mesa/src/intel/vulkan/anv_pipeline.c
Timothy Arceri eda3ec7957 i965: use nir_lower_indirect_derefs() for GLSL
This moves the nir_lower_indirect_derefs() call into
brw_preprocess_nir() so thats is called by both OpenGL and Vulkan
and removes that call to the old GLSL IR pass
lower_variable_index_to_cond_assign()

We want to do this pass in nir to be able to move loop unrolling
to nir.

There is a increase of 1-3 instructions in a small number of shaders,
and 2 Kerbal Space program shaders that increase by 32 instructions.
The changes seem to be caused be the difference in the GLSL IR vs
NIR variable index lowering passes. The GLSL IR pass creates a
simple if ladder for arrays of size 4 or less, while the NIR pass
implements a binary search for all arrays regardless of size.

Shader-db results BDW:

total instructions in shared programs: 13021176 -> 13021819 (0.00%)
instructions in affected programs: 57693 -> 58336 (1.11%)
helped: 20
HURT: 190

total cycles in shared programs: 299805580 -> 299750826 (-0.02%)
cycles in affected programs: 2290024 -> 2235270 (-2.39%)
helped: 337
HURT: 442

total fills in shared programs: 19984 -> 19984 (0.00%)
fills in affected programs: 0 -> 0
helped: 0
HURT: 0

LOST:   4
GAINED: 0

V2: remove the do_copy_propagation() call from the i965 GLSL IR
linking code. This call was added in f7741c5211 but since we are
moving the variable index lowering to NIR we no longer need it and
can just rely on the nir copy propagation pass.

Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
2016-12-23 10:15:36 +11:00

1119 lines
39 KiB
C

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "util/mesa-sha1.h"
#include "common/gen_l3_config.h"
#include "anv_private.h"
#include "brw_nir.h"
#include "anv_nir.h"
#include "spirv/nir_spirv.h"
/* Needed for SWIZZLE macros */
#include "program/prog_instruction.h"
// Shader functions
VkResult anv_CreateShaderModule(
VkDevice _device,
const VkShaderModuleCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkShaderModule* pShaderModule)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_shader_module *module;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
assert(pCreateInfo->flags == 0);
module = vk_alloc2(&device->alloc, pAllocator,
sizeof(*module) + pCreateInfo->codeSize, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (module == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
module->size = pCreateInfo->codeSize;
memcpy(module->data, pCreateInfo->pCode, module->size);
_mesa_sha1_compute(module->data, module->size, module->sha1);
*pShaderModule = anv_shader_module_to_handle(module);
return VK_SUCCESS;
}
void anv_DestroyShaderModule(
VkDevice _device,
VkShaderModule _module,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_shader_module, module, _module);
if (!module)
return;
vk_free2(&device->alloc, pAllocator, module);
}
#define SPIR_V_MAGIC_NUMBER 0x07230203
/* Eventually, this will become part of anv_CreateShader. Unfortunately,
* we can't do that yet because we don't have the ability to copy nir.
*/
static nir_shader *
anv_shader_compile_to_nir(struct anv_device *device,
struct anv_shader_module *module,
const char *entrypoint_name,
gl_shader_stage stage,
const VkSpecializationInfo *spec_info)
{
if (strcmp(entrypoint_name, "main") != 0) {
anv_finishme("Multiple shaders per module not really supported");
}
const struct brw_compiler *compiler =
device->instance->physicalDevice.compiler;
const nir_shader_compiler_options *nir_options =
compiler->glsl_compiler_options[stage].NirOptions;
uint32_t *spirv = (uint32_t *) module->data;
assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
assert(module->size % 4 == 0);
uint32_t num_spec_entries = 0;
struct nir_spirv_specialization *spec_entries = NULL;
if (spec_info && spec_info->mapEntryCount > 0) {
num_spec_entries = spec_info->mapEntryCount;
spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
for (uint32_t i = 0; i < num_spec_entries; i++) {
VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
const void *data = spec_info->pData + entry.offset;
assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
spec_entries[i].id = spec_info->pMapEntries[i].constantID;
spec_entries[i].data = *(const uint32_t *)data;
}
}
nir_function *entry_point =
spirv_to_nir(spirv, module->size / 4,
spec_entries, num_spec_entries,
stage, entrypoint_name, nir_options);
nir_shader *nir = entry_point->shader;
assert(nir->stage == stage);
nir_validate_shader(nir);
free(spec_entries);
if (stage == MESA_SHADER_FRAGMENT) {
nir_lower_wpos_center(nir);
nir_validate_shader(nir);
}
/* We have to lower away local constant initializers right before we
* inline functions. That way they get properly initialized at the top
* of the function and not at the top of its caller.
