mirror of
https://gitlab.freedesktop.org/mesa/mesa.git
synced 2026-01-07 15:10:12 +01:00
Apparently the quantization math isn't cheap. This further reduces overhead by 2% for drawoverhead/8 textures. The improvement is measured by looking at the sysprof percentage delta and multiplying by 2 (because we have the frontend and gallium threads with equal overhead, so the benefit is doubled compared to 1 thread). Both per-sampler and per-unit lod bias values are quantized. The difference in behavior is that both values are quantized separately and then added up, instead of first added up and then quantized. The worst case error is +- 1/256 in the reduced precision, i.e. off by one in a fixed-point representation, which should be fine. Reviewed-By: Mike Blumenkrantz <michael.blumenkrantz@gmail.com> Reviewed-by: Emma Anholt <emma@anholt.net> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/11339>
801 lines
17 KiB
C
801 lines
17 KiB
C
/**************************************************************************
|
|
*
|
|
* Copyright 2008 VMware, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sub license, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the
|
|
* next paragraph) shall be included in all copies or substantial portions
|
|
* of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
|
|
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
|
|
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
|
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
|
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
**************************************************************************/
|
|
|
|
|
|
/**
|
|
* Math utilities and approximations for common math functions.
|
|
* Reduced precision is usually acceptable in shaders...
|
|
*
|
|
* "fast" is used in the names of functions which are low-precision,
|
|
* or at least lower-precision than the normal C lib functions.
|
|
*/
|
|
|
|
|
|
#ifndef U_MATH_H
|
|
#define U_MATH_H
|
|
|
|
|
|
#include "c99_math.h"
|
|
#include <assert.h>
|
|
#include <float.h>
|
|
#include <stdarg.h>
|
|
|
|
#include "bitscan.h"
|
|
#include "u_endian.h" /* for UTIL_ARCH_BIG_ENDIAN */
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
|
|
#ifndef M_SQRT2
|
|
#define M_SQRT2 1.41421356237309504880
|
|
#endif
|
|
|
|
|
|
/**
|
|
* Initialize math module. This should be called before using any
|
|
* other functions in this module.
|
|
*/
|
|
extern void
|
|
util_init_math(void);
|
|
|
|
|
|
union fi {
|
|
float f;
|
|
int32_t i;
|
|
uint32_t ui;
|
|
};
|
|
|
|
|
|
union di {
|
|
double d;
|
|
int64_t i;
|
|
uint64_t ui;
|
|
};
|
|
|
|
|
|
/**
|
|
* Extract the IEEE float32 exponent.
|
|
*/
|
|
static inline signed
|
|
util_get_float32_exponent(float x)
|
|
{
|
|
union fi f;
|
|
|
|
f.f = x;
|
|
|
|
return ((f.ui >> 23) & 0xff) - 127;
|
|
}
|
|
|
|
|
|
#define LOG2_TABLE_SIZE_LOG2 8
|
|
#define LOG2_TABLE_SCALE (1 << LOG2_TABLE_SIZE_LOG2)
|
|
#define LOG2_TABLE_SIZE (LOG2_TABLE_SCALE + 1)
|
|
extern float log2_table[LOG2_TABLE_SIZE];
|
|
|
|
|
|
/**
|
|
* Fast approximation to log2(x).
|
|
*/
|
|
static inline float
|
|
util_fast_log2(float x)
|
|
{
|
|
union fi num;
|
|
float epart, mpart;
|
|
num.f = x;
|
|
epart = (float)(((num.i & 0x7f800000) >> 23) - 127);
|
|
/* mpart = log2_table[mantissa*LOG2_TABLE_SCALE + 0.5] */
|
|
mpart = log2_table[((num.i & 0x007fffff) + (1 << (22 - LOG2_TABLE_SIZE_LOG2))) >> (23 - LOG2_TABLE_SIZE_LOG2)];
|
|
return epart + mpart;
|
|
}
|
|
|
|
|
|
/**
|
|
* Floor(x), returned as int.
