mesa/src/glsl/ir_builder.cpp
Brian Paul 8d1400fe12 glsl: rename min(), max() functions to fix MSVC build
Evidently, there's some other definition of "min" and "max" that
causes MSVC to choke on these function names.  Renaming to min2()
and max2() fixes things.

Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2014-01-06 16:57:49 -07:00

563 lines
9.9 KiB
C++

/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "ir_builder.h"
#include "program/prog_instruction.h"
using namespace ir_builder;
namespace ir_builder {
void
ir_factory::emit(ir_instruction *ir)
{
instructions->push_tail(ir);
}
ir_variable *
ir_factory::make_temp(const glsl_type *type, const char *name)
{
ir_variable *var;
var = new(mem_ctx) ir_variable(type, name, ir_var_temporary);
emit(var);
return var;
}
ir_assignment *
assign(deref lhs, operand rhs, operand condition, int writemask)
{
void *mem_ctx = ralloc_parent(lhs.val);
ir_assignment *assign = new(mem_ctx) ir_assignment(lhs.val,
rhs.val,
condition.val,
writemask);
return assign;
}
ir_assignment *
assign(deref lhs, operand rhs)
{
return assign(lhs, rhs, (1 << lhs.val->type->vector_elements) - 1);
}
ir_assignment *
assign(deref lhs, operand rhs, int writemask)
{
return assign(lhs, rhs, (ir_rvalue *) NULL, writemask);
}
ir_assignment *
assign(deref lhs, operand rhs, operand condition)
{
return assign(lhs, rhs, condition, (1 << lhs.val->type->vector_elements) - 1);
}
ir_return *
ret(operand retval)
{
void *mem_ctx = ralloc_parent(retval.val);
return new(mem_ctx) ir_return(retval.val);
}
ir_swizzle *
swizzle(operand a, int swizzle, int components)
{
void *mem_ctx = ralloc_parent(a.val);
return new(mem_ctx) ir_swizzle(a.val,
GET_SWZ(swizzle, 0),
GET_SWZ(swizzle, 1),
GET_SWZ(swizzle, 2),
GET_SWZ(swizzle, 3),
components);
}
ir_swizzle *
swizzle_for_size(operand a, unsigned components)
{
void *mem_ctx = ralloc_parent(a.val);
if (a.val->type->vector_elements < components)
components = a.val->type->vector_elements;
unsigned s[4] = { 0, 1, 2, 3 };
for (int i = components; i < 4; i++)
s[i] = components - 1;
return new(mem_ctx) ir_swizzle(a.val, s, components);
}
ir_swizzle *
swizzle_xxxx(operand a)
{
return swizzle(a, SWIZZLE_XXXX, 4);
}
ir_swizzle *
swizzle_yyyy(operand a)
{
return swizzle(a, SWIZZLE_YYYY, 4);
}
ir_swizzle *
swizzle_zzzz(operand a)
{
return swizzle(a, SWIZZLE_ZZZZ, 4);
}
ir_swizzle *
swizzle_wwww(operand a)
{
return swizzle(a, SWIZZLE_WWWW, 4);
}
ir_swizzle *
swizzle_x(operand a)
{
return swizzle(a, SWIZZLE_XXXX, 1);
}
ir_swizzle *
swizzle_y(operand a)
{
return swizzle(a, SWIZZLE_YYYY, 1);
}
ir_swizzle *
swizzle_z(operand a)
{
return swizzle(a, SWIZZLE_ZZZZ, 1);
}
ir_swizzle *
swizzle_w(operand a)
{
return swizzle(a, SWIZZLE_WWWW, 1);
}
ir_swizzle *
swizzle_xy(operand a)
{
return swizzle(a, SWIZZLE_XYZW, 2);
}
ir_swizzle *
swizzle_xyz(operand a)
{
return swizzle(a, SWIZZLE_XYZW, 3);
}
ir_swizzle *
swizzle_xyzw(operand a)
{
return swizzle(a, SWIZZLE_XYZW, 4);
}
ir_expression *
expr(ir_expression_operation op, operand a)
{
void *mem_ctx = ralloc_parent(a.val);
return new(mem_ctx) ir_expression(op, a.val);
}
ir_expression *
expr(ir_expression_operation op, operand a, operand b)
{
void *mem_ctx = ralloc_parent(a.val);
return new(mem_ctx) ir_expression(op, a.val, b.val);
}
ir_expression *
expr(ir_expression_operation op, operand a, operand b, operand c)
{
void *mem_ctx = ralloc_parent(a.val);
return new(mem_ctx) ir_expression(op, a.val, b.val, c.val);
}
ir_expression *add(operand a, operand b)
{
return expr(ir_binop_add, a, b);
}
ir_expression *sub(operand a, operand b)
{
return expr(ir_binop_sub, a, b);
}
ir_expression *min2(operand a, operand b)
{
return expr(ir_binop_min, a, b);
}
ir_expression *max2(operand a, operand b)
{
return expr(ir_binop_max, a, b);
}
ir_expression *mul(operand a, operand b)
{
return expr(ir_binop_mul, a, b);
}
ir_expression *imul_high(operand a, operand b)
{
return expr(ir_binop_imul_high, a, b);
}
ir_expression *div(operand a, operand b)
{
return expr(ir_binop_div, a, b);
}
ir_expression *carry(operand a, operand b)
{
return expr(ir_binop_carry, a, b);
}
ir_expression *borrow(operand a, operand b)
{
return expr(ir_binop_borrow, a, b);
}
ir_expression *round_even(operand a)
{
return expr(ir_unop_round_even, a);
}
ir_expression *dot(operand a, operand b)
{
return expr(ir_binop_dot, a, b);
}
/* dot for vectors, mul for scalars */
