevice->info.has_ray_tracing;
|
|
features->accelerationStructureCaptureReplay = false; /* TODO */
|
|
features->accelerationStructureIndirectBuild = false; /* TODO */
|
|
features->accelerationStructureHostCommands = false;
|
|
features->descriptorBindingAccelerationStructureUpdateAfterBind =
|
|
ANV_SUPPORT_RT && pdevice->info.has_ray_tracing;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
|
|
VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
|
|
features->bufferDeviceAddress = true;
|
|
features->bufferDeviceAddressCaptureReplay = false;
|
|
features->bufferDeviceAddressMultiDevice = false;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BORDER_COLOR_SWIZZLE_FEATURES_EXT: {
|
|
VkPhysicalDeviceBorderColorSwizzleFeaturesEXT *features =
|
|
(VkPhysicalDeviceBorderColorSwizzleFeaturesEXT *)ext;
|
|
features->borderColorSwizzle = true;
|
|
features->borderColorSwizzleFromImage = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COLOR_WRITE_ENABLE_FEATURES_EXT: {
|
|
VkPhysicalDeviceColorWriteEnableFeaturesEXT *features =
|
|
(VkPhysicalDeviceColorWriteEnableFeaturesEXT *)ext;
|
|
features->colorWriteEnable = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_2D_VIEW_OF_3D_FEATURES_EXT: {
|
|
VkPhysicalDeviceImage2DViewOf3DFeaturesEXT *features =
|
|
(VkPhysicalDeviceImage2DViewOf3DFeaturesEXT *)ext;
|
|
features->image2DViewOf3D = true;
|
|
features->sampler2DViewOf3D = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
|
|
VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
|
|
(VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
|
|
features->computeDerivativeGroupQuads = true;
|
|
features->computeDerivativeGroupLinear = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
|
|
VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
|
|
(VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
|
|
features->conditionalRendering = true;
|
|
features->inheritedConditionalRendering = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_FEATURES_EXT: {
|
|
VkPhysicalDeviceCustomBorderColorFeaturesEXT *features =
|
|
(VkPhysicalDeviceCustomBorderColorFeaturesEXT *)ext;
|
|
features->customBorderColors = true;
|
|
features->customBorderColorWithoutFormat = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLAMP_ZERO_ONE_FEATURES_EXT: {
|
|
VkPhysicalDeviceDepthClampZeroOneFeaturesEXT *features =
|
|
(VkPhysicalDeviceDepthClampZeroOneFeaturesEXT *)ext;
|
|
features->depthClampZeroOne = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
|
|
VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
|
|
(VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
|
|
features->depthClipEnable = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
|
|
VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
|
|
(VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
|
|
features->fragmentShaderSampleInterlock = true;
|
|
features->fragmentShaderPixelInterlock = true;
|
|
features->fragmentShaderShadingRateInterlock = false;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GLOBAL_PRIORITY_QUERY_FEATURES_KHR: {
|
|
VkPhysicalDeviceGlobalPriorityQueryFeaturesKHR *features =
|
|
(VkPhysicalDeviceGlobalPriorityQueryFeaturesKHR *)ext;
|
|
features->globalPriorityQuery = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_FEATURES_KHR: {
|
|
VkPhysicalDeviceFragmentShadingRateFeaturesKHR *features =
|
|
(VkPhysicalDeviceFragmentShadingRateFeaturesKHR *)ext;
|
|
features->attachmentFragmentShadingRate = false;
|
|
features->pipelineFragmentShadingRate = true;
|
|
features->primitiveFragmentShadingRate =
|
|
pdevice->info.has_coarse_pixel_primitive_and_cb;
|
|
features->attachmentFragmentShadingRate =
|
|
pdevice->info.has_coarse_pixel_primitive_and_cb;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_VIEW_MIN_LOD_FEATURES_EXT: {
|
|
VkPhysicalDeviceImageViewMinLodFeaturesEXT *features =
|
|
(VkPhysicalDeviceImageViewMinLodFeaturesEXT *)ext;
|
|
features->minLod = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
|
|
VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
|
|
(VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
|
|
features->indexTypeUint8 = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
|
|
VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
|
|
(VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
|
|
/* Rectangular lines must use the strict algorithm, which is not
|
|
* supported for wide lines prior to ICL. See rasterization_mode for
|
|
* details and how the HW states are programmed.
|
|
*/
|
|
features->rectangularLines = pdevice->info.ver >= 10;
|
|
features->bresenhamLines = true;
|
|
/* Support for Smooth lines with MSAA was removed on gfx11. From the
|
|
* BSpec section "Multisample ModesState" table for "AA Line Support
|
|
* Requirements":
|
|
*
|
|
* GFX10:BUG:######## NUM_MULTISAMPLES == 1
|
|
*
|
|
* Fortunately, this isn't a case most people care about.
|
|
*/
|
|
features->smoothLines = pdevice->info.ver < 10;
|
|
features->stippledRectangularLines = false;
|
|
features->stippledBresenhamLines = true;
|
|
features->stippledSmoothLines = false;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_FEATURES_NV: {
|
|
VkPhysicalDeviceMeshShaderFeaturesNV *features =
|
|
(VkPhysicalDeviceMeshShaderFeaturesNV *)ext;
|
|
features->taskShader = pdevice->vk.supported_extensions.NV_mesh_shader;
|
|
features->meshShader = pdevice->vk.supported_extensions.NV_mesh_shader;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_FEATURES_EXT: {
|
|
VkPhysicalDeviceMeshShaderFeaturesEXT *features =
|
|
(VkPhysicalDeviceMeshShaderFeaturesEXT *)ext;
|
|
features->meshShader = pdevice->vk.supported_extensions.EXT_mesh_shader;
|
|
features->taskShader = pdevice->vk.supported_extensions.EXT_mesh_shader;
|
|
features->multiviewMeshShader = false;
|
|
features->primitiveFragmentShadingRateMeshShader = features->meshShader;
|
|
features->meshShaderQueries = false;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MUTABLE_DESCRIPTOR_TYPE_FEATURES_EXT: {
|
|
VkPhysicalDeviceMutableDescriptorTypeFeaturesEXT *features =
|
|
(VkPhysicalDeviceMutableDescriptorTypeFeaturesEXT *)ext;
|
|
features->mutableDescriptorType = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_FEATURES_KHR: {
|
|
VkPhysicalDevicePerformanceQueryFeaturesKHR *feature =
|
|
(VkPhysicalDevicePerformanceQueryFeaturesKHR *)ext;
|
|
feature->performanceCounterQueryPools = true;
|
|
/* HW only supports a single configuration at a time. */
|
|
feature->performanceCounterMultipleQueryPools = false;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
|
|
VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
|
|
(VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
|
|
features->pipelineExecutableInfo = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIMITIVES_GENERATED_QUERY_FEATURES_EXT: {
|
|
VkPhysicalDevicePrimitivesGeneratedQueryFeaturesEXT *features =
|
|
(VkPhysicalDevicePrimitivesGeneratedQueryFeaturesEXT *)ext;
|
|
features->primitivesGeneratedQuery = true;
|
|
features->primitivesGeneratedQueryWithRasterizerDiscard = false;
|
|
features->primitivesGeneratedQueryWithNonZeroStreams = false;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_FEATURES_EXT: {
|
|
VkPhysicalDeviceProvokingVertexFeaturesEXT *features =
|
|
(VkPhysicalDeviceProvokingVertexFeaturesEXT *)ext;
|
|
features->provokingVertexLast = true;
|
|
features->transformFeedbackPreservesProvokingVertex = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_QUERY_FEATURES_KHR: {
|
|
VkPhysicalDeviceRayQueryFeaturesKHR *features = (void *)ext;
|
|
features->rayQuery = ANV_SUPPORT_RT && pdevice->info.has_ray_tracing;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_FEATURES_KHR: {
|
|
VkPhysicalDeviceRayTracingPipelineFeaturesKHR *features = (void *)ext;
|
|
features->rayTracingPipeline = pdevice->info.has_ray_tracing;
|
|
features->rayTracingPipelineShaderGroupHandleCaptureReplay = false;
|
|
features->rayTracingPipelineShaderGroupHandleCaptureReplayMixed = false;
|
|
features->rayTracingPipelineTraceRaysIndirect = true;
|
|
features->rayTraversalPrimitiveCulling = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_FEATURES_EXT: {
|
|
VkPhysicalDeviceRobustness2FeaturesEXT *features = (void *)ext;
|
|
features->robustBufferAccess2 = true;
|
|
features->robustImageAccess2 = true;
|
|
features->nullDescriptor = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_FEATURES_EXT: {
|
|
VkPhysicalDeviceShaderAtomicFloatFeaturesEXT *features = (void *)ext;
|
|
features->shaderBufferFloat32Atomics = true;
|
|
features->shaderBufferFloat32AtomicAdd = pdevice->info.has_lsc;
|
|
features->shaderBufferFloat64Atomics =
|
|
pdevice->info.has_64bit_float && pdevice->info.has_lsc;
|
|
features->shaderBufferFloat64AtomicAdd = false;
|
|
features->shaderSharedFloat32Atomics = true;
|
|
features->shaderSharedFloat32AtomicAdd = false;
|
|
features->shaderSharedFloat64Atomics = false;
|
|
features->shaderSharedFloat64AtomicAdd = false;
|
|
features->shaderImageFloat32Atomics = true;
|
|
features->shaderImageFloat32AtomicAdd = false;
|
|
features->sparseImageFloat32Atomics = false;
|
|
features->sparseImageFloat32AtomicAdd = false;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_2_FEATURES_EXT: {
|
|
VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT *features = (void *)ext;
|
|
features->shaderBufferFloat16Atomics = pdevice->info.has_lsc;
|
|
features->shaderBufferFloat16AtomicAdd = false;
|
|
features->shaderBufferFloat16AtomicMinMax = pdevice->info.has_lsc;
|
|
features->shaderBufferFloat32AtomicMinMax = true;
|
|
features->shaderBufferFloat64AtomicMinMax =
|
|
pdevice->info.has_64bit_float && pdevice->info.has_lsc;
|
|
features->shaderSharedFloat16Atomics = pdevice->info.has_lsc;
|
|
features->shaderSharedFloat16AtomicAdd = false;
|
|
features->shaderSharedFloat16AtomicMinMax = pdevice->info.has_lsc;
|
|
features->shaderSharedFloat32AtomicMinMax = true;
|
|
features->shaderSharedFloat64AtomicMinMax = false;
|
|
features->shaderImageFloat32AtomicMinMax = false;
|
|
features->sparseImageFloat32AtomicMinMax = false;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
|
|
VkPhysicalDeviceShaderClockFeaturesKHR *features =
|
|
(VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
|
|
features->shaderSubgroupClock = true;
|
|
features->shaderDeviceClock = false;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_FUNCTIONS_2_FEATURES_INTEL: {
|
|
VkPhysicalDeviceShaderIntegerFunctions2FeaturesINTEL *features =
|
|
(VkPhysicalDeviceShaderIntegerFunctions2FeaturesINTEL *)ext;
|
|
features->shaderIntegerFunctions2 = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_MODULE_IDENTIFIER_FEATURES_EXT: {
|
|
VkPhysicalDeviceShaderModuleIdentifierFeaturesEXT *features =
|
|
(VkPhysicalDeviceShaderModuleIdentifierFeaturesEXT *)ext;
|
|
features->shaderModuleIdentifier = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_UNIFORM_CONTROL_FLOW_FEATURES_KHR: {
|
|
VkPhysicalDeviceShaderSubgroupUniformControlFlowFeaturesKHR *features =
|
|
(VkPhysicalDeviceShaderSubgroupUniformControlFlowFeaturesKHR *)ext;
|
|
features->shaderSubgroupUniformControlFlow = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
|
|
VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
|
|
(VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
|
|
features->texelBufferAlignment = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
|
|
VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
|
|
(VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
|
|
features->transformFeedback = true;
|
|
features->geometryStreams = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
|
|
VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
|
|
(VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
|
|
features->vertexAttributeInstanceRateDivisor = true;
|
|
features->vertexAttributeInstanceRateZeroDivisor = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_WORKGROUP_MEMORY_EXPLICIT_LAYOUT_FEATURES_KHR: {
|
|
VkPhysicalDeviceWorkgroupMemoryExplicitLayoutFeaturesKHR *features =
|
|
(VkPhysicalDeviceWorkgroupMemoryExplicitLayoutFeaturesKHR *)ext;
|
|
features->workgroupMemoryExplicitLayout = true;
|
|
features->workgroupMemoryExplicitLayoutScalarBlockLayout = true;
|
|
features->workgroupMemoryExplicitLayout8BitAccess = true;
|
|
features->workgroupMemoryExplicitLayout16BitAccess = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
|
|
VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
|
|
(VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
|
|
features->ycbcrImageArrays = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_FEATURES_EXT: {
|
|
VkPhysicalDeviceExtendedDynamicStateFeaturesEXT *features =
|
|
(VkPhysicalDeviceExtendedDynamicStateFeaturesEXT *)ext;
|
|
features->extendedDynamicState = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_2_FEATURES_EXT: {
|
|
VkPhysicalDeviceExtendedDynamicState2FeaturesEXT *features =
|
|
(VkPhysicalDeviceExtendedDynamicState2FeaturesEXT *)ext;
|
|
features->extendedDynamicState2 = true;
|
|
features->extendedDynamicState2LogicOp = true;
|
|
features->extendedDynamicState2PatchControlPoints = false;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_3_FEATURES_EXT: {
|
|
VkPhysicalDeviceExtendedDynamicState3FeaturesEXT *features =
|
|
(VkPhysicalDeviceExtendedDynamicState3FeaturesEXT *)ext;
|
|
features->extendedDynamicState3PolygonMode = true;
|
|
features->extendedDynamicState3TessellationDomainOrigin = true;
|
|
features->extendedDynamicState3RasterizationStream = true;
|
|
features->extendedDynamicState3LineStippleEnable = true;
|
|
features->extendedDynamicState3LineRasterizationMode = true;
|
|
features->extendedDynamicState3LogicOpEnable = true;
|
|
features->extendedDynamicState3AlphaToOneEnable = true;
|
|
features->extendedDynamicState3DepthClipEnable = true;
|
|
features->extendedDynamicState3DepthClampEnable = true;
|
|
features->extendedDynamicState3DepthClipNegativeOneToOne = true;
|
|
features->extendedDynamicState3ProvokingVertexMode = true;
|
|
features->extendedDynamicState3ColorBlendEnable = true;
|
|
features->extendedDynamicState3ColorWriteMask = true;
|
|
features->extendedDynamicState3ColorBlendEquation = true;
|
|
features->extendedDynamicState3SampleMask = true;
|
|
|
|
features->extendedDynamicState3RasterizationSamples = false;
|
|
features->extendedDynamicState3AlphaToCoverageEnable = false;
|
|
features->extendedDynamicState3ConservativeRasterizationMode = false;
|
|
features->extendedDynamicState3ExtraPrimitiveOverestimationSize = false;
|
|
features->extendedDynamicState3SampleLocationsEnable = false;
|
|
features->extendedDynamicState3ViewportWScalingEnable = false;
|
|
features->extendedDynamicState3ViewportSwizzle = false;
|
|
features->extendedDynamicState3ShadingRateImageEnable = false;
|
|
features->extendedDynamicState3CoverageToColorEnable = false;
|
|
features->extendedDynamicState3CoverageToColorLocation = false;
|
|
features->extendedDynamicState3CoverageModulationMode = false;
|
|
features->extendedDynamicState3CoverageModulationTableEnable = false;
|
|
features->extendedDynamicState3CoverageModulationTable = false;
|
|
features->extendedDynamicState3CoverageReductionMode = false;
|
|
features->extendedDynamicState3RepresentativeFragmentTestEnable = false;
|
|
features->extendedDynamicState3ColorBlendAdvanced = false;
|
|
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTI_DRAW_FEATURES_EXT: {
|
|
VkPhysicalDeviceMultiDrawFeaturesEXT *features = (VkPhysicalDeviceMultiDrawFeaturesEXT *)ext;
|
|
features->multiDraw = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_NON_SEAMLESS_CUBE_MAP_FEATURES_EXT : {
|
|
VkPhysicalDeviceNonSeamlessCubeMapFeaturesEXT *features =
|
|
(VkPhysicalDeviceNonSeamlessCubeMapFeaturesEXT *)ext;
|
|
features->nonSeamlessCubeMap = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIMITIVE_TOPOLOGY_LIST_RESTART_FEATURES_EXT: {
|
|
VkPhysicalDevicePrimitiveTopologyListRestartFeaturesEXT *features =
|
|
(VkPhysicalDevicePrimitiveTopologyListRestartFeaturesEXT *)ext;
|
|
features->primitiveTopologyListRestart = true;
|
|
features->primitiveTopologyPatchListRestart = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_CONTROL_FEATURES_EXT: {
|
|
VkPhysicalDeviceDepthClipControlFeaturesEXT *features =
|
|
(VkPhysicalDeviceDepthClipControlFeaturesEXT *)ext;
|
|
features->depthClipControl = true;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
anv_debug_ignored_stype(ext->sType);
|
|
break;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
#define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
|
|
|
|
#define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
|
|
#define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
|
|
|
|
#define MAX_CUSTOM_BORDER_COLORS 4096
|
|
|
|
void anv_GetPhysicalDeviceProperties(
|
|
VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceProperties* pProperties)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
|
|
const struct intel_device_info *devinfo = &pdevice->info;
|
|
|
|
const uint32_t max_ssbos = UINT16_MAX;
|
|
const uint32_t max_textures = UINT16_MAX;
|
|
const uint32_t max_samplers = UINT16_MAX;
|
|
const uint32_t max_images = UINT16_MAX;
|
|
|
|
/* Claim a high per-stage limit since we have bindless. */
|
|
const uint32_t max_per_stage = UINT32_MAX;
|
|
|
|
const uint32_t max_workgroup_size =
|
|
MIN2(1024, 32 * devinfo->max_cs_workgroup_threads);
|
|
|
|
VkSampleCountFlags sample_counts =
|
|
isl_device_get_sample_counts(&pdevice->isl_dev);
|
|
|
|
|
|
VkPhysicalDeviceLimits limits = {
|
|
.maxImageDimension1D = (1 << 14),
|
|
.maxImageDimension2D = (1 << 14),
|
|
.maxImageDimension3D = (1 << 11),
|
|
.maxImageDimensionCube = (1 << 14),
|
|
.maxImageArrayLayers = (1 << 11),
|
|
.maxTexelBufferElements = 128 * 1024 * 1024,
|
|
.maxUniformBufferRange = pdevice->compiler->indirect_ubos_use_sampler ? (1u << 27) : (1u << 30),
|
|
.maxStorageBufferRange = pdevice->isl_dev.max_buffer_size,
|
|
.maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
|
|
.maxMemoryAllocationCount = UINT32_MAX,
|
|
.maxSamplerAllocationCount = 64 * 1024,
|
|
.bufferImageGranularity = 1,
|
|
.sparseAddressSpaceSize = 0,
|
|
.maxBoundDescriptorSets = MAX_SETS,
|
|
.maxPerStageDescriptorSamplers = max_samplers,
|
|
.maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
|
|
.maxPerStageDescriptorStorageBuffers = max_ssbos,
|
|
.maxPerStageDescriptorSampledImages = max_textures,
|
|
.maxPerStageDescriptorStorageImages = max_images,
|
|
.maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
|
|
.maxPerStageResources = max_per_stage,
|
|
.maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
|
|
.maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
|
|
.maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
|
|
.maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
|
|
.maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
|
|
.maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
|
|
.maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
|
|
.maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
|
|
.maxVertexInputAttributes = MAX_VES,
|
|
.maxVertexInputBindings = MAX_VBS,
|
|
/* Broadwell PRMs: Volume 2d: Command Reference: Structures:
|
|
*
|
|
* VERTEX_ELEMENT_STATE::Source Element Offset: [0,2047]
|
|
*/
|
|
.maxVertexInputAttributeOffset = 2047,
|
|
/* Skylake PRMs: Volume 2d: Command Reference: Structures:
|
|
*
|
|
* VERTEX_BUFFER_STATE::Buffer Pitch: [0,4095]
|
|
*/
|
|
.maxVertexInputBindingStride = 4095,
|
|
.maxVertexOutputComponents = 128,
|
|
.maxTessellationGenerationLevel = 64,
|
|
.maxTessellationPatchSize = 32,
|
|
.maxTessellationControlPerVertexInputComponents = 128,
|
|
.maxTessellationControlPerVertexOutputComponents = 128,
|
|
.maxTessellationControlPerPatchOutputComponents = 128,
|
|
.maxTessellationControlTotalOutputComponents = 2048,
|
|
.maxTessellationEvaluationInputComponents = 128,
|
|
.maxTessellationEvaluationOutputComponents = 128,
|
|
.maxGeometryShaderInvocations = 32,
|
|
.maxGeometryInputComponents = 128,
|
|
.maxGeometryOutputComponents = 128,
|
|
.maxGeometryOutputVertices = 256,
|
|
.maxGeometryTotalOutputComponents = 1024,
|
|
.maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
|
|
.maxFragmentOutputAttachments = 8,
|
|
.maxFragmentDualSrcAttachments = 1,
|
|
.maxFragmentCombinedOutputResources = MAX_RTS + max_ssbos + max_images,
|
|
.maxComputeSharedMemorySize = 64 * 1024,
|
|
.maxComputeWorkGroupCount = { 65535, 65535, 65535 },
|
|
.maxComputeWorkGroupInvocations = max_workgroup_size,
|
|
.maxComputeWorkGroupSize = {
|
|
max_workgroup_size,
|
|
max_workgroup_size,
|
|
max_workgroup_size,
|
|
},
|
|
.subPixelPrecisionBits = 8,
|
|
.subTexelPrecisionBits = 8,
|
|
.mipmapPrecisionBits = 8,
|
|
.maxDrawIndexedIndexValue = UINT32_MAX,
|
|
.maxDrawIndirectCount = UINT32_MAX,
|
|
.maxSamplerLodBias = 16,
|
|
.maxSamplerAnisotropy = 16,
|
|
.maxViewports = MAX_VIEWPORTS,
|
|
.maxViewportDimensions = { (1 << 14), (1 << 14) },
|
|
.viewportBoundsRange = { INT16_MIN, INT16_MAX },
|
|
.viewportSubPixelBits = 13, /* We take a float? */
|
|
.minMemoryMapAlignment = 4096, /* A page */
|
|
/* The dataport requires texel alignment so we need to assume a worst
|
|
* case of R32G32B32A32 which is 16 bytes.