|
|
*/
|
|
static inline int
|
|
util_ifloor(float f)
|
|
{
|
|
#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
|
|
/*
|
|
* IEEE floor for computers that round to nearest or even.
|
|
* 'f' must be between -4194304 and 4194303.
|
|
* This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1",
|
|
* but uses some IEEE specific tricks for better speed.
|
|
* Contributed by Josh Vanderhoof
|
|
*/
|
|
int ai, bi;
|
|
double af, bf;
|
|
af = (3 << 22) + 0.5 + (double)f;
|
|
bf = (3 << 22) + 0.5 - (double)f;
|
|
/* GCC generates an extra fstp/fld without this. */
|
|
__asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
|
|
__asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
|
|
return (ai - bi) >> 1;
|
|
#else
|
|
int ai, bi;
|
|
double af, bf;
|
|
union fi u;
|
|
af = (3 << 22) + 0.5 + (double) f;
|
|
bf = (3 << 22) + 0.5 - (double) f;
|
|
u.f = (float) af; ai = u.i;
|
|
u.f = (float) bf; bi = u.i;
|
|
return (ai - bi) >> 1;
|
|
#endif
|
|
}
|
|
|
|
|
|
/**
|
|
* Round float to nearest int.
|
|
*/
|
|
static inline int
|
|
util_iround(float f)
|
|
{
|
|
#if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86)
|
|
int r;
|
|
__asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
|
|
return r;
|
|
#elif defined(PIPE_CC_MSVC) && defined(PIPE_ARCH_X86)
|
|
int r;
|
|
_asm {
|
|
fld f
|
|
fistp r
|
|
}
|
|
return r;
|
|
#else
|
|
if (f >= 0.0f)
|
|
return (int) (f + 0.5f);
|
|
else
|
|
return (int) (f - 0.5f);
|
|
#endif
|
|
}
|
|
|
|
|
|
/**
|
|
* Approximate floating point comparison
|
|
*/
|
|
static inline bool
|
|
util_is_approx(float a, float b, float tol)
|
|
{
|
|
return fabsf(b - a) <= tol;
|
|
}
|
|
|
|
|
|
/**
|
|
* util_is_X_inf_or_nan = test if x is NaN or +/- Inf
|
|
* util_is_X_nan = test if x is NaN
|
|
* util_X_inf_sign = return +1 for +Inf, -1 for -Inf, or 0 for not Inf
|
|
*
|
|
* NaN can be checked with x != x, however this fails with the fast math flag
|
|
**/
|
|
|
|
|
|
/**
|
|
* Single-float
|
|
*/
|
|
static inline bool
|
|
util_is_inf_or_nan(float x)
|
|
{
|
|
union fi tmp;
|
|
tmp.f = x;
|
|
return (tmp.ui & 0x7f800000) == 0x7f800000;
|
|
}
|
|
|
|
|
|
static inline bool
|
|
util_is_nan(float x)
|
|
{
|
|
union fi tmp;
|
|
tmp.f = x;
|
|
return (tmp.ui & 0x7fffffff) > 0x7f800000;
|
|
}
|
|
|
|
|
|
static inline int
|
|
util_inf_sign(float x)
|
|
{