*/
nir_lower_constant_initializers(nir, nir_var_local);
nir_validate_shader(nir);
nir_lower_returns(nir);
nir_validate_shader(nir);
nir_inline_functions(nir);
nir_validate_shader(nir);
/* Pick off the single entrypoint that we want */
foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
if (func != entry_point)
exec_node_remove(&func->node);
}
assert(exec_list_length(&nir->functions) == 1);
entry_point->name = ralloc_strdup(entry_point, "main");
nir_remove_dead_variables(nir, nir_var_shader_in);
nir_remove_dead_variables(nir, nir_var_shader_out);
nir_remove_dead_variables(nir, nir_var_system_value);
nir_validate_shader(nir);
/* Now that we've deleted all but the main function, we can go ahead and
* lower the rest of the constant initializers.
*/
nir_lower_constant_initializers(nir, ~0);
nir_validate_shader(nir);
nir_propagate_invariant(nir);
nir_validate_shader(nir);
nir_lower_io_to_temporaries(entry_point->shader, entry_point->impl,
true, false);
nir_lower_system_values(nir);
nir_validate_shader(nir);
/* Vulkan uses the separate-shader linking model */
nir->info->separate_shader = true;
nir = brw_preprocess_nir(compiler, nir);
nir_lower_clip_cull_distance_arrays(nir);
nir_validate_shader(nir);
if (stage == MESA_SHADER_FRAGMENT)
anv_nir_lower_input_attachments(nir);
nir_shader_gather_info(nir, entry_point->impl);
return nir;
}
void anv_DestroyPipeline(
VkDevice _device,
VkPipeline _pipeline,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
if (!pipeline)
return;
anv_reloc_list_finish(&pipeline->batch_relocs,
pAllocator ? pAllocator : &device->alloc);
if (pipeline->blend_state.map)
anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (pipeline->shaders[s])
anv_shader_bin_unref(device, pipeline->shaders[s]);
}
vk_free2(&device->alloc, pAllocator, pipeline);
}
static const uint32_t vk_to_gen_primitive_type[] = {
[VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST,
[VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST,
[VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
[VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
[VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
/* [VK_PRIMITIVE_TOPOLOGY_PATCH_LIST] = _3DPRIM_PATCHLIST_1 */
};
static void
populate_sampler_prog_key(const struct gen_device_info *devinfo,
struct brw_sampler_prog_key_data *key)
{
/* XXX: Handle texture swizzle on HSW- */
for (int i = 0; i < MAX_SAMPLERS; i++) {
/* Assume color sampler, no swizzling. (Works for BDW+) */
key->swizzles[i] = SWIZZLE_XYZW;
}
}
static void
populate_vs_prog_key(const struct gen_device_info *devinfo,
struct brw_vs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_sampler_prog_key(devinfo, &key->tex);
/* XXX: Handle vertex input work-arounds */
/* XXX: Handle sampler_prog_key */
}
static void
populate_gs_prog_key(const struct gen_device_info *devinfo,
struct brw_gs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_sampler_prog_key(devinfo, &key->tex);
}
static void
populate_wm_prog_key(const struct gen_device_info *devinfo,
const VkGraphicsPipelineCreateInfo *info,
struct brw_wm_prog_key *key)
{
ANV_FROM_HANDLE(anv_render_pass, render_pass, info->renderPass);
memset(key, 0, sizeof(*key));
populate_sampler_prog_key(devinfo, &key->tex);
/* TODO: Fill out key->input_slots_valid */
/* Vulkan doesn't specify a default */
key->high_quality_derivatives = false;
/* XXX Vulkan doesn't appear to specify */
key->clamp_fragment_color = false;
key->nr_color_regions =
render_pass->subpasses[info->subpass].color_count;
key->replicate_alpha = key->nr_color_regions > 1 &&
info->pMultisampleState &&
info->pMultisampleState->alphaToCoverageEnable;
if (info->pMultisampleState && info->pMultisampleState->rasterizationSamples > 1) {
/* We should probably pull this out of the shader, but it's fairly
* harmless to compute it and then let dead-code take care of it.
