mesa/src/amd/vulkan/radv_entrypoints_gen.py
Samuel Pitoiset 9c88e4a272 radv/entrypoints: declare a driver internal layer for SQTT
Some Vulkan commands will be overriden to emit user SQTT markers.
These markers are then used by the Radeon GPU Profiler to display
timings, barrier operations (cache flushes, pipeline stalls, layout
transitions) and more.

Signed-off-by: Samuel Pitoiset <samuel.pitoiset@gmail.com>
Reviewed-by: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4031>
2020-03-10 09:57:49 +01:00

816 lines
24 KiB
Python

# coding=utf-8
#
# Copyright © 2015, 2017 Intel Corporation
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice (including the next
# paragraph) shall be included in all copies or substantial portions of the
# Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
#
import argparse
import functools
import math
import os
import xml.etree.cElementTree as et
from collections import OrderedDict, namedtuple
from mako.template import Template
from radv_extensions import *
# We generate a static hash table for entry point lookup
# (vkGetProcAddress). We use a linear congruential generator for our hash
# function and a power-of-two size table. The prime numbers are determined
# experimentally.
LAYERS = [
'radv',
'sqtt'
]
TEMPLATE_H = Template("""\
/* This file generated from ${filename}, don't edit directly. */
struct radv_instance_dispatch_table {
union {
void *entrypoints[${len(instance_entrypoints)}];
struct {
% for e in instance_entrypoints:
% if e.guard is not None:
#ifdef ${e.guard}
PFN_${e.name} ${e.name};
#else
void *${e.name};
# endif
% else:
PFN_${e.name} ${e.name};
% endif
% endfor
};
};
};
struct radv_physical_device_dispatch_table {
union {
void *entrypoints[${len(physical_device_entrypoints)}];
struct {
% for e in physical_device_entrypoints:
% if e.guard is not None:
#ifdef ${e.guard}
PFN_${e.name} ${e.name};
#else
void *${e.name};
# endif
% else:
PFN_${e.name} ${e.name};
% endif
% endfor
};
};
};
struct radv_device_dispatch_table {
union {
void *entrypoints[${len(device_entrypoints)}];
struct {
% for e in device_entrypoints:
% if e.guard is not None:
#ifdef ${e.guard}
PFN_${e.name} ${e.name};
#else
void *${e.name};
# endif
% else:
PFN_${e.name} ${e.name};
% endif
% endfor
};
};
};
extern const struct radv_instance_dispatch_table radv_instance_dispatch_table;
%for layer in LAYERS:
extern const struct radv_physical_device_dispatch_table ${layer}_physical_device_dispatch_table;
%endfor
%for layer in LAYERS:
extern const struct radv_device_dispatch_table ${layer}_device_dispatch_table;
%endfor
% for e in instance_entrypoints:
% if e.alias and e.alias.enabled:
<% continue %>
% endif
% if e.guard is not None:
#ifdef ${e.guard}
% endif
${e.return_type} ${e.prefixed_name('radv')}(${e.decl_params()});
% if e.guard is not None:
#endif // ${e.guard}
% endif
% endfor
% for e in physical_device_entrypoints:
% if e.alias:
<% continue %>
% endif
% if e.guard is not None:
#ifdef ${e.guard}
% endif
% for layer in LAYERS:
${e.return_type} ${e.prefixed_name(layer)}(${e.decl_params()});
% endfor
% if e.guard is not None:
#endif // ${e.guard}
% endif
% endfor
% for e in device_entrypoints:
% if e.alias and e.alias.enabled:
<% continue %>
% endif
% if e.guard is not None:
#ifdef ${e.guard}
% endif
% for layer in LAYERS:
${e.return_type} ${e.prefixed_name(layer)}(${e.decl_params()});
% endfor
% if e.guard is not None:
#endif // ${e.guard}
% endif
% endfor
""", output_encoding='utf-8')
TEMPLATE_C = Template(u"""\
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/* This file generated from ${filename}, don't edit directly. */
#include "radv_private.h"
#include "util/macros.h"
struct string_map_entry {
uint32_t name;
uint32_t hash;
uint32_t num;
};
/* We use a big string constant to avoid lots of reloctions from the entry
* point table to lots of little strings. The entries in the entry point table
* store the index into this big string.