|
|
union fi tmp;
|
|
tmp.f = x;
|
|
if ((tmp.ui & 0x7fffffff) != 0x7f800000) {
|
|
return 0;
|
|
}
|
|
|
|
return (x < 0) ? -1 : 1;
|
|
}
|
|
|
|
|
|
/**
|
|
* Double-float
|
|
*/
|
|
static inline bool
|
|
util_is_double_inf_or_nan(double x)
|
|
{
|
|
union di tmp;
|
|
tmp.d = x;
|
|
return (tmp.ui & 0x7ff0000000000000ULL) == 0x7ff0000000000000ULL;
|
|
}
|
|
|
|
|
|
static inline bool
|
|
util_is_double_nan(double x)
|
|
{
|
|
union di tmp;
|
|
tmp.d = x;
|
|
return (tmp.ui & 0x7fffffffffffffffULL) > 0x7ff0000000000000ULL;
|
|
}
|
|
|
|
|
|
static inline int
|
|
util_double_inf_sign(double x)
|
|
{
|
|
union di tmp;
|
|
tmp.d = x;
|
|
if ((tmp.ui & 0x7fffffffffffffffULL) != 0x7ff0000000000000ULL) {
|
|
return 0;
|
|
}
|
|
|
|
return (x < 0) ? -1 : 1;
|
|
}
|
|
|
|
|
|
/**
|
|
* Half-float
|
|
*/
|
|
static inline bool
|
|
util_is_half_inf_or_nan(int16_t x)
|
|
{
|
|
return (x & 0x7c00) == 0x7c00;
|
|
}
|
|
|
|
|
|
static inline bool
|
|
util_is_half_nan(int16_t x)
|
|
{
|
|
return (x & 0x7fff) > 0x7c00;
|
|
}
|
|
|
|
|
|
static inline int
|
|
util_half_inf_sign(int16_t x)
|
|
{
|
|
if ((x & 0x7fff) != 0x7c00) {
|
|
return 0;
|
|
}
|
|
|
|
return (x < 0) ? -1 : 1;
|
|
}
|
|
|
|
|
|
/**
|
|
* Return float bits.
|
|
*/
|
|
static inline unsigned
|
|
fui( float f )
|
|
{
|
|
union fi fi;
|
|
fi.f = f;
|
|
return fi.ui;
|
|
}
|
|
|
|
static inline float
|
|
uif(uint32_t ui)
|
|
{
|
|
union fi fi;
|
|
fi.ui = ui;
|
|
return fi.f;
|
|
}
|
|
|
|
|
|
/**
|
|
* Convert uint8_t to float in [0, 1].
|
|
*/
|
|
static inline float
|
|
ubyte_to_float(uint8_t ub)
|
|
{
|
|
return (float) ub * (1.0f / 255.0f);
|
|
}
|
|
|
|
|
|
/**
|
|
* Convert float in [0,1] to uint8_t in [0,255] with clamping.
|
|
*/
|
|
static inline uint8_t
|
|
float_to_ubyte(float f)
|
|
{
|
|
/* return 0 for NaN too */
|
|
if (!(f > 0.0f)) {
|
|
return (uint8_t) 0;
|
|
}
|
|
else if (f >= 1.0f) {
|
|
return (uint8_t) 255;
|
|
}
|
|
else {
|
|
union fi tmp;
|
|
tmp.f = f;
|
|
tmp.f = tmp.f * (255.0f/256.0f) + 32768.0f;
|
|
return (uint8_t) tmp.i;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Convert uint16_t to float in [0, 1].
|
|
*/
|
|
static inline float
|
|
ushort_to_float(uint16_t us)
|
|
{
|
|
return (float) us * (1.0f / 65535.0f);
|
|
}
|
|
|
|
|
|
/**
|
|
* Convert float in [0,1] to uint16_t in [0,65535] with clamping.