ir_expression *dotlike(operand a, operand b)
{
assert(a.val->type == b.val->type);
if (a.val->type->vector_elements == 1)
return expr(ir_binop_mul, a, b);
return expr(ir_binop_dot, a, b);
}
ir_expression*
clamp(operand a, operand b, operand c)
{
return expr(ir_binop_min, expr(ir_binop_max, a, b), c);
}
ir_expression *
saturate(operand a)
{
void *mem_ctx = ralloc_parent(a.val);
return expr(ir_binop_max,
expr(ir_binop_min, a, new(mem_ctx) ir_constant(1.0f)),
new(mem_ctx) ir_constant(0.0f));
}
ir_expression *
abs(operand a)
{
return expr(ir_unop_abs, a);
}
ir_expression *
neg(operand a)
{
return expr(ir_unop_neg, a);
}
ir_expression *
sin(operand a)
{
return expr(ir_unop_sin, a);
}
ir_expression *
cos(operand a)
{
return expr(ir_unop_cos, a);
}
ir_expression *
exp(operand a)
{
return expr(ir_unop_exp, a);
}
ir_expression *
rsq(operand a)
{
return expr(ir_unop_rsq, a);
}
ir_expression *
sqrt(operand a)
{
return expr(ir_unop_sqrt, a);
}
ir_expression *
log(operand a)
{
return expr(ir_unop_log, a);
}
ir_expression *
sign(operand a)
{
return expr(ir_unop_sign, a);
}
ir_expression*
equal(operand a, operand b)
{
return expr(ir_binop_equal, a, b);
}
ir_expression*
nequal(operand a, operand b)
{
return expr(ir_binop_nequal, a, b);
}
ir_expression*
less(operand a, operand b)
{
return expr(ir_binop_less, a, b);
}
ir_expression*
greater(operand a, operand b)
{
return expr(ir_binop_greater, a, b);
}
ir_expression*
lequal(operand a, operand b)
{
return expr(ir_binop_lequal, a, b);
}
ir_expression*
gequal(operand a, operand b)
{
return expr(ir_binop_gequal, a, b);
}
ir_expression*
logic_not(operand a)
{
return expr(ir_unop_logic_not, a);
}
ir_expression*
logic_and(operand a, operand b)
{
return expr(ir_binop_logic_and, a, b);
}
ir_expression*
logic_or(operand a, operand b)
{
return expr(ir_binop_logic_or, a, b);
}
ir_expression*
bit_not(operand a)
{
return expr(ir_unop_bit_not, a);
}
ir_expression*
bit_and(operand a, operand b)
{
return expr(ir_binop_bit_and, a, b);
}
ir_expression*
bit_or(operand a, operand b)
{
return expr(ir_binop_bit_or, a, b);
}
ir_expression*
lshift(operand a, operand b)
{
return expr(ir_binop_lshift, a, b);
}
ir_expression*
rshift(operand a, operand b)
{
return expr(ir_binop_rshift, a, b);
}
ir_expression*
f2i(operand a)
{
return expr(ir_unop_f2i, a);
}
ir_expression*
bitcast_f2i(operand a)
{
return expr(ir_unop_bitcast_f2i, a);
}
ir_expression*
i2f(operand a)
{
return expr(ir_unop_i2f, a);
}
ir_expression*
bitcast_i2f(operand a)
{
return expr(ir_unop_bitcast_i2f, a);
}
ir_expression*
i2u(operand a)
{
return expr(ir_unop_i2u, a);
}
ir_expression*
u2i(operand a)
{
return expr(ir_unop_u2i, a);
}
ir_expression*
f2u(operand a)
{
return expr(ir_unop_f2u, a);
}
ir_expression*
bitcast_f2u(operand a)
{
return expr(ir_unop_bitcast_f2u, a);
}
ir_expression*
u2f(operand a)
{
return expr(ir_unop_u2f, a);
}
ir_expression*
bitcast_u2f(operand a)
{
return expr(ir_unop_bitcast_u2f, a);
}
ir_expression*
i2b(operand a)
{
return expr(ir_unop_i2b, a);
}
ir_expression*
b2i(operand a)
{
return expr(ir_unop_b2i, a);
}
ir_expression *
f2b(operand a)
{
return expr(ir_unop_f2b, a);
}
ir_expression *
b2f(operand a)
{
return expr(ir_unop_b2f, a);
}
ir_expression *
fma(operand a, operand b, operand c)
{
return expr(ir_triop_fma, a, b, c);
}
ir_expression *
lrp(operand x, operand y, operand a)
{
return expr(ir_triop_lrp, x, y, a);
}
ir_expression *
csel(operand a, operand b, operand c)
{
return expr(ir_triop_csel, a, b, c);
}
ir_expression *
bitfield_insert(operand a, operand b, operand c, operand d)
{
void *mem_ctx = ralloc_parent(a.val);
return new(mem_ctx) ir_expression(ir_quadop_bitfield_insert,
a.val->type, a.val, b.val, c.val, d.val);
}
ir_if*
if_tree(operand condition,
ir_instruction *then_branch)
{
assert(then_branch != NULL);
void *mem_ctx = ralloc_parent(condition.val);
ir_if *result = new(mem_ctx) ir_if(condition.val);
result->then_instructions.push_tail(then_branch);
return result;
}
ir_if*
if_tree(operand condition,
ir_instruction *then_branch,
ir_instruction *else_branch)
{
assert(then_branch != NULL);
assert(else_branch != NULL);
void *mem_ctx = ralloc_parent(condition.val);
ir_if *result = new(mem_ctx) ir_if(condition.val);
result->then_instructions.push_tail(then_branch);
result->else_instructions.push_tail(else_branch);
return result;
}
} /* namespace ir_builder */