*/
<%def name="strmap(strmap, prefix)">
static const char ${prefix}_strings[] =
% for s in strmap.sorted_strings:
"${s.string}\\0"
% endfor
;
static const struct string_map_entry ${prefix}_string_map_entries[] = {
% for s in strmap.sorted_strings:
{ ${s.offset}, ${'{:0=#8x}'.format(s.hash)}, ${s.num} }, /* ${s.string} */
% endfor
};
/* Hash table stats:
* size ${len(strmap.sorted_strings)} entries
* collisions entries:
% for i in range(10):
* ${i}${'+' if i == 9 else ' '} ${strmap.collisions[i]}
% endfor
*/
#define none 0xffff
static const uint16_t ${prefix}_string_map[${strmap.hash_size}] = {
% for e in strmap.mapping:
${ '{:0=#6x}'.format(e) if e >= 0 else 'none' },
% endfor
};
static int
${prefix}_string_map_lookup(const char *str)
{
static const uint32_t prime_factor = ${strmap.prime_factor};
static const uint32_t prime_step = ${strmap.prime_step};
const struct string_map_entry *e;
uint32_t hash, h;
uint16_t i;
const char *p;
hash = 0;
for (p = str; *p; p++)
hash = hash * prime_factor + *p;
h = hash;
while (1) {
i = ${prefix}_string_map[h & ${strmap.hash_mask}];
if (i == none)
return -1;
e = &${prefix}_string_map_entries[i];
if (e->hash == hash && strcmp(str, ${prefix}_strings + e->name) == 0)
return e->num;
h += prime_step;
}
return -1;
}
static const char *
${prefix}_entry_name(int num)
{
for (int i = 0; i < ARRAY_SIZE(${prefix}_string_map_entries); i++) {
if (${prefix}_string_map_entries[i].num == num)
return &${prefix}_strings[${prefix}_string_map_entries[i].name];
}
return NULL;
}
</%def>
${strmap(instance_strmap, 'instance')}
${strmap(physical_device_strmap, 'physical_device')}
${strmap(device_strmap, 'device')}
/* Weak aliases for all potential implementations. These will resolve to
* NULL if they're not defined, which lets the resolve_entrypoint() function
* either pick the correct entry point.
*/
% for e in instance_entrypoints:
% if e.alias and e.alias.enabled:
<% continue %>
% endif
% if e.guard is not None:
#ifdef ${e.guard}
% endif
${e.return_type} ${e.prefixed_name('radv')}(${e.decl_params()}) __attribute__ ((weak));
% if e.guard is not None:
#endif // ${e.guard}
% endif
% endfor
const struct radv_instance_dispatch_table radv_instance_dispatch_table = {
% for e in instance_entrypoints:
% if e.guard is not None:
#ifdef ${e.guard}
% endif
.${e.name} = ${e.prefixed_name('radv')},
% if e.guard is not None:
#endif // ${e.guard}
% endif
% endfor
};
% for e in physical_device_entrypoints:
% if e.alias and e.alias.enabled:
<% continue %>
% endif
% if e.guard is not None:
#ifdef ${e.guard}
% endif
${e.return_type} ${e.prefixed_name('radv')}(${e.decl_params()}) __attribute__ ((weak));
% if e.guard is not None:
#endif // ${e.guard}
% endif
% endfor
const struct radv_physical_device_dispatch_table radv_physical_device_dispatch_table = {
% for e in physical_device_entrypoints:
% if e.guard is not None:
#ifdef ${e.guard}
% endif
.${e.name} = ${e.prefixed_name('radv')},
% if e.guard is not None:
#endif // ${e.guard}
% endif
% endfor
};
% for layer in LAYERS:
% for e in device_entrypoints:
% if e.alias and e.alias.enabled:
<% continue %>
% endif
% if e.guard is not None:
#ifdef ${e.guard}
% endif
% if layer == 'radv':
${e.return_type} __attribute__ ((weak))
${e.prefixed_name('radv')}(${e.decl_params()})
{
% if e.params[0].type == 'VkDevice':
RADV_FROM_HANDLE(radv_device, radv_device, ${e.params[0].name});
return radv_device->dispatch.${e.name}(${e.call_params()});
% elif e.params[0].type == 'VkCommandBuffer':
RADV_FROM_HANDLE(radv_cmd_buffer, radv_cmd_buffer, ${e.params[0].name});
return radv_cmd_buffer->device->dispatch.${e.name}(${e.call_params()});
% elif e.params[0].type == 'VkQueue':
RADV_FROM_HANDLE(radv_queue, radv_queue, ${e.params[0].name});
return radv_queue->device->dispatch.${e.name}(${e.call_params()});
% else:
assert(!"Unhandled device child trampoline case: ${e.params[0].type}");
% endif
}
% else:
${e.return_type} ${e.prefixed_name(layer)}(${e.decl_params()}) __attribute__ ((weak));
% endif
% if e.guard is not None:
#endif // ${e.guard}
% endif
% endfor
const struct radv_device_dispatch_table ${layer}_device_dispatch_table = {
% for e in device_entrypoints:
% if e.guard is not None:
#ifdef ${e.guard}
% endif
.${e.name} = ${e.prefixed_name(layer)},
% if e.guard is not None:
#endif // ${e.guard}
% endif
% endfor
};
% endfor
/** Return true if the core version or extension in which the given entrypoint
* is defined is enabled.