|
|
*/
|
|
.minTexelBufferOffsetAlignment = 16,
|
|
.minUniformBufferOffsetAlignment = ANV_UBO_ALIGNMENT,
|
|
.minStorageBufferOffsetAlignment = ANV_SSBO_ALIGNMENT,
|
|
.minTexelOffset = -8,
|
|
.maxTexelOffset = 7,
|
|
.minTexelGatherOffset = -32,
|
|
.maxTexelGatherOffset = 31,
|
|
.minInterpolationOffset = -0.5,
|
|
.maxInterpolationOffset = 0.4375,
|
|
.subPixelInterpolationOffsetBits = 4,
|
|
.maxFramebufferWidth = (1 << 14),
|
|
.maxFramebufferHeight = (1 << 14),
|
|
.maxFramebufferLayers = (1 << 11),
|
|
.framebufferColorSampleCounts = sample_counts,
|
|
.framebufferDepthSampleCounts = sample_counts,
|
|
.framebufferStencilSampleCounts = sample_counts,
|
|
.framebufferNoAttachmentsSampleCounts = sample_counts,
|
|
.maxColorAttachments = MAX_RTS,
|
|
.sampledImageColorSampleCounts = sample_counts,
|
|
.sampledImageIntegerSampleCounts = sample_counts,
|
|
.sampledImageDepthSampleCounts = sample_counts,
|
|
.sampledImageStencilSampleCounts = sample_counts,
|
|
.storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
|
|
.maxSampleMaskWords = 1,
|
|
.timestampComputeAndGraphics = true,
|
|
.timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
|
|
.maxClipDistances = 8,
|
|
.maxCullDistances = 8,
|
|
.maxCombinedClipAndCullDistances = 8,
|
|
.discreteQueuePriorities = 2,
|
|
.pointSizeRange = { 0.125, 255.875 },
|
|
/* While SKL and up support much wider lines than we are setting here,
|
|
* in practice we run into conformance issues if we go past this limit.
|
|
* Since the Windows driver does the same, it's probably fair to assume
|
|
* that no one needs more than this.
|
|
*/
|
|
.lineWidthRange = { 0.0, 8.0 },
|
|
.pointSizeGranularity = (1.0 / 8.0),
|
|
.lineWidthGranularity = (1.0 / 128.0),
|
|
.strictLines = false,
|
|
.standardSampleLocations = true,
|
|
.optimalBufferCopyOffsetAlignment = 128,
|
|
.optimalBufferCopyRowPitchAlignment = 128,
|
|
.nonCoherentAtomSize = 64,
|
|
};
|
|
|
|
*pProperties = (VkPhysicalDeviceProperties) {
|
|
.apiVersion = ANV_API_VERSION,
|
|
.driverVersion = vk_get_driver_version(),
|
|
.vendorID = 0x8086,
|
|
.deviceID = pdevice->info.pci_device_id,
|
|
.deviceType = pdevice->info.has_local_mem ?
|
|
VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU :
|
|
VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
|
|
.limits = limits,
|
|
.sparseProperties = {0}, /* Broadwell doesn't do sparse. */
|
|
};
|
|
|
|
snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
|
|
"%s", pdevice->info.name);
|
|
memcpy(pProperties->pipelineCacheUUID,
|
|
pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
|
|
}
|
|
|
|
static void
|
|
anv_get_physical_device_properties_1_1(struct anv_physical_device *pdevice,
|
|
VkPhysicalDeviceVulkan11Properties *p)
|
|
{
|
|
assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES);
|
|
|
|
memcpy(p->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
|
|
memcpy(p->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
|
|
memset(p->deviceLUID, 0, VK_LUID_SIZE);
|
|
p->deviceNodeMask = 0;
|
|
p->deviceLUIDValid = false;
|
|
|
|
p->subgroupSize = BRW_SUBGROUP_SIZE;
|
|
VkShaderStageFlags scalar_stages = 0;
|
|
for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
|
|
if (pdevice->compiler->scalar_stage[stage])
|
|
scalar_stages |= mesa_to_vk_shader_stage(stage);
|
|
}
|
|
if (pdevice->vk.supported_extensions.KHR_ray_tracing_pipeline) {
|
|
scalar_stages |= VK_SHADER_STAGE_RAYGEN_BIT_KHR |
|
|
VK_SHADER_STAGE_ANY_HIT_BIT_KHR |
|
|
VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR |
|
|
VK_SHADER_STAGE_MISS_BIT_KHR |
|
|
VK_SHADER_STAGE_INTERSECTION_BIT_KHR |
|
|
VK_SHADER_STAGE_CALLABLE_BIT_KHR;
|
|
}
|
|
if (pdevice->vk.supported_extensions.NV_mesh_shader ||
|
|
pdevice->vk.supported_extensions.EXT_mesh_shader) {
|
|
scalar_stages |= VK_SHADER_STAGE_TASK_BIT_EXT |
|
|
VK_SHADER_STAGE_MESH_BIT_EXT;
|
|
}
|
|
p->subgroupSupportedStages = scalar_stages;
|
|
p->subgroupSupportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
|
|
VK_SUBGROUP_FEATURE_VOTE_BIT |
|
|
VK_SUBGROUP_FEATURE_BALLOT_BIT |
|
|
VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
|
|
VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
|
|
VK_SUBGROUP_FEATURE_QUAD_BIT |
|
|
VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
|
|
VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
|
|
p->subgroupQuadOperationsInAllStages = true;
|
|
|
|
p->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
|
|
p->maxMultiviewViewCount = 16;
|
|
p->maxMultiviewInstanceIndex = UINT32_MAX / 16;
|
|
p->protectedNoFault = false;
|
|
/* This value doesn't matter for us today as our per-stage descriptors are
|
|
* the real limit.
|
|
*/
|
|
p->maxPerSetDescriptors = 1024;
|
|
p->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
|
|
}
|
|
|
|
static void
|
|
anv_get_physical_device_properties_1_2(struct anv_physical_device *pdevice,
|
|
VkPhysicalDeviceVulkan12Properties *p)
|
|
{
|
|
assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES);
|
|
|
|
p->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA;
|
|
memset(p->driverName, 0, sizeof(p->driverName));
|
|
snprintf(p->driverName, VK_MAX_DRIVER_NAME_SIZE,
|
|
"Intel open-source Mesa driver");
|
|
memset(p->driverInfo, 0, sizeof(p->driverInfo));
|
|
snprintf(p->driverInfo, VK_MAX_DRIVER_INFO_SIZE,
|
|
"Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
|
|
|
|
p->conformanceVersion = (VkConformanceVersion) {
|
|
.major = 1,
|
|
.minor = 3,
|
|
.subminor = 0,
|
|
.patch = 0,
|
|
};
|
|
|
|
p->denormBehaviorIndependence =
|
|
VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL;
|
|
p->roundingModeIndependence =
|
|
VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE;
|
|
|
|
/* Broadwell does not support HF denorms and there are restrictions
|
|
* other gens. According to Kabylake's PRM:
|
|
*
|
|
* "math - Extended Math Function
|
|
* [...]
|
|
* Restriction : Half-float denorms are always retained."
|
|
*/
|
|
p->shaderDenormFlushToZeroFloat16 = false;
|
|
p->shaderDenormPreserveFloat16 = pdevice->info.ver > 8;
|
|
p->shaderRoundingModeRTEFloat16 = true;
|
|
p->shaderRoundingModeRTZFloat16 = true;
|
|
p->shaderSignedZeroInfNanPreserveFloat16 = true;
|
|
|
|
p->shaderDenormFlushToZeroFloat32 = true;
|
|
p->shaderDenormPreserveFloat32 = true;
|
|
p->shaderRoundingModeRTEFloat32 = true;
|
|
p->shaderRoundingModeRTZFloat32 = true;
|
|
p->shaderSignedZeroInfNanPreserveFloat32 = true;
|
|
|
|
p->shaderDenormFlushToZeroFloat64 = true;
|
|
p->shaderDenormPreserveFloat64 = true;
|
|
p->shaderRoundingModeRTEFloat64 = true;
|
|
p->shaderRoundingModeRTZFloat64 = true;
|
|
p->shaderSignedZeroInfNanPreserveFloat64 = true;
|
|
|
|
/* It's a bit hard to exactly map our implementation to the limits
|
|
* described by Vulkan. The bindless surface handle in the extended
|
|
* message descriptors is 20 bits and it's an index into the table of
|
|
* RENDER_SURFACE_STATE structs that starts at bindless surface base
|
|
* address. This means that we can have at must 1M surface states
|
|
* allocated at any given time. Since most image views take two
|
|
* descriptors, this means we have a limit of about 500K image views.
|
|
*
|
|
* However, since we allocate surface states at vkCreateImageView time,
|
|
* this means our limit is actually something on the order of 500K image
|
|
* views allocated at any time. The actual limit describe by Vulkan, on
|
|
* the other hand, is a limit of how many you can have in a descriptor set.
|
|
* Assuming anyone using 1M descriptors will be using the same image view
|
|
* twice a bunch of times (or a bunch of null descriptors), we can safely
|
|
* advertise a larger limit here.
|
|
*/
|
|
const unsigned max_bindless_views = 1 << 20;
|
|
p->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
|
|
p->shaderUniformBufferArrayNonUniformIndexingNative = false;
|
|
p->shaderSampledImageArrayNonUniformIndexingNative = false;
|
|
p->shaderStorageBufferArrayNonUniformIndexingNative = true;
|
|
p->shaderStorageImageArrayNonUniformIndexingNative = false;
|
|
p->shaderInputAttachmentArrayNonUniformIndexingNative = false;
|
|
p->robustBufferAccessUpdateAfterBind = true;
|
|
p->quadDivergentImplicitLod = false;
|
|
p->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
|
|
p->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
|
|
p->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
|
|
p->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
|
|
p->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
|
|
p->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
|
|
p->maxPerStageUpdateAfterBindResources = UINT32_MAX;
|
|
p->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
|
|
p->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
|
|
p->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
|
|
p->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
|
|
p->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
|
|
p->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
|
|
p->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
|
|
p->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
|
|
|
|
/* We support all of the depth resolve modes */
|
|
p->supportedDepthResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT |
|
|
VK_RESOLVE_MODE_AVERAGE_BIT |
|
|
VK_RESOLVE_MODE_MIN_BIT |
|
|
VK_RESOLVE_MODE_MAX_BIT;
|
|
/* Average doesn't make sense for stencil so we don't support that */
|
|
p->supportedStencilResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT |
|
|
VK_RESOLVE_MODE_MIN_BIT |
|
|
VK_RESOLVE_MODE_MAX_BIT;
|
|
p->independentResolveNone = true;
|
|
p->independentResolve = true;
|
|
|
|
p->filterMinmaxSingleComponentFormats = true;
|
|
p->filterMinmaxImageComponentMapping = true;
|
|
|
|
p->maxTimelineSemaphoreValueDifference = UINT64_MAX;
|
|
|
|
p->framebufferIntegerColorSampleCounts =
|
|
isl_device_get_sample_counts(&pdevice->isl_dev);
|
|
}
|
|
|
|
static void
|
|
anv_get_physical_device_properties_1_3(struct anv_physical_device *pdevice,
|
|
VkPhysicalDeviceVulkan13Properties *p)
|
|
{
|
|
assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_PROPERTIES);
|
|
|
|
p->minSubgroupSize = 8;
|
|
p->maxSubgroupSize = 32;
|
|
p->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_workgroup_threads;
|
|
p->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT |
|
|
VK_SHADER_STAGE_TASK_BIT_EXT |
|
|
VK_SHADER_STAGE_MESH_BIT_EXT;
|
|
|
|
p->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
|
|
p->maxPerStageDescriptorInlineUniformBlocks =
|
|
MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
|
|
p->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
|
|
MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
|
|
p->maxDescriptorSetInlineUniformBlocks =
|
|
MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
|
|
p->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
|
|
MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
|
|
p->maxInlineUniformTotalSize = UINT16_MAX;
|
|
|
|
p->integerDotProduct8BitUnsignedAccelerated = false;
|
|
p->integerDotProduct8BitSignedAccelerated = false;
|
|
p->integerDotProduct8BitMixedSignednessAccelerated = false;
|
|
p->integerDotProduct4x8BitPackedUnsignedAccelerated = pdevice->info.ver >= 12;
|
|
p->integerDotProduct4x8BitPackedSignedAccelerated = pdevice->info.ver >= 12;
|
|
p->integerDotProduct4x8BitPackedMixedSignednessAccelerated = pdevice->info.ver >= 12;
|
|
p->integerDotProduct16BitUnsignedAccelerated = false;
|
|
p->integerDotProduct16BitSignedAccelerated = false;
|
|
p->integerDotProduct16BitMixedSignednessAccelerated = false;
|
|
p->integerDotProduct32BitUnsignedAccelerated = false;
|
|
p->integerDotProduct32BitSignedAccelerated = false;
|
|
p->integerDotProduct32BitMixedSignednessAccelerated = false;
|
|
p->integerDotProduct64BitUnsignedAccelerated = false;
|
|
p->integerDotProduct64BitSignedAccelerated = false;
|
|
p->integerDotProduct64BitMixedSignednessAccelerated = false;
|
|
p->integerDotProductAccumulatingSaturating8BitUnsignedAccelerated = false;
|
|
p->integerDotProductAccumulatingSaturating8BitSignedAccelerated = false;
|
|
p->integerDotProductAccumulatingSaturating8BitMixedSignednessAccelerated = false;
|
|
p->integerDotProductAccumulatingSaturating4x8BitPackedUnsignedAccelerated = pdevice->info.ver >= 12;
|
|
p->integerDotProductAccumulatingSaturating4x8BitPackedSignedAccelerated = pdevice->info.ver >= 12;
|
|
p->integerDotProductAccumulatingSaturating4x8BitPackedMixedSignednessAccelerated = pdevice->info.ver >= 12;
|
|
p->integerDotProductAccumulatingSaturating16BitUnsignedAccelerated = false;
|
|
p->integerDotProductAccumulatingSaturating16BitSignedAccelerated = false;
|
|
p->integerDotProductAccumulatingSaturating16BitMixedSignednessAccelerated = false;
|
|
p->integerDotProductAccumulatingSaturating32BitUnsignedAccelerated = false;
|
|
p->integerDotProductAccumulatingSaturating32BitSignedAccelerated = false;
|
|
p->integerDotProductAccumulatingSaturating32BitMixedSignednessAccelerated = false;
|
|
p->integerDotProductAccumulatingSaturating64BitUnsignedAccelerated = false;
|
|
p->integerDotProductAccumulatingSaturating64BitSignedAccelerated = false;
|
|
p->integerDotProductAccumulatingSaturating64BitMixedSignednessAccelerated = false;
|
|
|
|
/* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
|
|
* Base Address:
|
|
*
|
|
* "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
|
|
* specifies the base address of the first element of the surface,
|
|
* computed in software by adding the surface base address to the
|
|
* byte offset of the element in the buffer. The base address must
|
|
* be aligned to element size."