*/
key->persample_interp =
(info->pMultisampleState->minSampleShading *
info->pMultisampleState->rasterizationSamples) > 1;
key->multisample_fbo = true;
}
}
static void
populate_cs_prog_key(const struct gen_device_info *devinfo,
struct brw_cs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_sampler_prog_key(devinfo, &key->tex);
}
static nir_shader *
anv_pipeline_compile(struct anv_pipeline *pipeline,
struct anv_shader_module *module,
const char *entrypoint,
gl_shader_stage stage,
const VkSpecializationInfo *spec_info,
struct brw_stage_prog_data *prog_data,
struct anv_pipeline_bind_map *map)
{
nir_shader *nir = anv_shader_compile_to_nir(pipeline->device,
module, entrypoint, stage,
spec_info);
if (nir == NULL)
return NULL;
anv_nir_lower_push_constants(nir);
/* Figure out the number of parameters */
prog_data->nr_params = 0;
if (nir->num_uniforms > 0) {
/* If the shader uses any push constants at all, we'll just give
* them the maximum possible number
*/
assert(nir->num_uniforms <= MAX_PUSH_CONSTANTS_SIZE);
prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float);
}
if (pipeline->layout && pipeline->layout->stage[stage].has_dynamic_offsets)
prog_data->nr_params += MAX_DYNAMIC_BUFFERS * 2;
if (nir->info->num_images > 0) {
prog_data->nr_params += nir->info->num_images * BRW_IMAGE_PARAM_SIZE;
pipeline->needs_data_cache = true;
}
if (stage == MESA_SHADER_COMPUTE)
((struct brw_cs_prog_data *)prog_data)->thread_local_id_index =
prog_data->nr_params++; /* The CS Thread ID uniform */
if (nir->info->num_ssbos > 0)
pipeline->needs_data_cache = true;
if (prog_data->nr_params > 0) {
/* XXX: I think we're leaking this */
prog_data->param = (const union gl_constant_value **)
malloc(prog_data->nr_params * sizeof(union gl_constant_value *));
/* We now set the param values to be offsets into a
* anv_push_constant_data structure. Since the compiler doesn't
* actually dereference any of the gl_constant_value pointers in the
* params array, it doesn't really matter what we put here.
*/
struct anv_push_constants *null_data = NULL;
if (nir->num_uniforms > 0) {
/* Fill out the push constants section of the param array */
for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++)
prog_data->param[i] = (const union gl_constant_value *)
&null_data->client_data[i * sizeof(float)];
}
}
/* Set up dynamic offsets */
anv_nir_apply_dynamic_offsets(pipeline, nir, prog_data);
/* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
if (pipeline->layout)
anv_nir_apply_pipeline_layout(pipeline, nir, prog_data, map);
/* nir_lower_io will only handle the push constants; we need to set this
* to the full number of possible uniforms.