|
|
*/
|
|
static inline uint16_t
|
|
float_to_ushort(float f)
|
|
{
|
|
/* return 0 for NaN too */
|
|
if (!(f > 0.0f)) {
|
|
return (uint16_t) 0;
|
|
}
|
|
else if (f >= 1.0f) {
|
|
return (uint16_t) 65535;
|
|
}
|
|
else {
|
|
union fi tmp;
|
|
tmp.f = f;
|
|
tmp.f = tmp.f * (65535.0f/65536.0f) + 128.0f;
|
|
return (uint16_t) tmp.i;
|
|
}
|
|
}
|
|
|
|
static inline float
|
|
byte_to_float_tex(int8_t b)
|
|
{
|
|
return (b == -128) ? -1.0F : b * 1.0F / 127.0F;
|
|
}
|
|
|
|
static inline int8_t
|
|
float_to_byte_tex(float f)
|
|
{
|
|
return (int8_t) (127.0F * f);
|
|
}
|
|
|
|
/**
|
|
* Calc log base 2
|
|
*/
|
|
static inline unsigned
|
|
util_logbase2(unsigned n)
|
|
{
|
|
#if defined(HAVE___BUILTIN_CLZ)
|
|
return ((sizeof(unsigned) * 8 - 1) - __builtin_clz(n | 1));
|
|
#else
|
|
unsigned pos = 0;
|
|
if (n >= 1<<16) { n >>= 16; pos += 16; }
|
|
if (n >= 1<< 8) { n >>= 8; pos += 8; }
|
|
if (n >= 1<< 4) { n >>= 4; pos += 4; }
|
|
if (n >= 1<< 2) { n >>= 2; pos += 2; }
|
|
if (n >= 1<< 1) { pos += 1; }
|
|
return pos;
|
|
#endif
|
|
}
|
|
|
|
static inline uint64_t
|
|
util_logbase2_64(uint64_t n)
|
|
{
|
|
#if defined(HAVE___BUILTIN_CLZLL)
|
|
return ((sizeof(uint64_t) * 8 - 1) - __builtin_clzll(n | 1));
|
|
#else
|
|
uint64_t pos = 0ull;
|
|
if (n >= 1ull<<32) { n >>= 32; pos += 32; }
|
|
if (n >= 1ull<<16) { n >>= 16; pos += 16; }
|
|
if (n >= 1ull<< 8) { n >>= 8; pos += 8; }
|
|
if (n >= 1ull<< 4) { n >>= 4; pos += 4; }
|
|
if (n >= 1ull<< 2) { n >>= 2; pos += 2; }
|
|
if (n >= 1ull<< 1) { pos += 1; }
|
|
return pos;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Returns the ceiling of log n base 2, and 0 when n == 0. Equivalently,
|
|
* returns the smallest x such that n <= 2**x.
|
|
*/
|
|
static inline unsigned
|
|
util_logbase2_ceil(unsigned n)
|
|
{
|
|
if (n <= 1)
|
|
return 0;
|
|
|
|
return 1 + util_logbase2(n - 1);
|
|
}
|
|
|
|
static inline uint64_t
|
|
util_logbase2_ceil64(uint64_t n)
|
|
{
|
|
if (n <= 1)
|
|
return 0;
|
|
|
|
return 1ull + util_logbase2_64(n - 1);
|
|
}
|
|
|
|
/**
|
|
* Returns the smallest power of two >= x
|
|
*/
|
|
static inline unsigned
|
|
util_next_power_of_two(unsigned x)
|
|
{
|
|
#if defined(HAVE___BUILTIN_CLZ)
|
|
if (x <= 1)
|
|
return 1;
|
|
|
|
return (1 << ((sizeof(unsigned) * 8) - __builtin_clz(x - 1)));
|
|
#else
|
|
unsigned val = x;
|
|
|
|
if (x <= 1)
|
|
return 1;
|
|
|
|
if (util_is_power_of_two_or_zero(x))
|
|
return x;
|
|
|
|
val--;
|
|
val = (val >> 1) | val;
|
|
val = (val >> 2) | val;
|
|
val = (val >> 4) | val;
|
|
val = (val >> 8) | val;
|
|
val = (val >> 16) | val;