|
|
*
|
|
* The typed dataport messages require that things be texel aligned.
|
|
* Otherwise, we may just load/store the wrong data or, in the worst
|
|
* case, there may be hangs.
|
|
*/
|
|
p->storageTexelBufferOffsetAlignmentBytes = 16;
|
|
p->storageTexelBufferOffsetSingleTexelAlignment = true;
|
|
|
|
/* The sampler, however, is much more forgiving and it can handle
|
|
* arbitrary byte alignment for linear and buffer surfaces. It's
|
|
* hard to find a good PRM citation for this but years of empirical
|
|
* experience demonstrate that this is true.
|
|
*/
|
|
p->uniformTexelBufferOffsetAlignmentBytes = 1;
|
|
p->uniformTexelBufferOffsetSingleTexelAlignment = false;
|
|
|
|
p->maxBufferSize = pdevice->isl_dev.max_buffer_size;
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceProperties2(
|
|
VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceProperties2* pProperties)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
|
|
|
|
anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
|
|
|
|
VkPhysicalDeviceVulkan11Properties core_1_1 = {
|
|
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES,
|
|
};
|
|
anv_get_physical_device_properties_1_1(pdevice, &core_1_1);
|
|
|
|
VkPhysicalDeviceVulkan12Properties core_1_2 = {
|
|
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES,
|
|
};
|
|
anv_get_physical_device_properties_1_2(pdevice, &core_1_2);
|
|
|
|
VkPhysicalDeviceVulkan13Properties core_1_3 = {
|
|
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_PROPERTIES,
|
|
};
|
|
anv_get_physical_device_properties_1_3(pdevice, &core_1_3);
|
|
|
|
vk_foreach_struct(ext, pProperties->pNext) {
|
|
if (vk_get_physical_device_core_1_1_property_ext(ext, &core_1_1))
|
|
continue;
|
|
if (vk_get_physical_device_core_1_2_property_ext(ext, &core_1_2))
|
|
continue;
|
|
if (vk_get_physical_device_core_1_3_property_ext(ext, &core_1_3))
|
|
continue;
|
|
|
|
switch (ext->sType) {
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_PROPERTIES_KHR: {
|
|
VkPhysicalDeviceAccelerationStructurePropertiesKHR *props = (void *)ext;
|
|
props->maxGeometryCount = (1u << 24) - 1;
|
|
props->maxInstanceCount = (1u << 24) - 1;
|
|
props->maxPrimitiveCount = (1u << 29) - 1;
|
|
props->maxPerStageDescriptorAccelerationStructures = UINT16_MAX;
|
|
props->maxPerStageDescriptorUpdateAfterBindAccelerationStructures = UINT16_MAX;
|
|
props->maxDescriptorSetAccelerationStructures = UINT16_MAX;
|
|
props->maxDescriptorSetUpdateAfterBindAccelerationStructures = UINT16_MAX;
|
|
props->minAccelerationStructureScratchOffsetAlignment = 64;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONSERVATIVE_RASTERIZATION_PROPERTIES_EXT: {
|
|
/* TODO: Real limits */
|
|
VkPhysicalDeviceConservativeRasterizationPropertiesEXT *properties =
|
|
(VkPhysicalDeviceConservativeRasterizationPropertiesEXT *)ext;
|
|
/* There's nothing in the public docs about this value as far as I
|
|
* can tell. However, this is the value the Windows driver reports
|
|
* and there's a comment on a rejected HW feature in the internal
|
|
* docs that says:
|
|
*
|
|
* "This is similar to conservative rasterization, except the
|
|
* primitive area is not extended by 1/512 and..."
|
|
*
|
|
* That's a bit of an obtuse reference but it's the best we've got
|
|
* for now.
|
|
*/
|
|
properties->primitiveOverestimationSize = 1.0f / 512.0f;
|
|
properties->maxExtraPrimitiveOverestimationSize = 0.0f;
|
|
properties->extraPrimitiveOverestimationSizeGranularity = 0.0f;
|
|
properties->primitiveUnderestimation = false;
|
|
properties->conservativePointAndLineRasterization = false;
|
|
properties->degenerateTrianglesRasterized = true;
|
|
properties->degenerateLinesRasterized = false;
|
|
properties->fullyCoveredFragmentShaderInputVariable = false;
|
|
properties->conservativeRasterizationPostDepthCoverage = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_PROPERTIES_EXT: {
|
|
VkPhysicalDeviceCustomBorderColorPropertiesEXT *properties =
|
|
(VkPhysicalDeviceCustomBorderColorPropertiesEXT *)ext;
|
|
properties->maxCustomBorderColorSamplers = MAX_CUSTOM_BORDER_COLORS;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_PROPERTIES_KHR: {
|
|
VkPhysicalDeviceFragmentShadingRatePropertiesKHR *props =
|
|
(VkPhysicalDeviceFragmentShadingRatePropertiesKHR *)ext;
|
|
props->primitiveFragmentShadingRateWithMultipleViewports =
|
|
pdevice->info.has_coarse_pixel_primitive_and_cb;
|
|
props->layeredShadingRateAttachments = pdevice->info.has_coarse_pixel_primitive_and_cb;
|
|
props->fragmentShadingRateNonTrivialCombinerOps =
|
|
pdevice->info.has_coarse_pixel_primitive_and_cb;
|
|
props->maxFragmentSize = (VkExtent2D) { 4, 4 };
|
|
props->maxFragmentSizeAspectRatio =
|
|
pdevice->info.has_coarse_pixel_primitive_and_cb ?
|
|
2 : 4;
|
|
props->maxFragmentShadingRateCoverageSamples = 4 * 4 *
|
|
(pdevice->info.has_coarse_pixel_primitive_and_cb ? 4 : 16);
|
|
props->maxFragmentShadingRateRasterizationSamples =
|
|
pdevice->info.has_coarse_pixel_primitive_and_cb ?
|
|
VK_SAMPLE_COUNT_4_BIT : VK_SAMPLE_COUNT_16_BIT;
|
|
props->fragmentShadingRateWithShaderDepthStencilWrites = false;
|
|
props->fragmentShadingRateWithSampleMask = true;
|
|
props->fragmentShadingRateWithShaderSampleMask = false;
|
|
props->fragmentShadingRateWithConservativeRasterization = true;
|
|
props->fragmentShadingRateWithFragmentShaderInterlock = true;
|
|
props->fragmentShadingRateWithCustomSampleLocations = true;
|
|
|
|
/* Fix in DG2_G10_C0 and DG2_G11_B0. Consider any other Sku as having
|
|
* the fix.
|
|
*/
|
|
props->fragmentShadingRateStrictMultiplyCombiner =
|
|
pdevice->info.platform == INTEL_PLATFORM_DG2_G10 ?
|
|
pdevice->info.revision >= 8 :
|
|
pdevice->info.platform == INTEL_PLATFORM_DG2_G11 ?
|
|
pdevice->info.revision >= 4 : true;
|
|
|
|
if (pdevice->info.has_coarse_pixel_primitive_and_cb) {
|
|
props->minFragmentShadingRateAttachmentTexelSize = (VkExtent2D) { 8, 8 };
|
|
props->maxFragmentShadingRateAttachmentTexelSize = (VkExtent2D) { 8, 8 };
|
|
props->maxFragmentShadingRateAttachmentTexelSizeAspectRatio = 1;
|
|
} else {
|
|
/* Those must be 0 if attachmentFragmentShadingRate is not
|
|
* supported.
|
|
*/
|
|
props->minFragmentShadingRateAttachmentTexelSize = (VkExtent2D) { 0, 0 };
|
|
props->maxFragmentShadingRateAttachmentTexelSize = (VkExtent2D) { 0, 0 };
|
|
props->maxFragmentShadingRateAttachmentTexelSizeAspectRatio = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRM_PROPERTIES_EXT: {
|
|
VkPhysicalDeviceDrmPropertiesEXT *props =
|
|
(VkPhysicalDeviceDrmPropertiesEXT *)ext;
|
|
|
|
props->hasPrimary = pdevice->has_master;
|
|
props->primaryMajor = pdevice->master_major;
|
|
props->primaryMinor = pdevice->master_minor;
|
|
|
|
props->hasRender = pdevice->has_local;
|
|
props->renderMajor = pdevice->local_major;
|
|
props->renderMinor = pdevice->local_minor;
|
|
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_3_PROPERTIES_EXT: {
|
|
VkPhysicalDeviceExtendedDynamicState3PropertiesEXT *props =
|
|
(VkPhysicalDeviceExtendedDynamicState3PropertiesEXT *) ext;
|
|
props->dynamicPrimitiveTopologyUnrestricted = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
|
|
VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
|
|
(VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
|
|
/* Userptr needs page aligned memory. */
|
|
props->minImportedHostPointerAlignment = 4096;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
|
|
VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
|
|
(VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
|
|
/* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
|
|
* Sampling Rules - Legacy Mode", it says the following:
|
|
*
|
|
* "Note that the device divides a pixel into a 16x16 array of
|
|
* subpixels, referenced by their upper left corners."
|
|
*
|
|
* This is the only known reference in the PRMs to the subpixel
|
|
* precision of line rasterization and a "16x16 array of subpixels"
|
|
* implies 4 subpixel precision bits. Empirical testing has shown
|
|
* that 4 subpixel precision bits applies to all line rasterization
|
|
* types.
|
|
*/
|
|
props->lineSubPixelPrecisionBits = 4;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_PROPERTIES: {
|
|
VkPhysicalDeviceMaintenance4Properties *properties =
|
|
(VkPhysicalDeviceMaintenance4Properties *)ext;
|
|
properties->maxBufferSize = pdevice->isl_dev.max_buffer_size;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_PROPERTIES_NV: {
|
|
VkPhysicalDeviceMeshShaderPropertiesNV *props =
|
|
(VkPhysicalDeviceMeshShaderPropertiesNV *)ext;
|
|
|
|
/* Bounded by the maximum representable size in
|
|
* 3DSTATE_MESH_SHADER_BODY::SharedLocalMemorySize. Same for Task.
|
|
*/
|
|
const uint32_t max_slm_size = 64 * 1024;
|
|
|
|
/* Bounded by the maximum representable size in
|
|
* 3DSTATE_MESH_SHADER_BODY::LocalXMaximum. Same for Task.
|
|
*/
|
|
const uint32_t max_workgroup_size = 1 << 10;
|
|
|
|
/* Bounded by the maximum representable count in
|
|
* 3DSTATE_MESH_SHADER_BODY::MaximumPrimitiveCount.
|
|
*/
|
|
const uint32_t max_primitives = 1024;
|
|
|
|
/* TODO(mesh): Multiview. */
|
|
const uint32_t max_view_count = 1;
|
|
|
|
props->maxDrawMeshTasksCount = UINT32_MAX;
|
|
|
|
/* TODO(mesh): Implement workgroup Y and Z sizes larger than one by
|
|
* mapping them to/from the single value that HW provides us
|
|
* (currently used for X).
|
|
*/
|
|
|
|
props->maxTaskWorkGroupInvocations = max_workgroup_size;
|
|
props->maxTaskWorkGroupSize[0] = max_workgroup_size;
|
|
props->maxTaskWorkGroupSize[1] = 1;
|
|
props->maxTaskWorkGroupSize[2] = 1;
|
|
props->maxTaskTotalMemorySize = max_slm_size;
|
|
props->maxTaskOutputCount = UINT16_MAX;
|
|
|
|
props->maxMeshWorkGroupInvocations = max_workgroup_size;
|
|
props->maxMeshWorkGroupSize[0] = max_workgroup_size;
|
|
props->maxMeshWorkGroupSize[1] = 1;
|
|
props->maxMeshWorkGroupSize[2] = 1;
|
|
props->maxMeshTotalMemorySize = max_slm_size / max_view_count;
|
|
props->maxMeshOutputPrimitives = max_primitives / max_view_count;
|
|
props->maxMeshMultiviewViewCount = max_view_count;
|
|
|
|
/* Depends on what indices can be represented with IndexFormat. For
|
|
* now we always use U32, so bound to the maximum unique vertices we
|
|
* need for the maximum primitives.
|
|
*
|
|
* TODO(mesh): Revisit this if we drop "U32" IndexFormat when adding
|
|
* support for others.
|
|
*/
|
|
props->maxMeshOutputVertices = 3 * props->maxMeshOutputPrimitives;
|
|
|
|
|
|
props->meshOutputPerVertexGranularity = 32;
|
|
props->meshOutputPerPrimitiveGranularity = 32;
|
|
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_PROPERTIES_EXT: {
|
|
VkPhysicalDeviceMeshShaderPropertiesEXT *properties =
|
|
(VkPhysicalDeviceMeshShaderPropertiesEXT *)ext;
|
|
|
|
/* Bounded by the maximum representable size in
|
|
* 3DSTATE_MESH_SHADER_BODY::SharedLocalMemorySize. Same for Task.
|
|
*/
|
|
const uint32_t max_slm_size = 64 * 1024;
|
|
|
|
/* Bounded by the maximum representable size in
|
|
* 3DSTATE_MESH_SHADER_BODY::LocalXMaximum. Same for Task.
|
|
*/
|
|
const uint32_t max_workgroup_size = 1 << 10;
|
|
|
|
/* 3DMESH_3D limitation. */
|
|
const uint32_t max_threadgroup_count = 1 << 22;
|
|
|
|
/* 3DMESH_3D limitation. */
|
|
const uint32_t max_threadgroup_xyz = 65535;
|
|
|
|
const uint32_t max_urb_size = 64 * 1024;
|
|
|
|
properties->maxTaskWorkGroupTotalCount = max_threadgroup_count;
|
|
properties->maxTaskWorkGroupCount[0] = max_threadgroup_xyz;
|
|
properties->maxTaskWorkGroupCount[1] = max_threadgroup_xyz;
|
|
properties->maxTaskWorkGroupCount[2] = max_threadgroup_xyz;
|
|
|
|
properties->maxTaskWorkGroupInvocations = max_workgroup_size;
|
|
properties->maxTaskWorkGroupSize[0] = max_workgroup_size;
|
|
properties->maxTaskWorkGroupSize[1] = max_workgroup_size;
|
|
properties->maxTaskWorkGroupSize[2] = max_workgroup_size;
|
|
|
|
/* TUE header with padding */
|
|
const uint32_t task_payload_reserved = 32;
|
|
|
|
properties->maxTaskPayloadSize = max_urb_size - task_payload_reserved;
|
|
properties->maxTaskSharedMemorySize = max_slm_size;
|
|
properties->maxTaskPayloadAndSharedMemorySize =
|
|
properties->maxTaskPayloadSize +
|
|
properties->maxTaskSharedMemorySize;
|
|
|
|
properties->maxMeshWorkGroupTotalCount = max_threadgroup_count;
|
|
properties->maxMeshWorkGroupCount[0] = max_threadgroup_xyz;
|
|
properties->maxMeshWorkGroupCount[1] = max_threadgroup_xyz;
|
|
properties->maxMeshWorkGroupCount[2] = max_threadgroup_xyz;
|
|
|
|
properties->maxMeshWorkGroupInvocations = max_workgroup_size;
|
|
properties->maxMeshWorkGroupSize[0] = max_workgroup_size;
|
|
properties->maxMeshWorkGroupSize[1] = max_workgroup_size;
|
|
properties->maxMeshWorkGroupSize[2] = max_workgroup_size;
|
|
|
|
properties->maxMeshSharedMemorySize = max_slm_size;
|
|
properties->maxMeshPayloadAndSharedMemorySize =
|
|
properties->maxTaskPayloadSize +
|
|
properties->maxMeshSharedMemorySize;
|
|
|
|
/* Unfortunately spec's formula for the max output size doesn't match our hardware
|
|
* (because some per-primitive and per-vertex attributes have alignment restrictions),
|
|
* so we have to advertise the minimum value mandated by the spec to not overflow it.