*/
nir->num_uniforms = prog_data->nr_params * 4;
return nir;
}
static void
anv_fill_binding_table(struct brw_stage_prog_data *prog_data, unsigned bias)
{
prog_data->binding_table.size_bytes = 0;
prog_data->binding_table.texture_start = bias;
prog_data->binding_table.gather_texture_start = bias;
prog_data->binding_table.ubo_start = bias;
prog_data->binding_table.ssbo_start = bias;
prog_data->binding_table.image_start = bias;
}
static struct anv_shader_bin *
anv_pipeline_upload_kernel(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
const void *key_data, uint32_t key_size,
const void *kernel_data, uint32_t kernel_size,
const struct brw_stage_prog_data *prog_data,
uint32_t prog_data_size,
const struct anv_pipeline_bind_map *bind_map)
{
if (cache) {
return anv_pipeline_cache_upload_kernel(cache, key_data, key_size,
kernel_data, kernel_size,
prog_data, prog_data_size,
bind_map);
} else {
return anv_shader_bin_create(pipeline->device, key_data, key_size,
kernel_data, kernel_size,
prog_data, prog_data_size,
prog_data->param, bind_map);
}
}
static void
anv_pipeline_add_compiled_stage(struct anv_pipeline *pipeline,
gl_shader_stage stage,
struct anv_shader_bin *shader)
{
pipeline->shaders[stage] = shader;
pipeline->active_stages |= mesa_to_vk_shader_stage(stage);
}
static VkResult
anv_pipeline_compile_vs(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *info,
struct anv_shader_module *module,
const char *entrypoint,
const VkSpecializationInfo *spec_info)
{
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
struct anv_pipeline_bind_map map;
struct brw_vs_prog_key key;
struct anv_shader_bin *bin = NULL;
unsigned char sha1[20];
populate_vs_prog_key(&pipeline->device->info, &key);
if (cache) {
anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint,
pipeline->layout, spec_info);
bin = anv_pipeline_cache_search(cache, sha1, 20);
}
if (bin == NULL) {
struct brw_vs_prog_data prog_data = { 0, };
struct anv_pipeline_binding surface_to_descriptor[256];
struct anv_pipeline_binding sampler_to_descriptor[256];
map = (struct anv_pipeline_bind_map) {
.surface_to_descriptor = surface_to_descriptor,
.sampler_to_descriptor = sampler_to_descriptor
};
nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
MESA_SHADER_VERTEX, spec_info,
&prog_data.base.base, &map);
if (nir == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
anv_fill_binding_table(&prog_data.base.base, 0);
void *mem_ctx = ralloc_context(NULL);
ralloc_steal(mem_ctx, nir);
prog_data.inputs_read = nir->info->inputs_read;
brw_compute_vue_map(&pipeline->device->info,
&prog_data.base.vue_map,
nir->info->outputs_written,
nir->info->separate_shader);
unsigned code_size;
const unsigned *shader_code =
brw_compile_vs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
NULL, false, -1, &code_size, NULL);
if (shader_code == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
shader_code, code_size,
&prog_data.base.base, sizeof(prog_data),
&map);
if (!bin) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
ralloc_free(mem_ctx);
}
anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_VERTEX, bin);
return VK_SUCCESS;
}
static VkResult
anv_pipeline_compile_gs(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *info,
struct anv_shader_module *module,
const char *entrypoint,
const VkSpecializationInfo *spec_info)
{
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
struct anv_pipeline_bind_map map;
struct brw_gs_prog_key key;
struct anv_shader_bin *bin = NULL;
unsigned char sha1[20];
populate_gs_prog_key(&pipeline->device->info, &key);
if (cache) {
anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint,
pipeline->layout, spec_info);
bin = anv_pipeline_cache_search(cache, sha1, 20);
}
if (bin == NULL) {
struct brw_gs_prog_data prog_data = { 0, };
struct anv_pipeline_binding surface_to_descriptor[256];
struct anv_pipeline_binding sampler_to_descriptor[256];
map = (struct anv_pipeline_bind_map) {
.surface_to_descriptor = surface_to_descriptor,