*
* If device is NULL, all device extensions are considered enabled.
*/
bool
radv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
const struct radv_instance_extension_table *instance)
{
switch (index) {
% for e in instance_entrypoints:
case ${e.num}:
/* ${e.name} */
% if e.core_version:
return ${e.core_version.c_vk_version()} <= core_version;
% elif e.extensions:
% for ext in e.extensions:
% if ext.type == 'instance':
if (instance->${ext.name[3:]}) return true;
% else:
/* All device extensions are considered enabled at the instance level */
return true;
% endif
% endfor
return false;
% else:
return true;
% endif
% endfor
default:
return false;
}
}
/** Return true if the core version or extension in which the given entrypoint
* is defined is enabled.
*
* If device is NULL, all device extensions are considered enabled.
*/
bool
radv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
const struct radv_instance_extension_table *instance)
{
switch (index) {
% for e in physical_device_entrypoints:
case ${e.num}:
/* ${e.name} */
% if e.core_version:
return ${e.core_version.c_vk_version()} <= core_version;
% elif e.extensions:
% for ext in e.extensions:
% if ext.type == 'instance':
if (instance->${ext.name[3:]}) return true;
% else:
/* All device extensions are considered enabled at the instance level */
return true;
% endif
% endfor
return false;
% else:
return true;
% endif
% endfor
default:
return false;
}
}
/** Return true if the core version or extension in which the given entrypoint
* is defined is enabled.
*
* If device is NULL, all device extensions are considered enabled.
*/
bool
radv_device_entrypoint_is_enabled(int index, uint32_t core_version,
const struct radv_instance_extension_table *instance,
const struct radv_device_extension_table *device)
{
switch (index) {
% for e in device_entrypoints:
case ${e.num}:
/* ${e.name} */
% if e.core_version:
return ${e.core_version.c_vk_version()} <= core_version;
% elif e.extensions:
% for ext in e.extensions:
% if ext.type == 'instance':
<% assert False %>
% else:
if (!device || device->${ext.name[3:]}) return true;
% endif
% endfor
return false;
% else:
return true;
% endif
% endfor
default:
return false;
}
}
int
radv_get_instance_entrypoint_index(const char *name)
{
return instance_string_map_lookup(name);
}
int
radv_get_physical_device_entrypoint_index(const char *name)
{
return physical_device_string_map_lookup(name);
}
int
radv_get_device_entrypoint_index(const char *name)
{
return device_string_map_lookup(name);
}
const char *
radv_get_instance_entry_name(int index)
{
return instance_entry_name(index);
}
const char *
radv_get_physical_device_entry_name(int index)
{
return physical_device_entry_name(index);
}
const char *
radv_get_device_entry_name(int index)
{
return device_entry_name(index);
}
static void * __attribute__ ((noinline))
radv_resolve_device_entrypoint(uint32_t index)
{
return radv_device_dispatch_table.entrypoints[index];
}
void *
radv_lookup_entrypoint(const char *name)
{
int idx = radv_get_instance_entrypoint_index(name);
if (idx >= 0)
return radv_instance_dispatch_table.entrypoints[idx];
idx = radv_get_physical_device_entrypoint_index(name);
if (idx >= 0)
return radv_physical_device_dispatch_table.entrypoints[idx];
idx = radv_get_device_entrypoint_index(name);
if (idx >= 0)
return radv_resolve_device_entrypoint(idx);
return NULL;
}""", output_encoding='utf-8')
U32_MASK = 2**32 - 1
PRIME_FACTOR = 5024183
PRIME_STEP = 19
def round_to_pow2(x):
return 2**int(math.ceil(math.log(x, 2)))
class StringIntMapEntry(object):
def __init__(self, string, num):