|
|
*/
|
|
properties->maxMeshOutputPrimitives = 256;
|
|
properties->maxMeshOutputVertices = 256;
|
|
|
|
/* NumPrim + Primitive Data List */
|
|
const uint32_t max_indices_memory =
|
|
ALIGN(sizeof(uint32_t) +
|
|
sizeof(uint32_t) * properties->maxMeshOutputVertices, 32);
|
|
|
|
properties->maxMeshOutputMemorySize = MIN2(max_urb_size - max_indices_memory, 32768);
|
|
|
|
properties->maxMeshPayloadAndOutputMemorySize =
|
|
properties->maxTaskPayloadSize +
|
|
properties->maxMeshOutputMemorySize;
|
|
|
|
properties->maxMeshOutputComponents = 128;
|
|
|
|
/* RTAIndex is 11-bits wide */
|
|
properties->maxMeshOutputLayers = 1 << 11;
|
|
|
|
properties->maxMeshMultiviewViewCount = 1;
|
|
|
|
/* Elements in Vertex Data Array must be aligned to 32 bytes (8 dwords). */
|
|
properties->meshOutputPerVertexGranularity = 8;
|
|
/* Elements in Primitive Data Array must be aligned to 32 bytes (8 dwords). */
|
|
properties->meshOutputPerPrimitiveGranularity = 8;
|
|
|
|
/* SIMD16 */
|
|
properties->maxPreferredTaskWorkGroupInvocations = 16;
|
|
properties->maxPreferredMeshWorkGroupInvocations = 16;
|
|
|
|
properties->prefersLocalInvocationVertexOutput = false;
|
|
properties->prefersLocalInvocationPrimitiveOutput = false;
|
|
properties->prefersCompactVertexOutput = false;
|
|
properties->prefersCompactPrimitiveOutput = false;
|
|
|
|
/* Spec minimum values */
|
|
assert(properties->maxTaskWorkGroupTotalCount >= (1U << 22));
|
|
assert(properties->maxTaskWorkGroupCount[0] >= 65535);
|
|
assert(properties->maxTaskWorkGroupCount[1] >= 65535);
|
|
assert(properties->maxTaskWorkGroupCount[2] >= 65535);
|
|
|
|
assert(properties->maxTaskWorkGroupInvocations >= 128);
|
|
assert(properties->maxTaskWorkGroupSize[0] >= 128);
|
|
assert(properties->maxTaskWorkGroupSize[1] >= 128);
|
|
assert(properties->maxTaskWorkGroupSize[2] >= 128);
|
|
|
|
assert(properties->maxTaskPayloadSize >= 16384);
|
|
assert(properties->maxTaskSharedMemorySize >= 32768);
|
|
assert(properties->maxTaskPayloadAndSharedMemorySize >= 32768);
|
|
|
|
|
|
assert(properties->maxMeshWorkGroupTotalCount >= (1U << 22));
|
|
assert(properties->maxMeshWorkGroupCount[0] >= 65535);
|
|
assert(properties->maxMeshWorkGroupCount[1] >= 65535);
|
|
assert(properties->maxMeshWorkGroupCount[2] >= 65535);
|
|
|
|
assert(properties->maxMeshWorkGroupInvocations >= 128);
|
|
assert(properties->maxMeshWorkGroupSize[0] >= 128);
|
|
assert(properties->maxMeshWorkGroupSize[1] >= 128);
|
|
assert(properties->maxMeshWorkGroupSize[2] >= 128);
|
|
|
|
assert(properties->maxMeshSharedMemorySize >= 28672);
|
|
assert(properties->maxMeshPayloadAndSharedMemorySize >= 28672);
|
|
assert(properties->maxMeshOutputMemorySize >= 32768);
|
|
assert(properties->maxMeshPayloadAndOutputMemorySize >= 48128);
|
|
|
|
assert(properties->maxMeshOutputComponents >= 128);
|
|
|
|
assert(properties->maxMeshOutputVertices >= 256);
|
|
assert(properties->maxMeshOutputPrimitives >= 256);
|
|
assert(properties->maxMeshOutputLayers >= 8);
|
|
assert(properties->maxMeshMultiviewViewCount >= 1);
|
|
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
|
|
VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
|
|
(VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
|
|
properties->pciDomain = pdevice->info.pci_domain;
|
|
properties->pciBus = pdevice->info.pci_bus;
|
|
properties->pciDevice = pdevice->info.pci_dev;
|
|
properties->pciFunction = pdevice->info.pci_func;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_PROPERTIES_KHR: {
|
|
VkPhysicalDevicePerformanceQueryPropertiesKHR *properties =
|
|
(VkPhysicalDevicePerformanceQueryPropertiesKHR *)ext;
|
|
/* We could support this by spawning a shader to do the equation
|
|
* normalization.
|
|
*/
|
|
properties->allowCommandBufferQueryCopies = false;
|
|
break;
|
|
}
|
|
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wswitch"
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
|
|
VkPhysicalDevicePresentationPropertiesANDROID *props =
|
|
(VkPhysicalDevicePresentationPropertiesANDROID *)ext;
|
|
props->sharedImage = VK_FALSE;
|
|
break;
|
|
}
|
|
#pragma GCC diagnostic pop
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_PROPERTIES_EXT: {
|
|
VkPhysicalDeviceProvokingVertexPropertiesEXT *properties =
|
|
(VkPhysicalDeviceProvokingVertexPropertiesEXT *)ext;
|
|
properties->provokingVertexModePerPipeline = true;
|
|
properties->transformFeedbackPreservesTriangleFanProvokingVertex = false;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
|
|
VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
|
|
(VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
|
|
properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_PROPERTIES_KHR: {
|
|
VkPhysicalDeviceRayTracingPipelinePropertiesKHR *props = (void *)ext;
|
|
/* TODO */
|
|
props->shaderGroupHandleSize = 32;
|
|
props->maxRayRecursionDepth = 31;
|
|
/* MemRay::hitGroupSRStride is 16 bits */
|
|
props->maxShaderGroupStride = UINT16_MAX;
|
|
/* MemRay::hitGroupSRBasePtr requires 16B alignment */
|
|
props->shaderGroupBaseAlignment = 16;
|
|
props->shaderGroupHandleAlignment = 16;
|
|
props->shaderGroupHandleCaptureReplaySize = 32;
|
|
props->maxRayDispatchInvocationCount = 1U << 30; /* required min limit */
|
|
props->maxRayHitAttributeSize = BRW_RT_SIZEOF_HIT_ATTRIB_DATA;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_PROPERTIES_EXT: {
|
|
VkPhysicalDeviceRobustness2PropertiesEXT *properties = (void *)ext;
|
|
properties->robustStorageBufferAccessSizeAlignment =
|
|
ANV_SSBO_BOUNDS_CHECK_ALIGNMENT;
|
|
properties->robustUniformBufferAccessSizeAlignment =
|
|
ANV_UBO_ALIGNMENT;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLE_LOCATIONS_PROPERTIES_EXT: {
|
|
VkPhysicalDeviceSampleLocationsPropertiesEXT *props =
|
|
(VkPhysicalDeviceSampleLocationsPropertiesEXT *)ext;
|
|
|
|
props->sampleLocationSampleCounts =
|
|
isl_device_get_sample_counts(&pdevice->isl_dev);
|
|
|
|
/* See also anv_GetPhysicalDeviceMultisamplePropertiesEXT */
|
|
props->maxSampleLocationGridSize.width = 1;
|
|
props->maxSampleLocationGridSize.height = 1;
|
|
|
|
props->sampleLocationCoordinateRange[0] = 0;
|
|
props->sampleLocationCoordinateRange[1] = 0.9375;
|
|
props->sampleLocationSubPixelBits = 4;
|
|
|
|
props->variableSampleLocations = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_MODULE_IDENTIFIER_PROPERTIES_EXT: {
|
|
VkPhysicalDeviceShaderModuleIdentifierPropertiesEXT *props =
|
|
(VkPhysicalDeviceShaderModuleIdentifierPropertiesEXT *)ext;
|
|
STATIC_ASSERT(sizeof(vk_shaderModuleIdentifierAlgorithmUUID) ==
|
|
sizeof(props->shaderModuleIdentifierAlgorithmUUID));
|
|
memcpy(props->shaderModuleIdentifierAlgorithmUUID,
|
|
vk_shaderModuleIdentifierAlgorithmUUID,
|
|
sizeof(props->shaderModuleIdentifierAlgorithmUUID));
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
|
|
VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
|
|
(VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
|
|
|
|
props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
|
|
props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
|
|
props->maxTransformFeedbackBufferSize = (1ull << 32);
|
|
props->maxTransformFeedbackStreamDataSize = 128 * 4;
|
|
props->maxTransformFeedbackBufferDataSize = 128 * 4;
|
|
props->maxTransformFeedbackBufferDataStride = 2048;
|
|
props->transformFeedbackQueries = true;
|
|
props->transformFeedbackStreamsLinesTriangles = false;
|
|
props->transformFeedbackRasterizationStreamSelect = false;
|
|
props->transformFeedbackDraw = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
|
|
VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
|
|
(VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
|
|
/* We have to restrict this a bit for multiview */
|
|
props->maxVertexAttribDivisor = UINT32_MAX / 16;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTI_DRAW_PROPERTIES_EXT: {
|
|
VkPhysicalDeviceMultiDrawPropertiesEXT *props = (VkPhysicalDeviceMultiDrawPropertiesEXT *)ext;
|
|
props->maxMultiDrawCount = 2048;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
anv_debug_ignored_stype(ext->sType);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static const VkQueueFamilyProperties
|
|
anv_queue_family_properties_template = {
|
|
.timestampValidBits = 36, /* XXX: Real value here */
|
|
.minImageTransferGranularity = { 1, 1, 1 },
|
|
};
|
|
|
|
void anv_GetPhysicalDeviceQueueFamilyProperties2(
|
|
VkPhysicalDevice physicalDevice,
|
|
uint32_t* pQueueFamilyPropertyCount,
|
|
VkQueueFamilyProperties2* pQueueFamilyProperties)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
|
|
VK_OUTARRAY_MAKE_TYPED(VkQueueFamilyProperties2, out,
|
|
pQueueFamilyProperties, pQueueFamilyPropertyCount);
|
|
|
|
for (uint32_t i = 0; i < pdevice->queue.family_count; i++) {
|
|
struct anv_queue_family *queue_family = &pdevice->queue.families[i];
|
|
vk_outarray_append_typed(VkQueueFamilyProperties2, &out, p) {
|
|
p->queueFamilyProperties = anv_queue_family_properties_template;
|
|
p->queueFamilyProperties.queueFlags = queue_family->queueFlags;
|
|
p->queueFamilyProperties.queueCount = queue_family->queueCount;
|
|
|
|
vk_foreach_struct(ext, p->pNext) {
|
|
switch (ext->sType) {
|
|
case VK_STRUCTURE_TYPE_QUEUE_FAMILY_GLOBAL_PRIORITY_PROPERTIES_KHR: {
|
|
VkQueueFamilyGlobalPriorityPropertiesKHR *properties =
|
|
(VkQueueFamilyGlobalPriorityPropertiesKHR *)ext;
|
|
|
|
/* Deliberately sorted low to high */
|
|
VkQueueGlobalPriorityKHR all_priorities[] = {
|
|
VK_QUEUE_GLOBAL_PRIORITY_LOW_KHR,
|
|
VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR,
|
|
VK_QUEUE_GLOBAL_PRIORITY_HIGH_KHR,
|
|
VK_QUEUE_GLOBAL_PRIORITY_REALTIME_KHR,
|
|
};
|
|
|
|
uint32_t count = 0;
|
|
for (unsigned i = 0; i < ARRAY_SIZE(all_priorities); i++) {
|
|
if (all_priorities[i] > pdevice->max_context_priority)
|
|
break;
|
|
|
|
properties->priorities[count++] = all_priorities[i];
|
|
}
|
|
properties->priorityCount = count;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
anv_debug_ignored_stype(ext->sType);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceMemoryProperties(
|
|
VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceMemoryProperties* pMemoryProperties)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
|
|
|
|
pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
|
|
for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
|
|
pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
|
|
.propertyFlags = physical_device->memory.types[i].propertyFlags,
|
|
.heapIndex = physical_device->memory.types[i].heapIndex,
|
|
};
|
|
}
|
|
|
|
pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
|
|
for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
|
|
pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
|
|
.size = physical_device->memory.heaps[i].size,
|
|
.flags = physical_device->memory.heaps[i].flags,
|
|
};
|
|
}
|
|
}
|
|
|
|
static void
|
|
anv_get_memory_budget(VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
|
|
|
|
if (!device->vk.supported_extensions.EXT_memory_budget)
|
|
return;
|
|
|
|
anv_update_meminfo(device, device->local_fd);
|
|
|
|
VkDeviceSize total_sys_heaps_size = 0, total_vram_heaps_size = 0;
|
|
for (size_t i = 0; i < device->memory.heap_count; i++) {
|
|
if (device->memory.heaps[i].is_local_mem) {
|
|
total_vram_heaps_size += device->memory.heaps[i].size;
|
|
} else {
|
|
total_sys_heaps_size += device->memory.heaps[i].size;
|
|
}
|
|
}
|
|
|
|
for (size_t i = 0; i < device->memory.heap_count; i++) {
|
|
VkDeviceSize heap_size = device->memory.heaps[i].size;
|
|
VkDeviceSize heap_used = device->memory.heaps[i].used;
|
|
VkDeviceSize heap_budget, total_heaps_size;
|
|
uint64_t mem_available = 0;
|
|
|
|
if (device->memory.heaps[i].is_local_mem) {
|
|
total_heaps_size = total_vram_heaps_size;
|
|
if (device->vram_non_mappable.size > 0 && i == 0) {
|
|
mem_available = device->vram_non_mappable.available;
|
|
} else {
|
|
mem_available = device->vram_mappable.available;
|
|
}
|
|
} else {
|
|
total_heaps_size = total_sys_heaps_size;
|
|
mem_available = device->sys.available;
|
|
}
|
|
|
|
double heap_proportion = (double) heap_size / total_heaps_size;
|
|
VkDeviceSize available_prop = mem_available * heap_proportion;
|
|
|
|
/*
|
|
* Let's not incite the app to starve the system: report at most 90% of
|
|
* the available heap memory.
|
|
*/
|
|
uint64_t heap_available = available_prop * 9 / 10;
|
|
heap_budget = MIN2(heap_size, heap_used + heap_available);
|
|
|
|
/*
|
|
* Round down to the nearest MB
|
|
*/
|
|
heap_budget &= ~((1ull << 20) - 1);
|
|
|
|
/*
|
|
* The heapBudget value must be non-zero for array elements less than
|
|
* VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
|
|
* value must be less than or equal to VkMemoryHeap::size for each heap.