|
|
val++;
|
|
return val;
|
|
#endif
|
|
}
|
|
|
|
static inline uint64_t
|
|
util_next_power_of_two64(uint64_t x)
|
|
{
|
|
#if defined(HAVE___BUILTIN_CLZLL)
|
|
if (x <= 1)
|
|
return 1;
|
|
|
|
return (1ull << ((sizeof(uint64_t) * 8) - __builtin_clzll(x - 1)));
|
|
#else
|
|
uint64_t val = x;
|
|
|
|
if (x <= 1)
|
|
return 1;
|
|
|
|
if (util_is_power_of_two_or_zero64(x))
|
|
return x;
|
|
|
|
val--;
|
|
val = (val >> 1) | val;
|
|
val = (val >> 2) | val;
|
|
val = (val >> 4) | val;
|
|
val = (val >> 8) | val;
|
|
val = (val >> 16) | val;
|
|
val = (val >> 32) | val;
|
|
val++;
|
|
return val;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Reverse bits in n
|
|
* Algorithm taken from:
|
|
* http://stackoverflow.com/questions/9144800/c-reverse-bits-in-unsigned-integer
|
|
*/
|
|
static inline unsigned
|
|
util_bitreverse(unsigned n)
|
|
{
|
|
n = ((n >> 1) & 0x55555555u) | ((n & 0x55555555u) << 1);
|
|
n = ((n >> 2) & 0x33333333u) | ((n & 0x33333333u) << 2);
|
|
n = ((n >> 4) & 0x0f0f0f0fu) | ((n & 0x0f0f0f0fu) << 4);
|
|
n = ((n >> 8) & 0x00ff00ffu) | ((n & 0x00ff00ffu) << 8);
|
|
n = ((n >> 16) & 0xffffu) | ((n & 0xffffu) << 16);
|
|
return n;
|
|
}
|
|
|
|
/**
|
|
* Convert from little endian to CPU byte order.
|
|
*/
|
|
|
|
#if UTIL_ARCH_BIG_ENDIAN
|
|
#define util_le64_to_cpu(x) util_bswap64(x)
|
|
#define util_le32_to_cpu(x) util_bswap32(x)
|
|
#define util_le16_to_cpu(x) util_bswap16(x)
|
|
#else
|
|
#define util_le64_to_cpu(x) (x)
|
|
#define util_le32_to_cpu(x) (x)
|
|
#define util_le16_to_cpu(x) (x)
|
|
#endif
|
|
|
|
#define util_cpu_to_le64(x) util_le64_to_cpu(x)
|
|
#define util_cpu_to_le32(x) util_le32_to_cpu(x)
|
|
#define util_cpu_to_le16(x) util_le16_to_cpu(x)
|
|
|
|
/**
|
|
* Reverse byte order of a 32 bit word.
|
|
*/
|
|
static inline uint32_t
|
|
util_bswap32(uint32_t n)
|
|
{
|
|
#if defined(HAVE___BUILTIN_BSWAP32)
|
|
return __builtin_bswap32(n);
|
|
#else
|
|
return (n >> 24) |
|
|
((n >> 8) & 0x0000ff00) |
|
|
((n << 8) & 0x00ff0000) |
|
|
(n << 24);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Reverse byte order of a 64bit word.
|
|
*/
|
|
static inline uint64_t
|
|
util_bswap64(uint64_t n)
|
|
{
|
|
#if defined(HAVE___BUILTIN_BSWAP64)
|
|
return __builtin_bswap64(n);
|
|
#else
|
|
return ((uint64_t)util_bswap32((uint32_t)n) << 32) |
|
|
util_bswap32((n >> 32));
|
|
#endif
|
|
}
|
|
|
|
|
|
/**
|
|
* Reverse byte order of a 16 bit word.
|
|
*/
|
|
static inline uint16_t
|
|
util_bswap16(uint16_t n)
|
|
{
|
|
return (n >> 8) |
|
|
(n << 8);
|
|
}
|
|
|
|
/**
|
|
* Extend sign.