.sampler_to_descriptor = sampler_to_descriptor
};
nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
MESA_SHADER_GEOMETRY, spec_info,
&prog_data.base.base, &map);
if (nir == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
anv_fill_binding_table(&prog_data.base.base, 0);
void *mem_ctx = ralloc_context(NULL);
ralloc_steal(mem_ctx, nir);
brw_compute_vue_map(&pipeline->device->info,
&prog_data.base.vue_map,
nir->info->outputs_written,
nir->info->separate_shader);
unsigned code_size;
const unsigned *shader_code =
brw_compile_gs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
NULL, -1, &code_size, NULL);
if (shader_code == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
/* TODO: SIMD8 GS */
bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
shader_code, code_size,
&prog_data.base.base, sizeof(prog_data),
&map);
if (!bin) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
ralloc_free(mem_ctx);
}
anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_GEOMETRY, bin);
return VK_SUCCESS;
}
static VkResult
anv_pipeline_compile_fs(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *info,
struct anv_shader_module *module,
const char *entrypoint,
const VkSpecializationInfo *spec_info)
{
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
struct anv_pipeline_bind_map map;
struct brw_wm_prog_key key;
struct anv_shader_bin *bin = NULL;
unsigned char sha1[20];
populate_wm_prog_key(&pipeline->device->info, info, &key);
if (cache) {
anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint,
pipeline->layout, spec_info);
bin = anv_pipeline_cache_search(cache, sha1, 20);
}
if (bin == NULL) {
struct brw_wm_prog_data prog_data = { 0, };
struct anv_pipeline_binding surface_to_descriptor[256];
struct anv_pipeline_binding sampler_to_descriptor[256];
map = (struct anv_pipeline_bind_map) {
.surface_to_descriptor = surface_to_descriptor + 8,
.sampler_to_descriptor = sampler_to_descriptor
};
nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
MESA_SHADER_FRAGMENT, spec_info,
&prog_data.base, &map);
if (nir == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
unsigned num_rts = 0;
struct anv_pipeline_binding rt_bindings[8];
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
nir_foreach_variable_safe(var, &nir->outputs) {
if (var->data.location < FRAG_RESULT_DATA0)
continue;
unsigned rt = var->data.location - FRAG_RESULT_DATA0;
if (rt >= key.nr_color_regions) {
/* Out-of-bounds, throw it away */
var->data.mode = nir_var_local;
exec_node_remove(&var->node);
exec_list_push_tail(&impl->locals, &var->node);
continue;
}
/* Give it a new, compacted, location */
var->data.location = FRAG_RESULT_DATA0 + num_rts;
unsigned array_len =
glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
assert(num_rts + array_len <= 8);
for (unsigned i = 0; i < array_len; i++) {
rt_bindings[num_rts + i] = (struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
.binding = 0,
.index = rt + i,
};
}
num_rts += array_len;
}
if (num_rts == 0) {
/* If we have no render targets, we need a null render target */
rt_bindings[0] = (struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
.binding = 0,
.index = UINT8_MAX,
};
num_rts = 1;
}
assert(num_rts <= 8);
map.surface_to_descriptor -= num_rts;
map.surface_count += num_rts;
assert(map.surface_count <= 256);
memcpy(map.surface_to_descriptor, rt_bindings,
num_rts * sizeof(*rt_bindings));
anv_fill_binding_table(&prog_data.base, num_rts);
void *mem_ctx = ralloc_context(NULL);
ralloc_steal(mem_ctx, nir);
unsigned code_size;
const unsigned *shader_code =
brw_compile_fs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
NULL, -1, -1, true, false, NULL, &code_size, NULL);
if (shader_code == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
shader_code, code_size,
&prog_data.base, sizeof(prog_data),
&map);
if (!bin) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
ralloc_free(mem_ctx);
}
anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_FRAGMENT, bin);