|
|
*/
|
|
assert(0 < heap_budget && heap_budget <= heap_size);
|
|
|
|
memoryBudget->heapUsage[i] = heap_used;
|
|
memoryBudget->heapBudget[i] = heap_budget;
|
|
}
|
|
|
|
/* The heapBudget and heapUsage values must be zero for array elements
|
|
* greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
|
|
*/
|
|
for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
|
|
memoryBudget->heapBudget[i] = 0;
|
|
memoryBudget->heapUsage[i] = 0;
|
|
}
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceMemoryProperties2(
|
|
VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
|
|
{
|
|
anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
|
|
&pMemoryProperties->memoryProperties);
|
|
|
|
vk_foreach_struct(ext, pMemoryProperties->pNext) {
|
|
switch (ext->sType) {
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
|
|
anv_get_memory_budget(physicalDevice, (void*)ext);
|
|
break;
|
|
default:
|
|
anv_debug_ignored_stype(ext->sType);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
anv_GetDeviceGroupPeerMemoryFeatures(
|
|
VkDevice device,
|
|
uint32_t heapIndex,
|
|
uint32_t localDeviceIndex,
|
|
uint32_t remoteDeviceIndex,
|
|
VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
|
|
{
|
|
assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
|
|
*pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
|
|
VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
|
|
VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
|
|
VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
|
|
}
|
|
|
|
PFN_vkVoidFunction anv_GetInstanceProcAddr(
|
|
VkInstance _instance,
|
|
const char* pName)
|
|
{
|
|
ANV_FROM_HANDLE(anv_instance, instance, _instance);
|
|
return vk_instance_get_proc_addr(&instance->vk,
|
|
&anv_instance_entrypoints,
|
|
pName);
|
|
}
|
|
|
|
/* With version 1+ of the loader interface the ICD should expose
|
|
* vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
|
|
*/
|
|
PUBLIC
|
|
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
|
|
VkInstance instance,
|
|
const char* pName);
|
|
|
|
PUBLIC
|
|
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
|
|
VkInstance instance,
|
|
const char* pName)
|
|
{
|
|
return anv_GetInstanceProcAddr(instance, pName);
|
|
}
|
|
|
|
/* With version 4+ of the loader interface the ICD should expose
|
|
* vk_icdGetPhysicalDeviceProcAddr()
|
|
*/
|
|
PUBLIC
|
|
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
|
|
VkInstance _instance,
|
|
const char* pName);
|
|
|
|
PFN_vkVoidFunction vk_icdGetPhysicalDeviceProcAddr(
|
|
VkInstance _instance,
|
|
const char* pName)
|
|
{
|
|
ANV_FROM_HANDLE(anv_instance, instance, _instance);
|
|
return vk_instance_get_physical_device_proc_addr(&instance->vk, pName);
|
|
}
|
|
|
|
static struct anv_state
|
|
anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
|
|
{
|
|
struct anv_state state;
|
|
|
|
state = anv_state_pool_alloc(pool, size, align);
|
|
memcpy(state.map, p, size);
|
|
|
|
return state;
|
|
}
|
|
|
|
static void
|
|
anv_device_init_border_colors(struct anv_device *device)
|
|
{
|
|
if (device->info->platform == INTEL_PLATFORM_HSW) {
|
|
static const struct hsw_border_color border_colors[] = {
|
|
[VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
|
|
[VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
|
|
[VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
|
|
[VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
|
|
[VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
|
|
[VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
|
|
};
|
|
|
|
device->border_colors =
|
|
anv_state_pool_emit_data(&device->dynamic_state_pool,
|
|
sizeof(border_colors), 512, border_colors);
|
|
} else {
|
|
static const struct gfx8_border_color border_colors[] = {
|
|
[VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
|
|
[VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
|
|
[VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
|
|
[VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
|
|
[VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
|
|
[VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
|
|
};
|
|
|
|
device->border_colors =
|
|
anv_state_pool_emit_data(&device->dynamic_state_pool,
|
|
sizeof(border_colors), 64, border_colors);
|
|
}
|
|
}
|
|
|
|
static VkResult
|
|
anv_device_init_trivial_batch(struct anv_device *device)
|
|
{
|
|
VkResult result = anv_device_alloc_bo(device, "trivial-batch", 4096,
|
|
ANV_BO_ALLOC_MAPPED,
|
|
0 /* explicit_address */,
|
|
&device->trivial_batch_bo);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
|
|
struct anv_batch batch = {
|
|
.start = device->trivial_batch_bo->map,
|
|
.next = device->trivial_batch_bo->map,
|
|
.end = device->trivial_batch_bo->map + 4096,
|
|
};
|
|
|
|
anv_batch_emit(&batch, GFX7_MI_BATCH_BUFFER_END, bbe);
|
|
anv_batch_emit(&batch, GFX7_MI_NOOP, noop);
|
|
|
|
if (device->physical->memory.need_clflush)
|
|
intel_clflush_range(batch.start, batch.next - batch.start);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
static bool
|
|
get_bo_from_pool(struct intel_batch_decode_bo *ret,
|
|
struct anv_block_pool *pool,
|
|
uint64_t address)
|
|
{
|
|
anv_block_pool_foreach_bo(bo, pool) {
|
|
uint64_t bo_address = intel_48b_address(bo->offset);
|
|
if (address >= bo_address && address < (bo_address + bo->size)) {
|
|
*ret = (struct intel_batch_decode_bo) {
|
|
.addr = bo_address,
|
|
.size = bo->size,
|
|
.map = bo->map,
|
|
};
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Finding a buffer for batch decoding */
|
|
static struct intel_batch_decode_bo
|
|
decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
|
|
{
|
|
struct anv_device *device = v_batch;
|
|
struct intel_batch_decode_bo ret_bo = {};
|
|
|
|
assert(ppgtt);
|
|
|
|
if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
|
|
return ret_bo;
|
|
if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
|
|
return ret_bo;
|
|
if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
|
|
return ret_bo;
|
|
if (get_bo_from_pool(&ret_bo, &device->internal_surface_state_pool.block_pool, address))
|
|
return ret_bo;
|
|
if (get_bo_from_pool(&ret_bo, &device->bindless_surface_state_pool.block_pool, address))
|
|
return ret_bo;
|
|
|
|
if (!device->cmd_buffer_being_decoded)
|
|
return (struct intel_batch_decode_bo) { };
|
|
|
|
struct anv_batch_bo **bo;
|
|
|
|
u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
|
|
/* The decoder zeroes out the top 16 bits, so we need to as well */
|
|
uint64_t bo_address = (*bo)->bo->offset & (~0ull >> 16);
|
|
|
|
if (address >= bo_address && address < bo_address + (*bo)->bo->size) {
|
|
return (struct intel_batch_decode_bo) {
|
|
.addr = bo_address,
|
|
.size = (*bo)->bo->size,
|
|
.map = (*bo)->bo->map,
|
|
};
|
|
}
|
|
}
|
|
|
|
return (struct intel_batch_decode_bo) { };
|
|
}
|
|
|
|
struct intel_aux_map_buffer {
|
|
struct intel_buffer base;
|
|
struct anv_state state;
|
|
};
|
|
|
|
static struct intel_buffer *
|
|
intel_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
|
|
{
|
|
struct intel_aux_map_buffer *buf = malloc(sizeof(struct intel_aux_map_buffer));
|
|
if (!buf)
|
|
return NULL;
|
|
|
|
struct anv_device *device = (struct anv_device*)driver_ctx;
|
|
assert(device->physical->supports_48bit_addresses);
|
|
|
|
struct anv_state_pool *pool = &device->dynamic_state_pool;
|
|
buf->state = anv_state_pool_alloc(pool, size, size);
|
|
|
|
buf->base.gpu = pool->block_pool.bo->offset + buf->state.offset;
|
|
buf->base.gpu_end = buf->base.gpu + buf->state.alloc_size;
|
|
buf->base.map = buf->state.map;
|
|
buf->base.driver_bo = &buf->state;
|
|
return &buf->base;
|
|
}
|
|
|
|
static void
|
|
intel_aux_map_buffer_free(void *driver_ctx, struct intel_buffer *buffer)
|
|
{
|
|
struct intel_aux_map_buffer *buf = (struct intel_aux_map_buffer*)buffer;
|
|
struct anv_device *device = (struct anv_device*)driver_ctx;
|
|
struct anv_state_pool *pool = &device->dynamic_state_pool;
|
|
anv_state_pool_free(pool, buf->state);
|
|
free(buf);
|
|
}
|
|
|
|
static struct intel_mapped_pinned_buffer_alloc aux_map_allocator = {
|
|
.alloc = intel_aux_map_buffer_alloc,
|
|
.free = intel_aux_map_buffer_free,
|
|
};
|
|
|
|
static VkResult anv_device_check_status(struct vk_device *vk_device);
|
|
|
|
static VkResult
|
|
anv_device_setup_context(struct anv_device *device,
|
|
const VkDeviceCreateInfo *pCreateInfo,
|
|
const uint32_t num_queues)
|
|
{
|
|
struct anv_physical_device *physical_device = device->physical;
|
|
VkResult result = VK_SUCCESS;
|
|
|
|
if (device->physical->engine_info) {
|
|
/* The kernel API supports at most 64 engines */
|
|
assert(num_queues <= 64);
|
|
enum intel_engine_class engine_classes[64];
|
|
int engine_count = 0;
|
|
for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
|
|
const VkDeviceQueueCreateInfo *queueCreateInfo =
|
|
&pCreateInfo->pQueueCreateInfos[i];
|
|
|
|
assert(queueCreateInfo->queueFamilyIndex <
|
|
physical_device->queue.family_count);
|
|
struct anv_queue_family *queue_family =
|
|
&physical_device->queue.families[queueCreateInfo->queueFamilyIndex];
|
|
|
|
for (uint32_t j = 0; j < queueCreateInfo->queueCount; j++)
|
|
engine_classes[engine_count++] = queue_family->engine_class;
|
|
}
|
|
if (!intel_gem_create_context_engines(device->fd,
|
|
physical_device->engine_info,
|
|
engine_count, engine_classes,
|
|
(uint32_t *)&device->context_id))
|
|
result = vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED,
|
|
"kernel context creation failed");
|
|
} else {
|
|
assert(num_queues == 1);
|
|
if (!intel_gem_create_context(device->fd, &device->context_id))
|
|
result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
|
|
}
|
|
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
|
|
/* Here we tell the kernel not to attempt to recover our context but
|
|
* immediately (on the next batchbuffer submission) report that the
|
|
* context is lost, and we will do the recovery ourselves. In the case
|
|
* of Vulkan, recovery means throwing VK_ERROR_DEVICE_LOST and letting
|
|
* the client clean up the pieces.
|
|
*/
|
|
anv_gem_set_context_param(device->fd, device->context_id,
|
|
I915_CONTEXT_PARAM_RECOVERABLE, false);
|
|
|
|
/* Check if client specified queue priority. */
|
|
const VkDeviceQueueGlobalPriorityCreateInfoKHR *queue_priority =
|
|
vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
|
|
DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_KHR);
|
|
|
|
VkQueueGlobalPriorityKHR priority =
|
|
queue_priority ? queue_priority->globalPriority :
|
|
VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR;
|
|
|
|
/* As per spec, the driver implementation may deny requests to acquire
|
|
* a priority above the default priority (MEDIUM) if the caller does not
|
|
* have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_KHR
|
|
* is returned.
|
|
*/
|
|
if (physical_device->max_context_priority >= VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR) {
|
|
int err = anv_gem_set_context_param(device->fd, device->context_id,
|
|
I915_CONTEXT_PARAM_PRIORITY,
|
|
priority);
|
|
if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR) {
|
|
result = vk_error(device, VK_ERROR_NOT_PERMITTED_KHR);
|
|
goto fail_context;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
|
|
fail_context:
|
|
intel_gem_destroy_context(device->fd, device->context_id);
|
|
return result;
|
|
}
|
|
|
|
VkResult anv_CreateDevice(
|
|
VkPhysicalDevice physicalDevice,
|
|
const VkDeviceCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkDevice* pDevice)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
|
|
VkResult result;
|
|
struct anv_device *device;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
|
|
|
|
/* Check enabled features */
|
|
bool robust_buffer_access = false;
|
|
if (pCreateInfo->pEnabledFeatures) {
|
|
if (pCreateInfo->pEnabledFeatures->robustBufferAccess)
|
|
robust_buffer_access = true;
|
|
}
|
|
|
|
vk_foreach_struct_const(ext, pCreateInfo->pNext) {
|
|
switch (ext->sType) {
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2: {
|
|
const VkPhysicalDeviceFeatures2 *features = (const void *)ext;
|
|
if (features->features.robustBufferAccess)
|
|
robust_buffer_access = true;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
/* Don't warn */
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Check requested queues and fail if we are requested to create any
|
|
* queues with flags we don't support.
|
|
*/
|
|
assert(pCreateInfo->queueCreateInfoCount > 0);
|
|
for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
|
|
if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
|
|
return vk_error(physical_device, VK_ERROR_INITIALIZATION_FAILED);
|
|
}
|
|
|
|
device = vk_zalloc2(&physical_device->instance->vk.alloc, pAllocator,
|
|
sizeof(*device), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
|
|
if (!device)
|
|
return vk_error(physical_device, VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
struct vk_device_dispatch_table dispatch_table;
|
|
|
|
bool override_initial_entrypoints = true;
|
|
if (physical_device->instance->vk.app_info.app_name &&
|
|
!strcmp(physical_device->instance->vk.app_info.app_name, "HITMAN3.exe")) {
|
|
vk_device_dispatch_table_from_entrypoints(&dispatch_table, &hitman3_device_entrypoints, true);
|
|
override_initial_entrypoints = false;
|
|
}
|
|
vk_device_dispatch_table_from_entrypoints(&dispatch_table,
|
|
anv_genX(&physical_device->info, device_entrypoints),
|
|
override_initial_entrypoints);
|
|
vk_device_dispatch_table_from_entrypoints(&dispatch_table,
|
|
&anv_device_entrypoints, false);
|
|
vk_device_dispatch_table_from_entrypoints(&dispatch_table,
|
|
&wsi_device_entrypoints, false);
|
|
|
|
result = vk_device_init(&device->vk, &physical_device->vk,
|
|
&dispatch_table, pCreateInfo, pAllocator);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_alloc;
|
|
|
|
if (INTEL_DEBUG(DEBUG_BATCH)) {
|
|
const unsigned decode_flags =
|
|
INTEL_BATCH_DECODE_FULL |
|
|
(INTEL_DEBUG(DEBUG_COLOR) ? INTEL_BATCH_DECODE_IN_COLOR : 0) |
|
|
INTEL_BATCH_DECODE_OFFSETS |
|
|
INTEL_BATCH_DECODE_FLOATS;
|
|
|
|
intel_batch_decode_ctx_init(&device->decoder_ctx,
|
|
&physical_device->compiler->isa,
|
|
&physical_device->info,
|
|
stderr, decode_flags, NULL,
|
|
decode_get_bo, NULL, device);
|
|
|
|
device->decoder_ctx.dynamic_base = DYNAMIC_STATE_POOL_MIN_ADDRESS;
|
|
device->decoder_ctx.surface_base = INTERNAL_SURFACE_STATE_POOL_MIN_ADDRESS;
|
|
device->decoder_ctx.instruction_base =
|
|
INSTRUCTION_STATE_POOL_MIN_ADDRESS;
|
|
}
|
|
|
|
anv_device_set_physical(device, physical_device);
|
|
|
|
/* XXX(chadv): Can we dup() physicalDevice->fd here? */
|
|
device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
|
|
if (device->fd == -1) {
|
|
result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_device;
|
|
}
|
|
|
|
device->vk.command_buffer_ops = &anv_cmd_buffer_ops;
|
|
device->vk.check_status = anv_device_check_status;
|
|
device->vk.create_sync_for_memory = anv_create_sync_for_memory;
|
|
vk_device_set_drm_fd(&device->vk, device->fd);
|
|
|
|
uint32_t num_queues = 0;
|
|
for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++)
|
|
num_queues += pCreateInfo->pQueueCreateInfos[i].queueCount;
|
|
|
|
result = anv_device_setup_context(device, pCreateInfo, num_queues);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_fd;
|
|
|
|
device->queues =
|
|
vk_zalloc(&device->vk.alloc, num_queues * sizeof(*device->queues), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
|
|
if (device->queues == NULL) {
|
|
result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
goto fail_context_id;
|
|
}
|
|
|
|
device->queue_count = 0;
|
|
for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
|
|
const VkDeviceQueueCreateInfo *queueCreateInfo =
|
|
&pCreateInfo->pQueueCreateInfos[i];
|
|
|
|
for (uint32_t j = 0; j < queueCreateInfo->queueCount; j++) {
|
|
/* When using legacy contexts, we use I915_EXEC_RENDER but, with
|
|
* engine-based contexts, the bottom 6 bits of exec_flags are used
|
|
* for the engine ID.
|
|
*/
|
|
uint32_t exec_flags = device->physical->engine_info ?
|
|
device->queue_count : I915_EXEC_RENDER;
|
|
|
|
result = anv_queue_init(device, &device->queues[device->queue_count],
|
|
exec_flags, queueCreateInfo, j);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_queues;
|
|
|
|
device->queue_count++;
|
|
}
|
|
}
|
|
|
|
if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
|
|
result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_queues;
|
|
}
|
|
|
|
/* keep the page with address zero out of the allocator */
|
|
util_vma_heap_init(&device->vma_lo,
|
|
LOW_HEAP_MIN_ADDRESS, LOW_HEAP_SIZE);
|
|
|
|
util_vma_heap_init(&device->vma_cva, CLIENT_VISIBLE_HEAP_MIN_ADDRESS,
|
|
CLIENT_VISIBLE_HEAP_SIZE);
|
|
|
|
/* Leave the last 4GiB out of the high vma range, so that no state
|
|
* base address + size can overflow 48 bits. For more information see
|
|
* the comment about Wa32bitGeneralStateOffset in anv_allocator.c
|
|
*/
|
|
util_vma_heap_init(&device->vma_hi, HIGH_HEAP_MIN_ADDRESS,
|
|
physical_device->gtt_size - (1ull << 32) -
|
|
HIGH_HEAP_MIN_ADDRESS);
|
|
|
|
list_inithead(&device->memory_objects);
|
|
|
|
device->robust_buffer_access = robust_buffer_access;
|
|
|
|
if (pthread_mutex_init(&device->mutex, NULL) != 0) {
|
|
result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_vmas;
|
|
}
|
|
|
|
pthread_condattr_t condattr;
|
|
if (pthread_condattr_init(&condattr) != 0) {
|
|
result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_mutex;
|
|
}
|
|
if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
|
|
pthread_condattr_destroy(&condattr);
|
|
result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_mutex;
|
|
}
|
|
if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
|
|
pthread_condattr_destroy(&condattr);
|
|
result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_mutex;
|
|
}
|
|
pthread_condattr_destroy(&condattr);
|
|
|
|
result = anv_bo_cache_init(&device->bo_cache, device);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_queue_cond;
|
|
|
|
anv_bo_pool_init(&device->batch_bo_pool, device, "batch");
|
|
|
|
/* Because scratch is also relative to General State Base Address, we leave
|
|
* the base address 0 and start the pool memory at an offset. This way we
|
|
* get the correct offsets in the anv_states that get allocated from it.
|
|
*/
|
|
result = anv_state_pool_init(&device->general_state_pool, device,
|
|
"general pool",
|
|
0, GENERAL_STATE_POOL_MIN_ADDRESS, 16384);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_batch_bo_pool;
|
|
|
|
result = anv_state_pool_init(&device->dynamic_state_pool, device,
|
|
"dynamic pool",
|
|
DYNAMIC_STATE_POOL_MIN_ADDRESS, 0, 16384);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_general_state_pool;
|
|
|
|
/* The border color pointer is limited to 24 bits, so we need to make
|
|
* sure that any such color used at any point in the program doesn't
|
|
* exceed that limit.
|
|
* We achieve that by reserving all the custom border colors we support
|
|
* right off the bat, so they are close to the base address.
|
|
*/
|
|
anv_state_reserved_pool_init(&device->custom_border_colors,
|
|
&device->dynamic_state_pool,
|
|
MAX_CUSTOM_BORDER_COLORS,
|
|
sizeof(struct gfx8_border_color), 64);
|
|
|
|
result = anv_state_pool_init(&device->instruction_state_pool, device,
|
|
"instruction pool",
|
|
INSTRUCTION_STATE_POOL_MIN_ADDRESS, 0, 16384);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_dynamic_state_pool;
|
|
|
|
result = anv_state_pool_init(&device->internal_surface_state_pool, device,
|
|
"internal surface state pool",
|
|
INTERNAL_SURFACE_STATE_POOL_MIN_ADDRESS, 0, 4096);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_instruction_state_pool;
|
|
|
|
result = anv_state_pool_init(&device->bindless_surface_state_pool, device,
|
|
"bindless surface state pool",
|
|
BINDLESS_SURFACE_STATE_POOL_MIN_ADDRESS, 0, 4096);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_internal_surface_state_pool;
|
|
|
|
if (device->info->verx10 >= 125) {
|
|
/* We're using 3DSTATE_BINDING_TABLE_POOL_ALLOC to give the binding
|
|
* table its own base address separately from surface state base.
|
|
*/
|
|
result = anv_state_pool_init(&device->binding_table_pool, device,
|
|
"binding table pool",
|
|
BINDING_TABLE_POOL_MIN_ADDRESS, 0,
|
|
BINDING_TABLE_POOL_BLOCK_SIZE);
|
|
} else {
|
|
int64_t bt_pool_offset = (int64_t)BINDING_TABLE_POOL_MIN_ADDRESS -
|
|
(int64_t)INTERNAL_SURFACE_STATE_POOL_MIN_ADDRESS;
|
|
assert(INT32_MIN < bt_pool_offset && bt_pool_offset < 0);
|
|
result = anv_state_pool_init(&device->binding_table_pool, device,
|
|
"binding table pool",
|
|
INTERNAL_SURFACE_STATE_POOL_MIN_ADDRESS,
|
|
bt_pool_offset,
|
|
BINDING_TABLE_POOL_BLOCK_SIZE);
|
|
}
|
|
if (result != VK_SUCCESS)
|
|
goto fail_bindless_surface_state_pool;
|
|
|
|
if (device->info->has_aux_map) {
|
|
device->aux_map_ctx = intel_aux_map_init(device, &aux_map_allocator,
|
|
&physical_device->info);
|
|
if (!device->aux_map_ctx)
|
|
goto fail_binding_table_pool;
|
|
}
|
|
|
|
result = anv_device_alloc_bo(device, "workaround", 4096,
|
|
ANV_BO_ALLOC_CAPTURE |
|
|
ANV_BO_ALLOC_MAPPED |
|
|
(device->info->has_local_mem ?