|
|
*/
|
|
static inline int64_t
|
|
util_sign_extend(uint64_t val, unsigned width)
|
|
{
|
|
assert(width > 0);
|
|
if (val & (UINT64_C(1) << (width - 1))) {
|
|
return -(int64_t)((UINT64_C(1) << width) - val);
|
|
} else {
|
|
return val;
|
|
}
|
|
}
|
|
|
|
static inline void*
|
|
util_memcpy_cpu_to_le32(void * restrict dest, const void * restrict src, size_t n)
|
|
{
|
|
#if UTIL_ARCH_BIG_ENDIAN
|
|
size_t i, e;
|
|
assert(n % 4 == 0);
|
|
|
|
for (i = 0, e = n / 4; i < e; i++) {
|
|
uint32_t * restrict d = (uint32_t* restrict)dest;
|
|
const uint32_t * restrict s = (const uint32_t* restrict)src;
|
|
d[i] = util_bswap32(s[i]);
|
|
}
|
|
return dest;
|
|
#else
|
|
return memcpy(dest, src, n);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Clamp X to [MIN, MAX].
|
|
* This is a macro to allow float, int, uint, etc. types.
|
|
* We arbitrarily turn NaN into MIN.
|
|
*/
|
|
#define CLAMP( X, MIN, MAX ) ( (X)>(MIN) ? ((X)>(MAX) ? (MAX) : (X)) : (MIN) )
|
|
|
|
/* Syntax sugar occuring frequently in graphics code */
|
|
#define SATURATE( X ) CLAMP(X, 0.0f, 1.0f)
|
|
|
|
#define MIN2( A, B ) ( (A)<(B) ? (A) : (B) )
|
|
#define MAX2( A, B ) ( (A)>(B) ? (A) : (B) )
|
|
|
|
#define MIN3( A, B, C ) ((A) < (B) ? MIN2(A, C) : MIN2(B, C))
|
|
#define MAX3( A, B, C ) ((A) > (B) ? MAX2(A, C) : MAX2(B, C))
|
|
|
|
#define MIN4( A, B, C, D ) ((A) < (B) ? MIN3(A, C, D) : MIN3(B, C, D))
|
|
#define MAX4( A, B, C, D ) ((A) > (B) ? MAX3(A, C, D) : MAX3(B, C, D))
|
|
|
|
|
|
/**
|
|
* Align a value up to an alignment value
|
|
*
|
|
* If \c value is not already aligned to the requested alignment value, it
|
|
* will be rounded up.
|
|
*
|
|
* \param value Value to be rounded
|
|
* \param alignment Alignment value to be used. This must be a power of two.
|
|
*
|
|
* \sa ROUND_DOWN_TO()
|
|
*/
|
|
|
|
#if defined(ALIGN)
|
|
#undef ALIGN
|
|
#endif
|
|
static inline uintptr_t
|
|
ALIGN(uintptr_t value, int32_t alignment)
|
|
{
|
|
assert(util_is_power_of_two_nonzero(alignment));
|
|
return (((value) + (alignment) - 1) & ~((alignment) - 1));
|
|
}
|
|
|
|
/**
|
|
* Like ALIGN(), but works with a non-power-of-two alignment.
|
|
*/
|
|
static inline uintptr_t
|
|
ALIGN_NPOT(uintptr_t value, int32_t alignment)
|
|
{
|
|
assert(alignment > 0);
|
|
return (value + alignment - 1) / alignment * alignment;
|
|
}
|
|
|
|
/**
|
|
* Align a value down to an alignment value
|
|
*
|
|
* If \c value is not already aligned to the requested alignment value, it
|
|
* will be rounded down.
|
|
*
|
|
* \param value Value to be rounded
|
|
* \param alignment Alignment value to be used. This must be a power of two.
|
|
*
|
|
* \sa ALIGN()
|
|
*/
|
|
static inline uint64_t
|
|
ROUND_DOWN_TO(uint64_t value, int32_t alignment)
|
|
{
|
|
assert(util_is_power_of_two_nonzero(alignment));
|
|
return ((value) & ~(alignment - 1));
|
|
}
|
|
|
|
/**
|
|
* Align a value, only works pot alignemnts.