return VK_SUCCESS;
}
VkResult
anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
const VkComputePipelineCreateInfo *info,
struct anv_shader_module *module,
const char *entrypoint,
const VkSpecializationInfo *spec_info)
{
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
struct anv_pipeline_bind_map map;
struct brw_cs_prog_key key;
struct anv_shader_bin *bin = NULL;
unsigned char sha1[20];
populate_cs_prog_key(&pipeline->device->info, &key);
if (cache) {
anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint,
pipeline->layout, spec_info);
bin = anv_pipeline_cache_search(cache, sha1, 20);
}
if (bin == NULL) {
struct brw_cs_prog_data prog_data = { 0, };
struct anv_pipeline_binding surface_to_descriptor[256];
struct anv_pipeline_binding sampler_to_descriptor[256];
map = (struct anv_pipeline_bind_map) {
.surface_to_descriptor = surface_to_descriptor,
.sampler_to_descriptor = sampler_to_descriptor
};
nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
MESA_SHADER_COMPUTE, spec_info,
&prog_data.base, &map);
if (nir == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
anv_fill_binding_table(&prog_data.base, 1);
void *mem_ctx = ralloc_context(NULL);
ralloc_steal(mem_ctx, nir);
unsigned code_size;
const unsigned *shader_code =
brw_compile_cs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
-1, &code_size, NULL);
if (shader_code == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
shader_code, code_size,
&prog_data.base, sizeof(prog_data),
&map);
if (!bin) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
ralloc_free(mem_ctx);
}
anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_COMPUTE, bin);
return VK_SUCCESS;
}
/**
* Copy pipeline state not marked as dynamic.
* Dynamic state is pipeline state which hasn't been provided at pipeline
* creation time, but is dynamically provided afterwards using various
* vkCmdSet* functions.
*
* The set of state considered "non_dynamic" is determined by the pieces of
* state that have their corresponding VkDynamicState enums omitted from
* VkPipelineDynamicStateCreateInfo::pDynamicStates.
*
* @param[out] pipeline Destination non_dynamic state.
* @param[in] pCreateInfo Source of non_dynamic state to be copied.
*/
static void
copy_non_dynamic_state(struct anv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
pipeline->dynamic_state = default_dynamic_state;
if (pCreateInfo->pDynamicState) {
/* Remove all of the states that are marked as dynamic */
uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
for (uint32_t s = 0; s < count; s++)
states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
}
struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
/* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pViewportState is [...] NULL if the pipeline
* has rasterization disabled.
*/
if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
assert(pCreateInfo->pViewportState);
dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
typed_memcpy(dynamic->viewport.viewports,
pCreateInfo->pViewportState->pViewports,
pCreateInfo->pViewportState->viewportCount);
}
dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
typed_memcpy(dynamic->scissor.scissors,
pCreateInfo->pViewportState->pScissors,
pCreateInfo->pViewportState->scissorCount);
}
}
if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
assert(pCreateInfo->pRasterizationState);
dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
}
if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
assert(pCreateInfo->pRasterizationState);
dynamic->depth_bias.bias =
pCreateInfo->pRasterizationState->depthBiasConstantFactor;
dynamic->depth_bias.clamp =
pCreateInfo->pRasterizationState->depthBiasClamp;
dynamic->depth_bias.slope =
pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
}
/* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pColorBlendState is [...] NULL if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is
* created against does not use any color attachments.