|
|
ANV_BO_ALLOC_WRITE_COMBINE : 0),
|
|
0 /* explicit_address */,
|
|
&device->workaround_bo);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_surface_aux_map_pool;
|
|
|
|
device->workaround_address = (struct anv_address) {
|
|
.bo = device->workaround_bo,
|
|
.offset = align_u32(
|
|
intel_debug_write_identifiers(device->workaround_bo->map,
|
|
device->workaround_bo->size,
|
|
"Anv") + 8, 8),
|
|
};
|
|
|
|
device->rt_uuid_addr = anv_address_add(device->workaround_address, 8);
|
|
memcpy(device->rt_uuid_addr.bo->map + device->rt_uuid_addr.offset,
|
|
physical_device->rt_uuid,
|
|
sizeof(physical_device->rt_uuid));
|
|
|
|
device->debug_frame_desc =
|
|
intel_debug_get_identifier_block(device->workaround_bo->map,
|
|
device->workaround_bo->size,
|
|
INTEL_DEBUG_BLOCK_TYPE_FRAME);
|
|
|
|
if (device->vk.enabled_extensions.KHR_ray_query) {
|
|
uint32_t ray_queries_size =
|
|
align_u32(brw_rt_ray_queries_hw_stacks_size(device->info), 4096);
|
|
|
|
result = anv_device_alloc_bo(device, "ray queries",
|
|
ray_queries_size,
|
|
0,
|
|
0 /* explicit_address */,
|
|
&device->ray_query_bo);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_workaround_bo;
|
|
}
|
|
|
|
result = anv_device_init_trivial_batch(device);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_ray_query_bo;
|
|
|
|
if (device->info->ver >= 12 &&
|
|
device->vk.enabled_extensions.KHR_fragment_shading_rate) {
|
|
uint32_t n_cps_states = 3 * 3; /* All combinaisons of X by Y CP sizes (1, 2, 4) */
|
|
|
|
if (device->info->has_coarse_pixel_primitive_and_cb)
|
|
n_cps_states *= 5 * 5; /* 5 combiners by 2 operators */
|
|
|
|
n_cps_states += 1; /* Disable CPS */
|
|
|
|
/* Each of the combinaison must be replicated on all viewports */
|
|
n_cps_states *= MAX_VIEWPORTS;
|
|
|
|
device->cps_states =
|
|
anv_state_pool_alloc(&device->dynamic_state_pool,
|
|
n_cps_states * CPS_STATE_length(device->info) * 4,
|
|
32);
|
|
if (device->cps_states.map == NULL)
|
|
goto fail_trivial_batch;
|
|
|
|
anv_genX(device->info, init_cps_device_state)(device);
|
|
}
|
|
|
|
/* Allocate a null surface state at surface state offset 0. This makes
|
|
* NULL descriptor handling trivial because we can just memset structures
|
|
* to zero and they have a valid descriptor.
|
|
*/
|
|
device->null_surface_state =
|
|
anv_state_pool_alloc(&device->internal_surface_state_pool,
|
|
device->isl_dev.ss.size,
|
|
device->isl_dev.ss.align);
|
|
isl_null_fill_state(&device->isl_dev, device->null_surface_state.map,
|
|
.size = isl_extent3d(1, 1, 1) /* This shouldn't matter */);
|
|
assert(device->null_surface_state.offset == 0);
|
|
|
|
anv_scratch_pool_init(device, &device->scratch_pool);
|
|
|
|
/* TODO(RT): Do we want some sort of data structure for this? */
|
|
memset(device->rt_scratch_bos, 0, sizeof(device->rt_scratch_bos));
|
|
|
|
if (ANV_SUPPORT_RT && device->info->has_ray_tracing) {
|
|
/* The docs say to always allocate 128KB per DSS */
|
|
const uint32_t btd_fifo_bo_size =
|
|
128 * 1024 * intel_device_info_dual_subslice_id_bound(device->info);
|
|
result = anv_device_alloc_bo(device,
|
|
"rt-btd-fifo",
|
|
btd_fifo_bo_size,
|
|
0 /* alloc_flags */,
|
|
0 /* explicit_address */,
|
|
&device->btd_fifo_bo);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_trivial_batch_bo_and_scratch_pool;
|
|
}
|
|
|
|
result = anv_genX(device->info, init_device_state)(device);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_btd_fifo_bo;
|
|
|
|
struct vk_pipeline_cache_create_info pcc_info = { };
|
|
device->default_pipeline_cache =
|
|
vk_pipeline_cache_create(&device->vk, &pcc_info, NULL);
|
|
if (!device->default_pipeline_cache) {
|
|
result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
goto fail_btd_fifo_bo;
|
|
}
|
|
|
|
/* Internal shaders need their own pipeline cache because, unlike the rest
|
|
* of ANV, it won't work at all without the cache. It depends on it for
|
|
* shaders to remain resident while it runs. Therefore, we need a special
|
|
* cache just for BLORP/RT that's forced to always be enabled.
|
|
*/
|
|
pcc_info.force_enable = true;
|
|
device->internal_cache =
|
|
vk_pipeline_cache_create(&device->vk, &pcc_info, NULL);
|
|
if (device->internal_cache == NULL) {
|
|
result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
goto fail_default_pipeline_cache;
|
|
}
|
|
|
|
/* The device (currently is ICL/TGL) does not have float64 support. */
|
|
if (!device->info->has_64bit_float &&
|
|
device->physical->instance->fp64_workaround_enabled)
|
|
anv_load_fp64_shader(device);
|
|
|
|
result = anv_device_init_rt_shaders(device);
|
|
if (result != VK_SUCCESS) {
|
|
result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
goto fail_internal_cache;
|
|
}
|
|
|
|
anv_device_init_blorp(device);
|
|
|
|
anv_device_init_border_colors(device);
|
|
|
|
anv_device_perf_init(device);
|
|
|
|
anv_device_utrace_init(device);
|
|
|
|
*pDevice = anv_device_to_handle(device);
|
|
|
|
return VK_SUCCESS;
|
|
|
|
fail_internal_cache:
|
|
vk_pipeline_cache_destroy(device->internal_cache, NULL);
|
|
fail_default_pipeline_cache:
|
|
vk_pipeline_cache_destroy(device->default_pipeline_cache, NULL);
|
|
fail_btd_fifo_bo:
|
|
if (ANV_SUPPORT_RT && device->info->has_ray_tracing)
|
|
anv_device_release_bo(device, device->btd_fifo_bo);
|
|
fail_trivial_batch_bo_and_scratch_pool:
|
|
anv_scratch_pool_finish(device, &device->scratch_pool);
|
|
fail_trivial_batch:
|
|
anv_device_release_bo(device, device->trivial_batch_bo);
|
|
fail_ray_query_bo:
|
|
if (device->ray_query_bo)
|
|
anv_device_release_bo(device, device->ray_query_bo);
|
|
fail_workaround_bo:
|
|
anv_device_release_bo(device, device->workaround_bo);
|
|
fail_surface_aux_map_pool:
|
|
if (device->info->has_aux_map) {
|
|
intel_aux_map_finish(device->aux_map_ctx);
|
|
device->aux_map_ctx = NULL;
|
|
}
|
|
fail_binding_table_pool:
|
|
anv_state_pool_finish(&device->binding_table_pool);
|
|
fail_bindless_surface_state_pool:
|
|
anv_state_pool_finish(&device->bindless_surface_state_pool);
|
|
fail_internal_surface_state_pool:
|
|
anv_state_pool_finish(&device->internal_surface_state_pool);
|
|
fail_instruction_state_pool:
|
|
anv_state_pool_finish(&device->instruction_state_pool);
|
|
fail_dynamic_state_pool:
|
|
anv_state_reserved_pool_finish(&device->custom_border_colors);
|
|
anv_state_pool_finish(&device->dynamic_state_pool);
|
|
fail_general_state_pool:
|
|
anv_state_pool_finish(&device->general_state_pool);
|
|
fail_batch_bo_pool:
|
|
anv_bo_pool_finish(&device->batch_bo_pool);
|
|
anv_bo_cache_finish(&device->bo_cache);
|
|
fail_queue_cond:
|
|
pthread_cond_destroy(&device->queue_submit);
|
|
fail_mutex:
|
|
pthread_mutex_destroy(&device->mutex);
|
|
fail_vmas:
|
|
util_vma_heap_finish(&device->vma_hi);
|
|
util_vma_heap_finish(&device->vma_cva);
|
|
util_vma_heap_finish(&device->vma_lo);
|
|
fail_queues:
|
|
for (uint32_t i = 0; i < device->queue_count; i++)
|
|
anv_queue_finish(&device->queues[i]);
|
|
vk_free(&device->vk.alloc, device->queues);
|
|
fail_context_id:
|
|
intel_gem_destroy_context(device->fd, device->context_id);
|
|
fail_fd:
|
|
close(device->fd);
|
|
fail_device:
|
|
vk_device_finish(&device->vk);
|
|
fail_alloc:
|
|
vk_free(&device->vk.alloc, device);
|
|
|
|
return result;
|
|
}
|
|
|
|
void anv_DestroyDevice(
|
|
VkDevice _device,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
if (!device)
|
|
return;
|
|
|
|
anv_device_utrace_finish(device);
|
|
|
|
anv_device_finish_blorp(device);
|
|
|
|
anv_device_finish_rt_shaders(device);
|
|
|
|
vk_pipeline_cache_destroy(device->internal_cache, NULL);
|
|
vk_pipeline_cache_destroy(device->default_pipeline_cache, NULL);
|
|
|
|
if (ANV_SUPPORT_RT && device->info->has_ray_tracing)
|
|
anv_device_release_bo(device, device->btd_fifo_bo);
|
|
|
|
#ifdef HAVE_VALGRIND
|
|
/* We only need to free these to prevent valgrind errors. The backing
|
|
* BO will go away in a couple of lines so we don't actually leak.
|
|
*/
|
|
anv_state_reserved_pool_finish(&device->custom_border_colors);
|
|
anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
|
|
anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
|
|
anv_state_pool_free(&device->dynamic_state_pool, device->cps_states);
|
|
#endif
|
|
|
|
for (unsigned i = 0; i < ARRAY_SIZE(device->rt_scratch_bos); i++) {
|
|
if (device->rt_scratch_bos[i] != NULL)
|
|
anv_device_release_bo(device, device->rt_scratch_bos[i]);
|
|
}
|
|
|
|
anv_scratch_pool_finish(device, &device->scratch_pool);
|
|
|
|
if (device->vk.enabled_extensions.KHR_ray_query) {
|
|
for (unsigned i = 0; i < ARRAY_SIZE(device->ray_query_shadow_bos); i++) {
|
|
if (device->ray_query_shadow_bos[i] != NULL)
|
|
anv_device_release_bo(device, device->ray_query_shadow_bos[i]);
|
|
}
|
|
anv_device_release_bo(device, device->ray_query_bo);
|
|
}
|
|
anv_device_release_bo(device, device->workaround_bo);
|
|
anv_device_release_bo(device, device->trivial_batch_bo);
|
|
|
|
if (device->info->has_aux_map) {
|
|
intel_aux_map_finish(device->aux_map_ctx);
|
|
device->aux_map_ctx = NULL;
|
|
}
|
|
|
|
anv_state_pool_finish(&device->binding_table_pool);
|
|
anv_state_pool_finish(&device->internal_surface_state_pool);
|
|
anv_state_pool_finish(&device->bindless_surface_state_pool);
|
|
anv_state_pool_finish(&device->instruction_state_pool);
|
|
anv_state_pool_finish(&device->dynamic_state_pool);
|
|
anv_state_pool_finish(&device->general_state_pool);
|
|
|
|
anv_bo_pool_finish(&device->batch_bo_pool);
|
|
|
|
anv_bo_cache_finish(&device->bo_cache);
|
|
|
|
util_vma_heap_finish(&device->vma_hi);
|
|
util_vma_heap_finish(&device->vma_cva);
|
|
util_vma_heap_finish(&device->vma_lo);
|
|
|
|
pthread_cond_destroy(&device->queue_submit);
|
|
pthread_mutex_destroy(&device->mutex);
|
|
|
|
for (uint32_t i = 0; i < device->queue_count; i++)
|
|
anv_queue_finish(&device->queues[i]);
|
|
vk_free(&device->vk.alloc, device->queues);
|
|
|
|
intel_gem_destroy_context(device->fd, device->context_id);
|
|
|
|
if (INTEL_DEBUG(DEBUG_BATCH))
|
|
intel_batch_decode_ctx_finish(&device->decoder_ctx);
|
|
|
|
close(device->fd);
|
|
|
|
vk_device_finish(&device->vk);
|
|
vk_free(&device->vk.alloc, device);
|
|
}
|
|
|
|
VkResult anv_EnumerateInstanceLayerProperties(
|
|
uint32_t* pPropertyCount,
|
|
VkLayerProperties* pProperties)
|
|
{
|
|
if (pProperties == NULL) {
|
|
*pPropertyCount = 0;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
/* None supported at this time */
|
|
return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
|
|
}
|
|
|
|
static VkResult
|
|
anv_device_check_status(struct vk_device *vk_device)
|
|
{
|
|
struct anv_device *device = container_of(vk_device, struct anv_device, vk);
|
|
|
|
uint32_t active, pending;
|
|
int ret = anv_gem_context_get_reset_stats(device->fd, device->context_id,
|
|
&active, &pending);
|
|
if (ret == -1) {
|
|
/* We don't know the real error. */
|
|
return vk_device_set_lost(&device->vk, "get_reset_stats failed: %m");
|
|
}
|
|
|
|
if (active) {
|
|
return vk_device_set_lost(&device->vk, "GPU hung on one of our command buffers");
|
|
} else if (pending) {
|
|
return vk_device_set_lost(&device->vk, "GPU hung with commands in-flight");
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult
|
|
anv_device_wait(struct anv_device *device, struct anv_bo *bo,
|
|
int64_t timeout)
|
|
{
|
|
int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
|
|
if (ret == -1 && errno == ETIME) {
|
|
return VK_TIMEOUT;
|
|
} else if (ret == -1) {
|
|
/* We don't know the real error. */
|
|
return vk_device_set_lost(&device->vk, "gem wait failed: %m");
|
|
} else {
|
|
return VK_SUCCESS;
|
|
}
|
|
}
|
|
|
|
uint64_t
|
|
anv_vma_alloc(struct anv_device *device,
|
|
uint64_t size, uint64_t align,
|
|
enum anv_bo_alloc_flags alloc_flags,
|
|
uint64_t client_address)
|
|
{
|
|
pthread_mutex_lock(&device->vma_mutex);
|
|
|
|
uint64_t addr = 0;
|
|
|
|
if (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) {
|
|
if (client_address) {
|
|
if (util_vma_heap_alloc_addr(&device->vma_cva,
|
|
client_address, size)) {
|
|
addr = client_address;
|
|
}
|
|
} else {
|
|
addr = util_vma_heap_alloc(&device->vma_cva, size, align);
|
|
}
|
|
/* We don't want to fall back to other heaps */
|
|
goto done;
|
|
}
|
|
|
|
assert(client_address == 0);
|
|
|
|
if (!(alloc_flags & ANV_BO_ALLOC_32BIT_ADDRESS))
|
|
addr = util_vma_heap_alloc(&device->vma_hi, size, align);
|
|
|
|
if (addr == 0)
|
|
addr = util_vma_heap_alloc(&device->vma_lo, size, align);
|
|
|
|
done:
|
|
pthread_mutex_unlock(&device->vma_mutex);
|
|
|
|
assert(addr == intel_48b_address(addr));
|
|
return intel_canonical_address(addr);
|
|
}
|
|
|
|
void
|
|
anv_vma_free(struct anv_device *device,
|
|
uint64_t address, uint64_t size)
|
|
{
|
|
const uint64_t addr_48b = intel_48b_address(address);
|
|
|
|
pthread_mutex_lock(&device->vma_mutex);
|
|
|
|
if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
|
|
addr_48b <= LOW_HEAP_MAX_ADDRESS) {
|
|
util_vma_heap_free(&device->vma_lo, addr_48b, size);
|
|
} else if (addr_48b >= CLIENT_VISIBLE_HEAP_MIN_ADDRESS &&
|
|
addr_48b <= CLIENT_VISIBLE_HEAP_MAX_ADDRESS) {
|
|
util_vma_heap_free(&device->vma_cva, addr_48b, size);
|
|
} else {
|
|
assert(addr_48b >= HIGH_HEAP_MIN_ADDRESS);
|
|
util_vma_heap_free(&device->vma_hi, addr_48b, size);
|
|
}
|
|
|
|
pthread_mutex_unlock(&device->vma_mutex);
|
|
}
|
|
|
|
VkResult anv_AllocateMemory(
|
|
VkDevice _device,
|
|
const VkMemoryAllocateInfo* pAllocateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkDeviceMemory* pMem)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_physical_device *pdevice = device->physical;
|
|
struct anv_device_memory *mem;
|
|
VkResult result = VK_SUCCESS;
|
|
|
|
assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
|
|
|
|
/* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
|
|
assert(pAllocateInfo->allocationSize > 0);
|
|
|
|
VkDeviceSize aligned_alloc_size =
|
|
align_u64(pAllocateInfo->allocationSize, 4096);
|
|
|
|
if (aligned_alloc_size > MAX_MEMORY_ALLOCATION_SIZE)
|
|
return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
|
|
|
|
assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
|
|
struct anv_memory_type *mem_type =
|
|
&pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
|
|
assert(mem_type->heapIndex < pdevice->memory.heap_count);
|
|
struct anv_memory_heap *mem_heap =
|
|
&pdevice->memory.heaps[mem_type->heapIndex];
|
|
|
|
uint64_t mem_heap_used = p_atomic_read(&mem_heap->used);
|
|
if (mem_heap_used + aligned_alloc_size > mem_heap->size)
|
|
return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
|
|
|
|
mem = vk_object_alloc(&device->vk, pAllocator, sizeof(*mem),
|
|
VK_OBJECT_TYPE_DEVICE_MEMORY);
|
|
if (mem == NULL)
|
|
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
mem->type = mem_type;
|
|
mem->map = NULL;
|
|
mem->map_size = 0;
|
|
mem->map_delta = 0;
|
|
mem->ahw = NULL;
|
|
mem->host_ptr = NULL;
|
|
|
|
enum anv_bo_alloc_flags alloc_flags = 0;
|
|
|
|
const VkExportMemoryAllocateInfo *export_info = NULL;
|
|
const VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info = NULL;
|
|
const VkImportMemoryFdInfoKHR *fd_info = NULL;
|
|
const VkImportMemoryHostPointerInfoEXT *host_ptr_info = NULL;
|
|
const VkMemoryDedicatedAllocateInfo *dedicated_info = NULL;
|
|
VkMemoryAllocateFlags vk_flags = 0;
|
|
uint64_t client_address = 0;
|
|
|
|
vk_foreach_struct_const(ext, pAllocateInfo->pNext) {
|
|
switch (ext->sType) {
|
|
case VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO:
|
|
export_info = (void *)ext;
|
|
break;
|
|
|
|
case VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID:
|
|
ahw_import_info = (void *)ext;
|
|
break;
|
|
|
|
case VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR:
|
|
fd_info = (void *)ext;
|
|
break;
|
|
|
|
case VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT:
|
|
host_ptr_info = (void *)ext;
|
|
break;
|
|
|
|
case VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO: {
|
|
const VkMemoryAllocateFlagsInfo *flags_info = (void *)ext;
|
|
vk_flags = flags_info->flags;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO:
|
|
dedicated_info = (void *)ext;
|
|
break;
|
|
|
|
case VK_STRUCTURE_TYPE_MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO: {
|
|
const VkMemoryOpaqueCaptureAddressAllocateInfo *addr_info =
|
|
(const VkMemoryOpaqueCaptureAddressAllocateInfo *)ext;
|
|
client_address = addr_info->opaqueCaptureAddress;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
if (ext->sType != VK_STRUCTURE_TYPE_WSI_MEMORY_ALLOCATE_INFO_MESA)
|
|
/* this isn't a real enum value,
|
|
* so use conditional to avoid compiler warn
|
|
*/
|
|
anv_debug_ignored_stype(ext->sType);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* By default, we want all VkDeviceMemory objects to support CCS */
|
|
if (device->physical->has_implicit_ccs && device->info->has_aux_map)
|
|
alloc_flags |= ANV_BO_ALLOC_IMPLICIT_CCS;
|
|
|
|
/* If i915 reported a mappable/non_mappable vram regions and the
|
|
* application want lmem mappable, then we need to use the
|
|
* I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS flag to create our BO.