|
|
*/
|
|
static inline int
|
|
align(int value, int alignment)
|
|
{
|
|
return (value + alignment - 1) & ~(alignment - 1);
|
|
}
|
|
|
|
static inline uint64_t
|
|
align64(uint64_t value, unsigned alignment)
|
|
{
|
|
return (value + alignment - 1) & ~((uint64_t)alignment - 1);
|
|
}
|
|
|
|
/**
|
|
* Works like align but on npot alignments.
|
|
*/
|
|
static inline size_t
|
|
util_align_npot(size_t value, size_t alignment)
|
|
{
|
|
if (value % alignment)
|
|
return value + (alignment - (value % alignment));
|
|
return value;
|
|
}
|
|
|
|
static inline unsigned
|
|
u_minify(unsigned value, unsigned levels)
|
|
{
|
|
return MAX2(1, value >> levels);
|
|
}
|
|
|
|
#ifndef COPY_4V
|
|
#define COPY_4V( DST, SRC ) \
|
|
do { \
|
|
(DST)[0] = (SRC)[0]; \
|
|
(DST)[1] = (SRC)[1]; \
|
|
(DST)[2] = (SRC)[2]; \
|
|
(DST)[3] = (SRC)[3]; \
|
|
} while (0)
|
|
#endif
|
|
|
|
|
|
#ifndef COPY_4FV
|
|
#define COPY_4FV( DST, SRC ) COPY_4V(DST, SRC)
|
|
#endif
|
|
|
|
|
|
#ifndef ASSIGN_4V
|
|
#define ASSIGN_4V( DST, V0, V1, V2, V3 ) \
|
|
do { \
|
|
(DST)[0] = (V0); \
|
|
(DST)[1] = (V1); \
|
|
(DST)[2] = (V2); \
|
|
(DST)[3] = (V3); \
|
|
} while (0)
|
|
#endif
|
|
|
|
|
|
static inline uint32_t
|
|
util_unsigned_fixed(float value, unsigned frac_bits)
|
|
{
|
|
return value < 0 ? 0 : (uint32_t)(value * (1<<frac_bits));
|
|
}
|
|
|
|
static inline int32_t
|
|
util_signed_fixed(float value, unsigned frac_bits)
|
|
{
|
|
return (int32_t)(value * (1<<frac_bits));
|
|
}
|
|
|
|
unsigned
|
|
util_fpstate_get(void);
|
|
unsigned
|
|
util_fpstate_set_denorms_to_zero(unsigned current_fpstate);
|
|
void
|
|
util_fpstate_set(unsigned fpstate);
|
|
|
|
/**
|
|
* For indexed draw calls, return true if the vertex count to be drawn is
|
|
* much lower than the vertex count that has to be uploaded, meaning
|
|
* that the driver should flatten indices instead of trying to upload
|
|
* a too big range.
|
|
*
|
|
* This is used by vertex upload code in u_vbuf and glthread.
|
|
*/
|
|
static inline bool
|
|
util_is_vbo_upload_ratio_too_large(unsigned draw_vertex_count,
|
|
unsigned upload_vertex_count)
|
|
{
|
|
if (draw_vertex_count > 1024)
|
|
return upload_vertex_count > draw_vertex_count * 4;
|
|
else if (draw_vertex_count > 32)
|
|
return upload_vertex_count > draw_vertex_count * 8;
|
|
else
|
|
return upload_vertex_count > draw_vertex_count * 16;
|
|
}
|
|
|
|
bool util_invert_mat4x4(float *out, const float *m);
|
|
|
|
/* Quantize the lod bias value to reduce the number of sampler state
|
|
* variants in gallium because apps use it for smooth mipmap transitions,
|
|
* thrashing cso_cache and degrading performance.
|
|
*
|
|
* This quantization matches the AMD hw specification, so having more
|
|
* precision would have no effect anyway.
|
|
*/
|
|
static inline float
|
|
util_quantize_lod_bias(float lod)
|
|
{
|
|
lod = CLAMP(lod, -16, 16);
|
|
return roundf(lod * 256) / 256;
|
|
}
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif /* U_MATH_H */
|