*/
bool uses_color_att = false;
for (unsigned i = 0; i < subpass->color_count; ++i) {
if (subpass->color_attachments[i] != VK_ATTACHMENT_UNUSED) {
uses_color_att = true;
break;
}
}
if (uses_color_att &&
!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
assert(pCreateInfo->pColorBlendState);
if (states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS))
typed_memcpy(dynamic->blend_constants,
pCreateInfo->pColorBlendState->blendConstants, 4);
}
/* If there is no depthstencil attachment, then don't read
* pDepthStencilState. The Vulkan spec states that pDepthStencilState may
* be NULL in this case. Even if pDepthStencilState is non-NULL, there is
* no need to override the depthstencil defaults in
* anv_pipeline::dynamic_state when there is no depthstencil attachment.
*
* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pDepthStencilState is [...] NULL if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is created
* against does not use a depth/stencil attachment.
*/
if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED) {
assert(pCreateInfo->pDepthStencilState);
if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
dynamic->depth_bounds.min =
pCreateInfo->pDepthStencilState->minDepthBounds;
dynamic->depth_bounds.max =
pCreateInfo->pDepthStencilState->maxDepthBounds;
}
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
dynamic->stencil_compare_mask.front =
pCreateInfo->pDepthStencilState->front.compareMask;
dynamic->stencil_compare_mask.back =
pCreateInfo->pDepthStencilState->back.compareMask;
}
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
dynamic->stencil_write_mask.front =
pCreateInfo->pDepthStencilState->front.writeMask;
dynamic->stencil_write_mask.back =
pCreateInfo->pDepthStencilState->back.writeMask;
}
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
dynamic->stencil_reference.front =
pCreateInfo->pDepthStencilState->front.reference;
dynamic->stencil_reference.back =
pCreateInfo->pDepthStencilState->back.reference;
}
}
pipeline->dynamic_state_mask = states;
}
static void
anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
{
struct anv_render_pass *renderpass = NULL;
struct anv_subpass *subpass = NULL;
/* Assert that all required members of VkGraphicsPipelineCreateInfo are
* present. See the Vulkan 1.0.28 spec, Section 9.2 Graphics Pipelines.
*/
assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
renderpass = anv_render_pass_from_handle(info->renderPass);
assert(renderpass);
assert(info->subpass < renderpass->subpass_count);
subpass = &renderpass->subpasses[info->subpass];
assert(info->stageCount >= 1);
assert(info->pVertexInputState);
assert(info->pInputAssemblyState);
assert(info->pRasterizationState);
if (!info->pRasterizationState->rasterizerDiscardEnable) {
assert(info->pViewportState);
assert(info->pMultisampleState);
if (subpass && subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED)
assert(info->pDepthStencilState);
if (subpass && subpass->color_count > 0)
assert(info->pColorBlendState);
}
for (uint32_t i = 0; i < info->stageCount; ++i) {
switch (info->pStages[i].stage) {
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
assert(info->pTessellationState);
break;
default:
break;
}
}
}
/**
* Calculate the desired L3 partitioning based on the current state of the
* pipeline. For now this simply returns the conservative defaults calculated
* by get_default_l3_weights(), but we could probably do better by gathering
* more statistics from the pipeline state (e.g. guess of expected URB usage
* and bound surfaces), or by using feed-back from performance counters.
*/
void
anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
{
const struct gen_device_info *devinfo = &pipeline->device->info;
const struct gen_l3_weights w =
gen_get_default_l3_weights(devinfo, pipeline->needs_data_cache, needs_slm);
pipeline->urb.l3_config = gen_get_l3_config(devinfo, w);
pipeline->urb.total_size =
gen_get_l3_config_urb_size(devinfo, pipeline->urb.l3_config);
}
VkResult
anv_pipeline_init(struct anv_pipeline *pipeline,
struct anv_device *device,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *alloc)
{
VkResult result;
anv_validate {
anv_pipeline_validate_create_info(pCreateInfo);
}
if (alloc == NULL)
alloc = &device->alloc;
pipeline->device = device;
pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout);
result = anv_reloc_list_init(&pipeline->batch_relocs, alloc);
if (result != VK_SUCCESS)
return result;
pipeline->batch.alloc = alloc;
pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
pipeline->batch.relocs = &pipeline->batch_relocs;
copy_non_dynamic_state(pipeline, pCreateInfo);
pipeline->depth_clamp_enable = pCreateInfo->pRasterizationState &&
pCreateInfo->pRasterizationState->depthClampEnable;
pipeline->needs_data_cache = false;
/* When we free the pipeline, we detect stages based on the NULL status
* of various prog_data pointers. Make them NULL by default.