self.string = string
self.num = num
# Calculate the same hash value that we will calculate in C.
h = 0
for c in string:
h = ((h * PRIME_FACTOR) + ord(c)) & U32_MASK
self.hash = h
self.offset = None
class StringIntMap(object):
def __init__(self):
self.baked = False
self.strings = dict()
def add_string(self, string, num):
assert not self.baked
assert string not in self.strings
assert num >= 0 and num < 2**31
self.strings[string] = StringIntMapEntry(string, num)
def bake(self):
self.sorted_strings = \
sorted(self.strings.values(), key=lambda x: x.string)
offset = 0
for entry in self.sorted_strings:
entry.offset = offset
offset += len(entry.string) + 1
# Save off some values that we'll need in C
self.hash_size = round_to_pow2(len(self.strings) * 1.25)
self.hash_mask = self.hash_size - 1
self.prime_factor = PRIME_FACTOR
self.prime_step = PRIME_STEP
self.mapping = [-1] * self.hash_size
self.collisions = [0] * 10
for idx, s in enumerate(self.sorted_strings):
level = 0
h = s.hash
while self.mapping[h & self.hash_mask] >= 0:
h = h + PRIME_STEP
level = level + 1
self.collisions[min(level, 9)] += 1
self.mapping[h & self.hash_mask] = idx
EntrypointParam = namedtuple('EntrypointParam', 'type name decl')
class EntrypointBase(object):
def __init__(self, name):
self.name = name
self.alias = None
self.guard = None
self.enabled = False
self.num = None
# Extensions which require this entrypoint
self.core_version = None
self.extensions = []
def prefixed_name(self, prefix):
assert self.name.startswith('vk')
return prefix + '_' + self.name[2:]
class Entrypoint(EntrypointBase):
def __init__(self, name, return_type, params, guard = None):
super(Entrypoint, self).__init__(name)
self.return_type = return_type
self.params = params
self.guard = guard
def is_physical_device_entrypoint(self):
return self.params[0].type in ('VkPhysicalDevice', )
def is_device_entrypoint(self):
return self.params[0].type in ('VkDevice', 'VkCommandBuffer', 'VkQueue')
def decl_params(self):
return ', '.join(p.decl for p in self.params)
def call_params(self):
return ', '.join(p.name for p in self.params)
class EntrypointAlias(EntrypointBase):
def __init__(self, name, entrypoint):
super(EntrypointAlias, self).__init__(name)
self.alias = entrypoint
def is_physical_device_entrypoint(self):
return self.alias.is_physical_device_entrypoint()
def is_device_entrypoint(self):
return self.alias.is_device_entrypoint()
def prefixed_name(self, prefix):
if self.alias.enabled:
return self.alias.prefixed_name(prefix)
return super(EntrypointAlias, self).prefixed_name(prefix)
@property
def params(self):
return self.alias.params
@property
def return_type(self):
return self.alias.return_type
def decl_params(self):
return self.alias.decl_params()
def call_params(self):
return self.alias.call_params()
def get_entrypoints(doc, entrypoints_to_defines):
"""Extract the entry points from the registry."""