|
|
*/
|
|
if (pdevice->vram_mappable.size > 0 &&
|
|
pdevice->vram_non_mappable.size > 0 &&
|
|
(mem_type->propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) &&
|
|
(mem_type->propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT))
|
|
alloc_flags |= ANV_BO_ALLOC_LOCAL_MEM_CPU_VISIBLE;
|
|
|
|
if (!(mem_type->propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT))
|
|
alloc_flags |= ANV_BO_ALLOC_NO_LOCAL_MEM;
|
|
|
|
/* If the allocated buffer might end up in local memory and it's host
|
|
* visible, make CPU writes are combined, it should be faster.
|
|
*/
|
|
if (!(alloc_flags & ANV_BO_ALLOC_NO_LOCAL_MEM) &&
|
|
(mem_type->propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT))
|
|
alloc_flags |= ANV_BO_ALLOC_WRITE_COMBINE;
|
|
|
|
if (vk_flags & VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT)
|
|
alloc_flags |= ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS;
|
|
|
|
if ((export_info && export_info->handleTypes) ||
|
|
(fd_info && fd_info->handleType) ||
|
|
(host_ptr_info && host_ptr_info->handleType)) {
|
|
/* Anything imported or exported is EXTERNAL */
|
|
alloc_flags |= ANV_BO_ALLOC_EXTERNAL;
|
|
}
|
|
|
|
/* Check if we need to support Android HW buffer export. If so,
|
|
* create AHardwareBuffer and import memory from it.
|
|
*/
|
|
bool android_export = false;
|
|
if (export_info && export_info->handleTypes &
|
|
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
|
|
android_export = true;
|
|
|
|
if (ahw_import_info) {
|
|
result = anv_import_ahw_memory(_device, mem, ahw_import_info);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
|
|
goto success;
|
|
} else if (android_export) {
|
|
result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
|
|
goto success;
|
|
}
|
|
|
|
/* The Vulkan spec permits handleType to be 0, in which case the struct is
|
|
* ignored.
|
|
*/
|
|
if (fd_info && fd_info->handleType) {
|
|
/* At the moment, we support only the below handle types. */
|
|
assert(fd_info->handleType ==
|
|
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
|
|
fd_info->handleType ==
|
|
VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
|
|
|
|
result = anv_device_import_bo(device, fd_info->fd, alloc_flags,
|
|
client_address, &mem->bo);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
|
|
/* For security purposes, we reject importing the bo if it's smaller
|
|
* than the requested allocation size. This prevents a malicious client
|
|
* from passing a buffer to a trusted client, lying about the size, and
|
|
* telling the trusted client to try and texture from an image that goes
|
|
* out-of-bounds. This sort of thing could lead to GPU hangs or worse
|
|
* in the trusted client. The trusted client can protect itself against
|
|
* this sort of attack but only if it can trust the buffer size.
|
|
*/
|
|
if (mem->bo->size < aligned_alloc_size) {
|
|
result = vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
|
|
"aligned allocationSize too large for "
|
|
"VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
|
|
"%"PRIu64"B > %"PRIu64"B",
|
|
aligned_alloc_size, mem->bo->size);
|
|
anv_device_release_bo(device, mem->bo);
|
|
goto fail;
|
|
}
|
|
|
|
/* From the Vulkan spec:
|
|
*
|
|
* "Importing memory from a file descriptor transfers ownership of
|
|
* the file descriptor from the application to the Vulkan
|
|
* implementation. The application must not perform any operations on
|
|
* the file descriptor after a successful import."
|
|
*
|
|
* If the import fails, we leave the file descriptor open.
|
|
*/
|
|
close(fd_info->fd);
|
|
goto success;
|
|
}
|
|
|
|
if (host_ptr_info && host_ptr_info->handleType) {
|
|
if (host_ptr_info->handleType ==
|
|
VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
|
|
result = vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
|
|
goto fail;
|
|
}
|
|
|
|
assert(host_ptr_info->handleType ==
|
|
VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
|
|
|
|
result = anv_device_import_bo_from_host_ptr(device,
|
|
host_ptr_info->pHostPointer,
|
|
pAllocateInfo->allocationSize,
|
|
alloc_flags,
|
|
client_address,
|
|
&mem->bo);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
|
|
mem->host_ptr = host_ptr_info->pHostPointer;
|
|
goto success;
|
|
}
|
|
|
|
/* Regular allocate (not importing memory). */
|
|
|
|
result = anv_device_alloc_bo(device, "user", pAllocateInfo->allocationSize,
|
|
alloc_flags, client_address, &mem->bo);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
|
|
if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
|
|
ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
|
|
|
|
/* Some legacy (non-modifiers) consumers need the tiling to be set on
|
|
* the BO. In this case, we have a dedicated allocation.
|
|
*/
|
|
if (image->vk.wsi_legacy_scanout) {
|
|
const struct isl_surf *surf = &image->planes[0].primary_surface.isl;
|
|
result = anv_device_set_bo_tiling(device, mem->bo,
|
|
surf->row_pitch_B,
|
|
surf->tiling);
|
|
if (result != VK_SUCCESS) {
|
|
anv_device_release_bo(device, mem->bo);
|
|
goto fail;
|
|
}
|
|
}
|
|
}
|
|
|
|
success:
|
|
mem_heap_used = p_atomic_add_return(&mem_heap->used, mem->bo->size);
|
|
if (mem_heap_used > mem_heap->size) {
|
|
p_atomic_add(&mem_heap->used, -mem->bo->size);
|
|
anv_device_release_bo(device, mem->bo);
|
|
result = vk_errorf(device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
|
|
"Out of heap memory");
|
|
goto fail;
|
|
}
|
|
|
|
pthread_mutex_lock(&device->mutex);
|
|
list_addtail(&mem->link, &device->memory_objects);
|
|
pthread_mutex_unlock(&device->mutex);
|
|
|
|
*pMem = anv_device_memory_to_handle(mem);
|
|
|
|
return VK_SUCCESS;
|
|
|
|
fail:
|
|
vk_object_free(&device->vk, pAllocator, mem);
|
|
|
|
return result;
|
|
}
|
|
|
|
VkResult anv_GetMemoryFdKHR(
|
|
VkDevice device_h,
|
|
const VkMemoryGetFdInfoKHR* pGetFdInfo,
|
|
int* pFd)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, dev, device_h);
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
|
|
|
|
assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
|
|
|
|
assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
|
|
pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
|
|
|
|
return anv_device_export_bo(dev, mem->bo, pFd);
|
|
}
|
|
|
|
VkResult anv_GetMemoryFdPropertiesKHR(
|
|
VkDevice _device,
|
|
VkExternalMemoryHandleTypeFlagBits handleType,
|
|
int fd,
|
|
VkMemoryFdPropertiesKHR* pMemoryFdProperties)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
switch (handleType) {
|
|
case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
|
|
/* dma-buf can be imported as any memory type */
|
|
pMemoryFdProperties->memoryTypeBits =
|
|
(1 << device->physical->memory.type_count) - 1;
|
|
return VK_SUCCESS;
|
|
|
|
default:
|
|
/* The valid usage section for this function says:
|
|
*
|
|
* "handleType must not be one of the handle types defined as
|
|
* opaque."
|
|
*
|
|
* So opaque handle types fall into the default "unsupported" case.
|
|
*/
|
|
return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
|
|
}
|
|
}
|
|
|
|
VkResult anv_GetMemoryHostPointerPropertiesEXT(
|
|
VkDevice _device,
|
|
VkExternalMemoryHandleTypeFlagBits handleType,
|
|
const void* pHostPointer,
|
|
VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
assert(pMemoryHostPointerProperties->sType ==
|
|
VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
|
|
|
|
switch (handleType) {
|
|
case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT:
|
|
/* Host memory can be imported as any memory type. */
|
|
pMemoryHostPointerProperties->memoryTypeBits =
|
|
(1ull << device->physical->memory.type_count) - 1;
|
|
|
|
return VK_SUCCESS;
|
|
|
|
default:
|
|
return VK_ERROR_INVALID_EXTERNAL_HANDLE;
|
|
}
|
|
}
|
|
|
|
void anv_FreeMemory(
|
|
VkDevice _device,
|
|
VkDeviceMemory _mem,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
|
|
|
|
if (mem == NULL)
|
|
return;
|
|
|
|
pthread_mutex_lock(&device->mutex);
|
|
list_del(&mem->link);
|
|
pthread_mutex_unlock(&device->mutex);
|
|
|
|
if (mem->map)
|
|
anv_UnmapMemory(_device, _mem);
|
|
|
|
p_atomic_add(&device->physical->memory.heaps[mem->type->heapIndex].used,
|
|
-mem->bo->size);
|
|
|
|
anv_device_release_bo(device, mem->bo);
|
|
|
|
#if defined(ANDROID) && ANDROID_API_LEVEL >= 26
|
|
if (mem->ahw)
|
|
AHardwareBuffer_release(mem->ahw);
|
|
#endif
|
|
|
|
vk_object_free(&device->vk, pAllocator, mem);
|
|
}
|
|
|
|
VkResult anv_MapMemory(
|
|
VkDevice _device,
|
|
VkDeviceMemory _memory,
|
|
VkDeviceSize offset,
|
|
VkDeviceSize size,
|
|
VkMemoryMapFlags flags,
|
|
void** ppData)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
|
|
|
|
if (mem == NULL) {
|
|
*ppData = NULL;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
if (mem->host_ptr) {
|
|
*ppData = mem->host_ptr + offset;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
/* From the Vulkan spec version 1.0.32 docs for MapMemory:
|
|
*
|
|
* * memory must have been created with a memory type that reports
|
|
* VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT
|
|
*/
|
|
if (!(mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)) {
|
|
return vk_errorf(device, VK_ERROR_MEMORY_MAP_FAILED,
|
|
"Memory object not mappable.");
|
|
}
|
|
|
|
if (size == VK_WHOLE_SIZE)
|
|
size = mem->bo->size - offset;
|
|
|
|
/* From the Vulkan spec version 1.0.32 docs for MapMemory:
|
|
*
|
|
* * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
|
|
* assert(size != 0);
|
|
* * If size is not equal to VK_WHOLE_SIZE, size must be less than or
|
|
* equal to the size of the memory minus offset
|
|
*/
|
|
assert(size > 0);
|
|
assert(offset + size <= mem->bo->size);
|
|
|
|
if (size != (size_t)size) {
|
|
return vk_errorf(device, VK_ERROR_MEMORY_MAP_FAILED,
|
|
"requested size 0x%"PRIx64" does not fit in %u bits",
|
|
size, (unsigned)(sizeof(size_t) * 8));
|
|
}
|
|
|
|
/* From the Vulkan 1.2.194 spec:
|
|
*
|
|
* "memory must not be currently host mapped"
|
|
*/
|
|
if (mem->map != NULL) {
|
|
return vk_errorf(device, VK_ERROR_MEMORY_MAP_FAILED,
|
|
"Memory object already mapped.");
|
|
}
|
|
|
|
uint32_t gem_flags = 0;
|
|
|
|
if (!device->info->has_llc &&
|
|
(mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
|
|
gem_flags |= I915_MMAP_WC;
|
|
|
|
/* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
|
|
uint64_t map_offset;
|
|
if (!device->physical->info.has_mmap_offset)
|
|
map_offset = offset & ~4095ull;
|
|
else
|
|
map_offset = 0;
|
|
assert(offset >= map_offset);
|
|
uint64_t map_size = (offset + size) - map_offset;
|
|
|
|
/* Let's map whole pages */
|
|
map_size = align_u64(map_size, 4096);
|
|
|
|
void *map;
|
|
VkResult result = anv_device_map_bo(device, mem->bo, map_offset,
|
|
map_size, gem_flags, &map);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
|
|
mem->map = map;
|
|
mem->map_size = map_size;
|
|
mem->map_delta = (offset - map_offset);
|
|
*ppData = mem->map + mem->map_delta;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_UnmapMemory(
|
|
VkDevice _device,
|
|
VkDeviceMemory _memory)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
|
|
|
|
if (mem == NULL || mem->host_ptr)
|
|
return;
|
|
|
|
anv_device_unmap_bo(device, mem->bo, mem->map, mem->map_size);
|
|
|
|
mem->map = NULL;
|
|
mem->map_size = 0;
|
|
mem->map_delta = 0;
|
|
}
|
|
|
|
VkResult anv_FlushMappedMemoryRanges(
|
|
VkDevice _device,
|
|
uint32_t memoryRangeCount,
|
|
const VkMappedMemoryRange* pMemoryRanges)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
if (!device->physical->memory.need_clflush)
|
|
return VK_SUCCESS;
|
|
|
|
/* Make sure the writes we're flushing have landed. */
|
|
__builtin_ia32_mfence();
|
|
|
|
for (uint32_t i = 0; i < memoryRangeCount; i++) {
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, pMemoryRanges[i].memory);
|
|
if (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)
|
|
continue;
|
|
|
|
uint64_t map_offset = pMemoryRanges[i].offset + mem->map_delta;
|
|
if (map_offset >= mem->map_size)
|
|
continue;
|
|
|
|
intel_clflush_range(mem->map + map_offset,
|
|
MIN2(pMemoryRanges[i].size,
|
|
mem->map_size - map_offset));
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_InvalidateMappedMemoryRanges(
|
|
VkDevice _device,
|
|
uint32_t memoryRangeCount,
|
|
const VkMappedMemoryRange* pMemoryRanges)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
if (!device->physical->memory.need_clflush)
|
|
return VK_SUCCESS;
|
|
|
|
for (uint32_t i = 0; i < memoryRangeCount; i++) {
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, pMemoryRanges[i].memory);
|
|
if (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)
|
|
continue;
|
|
|
|
uint64_t map_offset = pMemoryRanges[i].offset + mem->map_delta;
|
|
if (map_offset >= mem->map_size)
|
|
continue;
|
|
|
|
intel_invalidate_range(mem->map + map_offset,
|
|
MIN2(pMemoryRanges[i].size,
|
|
mem->map_size - map_offset));
|
|
}
|
|
|
|
/* Make sure no reads get moved up above the invalidate. */
|
|
__builtin_ia32_mfence();
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_GetDeviceMemoryCommitment(
|
|
VkDevice device,
|
|
VkDeviceMemory memory,
|
|
VkDeviceSize* pCommittedMemoryInBytes)
|
|
{
|
|
*pCommittedMemoryInBytes = 0;
|
|
}
|
|
|
|
static void
|
|
anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
|
|
ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
|
|
|
|
assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
|
|
|
|
if (mem) {
|
|
assert(pBindInfo->memoryOffset < mem->bo->size);
|
|
assert(mem->bo->size - pBindInfo->memoryOffset >= buffer->vk.size);
|
|
buffer->address = (struct anv_address) {
|
|
.bo = mem->bo,
|
|
.offset = pBindInfo->memoryOffset,
|
|
};
|
|
} else {
|
|
buffer->address = ANV_NULL_ADDRESS;
|
|
}
|
|
}
|
|
|
|
VkResult anv_BindBufferMemory2(
|
|
VkDevice device,
|
|
uint32_t bindInfoCount,
|
|
const VkBindBufferMemoryInfo* pBindInfos)
|
|
{
|
|
for (uint32_t i = 0; i < bindInfoCount; i++)
|
|
anv_bind_buffer_memory(&pBindInfos[i]);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_QueueBindSparse(
|
|
VkQueue _queue,
|
|
uint32_t bindInfoCount,
|
|
const VkBindSparseInfo* pBindInfo,
|
|
VkFence fence)
|
|
{
|
|
ANV_FROM_HANDLE(anv_queue, queue, _queue);
|
|
if (vk_device_is_lost(&queue->device->vk))
|
|
return VK_ERROR_DEVICE_LOST;
|
|
|
|
return vk_error(queue, VK_ERROR_FEATURE_NOT_PRESENT);
|
|
}
|
|
|
|
// Event functions
|
|
|
|
VkResult anv_CreateEvent(
|
|
VkDevice _device,
|
|
const VkEventCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkEvent* pEvent)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_event *event;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
|
|
|
|
event = vk_object_alloc(&device->vk, pAllocator, sizeof(*event),
|
|
VK_OBJECT_TYPE_EVENT);
|
|
if (event == NULL)
|
|
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
event->state = anv_state_pool_alloc(&device->dynamic_state_pool,
|
|
sizeof(uint64_t), 8);
|
|
*(uint64_t *)event->state.map = VK_EVENT_RESET;
|
|
|
|
*pEvent = anv_event_to_handle(event);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_DestroyEvent(
|
|
VkDevice _device,
|
|
VkEvent _event,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_event, event, _event);
|
|
|
|
if (!event)
|
|
return;
|
|
|
|
anv_state_pool_free(&device->dynamic_state_pool, event->state);
|
|
|
|
vk_object_free(&device->vk, pAllocator, event);
|
|
}
|
|
|
|
VkResult anv_GetEventStatus(
|
|
VkDevice _device,
|
|
VkEvent _event)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_event, event, _event);
|
|
|
|
if (vk_device_is_lost(&device->vk))
|
|
return VK_ERROR_DEVICE_LOST;
|
|
|
|
return *(uint64_t *)event->state.map;
|
|
}
|
|
|
|
VkResult anv_SetEvent(
|
|
VkDevice _device,
|
|
VkEvent _event)
|
|
{
|
|
ANV_FROM_HANDLE(anv_event, event, _event);
|
|
|
|
*(uint64_t *)event->state.map = VK_EVENT_SET;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_ResetEvent(
|
|
VkDevice _device,
|
|
VkEvent _event)
|
|
{
|
|
ANV_FROM_HANDLE(anv_event, event, _event);
|
|
|
|
*(uint64_t *)event->state.map = VK_EVENT_RESET;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
// Buffer functions
|
|
|
|
static void
|
|
anv_get_buffer_memory_requirements(struct anv_device *device,
|
|
VkDeviceSize size,
|
|
VkBufferUsageFlags usage,
|
|
VkMemoryRequirements2* pMemoryRequirements)
|
|
{
|
|
/* The Vulkan spec (git aaed022) says:
|
|
*
|
|
* memoryTypeBits is a bitfield and contains one bit set for every
|
|
* supported memory type for the resource. The bit `1<<i` is set if and
|
|
* only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
|
|
* structure for the physical device is supported.