*/
memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
pipeline->active_stages = 0;
const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
struct anv_shader_module *modules[MESA_SHADER_STAGES] = { 0, };
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
gl_shader_stage stage = ffs(pCreateInfo->pStages[i].stage) - 1;
pStages[stage] = &pCreateInfo->pStages[i];
modules[stage] = anv_shader_module_from_handle(pStages[stage]->module);
}
if (modules[MESA_SHADER_VERTEX]) {
result = anv_pipeline_compile_vs(pipeline, cache, pCreateInfo,
modules[MESA_SHADER_VERTEX],
pStages[MESA_SHADER_VERTEX]->pName,
pStages[MESA_SHADER_VERTEX]->pSpecializationInfo);
if (result != VK_SUCCESS)
goto compile_fail;
}
if (modules[MESA_SHADER_TESS_CTRL] || modules[MESA_SHADER_TESS_EVAL])
anv_finishme("no tessellation support");
if (modules[MESA_SHADER_GEOMETRY]) {
result = anv_pipeline_compile_gs(pipeline, cache, pCreateInfo,
modules[MESA_SHADER_GEOMETRY],
pStages[MESA_SHADER_GEOMETRY]->pName,
pStages[MESA_SHADER_GEOMETRY]->pSpecializationInfo);
if (result != VK_SUCCESS)
goto compile_fail;
}
if (modules[MESA_SHADER_FRAGMENT]) {
result = anv_pipeline_compile_fs(pipeline, cache, pCreateInfo,
modules[MESA_SHADER_FRAGMENT],
pStages[MESA_SHADER_FRAGMENT]->pName,
pStages[MESA_SHADER_FRAGMENT]->pSpecializationInfo);
if (result != VK_SUCCESS)
goto compile_fail;
}
assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT);
anv_pipeline_setup_l3_config(pipeline, false);
const VkPipelineVertexInputStateCreateInfo *vi_info =
pCreateInfo->pVertexInputState;
const uint64_t inputs_read = get_vs_prog_data(pipeline)->inputs_read;
pipeline->vb_used = 0;
for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
const VkVertexInputAttributeDescription *desc =
&vi_info->pVertexAttributeDescriptions[i];
if (inputs_read & (1 << (VERT_ATTRIB_GENERIC0 + desc->location)))
pipeline->vb_used |= 1 << desc->binding;
}
for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
const VkVertexInputBindingDescription *desc =
&vi_info->pVertexBindingDescriptions[i];
pipeline->binding_stride[desc->binding] = desc->stride;
/* Step rate is programmed per vertex element (attribute), not
* binding. Set up a map of which bindings step per instance, for
* reference by vertex element setup. */
switch (desc->inputRate) {
default:
case VK_VERTEX_INPUT_RATE_VERTEX:
pipeline->instancing_enable[desc->binding] = false;
break;
case VK_VERTEX_INPUT_RATE_INSTANCE:
pipeline->instancing_enable[desc->binding] = true;
break;
}
}
const VkPipelineInputAssemblyStateCreateInfo *ia_info =
pCreateInfo->pInputAssemblyState;
pipeline->primitive_restart = ia_info->primitiveRestartEnable;
pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
return VK_SUCCESS;
compile_fail:
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (pipeline->shaders[s])
anv_shader_bin_unref(device, pipeline->shaders[s]);
}
anv_reloc_list_finish(&pipeline->batch_relocs, alloc);
return result;
}