entrypoints = OrderedDict()
for command in doc.findall('./commands/command'):
if 'alias' in command.attrib:
alias = command.attrib['name']
target = command.attrib['alias']
entrypoints[alias] = EntrypointAlias(alias, entrypoints[target])
else:
name = command.find('./proto/name').text
ret_type = command.find('./proto/type').text
params = [EntrypointParam(
type = p.find('./type').text,
name = p.find('./name').text,
decl = ''.join(p.itertext())
) for p in command.findall('./param')]
guard = entrypoints_to_defines.get(name)
# They really need to be unique
assert name not in entrypoints
entrypoints[name] = Entrypoint(name, ret_type, params, guard)
for feature in doc.findall('./feature'):
assert feature.attrib['api'] == 'vulkan'
version = VkVersion(feature.attrib['number'])
if version > MAX_API_VERSION:
continue
for command in feature.findall('./require/command'):
e = entrypoints[command.attrib['name']]
e.enabled = True
assert e.core_version is None
e.core_version = version
supported_exts = dict((ext.name, ext) for ext in EXTENSIONS)
for extension in doc.findall('.extensions/extension'):
ext_name = extension.attrib['name']
if ext_name not in supported_exts:
continue
ext = supported_exts[ext_name]
ext.type = extension.attrib['type']
for command in extension.findall('./require/command'):
e = entrypoints[command.attrib['name']]
e.enabled = True
assert e.core_version is None
e.extensions.append(ext)
# if the base command is not supported by the driver yet, don't alias aliases
for e in entrypoints.values():
if e.alias and not e.alias.enabled:
e_clone = copy.deepcopy(e.alias)
e_clone.enabled = True
e_clone.name = e.name
entrypoints[e.name] = e_clone
return [e for e in entrypoints.values() if e.enabled]
def get_entrypoints_defines(doc):
"""Maps entry points to extension defines."""
entrypoints_to_defines = {}
platform_define = {}
for platform in doc.findall('./platforms/platform'):
name = platform.attrib['name']
define = platform.attrib['protect']
platform_define[name] = define
for extension in doc.findall('./extensions/extension[@platform]'):
platform = extension.attrib['platform']
define = platform_define[platform]
for entrypoint in extension.findall('./require/command'):
fullname = entrypoint.attrib['name']
entrypoints_to_defines[fullname] = define
return entrypoints_to_defines
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--outdir', help='Where to write the files.',
required=True)
parser.add_argument('--xml',
help='Vulkan API XML file.',
required=True,
action='append',
dest='xml_files')
args = parser.parse_args()
entrypoints = []
for filename in args.xml_files:
doc = et.parse(filename)
entrypoints += get_entrypoints(doc, get_entrypoints_defines(doc))
device_entrypoints = []
physical_device_entrypoints = []
instance_entrypoints = []
for e in entrypoints:
if e.is_device_entrypoint():
device_entrypoints.append(e)
elif e.is_physical_device_entrypoint():
physical_device_entrypoints.append(e)
else:
instance_entrypoints.append(e)
device_strmap = StringIntMap()
for num, e in enumerate(device_entrypoints):
device_strmap.add_string(e.name, num)
e.num = num
device_strmap.bake()
physical_device_strmap = StringIntMap()
for num, e in enumerate(physical_device_entrypoints):
physical_device_strmap.add_string(e.name, num)
e.num = num
physical_device_strmap.bake()
instance_strmap = StringIntMap()
for num, e in enumerate(instance_entrypoints):
instance_strmap.add_string(e.name, num)
e.num = num
instance_strmap.bake()
# For outputting entrypoints.h we generate a radv_EntryPoint() prototype
# per entry point.
try:
with open(os.path.join(args.outdir, 'radv_entrypoints.h'), 'wb') as f:
f.write(TEMPLATE_H.render(instance_entrypoints=instance_entrypoints,
physical_device_entrypoints=physical_device_entrypoints,
device_entrypoints=device_entrypoints,
LAYERS=LAYERS,
filename=os.path.basename(__file__)))
with open(os.path.join(args.outdir, 'radv_entrypoints.c'), 'wb') as f:
f.write(TEMPLATE_C.render(instance_entrypoints=instance_entrypoints,
physical_device_entrypoints=physical_device_entrypoints,
device_entrypoints=device_entrypoints,
LAYERS=LAYERS,
instance_strmap=instance_strmap,
physical_device_strmap=physical_device_strmap,
device_strmap=device_strmap,
filename=os.path.basename(__file__)))
except Exception:
# In the event there's an error, this imports some helpers from mako
# to print a useful stack trace and prints it, then exits with
# status 1, if python is run with debug; otherwise it just raises
# the exception
if __debug__:
import sys
from mako import exceptions
sys.stderr.write(exceptions.text_error_template().render() + '\n')
sys.exit(1)
raise
if __name__ == '__main__':
main()