|
|
*/
|
|
uint32_t memory_types = (1ull << device->physical->memory.type_count) - 1;
|
|
|
|
/* Base alignment requirement of a cache line */
|
|
uint32_t alignment = 16;
|
|
|
|
if (usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
|
|
alignment = MAX2(alignment, ANV_UBO_ALIGNMENT);
|
|
|
|
pMemoryRequirements->memoryRequirements.size = size;
|
|
pMemoryRequirements->memoryRequirements.alignment = alignment;
|
|
|
|
/* Storage and Uniform buffers should have their size aligned to
|
|
* 32-bits to avoid boundary checks when last DWord is not complete.
|
|
* This would ensure that not internal padding would be needed for
|
|
* 16-bit types.
|
|
*/
|
|
if (device->robust_buffer_access &&
|
|
(usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
|
|
usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
|
|
pMemoryRequirements->memoryRequirements.size = align_u64(size, 4);
|
|
|
|
pMemoryRequirements->memoryRequirements.memoryTypeBits = memory_types;
|
|
|
|
vk_foreach_struct(ext, pMemoryRequirements->pNext) {
|
|
switch (ext->sType) {
|
|
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
|
|
VkMemoryDedicatedRequirements *requirements = (void *)ext;
|
|
requirements->prefersDedicatedAllocation = false;
|
|
requirements->requiresDedicatedAllocation = false;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
anv_debug_ignored_stype(ext->sType);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void anv_GetBufferMemoryRequirements2(
|
|
VkDevice _device,
|
|
const VkBufferMemoryRequirementsInfo2* pInfo,
|
|
VkMemoryRequirements2* pMemoryRequirements)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
|
|
|
|
anv_get_buffer_memory_requirements(device,
|
|
buffer->vk.size,
|
|
buffer->vk.usage,
|
|
pMemoryRequirements);
|
|
}
|
|
|
|
void anv_GetDeviceBufferMemoryRequirementsKHR(
|
|
VkDevice _device,
|
|
const VkDeviceBufferMemoryRequirements* pInfo,
|
|
VkMemoryRequirements2* pMemoryRequirements)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
anv_get_buffer_memory_requirements(device,
|
|
pInfo->pCreateInfo->size,
|
|
pInfo->pCreateInfo->usage,
|
|
pMemoryRequirements);
|
|
}
|
|
|
|
VkResult anv_CreateBuffer(
|
|
VkDevice _device,
|
|
const VkBufferCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkBuffer* pBuffer)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_buffer *buffer;
|
|
|
|
/* Don't allow creating buffers bigger than our address space. The real
|
|
* issue here is that we may align up the buffer size and we don't want
|
|
* doing so to cause roll-over. However, no one has any business
|
|
* allocating a buffer larger than our GTT size.
|
|
*/
|
|
if (pCreateInfo->size > device->physical->gtt_size)
|
|
return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
|
|
|
|
buffer = vk_buffer_create(&device->vk, pCreateInfo,
|
|
pAllocator, sizeof(*buffer));
|
|
if (buffer == NULL)
|
|
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
buffer->address = ANV_NULL_ADDRESS;
|
|
|
|
*pBuffer = anv_buffer_to_handle(buffer);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_DestroyBuffer(
|
|
VkDevice _device,
|
|
VkBuffer _buffer,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
|
|
|
|
if (!buffer)
|
|
return;
|
|
|
|
vk_buffer_destroy(&device->vk, pAllocator, &buffer->vk);
|
|
}
|
|
|
|
VkDeviceAddress anv_GetBufferDeviceAddress(
|
|
VkDevice device,
|
|
const VkBufferDeviceAddressInfo* pInfo)
|
|
{
|
|
ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
|
|
|
|
assert(!anv_address_is_null(buffer->address));
|
|
|
|
return anv_address_physical(buffer->address);
|
|
}
|
|
|
|
uint64_t anv_GetBufferOpaqueCaptureAddress(
|
|
VkDevice device,
|
|
const VkBufferDeviceAddressInfo* pInfo)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
uint64_t anv_GetDeviceMemoryOpaqueCaptureAddress(
|
|
VkDevice device,
|
|
const VkDeviceMemoryOpaqueCaptureAddressInfo* pInfo)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device_memory, memory, pInfo->memory);
|
|
|
|
assert(memory->bo->has_client_visible_address);
|
|
|
|
return intel_48b_address(memory->bo->offset);
|
|
}
|
|
|
|
void
|
|
anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
|
|
enum isl_format format,
|
|
struct isl_swizzle swizzle,
|
|
isl_surf_usage_flags_t usage,
|
|
struct anv_address address,
|
|
uint32_t range, uint32_t stride)
|
|
{
|
|
isl_buffer_fill_state(&device->isl_dev, state.map,
|
|
.address = anv_address_physical(address),
|
|
.mocs = isl_mocs(&device->isl_dev, usage,
|
|
address.bo && address.bo->is_external),
|
|
.size_B = range,
|
|
.format = format,
|
|
.swizzle = swizzle,
|
|
.stride_B = stride);
|
|
}
|
|
|
|
void anv_DestroySampler(
|
|
VkDevice _device,
|
|
VkSampler _sampler,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
|
|
|
|
if (!sampler)
|
|
return;
|
|
|
|
if (sampler->bindless_state.map) {
|
|
anv_state_pool_free(&device->dynamic_state_pool,
|
|
sampler->bindless_state);
|
|
}
|
|
|
|
if (sampler->custom_border_color.map) {
|
|
anv_state_reserved_pool_free(&device->custom_border_colors,
|
|
sampler->custom_border_color);
|
|
}
|
|
|
|
vk_object_free(&device->vk, pAllocator, sampler);
|
|
}
|
|
|
|
static const VkTimeDomainEXT anv_time_domains[] = {
|
|
VK_TIME_DOMAIN_DEVICE_EXT,
|
|
VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
|
|
#ifdef CLOCK_MONOTONIC_RAW
|
|
VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
|
|
#endif
|
|
};
|
|
|
|
VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
|
|
VkPhysicalDevice physicalDevice,
|
|
uint32_t *pTimeDomainCount,
|
|
VkTimeDomainEXT *pTimeDomains)
|
|
{
|
|
int d;
|
|
VK_OUTARRAY_MAKE_TYPED(VkTimeDomainEXT, out, pTimeDomains, pTimeDomainCount);
|
|
|
|
for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
|
|
vk_outarray_append_typed(VkTimeDomainEXT, &out, i) {
|
|
*i = anv_time_domains[d];
|
|
}
|
|
}
|
|
|
|
return vk_outarray_status(&out);
|
|
}
|
|
|
|
VkResult anv_GetCalibratedTimestampsEXT(
|
|
VkDevice _device,
|
|
uint32_t timestampCount,
|
|
const VkCalibratedTimestampInfoEXT *pTimestampInfos,
|
|
uint64_t *pTimestamps,
|
|
uint64_t *pMaxDeviation)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
uint64_t timestamp_frequency = device->info->timestamp_frequency;
|
|
int d;
|
|
uint64_t begin, end;
|
|
uint64_t max_clock_period = 0;
|
|
|
|
#ifdef CLOCK_MONOTONIC_RAW
|
|
begin = vk_clock_gettime(CLOCK_MONOTONIC_RAW);
|
|
#else
|
|
begin = vk_clock_gettime(CLOCK_MONOTONIC);
|
|
#endif
|
|
|
|
for (d = 0; d < timestampCount; d++) {
|
|
switch (pTimestampInfos[d].timeDomain) {
|
|
case VK_TIME_DOMAIN_DEVICE_EXT:
|
|
if (!intel_gem_read_render_timestamp(device->fd, &pTimestamps[d])) {
|
|
return vk_device_set_lost(&device->vk, "Failed to read the "
|
|
"TIMESTAMP register: %m");
|
|
}
|
|
uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
|
|
max_clock_period = MAX2(max_clock_period, device_period);
|
|
break;
|
|
case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
|
|
pTimestamps[d] = vk_clock_gettime(CLOCK_MONOTONIC);
|
|
max_clock_period = MAX2(max_clock_period, 1);
|
|
break;
|
|
|
|
#ifdef CLOCK_MONOTONIC_RAW
|
|
case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
|
|
pTimestamps[d] = begin;
|
|
break;
|
|
#endif
|
|
default:
|
|
pTimestamps[d] = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifdef CLOCK_MONOTONIC_RAW
|
|
end = vk_clock_gettime(CLOCK_MONOTONIC_RAW);
|
|
#else
|
|
end = vk_clock_gettime(CLOCK_MONOTONIC);
|
|
#endif
|
|
|
|
*pMaxDeviation = vk_time_max_deviation(begin, end, max_clock_period);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceMultisamplePropertiesEXT(
|
|
VkPhysicalDevice physicalDevice,
|
|
VkSampleCountFlagBits samples,
|
|
VkMultisamplePropertiesEXT* pMultisampleProperties)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
|
|
|
|
assert(pMultisampleProperties->sType ==
|
|
VK_STRUCTURE_TYPE_MULTISAMPLE_PROPERTIES_EXT);
|
|
|
|
VkExtent2D grid_size;
|
|
if (samples & isl_device_get_sample_counts(&physical_device->isl_dev)) {
|
|
grid_size.width = 1;
|
|
grid_size.height = 1;
|
|
} else {
|
|
grid_size.width = 0;
|
|
grid_size.height = 0;
|
|
}
|
|
pMultisampleProperties->maxSampleLocationGridSize = grid_size;
|
|
|
|
vk_foreach_struct(ext, pMultisampleProperties->pNext)
|
|
anv_debug_ignored_stype(ext->sType);
|
|
}
|
|
|
|
/* vk_icd.h does not declare this function, so we declare it here to
|
|
* suppress Wmissing-prototypes.
|
|
*/
|
|
PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
|
|
vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
|
|
|
|
PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
|
|
vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
|
|
{
|
|
/* For the full details on loader interface versioning, see
|
|
* <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
|
|
* What follows is a condensed summary, to help you navigate the large and
|
|
* confusing official doc.
|
|
*
|
|
* - Loader interface v0 is incompatible with later versions. We don't
|
|
* support it.
|
|
*
|
|
* - In loader interface v1:
|
|
* - The first ICD entrypoint called by the loader is
|
|
* vk_icdGetInstanceProcAddr(). The ICD must statically expose this
|
|
* entrypoint.
|
|
* - The ICD must statically expose no other Vulkan symbol unless it is
|
|
* linked with -Bsymbolic.
|
|
* - Each dispatchable Vulkan handle created by the ICD must be
|
|
* a pointer to a struct whose first member is VK_LOADER_DATA. The
|
|
* ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
|
|
* - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
|
|
* vkDestroySurfaceKHR(). The ICD must be capable of working with
|
|
* such loader-managed surfaces.
|
|
*
|
|
* - Loader interface v2 differs from v1 in:
|
|
* - The first ICD entrypoint called by the loader is
|
|
* vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
|
|
* statically expose this entrypoint.
|
|
*
|
|
* - Loader interface v3 differs from v2 in:
|
|
* - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
|
|
* vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
|
|
* because the loader no longer does so.
|
|
*
|
|
* - Loader interface v4 differs from v3 in:
|
|
* - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
|
|
*
|
|
* - Loader interface v5 differs from v4 in:
|
|
* - The ICD must support Vulkan API version 1.1 and must not return
|
|
* VK_ERROR_INCOMPATIBLE_DRIVER from vkCreateInstance() unless a
|
|
* Vulkan Loader with interface v4 or smaller is being used and the
|
|
* application provides an API version that is greater than 1.0.
|
|
*/
|
|
*pSupportedVersion = MIN2(*pSupportedVersion, 5u);
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_GetPhysicalDeviceFragmentShadingRatesKHR(
|
|
VkPhysicalDevice physicalDevice,
|
|
uint32_t* pFragmentShadingRateCount,
|
|
VkPhysicalDeviceFragmentShadingRateKHR* pFragmentShadingRates)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
|
|
VK_OUTARRAY_MAKE_TYPED(VkPhysicalDeviceFragmentShadingRateKHR, out,
|
|
pFragmentShadingRates, pFragmentShadingRateCount);
|
|
|
|
#define append_rate(_samples, _width, _height) \
|
|
do { \
|
|
vk_outarray_append_typed(VkPhysicalDeviceFragmentShadingRateKHR, &out, __r) { \
|
|
__r->sampleCounts = _samples; \
|
|
__r->fragmentSize = (VkExtent2D) { \
|
|
.width = _width, \
|
|
.height = _height, \
|
|
}; \
|
|
} \
|
|
} while (0)
|
|
|
|
VkSampleCountFlags sample_counts =
|
|
isl_device_get_sample_counts(&physical_device->isl_dev);
|
|
|
|
/* BSpec 47003: There are a number of restrictions on the sample count
|
|
* based off the coarse pixel size.
|
|
*/
|
|
static const VkSampleCountFlags cp_size_sample_limits[] = {
|
|
[1] = ISL_SAMPLE_COUNT_16_BIT | ISL_SAMPLE_COUNT_8_BIT |
|
|
ISL_SAMPLE_COUNT_4_BIT | ISL_SAMPLE_COUNT_2_BIT | ISL_SAMPLE_COUNT_1_BIT,
|
|
[2] = ISL_SAMPLE_COUNT_4_BIT | ISL_SAMPLE_COUNT_2_BIT | ISL_SAMPLE_COUNT_1_BIT,
|
|
[4] = ISL_SAMPLE_COUNT_4_BIT | ISL_SAMPLE_COUNT_2_BIT | ISL_SAMPLE_COUNT_1_BIT,
|
|
[8] = ISL_SAMPLE_COUNT_2_BIT | ISL_SAMPLE_COUNT_1_BIT,
|
|
[16] = ISL_SAMPLE_COUNT_1_BIT,
|
|
};
|
|
|
|
for (uint32_t x = 4; x >= 1; x /= 2) {
|
|
for (uint32_t y = 4; y >= 1; y /= 2) {
|
|
if (physical_device->info.has_coarse_pixel_primitive_and_cb) {
|
|
/* BSpec 47003:
|
|
* "CPsize 1x4 and 4x1 are not supported"
|
|
*/
|
|
if ((x == 1 && y == 4) || (x == 4 && y == 1))
|
|
continue;
|
|
|
|
/* For size {1, 1}, the sample count must be ~0
|
|
*
|
|
* 4x2 is also a specially case.
|
|
*/
|
|
if (x == 1 && y == 1)
|
|
append_rate(~0, x, y);
|
|
else if (x == 4 && y == 2)
|
|
append_rate(ISL_SAMPLE_COUNT_1_BIT, x, y);
|
|
else
|
|
append_rate(cp_size_sample_limits[x * y], x, y);
|
|
} else {
|
|
/* For size {1, 1}, the sample count must be ~0 */
|
|
if (x == 1 && y == 1)
|
|
append_rate(~0, x, y);
|
|
else
|
|
append_rate(sample_counts, x, y);
|
|
}
|
|
}
|
|
}
|
|
|
|
#undef append_rate
|
|
|
|
return vk_outarray_status(&out);
|
|
}
|